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Stability and acoustic scattering in a cylindrical
thin shell containing compressible mean flow
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(Received 13 August 2007 and in revised form 9 February 2008)

We consider the stability of small perturbations to a uniform inviscid compressible
flow within a cylindrical linear-elastic thin shell. The thin shell is modelled using
Flügge’s equations, and is forced from the inside by the fluid, and from the outside
by damping and spring forces. In addition to acoustic waves within the fluid, the
system supports surface waves, which are strongly coupled to the thin shell. Stability
is analysed using the Briggs–Bers criterion, and the system is found to be either stable
or absolutely unstable, with absolute instability occurring for sufficiently small shell
thicknesses. This is significantly different from the stability of a thin shell containing
incompressible fluid, even for parameters for which the fluid would otherwise be
expected to behave incompressibly (for example, water within a steel thin shell).
Asymptotic expressions are derived for the shell thickness separating stable and
unstable behaviour.

We then consider the scattering of waves by a sudden change in the duct boundary
from rigid to thin shell, using the Wiener–Hopf technique. For the scattering of
an inbound acoustic wave in the rigid-wall section, the surface waves are found to
play an important role close to the sudden boundary change. The solution is given
analytically as a sum of duct modes.

The results in this paper add to the understanding of the stability of surface waves
in models of acoustic linings in aeroengine ducts. The oft-used mass–spring–damper
model is regularized by the shell bending terms, and even when these terms are
very small, the stability and scattering results are quite different from what has
been claimed for the mass–spring–damper model. The scattering results derived here
are exact, unique and causal, without the need to apply a Kutta-like condition or
to include an instability wave. A movie is available with the online version of the
paper.

1. Introduction
In this paper, we consider a cylindrical thin shell within which flows a compressible

inviscid fluid. The fluid flow is axial, uniform, steady, and subsonic. To this situation
we introduce small unsteady perturbations, and consider their nature, stability, and
scattering properties. From an acoustics perspective, this is the study of the acoustics
of a cylindrical thin shell waveguide with mean flow. From a fluid-loaded structures
perspective, it is the study of a fluid-loaded linear-elastic cylindrical thin-shell, where
the fluid is compressible and has a significant mean flow; the degree of fluid loading
is arbitrary, and may be heavy (e.g. water within a steel cylinder) or light (e.g. air
within an aluminium cylinder).
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404 E. J. Brambley and N. Peake

The response of a fluid-loaded cylindrical thin shell has been much studied, although
mostly with incompressible fluid and zero mean flow. Crighton & Oswell (1991)
pointed out that, for a fluid-loaded flat plate, the inclusion of mean flow significantly
modifies the problem, and can cause a change in stability, because the mean flow
provides an energy reservoir that can feed the small perturbations and give rise to
instabilities, analogous to the Kelvin–Helmholtz shear layer instability. Crighton &
Oswell’s analysis was extended to a fluid-loaded cylindrical thin shell by Peake (1997),
and the curvature of the thin shell was found to have a dramatic effect on stability.
Here, we extend Peake’s analysis to account for a compressible mean flow.

Acoustic modes in a straight cylindrical duct with rigid walls and mean flow
are very well understood, with the only effect of the mean flow being to introduce
a Doppler shift. The interesting question is in the model of the boundary, and
particularly the ability of the boundary to attenuate sound. For a mass–spring–
damper boundary model, Rienstra (2003) discovered that as well as modifying the
wavenumbers of the acoustic duct modes, the boundary model gave rise to an extra
set of modes without rigid-wall counterparts. Rienstra termed these surface modes,
since they tend to be localized about the duct boundary. The surface modes have
a distinctly different character from the acoustic modes, and have deep connections
with the boundary model and stability; indeed, Rienstra tentatively identified one
surface wave as an instability. Described in cylindrical polar coordinates (r, θ, x), the
duct boundary is characterized by its impedance Z = p/v, where a fluid pressure
p exp{iωt −ikx−imθ} at the boundary produces a radial boundary velocity v exp{· · ·}.
The mass–spring–damper model (effectively a modified Winkler foundation) assumes
the radial boundary displacement w to be governed by

d
∂2w

∂t2
+ R

∂w

∂t
+ bw = p. (1.1)

This leads to the impedance Z = R + idω − ib/ω. The lack of x and θ derivatives in
this boundary model cause Z to be independent of both k and m, and corresponds to
the assumption that the boundary is infinitely flexible and locally reacting. Here, we
extend this expression for Z to include wavenumber-dependent terms arising from
the elastic behaviour of a cylindrical shell.

There are various methods by which stability may be analysed. The choice
of method seems moderately controversial, and so warrants some discussion. A
commonly used and proven stability analysis is the Briggs–Bers criterion (Briggs
1964; Bers 1983), which was used by Crighton & Oswell (1991) and Peake (1997).
This criterion is only applicable provided Im(ω(k)) is bounded below for real k†,
or in other words, provided the temporal growth rate of the system is bounded for
any initial conditions. Unfortunately, the mass–spring–damper boundary model turns
out to belong to a class of problems, also including the Kelvin–Helmholtz vortex
sheet instability, for which this is not the case, and so the Briggs–Bers criterion is
inapplicable. Various authors have considered the stability of this class of systems.
Jones & Morgan (1972) analysed the stability of a vortex sheet, and derived an explicit
causal solution in terms of ultradistributions. In a later paper, Jones & Morgan (1974,
p. 25) formalized this derivation into a stability criterion, which was extensively used

† By ω(k), we mean the multi-valued function giving the frequencies of all modes for a specified
k; i.e. all allowable values of ω for solutions of the form f (r, θ )exp{iωt − ikx} for a given k.
See figure 2 for an example. Note that we use the opposite sign convention for the time Fourier
transform to Briggs.
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Figure 1. Schematic of a cylindrical duct with a sudden change from rigid-wall boundary for
x < 0 to thin-shell boundary for x > 0. The small unsteady perturbations to the position of
the thin shell are given by u, v, and w.

at the time (e.g. Morgan 1975; Munt 1977). Crighton & Leppington (1974) considered
a semi-infinite plate shedding a vortex sheet. They proposed (Crighton & Leppington
1974, p. 406), although left unproven, a stability criterion similar to Briggs–Bers,
for use in similar problems to their own. They went on to derive an explicit causal
solution in terms of ultradistributions, in a similar manner to Jones & Morgan (1972).

The stability of the vortex sheet problems was also investigated by Jones (1977),
who regularized the problem by considering a shear layer of finite thickness H . Jones
concluded that for H small but non-zero an instability was present that could be
represented in terms of conventional functions, which in the limit H → 0 yielded
the previously known ultradistribution result. For the problem considered here of an
externally damped cylindrical thin shell of thickness h bounding compressible mean
flow, the temporal growth rate is bounded, and so the Briggs–Bers criterion is used to
analyse stability, while the mass–spring–damper boundary is recovered in the limit of
vanishing shell thickness, h → 0. This may be used to better understand the stability
of the mass–spring–damper boundary model.

Rienstra (2007) recently analysed the scattering of a downstream-propagating rigid-
wall acoustic mode as it encounters a sudden transition at x = 0 to a locally reacting
lined duct, using the Wiener–Hopf technique. Owing to the uncertainty over whether
one of the surface modes represents an instability or not, both cases were considered.
Assuming all modes to be stable, the surface streamline was found to be O(x1/2)
as x → 0, giving a cusp in the boundary at x = 0. Treating one surface mode as
an instability, an extra degree of freedom became available which can be chosen
to satisfy a Kutta-like condition, giving the surface streamline behaviour as O(x3/2)
at the boundary transition. Using the thin-shell boundary model, it is found that
the surface streamline is O(x2) across the boundary transition, with no instabilities
present and without the need to appeal to a Kutta-like condition.

2. Governing equations and the dispersion relation
A straight cylindrical duct of radius r0 and of infinite extent in the x-direction

is considered, as shown in figure 1. An inviscid steady uniform axial flow of speed
U , density D, pressure P , and sound speed C flows down the inside of the duct
in the positive x-direction. Speeds are non-dimensionalized by the speed of sound
C, so that U becomes the (subsonic) mean flow Mach number. Distances are non-
dimensionalized by the duct radius r0, times by r0/C, densities by D, and pressures
by DC2. (Note that for a perfect gas with ratio of specific heats γ, this gives the mean
non-dimensionalized pressure as 1/γ).
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406 E. J. Brambley and N. Peake

A small potential perturbation φ(x, r, θ, t) to the steady state is considered, with
corresponding velocity perturbation u = ∇φ, pressure p and density ρ. The linearized
governing equations given by Goldstein (1978) in this case become

D2φ

Dt2
− ∇2φ = 0 and p = ρ = −Dφ

Dt
,

where D/Dt = ∂/∂t+U∂/∂x is the convective derivative with respect to the mean flow.
Using separation of variables, a solution of the form φ = f (r) exp {iωt − ikx − imθ}
is sought. With the non-dimensionalization above, ω is the Helmholtz number, k

is the axial wavenumber, and m (an integer) is the azimuthal wavenumber. Making
this substitution, and requiring the solution to be non-singular at r = 0, gives
f (r) = AJm(αr) for some constant amplitude A, where Jm is the mth Bessel function
of the first kind and α2 = (ω − Uk)2 − k2.

The duct boundary is modelled as a flexible impermeable surface with radius 1+w,
where w is the small unsteady perturbation. The motion of the boundary complicates
the no-flux boundary condition u·n̂ = 0 applied on the surface, since both the position
of the surface and the direction of the surface normal n̂ are unsteady and dependent
on the flow. For a general geometry, Myers (1980) derived the linearized no-flux
boundary condition to be

u · n =

(
∂

∂t
+ U · ∇ − (n · ∇U) · n

)
w,

where n is the unperturbed surface normal out of the fluid, U is the steady mean
flow, and all quantities are evaluated on the unperturbed boundary. Substituting the
solution for φ into this, and using p/w = iωZ, yields the dispersion relation

1 − (ω − Uk)2

iωZ

Jm(α)

αJ′
m(α)

= 0. (2.1)

Note that since Jm(−r) = (−1)mJm(r), (2.1) is a meromorphic function of α2 and
contains no branch cuts, and so it does not matter which branch is chosen for α. The
dispersion relation for a rigid wall is obtained by taking Z → ∞ to give J′

m(α) = 0.
The key question now is: what is an appropriate function for Z(ω, k, m)?

2.1. Impedance of a thin-shell boundary

The duct boundary is modelled as the interior of a thin cylindrical shell using Flügge’s
equations (see Päıdoussis 2004, p. 576), the outside of which is sprung and damped.
Let u, v, and w denote the axial, azimuthal, and radial displacement of the shell from
equilibrium, as shown in figure 1, and let p∗ = p − bw − R∂w/∂t be the net outward
force per unit area on the shell. Here, p is the linearized acoustic pressure in the fluid
at the duct boundary, and b and R represent a spring force and damping respectively,
assumed to originate from the outside of the shell. All variables p, u, v, and w

are taken to have exp{iωt − ikx − imθ} dependence, and the impedance Z(ω, k, m)
is sought, where Z = p/(∂w/∂t). We assume that the thin-shell thickness h � 1,
which simplifies Flügge’s equations to those of Vlasov (see Leissa 1973, pp. 32–34).
Additionally, we assume that that 2m2 − 1 � (k2 +m2)2, which is almost always true†
and simplifies the equations further (eliminating the diagonal term from Vlasov’s

† It is true provided |m| �= 0, 1, 2, or if otherwise provided k is sufficiently far from the origin
(say |k| � 3). This will be seen to be very unrestrictive: typically, m ∈ [0, 24] and |k| ∈ [0, 80].
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thin-shell equation (2.9g), Leissa 1973). The Fourier-transforms of these equations
then give

Z = R − i
(
cl

2d + b
)
/ω + idω − icl

2d

ω

(
h2

12
(k2 + m2)2 − A1

iu

w
− A2

iv

w

)
, (2.2a)

where (
a11 a12

a12 a22

) (
iu/w

iv/w

)
=

(
A1

A2

)
, (2.2b)

a11 = k2 +
1 − ν

2
m2 − ω2

c2
l

, a12 =
1 + ν

2
mk, a22 = m2 +

1 − ν

2
k2 − ω2

c2
l

,

A1 = k

[
ν +

h2

12

(
k2 − 1 − ν

2
m2

)]
, A2 = m

[
1 +

h2

12

3 − ν

2
k2

]
, (2.2c)

and c2
l = E/(ρs(1 − ν2)) is the square of the speed of longitudinal compressive waves

in the boundary material, d = ρsh is the shell mass per unit area, and the properties
of the boundary material ρs , E and ν are the density, Young’s modulus, and Poisson’s
ratio respectively.

If k is large and m/k � O(1) (of particular interest for stability analysis), and the
determinant of the matrix in (2.2b) is non-zero, then u/w = O(h2k), v/w � O(h2k),
and A1u/w +A2v/w = O(h4k4). Neglecting the terms involving A1 and A2 in (2.2a) is
therefore justified in this limit, and the thin-shell impedance (2.2a) takes the form of
a modified mass–spring–damper system (cf. equation (1.1)), together with a bending
stiffness B ≡ c2

l dh2/12.
The determinant of (2.2b) is zero when k = ±kl or k = ±kt , where

k2
l = ω2/c2

l − m2 and kt
2 = ω2/ct

2 − m2 (2.3)

and ct = cl

√
(1 − ν)/2 is the speed of transverse waves in the duct boundary. The

imaginary parts of kl and kt are here taken negative, or if zero the real parts are
taken positive, so as to represent right-propagating longitudinal and transverse waves
in the thin-shell boundary.

2.2. Surface modes

The main mathematical distinction between surface modes and acoustic modes is in
the value of α in (2.1); acoustic modes have nearly all real α, while surface modes have
a significant imaginary part to α. Rienstra (2003) derived a dispersion relation for the
surface modes in the asymptotic limit ω → ∞. Recently, Brambley & Peake (2006)
gave a more accurate asymptotic approximation, written in the present notation as√

k2 + m2 − (ω − Uk)2 − (ω − Uk)2

iωZ
= 0, (2.4)

where the real part of
√

· · · is required positive. Modes which satisfy (2.4) but not this
positivity condition are here termed fake surface modes, since they do not correspond
to actual roots of the full dispersion relation (2.1).

For a locally reacting boundary (such as the mass–spring–damper boundary in
equation (1.1)), Z is independent of k, and (2.4) may be rearranged to give a quartic
equation for k. There would therefore be at most four roots for any given ω and m;
the nature and position of these four surface modes has been discussed in detail by
Rienstra (2003) and Brambley & Peake (2006). For the thin-shell impedance, (2.4)
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may be rearranged to give an 18th-order polynomial in k for fixed ω, or a 14th-order
polynomial in ω for fixed k. For a given frequency, there are therefore a maximum
of 18 surface modes, although some of these may be fake surface modes. The surface
modes may be prominently seen in figure 7.

From considering a large number of different parameters in different regimes and
numerically calculating the axial wavenumbers, some interpretation of the nature and
physical mechanisms supporting these surface modes may be speculated. Of the 18
potential surface modes, one real surface mode and one fake surface mode tend to
each of kl , kt , −kl , and −kt (defined in (2.3)) as h → 0, and surface modes of this type
are here termed quasi-solid surface modes. It should be emphasized, however, that
these surface modes are distinct from the solid boundary waves with wavenumbers
exactly equal to ±kl and ±kt ; the quasi-solid modes are fluid modes occurring in the
vicinity of the boundary, whereas the solid boundary waves correspond to zeros of
the determinant of (2.2b) and therefore produce no disturbance in the fluid. Of the
remaining 10 surface modes, four fake and two real surface modes tend to infinity
as h → 0, while the other four tend to the mass–spring–damper values. This suggests
that of the 18 potential surface modes, eight are sustained by compressional and
twisting solid mechanisms, six are supported by bending solid mechanisms, and four
are supported by effectively mass–spring–damper mechanisms.

If the terms involving A1 and A2 in (2.2a) may be neglected (recall that this is the
case when k is large), (2.4) can be rearranged to give

(k2 + m2 − (ω − Uk)2)
((

c2
l d + b

)
+ iωR − dω2 + B (k2 + m2)2

)2 − (ω − Uk)4 = 0.

(2.5)

This is now a polynomial of 10th order in k, or of 6th order in ω. This dispersion
relation has proved to be remarkably accurate for all cases we have considered,
even for modest values of k for which the previous argument for neglecting A1 and
A2 is not appropriate. However, this simplification does neglect the compressional
and twisting components in the solid, and consequently the eight quasi-solid surface
modes are not modelled by (2.5).

3. Stability
We now turn to the question of their stability, by employing the Briggs–Bers

criterion (Briggs 1964; Bers 1983). In order for this criterion to be applicable, Im(ω(k))
for real k must be bounded below, which is not true for the mass–spring–damper
model. We now verify that the Briggs–Bers criterion is applicable for the thin-shell
model.

The acoustic modes are stable, being analogous to the stable rigid-wall duct
modes, and do not therefore preclude the Briggs–Bers criterion from being applied.
Utilizing (2.4), and noting from (2.2a) that |Z| → ∞ as |k| → ∞, two classifications of
surface modes emerge in the limit |k| → ∞,

ω = Uk ±
√

k2 + m2 + O(k−5),

ω = ±
√

B/d(k2 + m2 + 1/2) +
i

2d
(R ± 1) + O(k−1),

where the two ± in the last equation are independent. Accounting for zeros of the
determinant of (2.2b) gives an additional surface mode classification, consisting of
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Figure 2. Trajectories of ω(k) for k real. For clarity, only modes with Re(ω) > 0 are shown.
The fluid is air and the boundary is aluminium. h = 10−3, U = 0.5, R = 3, b = 1, and m = 24.

eight modes of the form

ω = ±clk + O(k−1) or ω = ±ct k + O(k−1).

All of the above surface modes have bounded Im(ω) for real k as |k| → ∞, and
the regularity of (2.4) means that ω(k) is continuous, and hence bounded for k in a
bounded interval. Therefore, the image of the real-k-axis in the ω-plane has bounded
imaginary part, and so the Briggs–Bers criterion can be used.

The boundedness of Im(ω(k)) for real k as |k| → ∞ does not hold for the mass–
spring–damper system. To see how this is regularized by the inclusion of bending
stiffness for h �= 0, set ω = N

√
k in (2.5) to find

N2 = −U 2

βd
+

B

d
k3,

to leading order as |k| → ∞, where β =
√

1 − U 2. The unbounded ω = −iU
√

k/(βd)
behaviour found by Rienstra (2007) is therefore seen to hold only for

|k| �
(

U 2

βB

)1/3

, (3.1)

giving an estimate of the magnitude of k for which bending stiffness becomes
important for stability. An example demonstrating this is given in §3.2.

3.1. A stable example

Figure 2 shows the real-k-axis mapped into the ω-plane for an air-filled aluminium
duct, with m = 24, R = 3, and b = 1. The duct may be thought of as having a 1 m
radius and a shell thickness of 1 mm. The many near-parallel trajectories in figure 2(a)
correspond to members of the infinite family of acoustic modes, while the few other
modes are the surface modes. Note that no modes are present with Im(ω) < 0, so that
the temporal inversion contour Cω may be taken arbitrarily close to the real-ω-axis.
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Figure 3. Trajectories of ω(k) for k real. Parameters are as for figure 2, but with h = 10−5.
Solid lines correspond to a thin shell, dashed lines show the equivalent mass–spring–damper
trajectories. The value of k given by 3.1 is shown by the dashed vertical lines.

Hence, any mode with complex k(ω) corresponds to an exponentially decaying mode,
while if k(ω) is real, the mode is left propagating if Re(cg) < 0, and right propagating
if Re(cg) > 0, where cg = ∂ω/∂k is the group velocity, and there is no possibility of
absolute instability. This is exactly as might have been naively expected without a
detailed stability analysis, and shows that for these parameters the system is stable.

3.2. An example of instability

Using the same parameters as above, but with a very thin shell thickness h = 10−5,
leads to the situation shown in figure 3. We now investigate whether there is a pinch
frequency ωp , leading to an absolute instability. Writing the dispersion relation (2.1)
as ∆(k, ω) = 0, we look for a double root, given by ∂∆/∂k = 0. The values of ω

and k which simultaneously satisfy both of these constraints were found numerically
using a two-dimensional Newton–Raphson iteration, with starting points located on
a grid covering the relevant areas of the k- and ω-planes. The values of ω found are
shown in figure 4. The majority of these double roots involve the collision of two
modes both originating from the same half of the k-plane, and so do not pinch the
k-inversion contour Ck . A double root that does pinch the contour is found to at
ωp = ±13 − 54i, and so for these parameters the system is absolutely unstable. The
extreme parameters needed to demonstrate this instability may be thought of as a 1 m
duct radius with a boundary thickness of 0.01 mm and a mean flow Mach number of
0.5, which is not realizable in practice.

3.3. The boundary between stable and unstable behaviour

The question now arises: how small a shell thickness is needed for there to be an
absolute instability? By tracking the pinch frequency numerically as h is varied, the
critical value h = hc giving Im(ωp) = 0 may be found. Figure 5 plots these values of
hc for a variety of parameters; the amount of external damping, R, is found to have
no effect on the critical shell thickness hc, and so figure 5 only considers R = 3. For
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Figure 4. Values of ω (denoted +) for which double roots of the dispersion relation occur
for some value of k. The solid line is ω(k) for real k. Parameters are as for figure 3.
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Figure 5. Stability for two regimes given in table 1: (a) air within aluminium and (b) water
within steel. The critical shell thickness hc is given by short dashed lines are for b = 0, solid
lines for b = 1, and long dashed lines are from Peake (1997).

small U the dominant parameter is the Winkler foundation spring constant b, while
as U approaches unity m becomes the dominant parameter.

The approximate critical shell thickness found by Peake (1997, equation (3.3)) is
also plotted in figure 5. This result was derived for an incompressible fluid in the
small-mean-flow limit, and was shown to give a very accurate approximation to the
true critical boundary for an incompressible fluid. Figure 5 shows that compressibility
alters the stability boundary significantly.

For a double root to correspond to a pinch, one mode must originate from the
upper-half k-plane and one from the lower-half. Hence, at least one of these modes
must cross the real-k-axis, shown as a solid line in figure 4 making two fingers in
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412 E. J. Brambley and N. Peake

Fluid Solid cl ρs ν

Air Aluminium 15.8 2 200 0.33
Water Steel 3.6 7.85 0.3

Table 1. Non-dimensionalized thin-shell parameters used.

the lower-half ω-plane. As h is increased, these two fingers shrink, until at a certain
value of h there are no modes with real k in the lower-half ω-plane, and so there can
be no instabilities (either absolute or convective). The dominant pinch frequency ωp

is located towards the ends of these fingers, and the critical shell thickness hc turns
out to be exactly the value of h for which these fingers disappear from the lower-half
ω-plane. This implies the interesting result that the system is either absolutely unstable
or stable, but never only convectively unstable. Why this should be the case, rather
than the pinch point crossing the boundary of one of the fingers and producing
convective instability, is at present unclear. Since the two fingers of ω(k) for real k

shrink down to ω = 0, the critical value of ωp , defined as Im(ωp) = 0, actually occurs
at ωp = 0. Using this, 2.5 tells us that this borderline is given by ∆ = ∂∆/∂k = 0,
where

∆ ≡ (k2 + m2/β2)
((

c2
l d + b

)
/B + (k2 + m2)2

)2 − U 4k4

B2β2
(3.2)

and β2 = 1 − U 2. These two equations can be solved for hc and the corresponding
value of k = kp . Note that the boundary damping R does not occur in (3.2), explaining
why the curves in figure 5 are independent of R. However, the general solution of
∆ = ∂∆/∂k = 0 involves solving simultaneously a 10th- and eighth-order polynomial.
Progress may be made by considering the case for which kp � m/β , which will turn
out to be valid provided U is sufficiently small. Neglecting the terms involving m2

in (3.2) then gives

1

k2
p

∆ ≡ k8
p + 2λk4

p − k6
0k

2
p + λ2 = 0,

1

2kp

∂∆

∂k
≡ 5k8

p + 6λk4
p − 2k6

0k
2
p + λ2 = 0,

where λ = (c2
l d + b)/B , and k0 = (U 2/(βB))1/3 is the value of k given in 3.1 for which

bending becomes important to stability. Solving these two equations gives

hc = − b

2c2
l ρs

+
1

2

√(
b

c2
l ρs

)2

+

(
9U 4

(1 − U 2)c4
l ρs

2

)2/3

. (3.3)

If U � 1, this reduces to two cases, depending on whether U � Uc or U � Uc, where

Uc =

(
8b3

9c2
l ρs

)1/4

.

If U � Uc, the Winkler foundation spring force b dominates the thin-shell spring
force c2

l d , and (3.3) gives an hc = O(U 8/3) power law,

hc 
 c2
l ρs

b

(
9U 4

8c4
l ρs

2

)2/3

.
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Figure 6. Comparison between asymptotic approximations and numerical results for hc , for
b = 1 and m∈{0, 1, 5, 24}, and (a) air within aluminium and (b) water within steel solid lines
are numerical results, short dashed lines are (3.3) and the power laws derived from it, and long
dashed lines are from Peake (1997).

Alternatively, if U � Uc it is the thin-shell spring force that dominates, and we get
an hc = O(U 4/3) power law,

hc 

(

9U 4

8c4
l ρs

2

)1/3

.

Note that if b = 0, corresponding to no Winkler foundation spring force, the hc =
O(U 4/3) power law is universally valid for U � 1.

Figure 6 compares these predictions against the numerically found values of hc

(as found for figure 5). As U approaches unity, the m2/β2 factor in (3.2) becomes
significant, and the above asymptotics breaks down, provided m �= 0. However, for
small and moderate U , the asymptotics derived above show a very good agreement
with the numerical results, and the U 8/3 and U 4/3 scaling laws are clearly demonstrated.

4. Scattering by a rigid-wall to thin-shell boundary transition
Consider the duct shown in figure 1, which for x < 0 has a rigid-wall boundary

with boundary condition ∂φ/∂r = 0, while for x > 0 the boundary is a thin
shell, as described by Flügge’s equations. The thin-shell boundary is clamped
to the rigid boundary at the intersection x = 0. All quantities are assumed
proportional to exp{iωt − imθ}. A rigid-wall duct mode with pressure pin(x, r) =
exp{−ikinx}Jm(αinr)/Jm(αin) is inbound from upstream, where αin

2 = (ω − Ukin)
2 − k2

in

and J′
m(αin) = 0. Since this mode does not satisfy the boundary condition for x > 0,

as it encounters the boundary transition it scatters into other duct modes, some of
which are reflected back upstream. This situation is similar to the case considered
by Rienstra (2007), although for a thin-shell boundary, and a similar method is used
to solve for the scattered solution using the Wiener–Hopf technique, as described by
Noble (1958).
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414 E. J. Brambley and N. Peake

4.1. Solution in the fluid

If w(x) is the small unsteady radial deflection of the boundary, as shown in figure 1,
then the governing equations and boundary condition on the fluid give

D2φ

Dt2
− ∇2φ = 0, subject to

∂φ

∂r
=

Dw

Dt
at r = 1. (4.1)

This boundary condition is the linearized ‘no flow through the boundary’ condition,
valid for all x, and agrees with the Myers (1980) boundary condition since the steady
flow is uniform. The total pressure is p = −Dφ/Dt = pin − Dψ/Dt , where ψ is the
potential of the wave scattered by the impedance boundary change at x = 0 and pin

is the incident pressure.
In order to achieve a causal solution, and for the convergence of the integrals

that follow, it turns out to be convenient to consider ω = ωr − iε with ωr real, and
ε positive and chosen such that Im(ω(k)) > −ε for all real k. (In other words, we
consider initially the scattering at a frequency ω which has a more negative imaginary
part than any solution of the dispersion relation for ω in terms of k for real k.) Hence,
for this ω, there are no modes with real k, and it is assumed that there exists some
positive δ(ε) such that the strip D given by |Im(k)| < δ is free of any rigid-wall or
thin-shell modes. The Briggs–Bers criterion then dictates that, for this frequency, all
modes that originate at x = 0 decay exponentially as |x| → ∞, and from the definition
of D it follows that they decay at least as fast as exp{−δ|x|}. It will also turn out to
be useful to require δ to be small enough so that ω/(U ± 1), kl , and kt all lie outside
D. Analytic continuity of the solution to ε = 0 will eventually be sought.

The Fourier transform of ψ is given by

ψ̃(k, r) =

∫ ∞

−∞
ψ(x, r)eikx dx,

which, because of the choice of ε, for k in D converges absolutely and is therefore
analytic. The Fourier-transformed differential equation (4.1) is solved as before in
terms of Bessel’s functions, giving ψ̃(k, r) = A(k)Jm(α(k)r), where A(k) is an as yet
undetermined function and α(k)2 = (ω−Uk)2 −k2. The branch cuts for α(k) are taken
parallel to the imaginary axis and away from the real axis, so that α(k) is analytic and
Im(α(k)) > 0 in D. These branch cuts will turn out to be unnecessary, as in §2. This
will become apparent a posteriori, and is equivalent to the discrete modes forming a
complete set.

For x < 0 the duct wall is rigid and therefore w(x) ≡ 0. The Fourier transform of
w(x) is therefore given by the positive-half-range transform

H+(k) =

∫ ∞

0

w(x)eikx dx,

which is an analytic function of k for Im(k) > −δ. For positive-half-range Fourier
transforms, note that∫ ∞

0

f ′(x)eikx dx = −f (0) − ik

∫ ∞

0

f (x)eikx dx

assuming appropriate decay at infinity (which is ensured in all cases here by taking
k ∈ D). Hence, the boundary condition from (4.1) gives

α(k)A(k)J′
m(α(k)) = i(ω − Uk)H+(k), (4.2)
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Stability and acoustic scattering in a cylindrical thin shell 415

yielding A(k) in terms of the unknown function H+(k). Equation (4.1) is now satisfied,
for any function H+(k), or equivalently for any boundary deflection w(x). The physics
of the boundary remain to be satisfied.

4.2. Imposing the thin-shell boundary

For a thin-shell boundary, the boundary deflection w(x) is related to the fluid pressure
p(x, 1) at the boundary by Flügge’s equations, the full-range Fourier transforms of
which are given in (2.2). Here, we are interested in the positive-half-range Fourier
transform of Flügge’s equations, in order to derive H+(k). Since the thin shell is
clamped at x = 0, so that w(0) = w′(0) = u(0) = v(0) = 0, the positive-half-range
Fourier transforms of Flügge’s equations give∫ ∞

0

p(x, 1)eikx dx = iωZ1(k)H+(k) + iωZ0(k), (4.3)

where

iωZ1(k) = c2
l d + b + iωR − dω2 + B(k2 + m2)2

− c2
l d

A1
2a22 − 2A1A2a12 + A2

2a11(
ω2/c2

l − (k2 + m2)
)(

ω2/c2
l − 1

2
(1 − ν)(k2 + m2)

) , (4.4)

iωZ0(k) = ic2
l d

A1C1a22 − (A1C2 + A2C1)a12 + A2C2a11(
ω2/c2

l − (k2 + m2)
)(

ω2/c2
l − 1

2
(1 − ν)(k2 + m2)

) + iBC3k − BC4, (4.5)

C1 = u′(0) − h2

12
w′′(0), C2 =

1 − ν

2
v′(0),

C3 =

(
1 − h2

12

)
w′′(0) − C1, C4 =

(
1 − h2

12

)
w′′′(0) + 2imC2.

The equality u′′(0) = w′′′(0)h2/12 + imv′(0)(1 + ν)/2, implied by the axial component
of Flügge’s equations, has been used to write C4 in the given form. These constants
bear a great similarity to the forces and moments exerted on the hard-wall section by
the thin shell at the clamp at x = 0.

Since the positive-half-range transform of pin(x, 1) is i/(k − kin), the positive-half-
range transform of p(x, 1) may be manipulated to give∫ ∞

0

p(x, 1)eikx dx =
i

k − kin

− i(ω − Uk)A(k)Jm(α(k)) − P −(k), (4.6)

where P −(k) is the negative-half-range Fourier transform of the scattered pressure at
the boundary,

P −(k) =

∫ 0

−∞
−Dψ

Dt
(x, 1)eikx dx,

and is analytic for Im(k) < δ. Equating (4.6) and (4.3) gives

P −(k) − i/(k − kin) + iωZ0(k) = H+(k)K(k), (4.7)

where

K(k) =
(ω − Uk)2Jm(α(k))

α(k)J′
m(α(k))

− iωZ1(k) (4.8)

is the Wiener–Hopf kernel. Equations (4.7) and (4.8) form the Wiener–Hopf problem.
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4.3. Solving the Wiener–Hopf problem

In order to solve this Wiener–Hopf problem, the poles of the Wiener–Hopf kernel
K(k) must be investigated. K(k) has poles which are zeros of J′

m(α(k)), zeros of α(k),
or poles of iωZ1. Zeros of J′

m(α(k)) correspond to rigid-wall duct modes, while the
poles of iωZ1 are due to the determinant of (2.2b) being zero, and occur at ±kl and
±kt . The zeros of K(k) are given by the zeros of χ(k), where

χ(k) = (ω − Uk)2Jm(α(k)) − iωZ1(k)α(k)J′
m(α(k)), (4.9)

and hence correspond to duct modes for a duct boundary with impedance Z1 (cf. (2.1)).
Hence, by definition of ε, the strip D defined by |Im(k)| < δ contains no poles or zeros
of K(k). As described in the Appendix, this kernel may therefore be factorized into
K(k) = K+(k)/K−(k), where K+(k) is analytic for Im(k) > −δ, and K−(k) is analytic
for Im(k) < δ. Similarly, iωZ0(k)K−(k) may be split into F −(k) + F +(k). Substituting
these factorizations into (4.7) yields

P −(k)K−(k)− i (K−(k) − K−(kin))

k − kin

+F −(k) = H+(k)K+(k)+
iK−(kin)

k − kin

−F +(k). (4.10)

The left-hand side is analytic for Im(k) < δ, while the right-hand side is analytic for
Im(k) > −δ. Hence, the above defines an entire function E(k).

From the Appendix, the following asymptotic behaviour is found as |k| → ∞ in the
regions of analyticity:

K−(k) = O(k−2), F −(k) = O(k−1), K+(k) = O(k2), F +(k) = O(k−1).

Assuming the fluid pressure at the duct boundary at x = 0 to be finite, P −(k) = O(k−1),
while the clamped boundary conditions w(0) = w′(0) = 0 imply H+(k) = O(k−3).
Hence, both the left- and right-hand sides of (4.10) are O(k−1) as |k| → ∞, and so by
Liouville’s theorem the entire function E(k) ≡ 0.

Setting the right-hand side of (4.10) to zero gives an equation for H+(k), from
which (4.2) gives the scattering wave spectrum A(k). Hence, the total pressure field is
found to be

p(x, r) = pin(x, r) +
1

2πi

∫ ∞

−∞

(ω − Uk)2Jm(α(k)r)

α(k)J′
m(α(k))K+(k)

[
K−(kin)

k − kin

+
iRl

k − kl

+
iRt

k − kt

]
e−ikx dk,

(4.11)
where

Rl =
ic2

l dK−(kl )

2klω2/c2
l

(
kl

2
(
ν + h2ω2

12c2
l

)
+ m2

)
(klC1 + mC2),

Rt =
ic2

l dK−(kt )

2ω2/c2
l

m
(
1 − ν + h2ω2

12c2
l

)
(ktC2 − mC1).

⎫⎬
⎭ (4.12)

are from F +(k) (see equation (A 2) in the Appendix). Since the integrand is O(k−2) as
|k| → ∞, for x < 0 the integration contour may be closed in the upper half-plane and
Jordan’s lemma applied. The contour must be deformed around the branch cut of α

in the upper half-plane. However, since Jm(αr)/(αJ′
m(α)) is a meromorphic function

of α2, the integrand is identical on either side of the branch cut and the contribution
from integrating around the branch cut vanishes. The singularity at α = 0 corresponds
to a removable singularity for m �= 0, while for m = 0 it is included in the following
analysis provided it is taken that m2/α2 = 0. The integral is therefore 2πi times the
sum of the residues of the integrand in the upper half-plane. These poles are given
by J′

m(α(k)) = 0 and correspond to rigid-wall duct modes. Denoting the j th positive
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root of J′
m(α) = 0 by αjm = α(kjm) with Im(kjm) > 0, for x < 0 the total pressure is

given by

p(x, r) =
Jm(αinr)

Jm(αin)
exp{−ikinx} +

∞∑
j=1

Rjm

Jm(αjmr)

Jm(αjm)
exp{−ikjmx}, (4.13)

where

Rjm =
(ω − Ukjm)2

(Uω + β2kjm)(1 − m2/αjm
2)K+(kjm)

[
K−(kin)

kjm − kin

+
iRl

kjm − kl

+
iRt

kjm − kt

]
.

Similarly, for x > 0 the integration contour in (4.11) may be closed in the lower
half-plane and Jordan’s lemma applied. Writing αJ′

m(α)K+(k) as K−(k)χ(k), where
χ(k) is given in (4.9), the poles of the integrand of (4.11) are given by zeros of χ(k),
and therefore correspond to duct modes for a duct boundary with impedance Z1.
The pole at kin exactly cancels the incoming pressure pin. The two poles at kl and kt

correspond to zeros of the determinant (2.2b), so are also poles of χ(k); the integrand
therefore has removable singularities at these points. Denoting the j th zero of χ(k)
by τjm with Im(τjm) < 0, the pressure for x > 0 is given by

p(x, r) =

∞∑
j=1

Tjm

Jm(α(τjm)r)

Jm(α(τjm))
exp{−iτjmx}, (4.14)

where

Tjm = − (ω − Uτjm)2Jm(α(τjm))

K−(τjm)χ ′(τjm)

[
K−(kin)

τjm − kin

+
iRl

τjm − kl

+
iRt

τjm − kt

]
.

The solution within the fluid has now been derived as a sum of duct modes, with
reflection coefficients Rjm and transmission coefficients Tjm, in terms of the constants
C1 and C2.

4.4. Determining the constants C1 to C4

By examining (4.11), the dependence of the solution on the constants C1 to C4

occurs only through Rl and Rt , which themselves depend only on C1 and C2 and are
independent of C3 and C4. In fact C3 and C4 may be calculated (in terms of C1 and
C2) from our solution for H+, since by integrating by parts

H+(k) = −iw′′(0)/k3 + w′′′(0)/k4 + O(k−5) as k → ∞, (4.15)

giving w′′(0) and w′′′(0), and hence C3 and C4. This is possible because, in determining
H+, we required the pressure to be bounded at x = 0, implying P −(k) = O(k−1) as
|k| → ∞. In general, however, setting the left-hand side of (4.10) to zero gives P −(k) =
O(k). Satisfying the finite pressure assumption therefore requires the constants C3 and
C4 to be chosen such that

− iK−(kin)

k − kin

+ F +(k) = iωZ0K
−(k) + O(k−3),

and this can be shown to give the same condition as (4.15). This may be interpreted as
the shell bending at x = 0 in the only way that does not necessitate an infinite pressure
in the fluid at the boundary. As C3 and C4 do not appear in the solution (4.11), it
is never necessary to solve the above equations to calculate C3 and C4, and we may
now forget about C3 and C4 completely.
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We now turn our attention to the constants C1 and C2, which we determine by
imposing causality. The inversion contour in (4.11) is chosen along the real-k-axis
within the strip D. By definition of ε, the Briggs–Bers criterion shows that this gives
the causal solution to a disturbance in the fluid originating at x = 0. However, the
solid waves in the boundary with axial wavenumbers ±kl and ±kt are decoupled
from w and produce no disturbance in the fluid for x > 0. It is therefore necessary
to impose a further condition that no solid waves are inbound in the boundary
from x = +∞. The positive-half-range Fourier transforms of the axial and azimuthal
boundary displacements u(x) and v(x) for x > 0 are denoted U+(k) and V +(k), and
are given by the half-range version of (2.2b) as(

U+

V +

)
=

1

a11a22 − a12
2

(
a22 −a12

−a12 a11

) (
−iA1H

+ − C1

−iA2H
+ − C2

)
. (4.16)

This shows that U+(k) and V +(k) are O(k−2) as |k| → ∞. Taking the inversion
contours for u(x) and v(x) above all poles of U+ and V +, Jordan’s lemma may be
applied to give u ≡ v ≡ 0 for x < 0, while for x > 0, u and v are given as a
sum of residues. In general, the poles of U+ and V + are those of H+. The zeros of
the determinant a11a22 − a12

2, which occur when k = ±kl or k = ±kt , lead to four
additional poles of U+ and V + which correspond to two inbound and two outbound
solid boundary waves. In order that there be no incoming waves, it is required that
the poles of U+ and V + at both −kl and −kt have zero residue (recall that kl and
kt were chosen so as to represent downstream-propagating waves). While this would
appear to be four conditions, the singularity of the matrix at these points reduces this
requirement to two conditions,

kl(iA1(−kl)H
+(−kl) + C1) − m(iA2(−kl)H

+(−kl) + C2) = 0,

m(iA1(−kt )H
+(−kt ) + C1) + kt (iA2(−kt )H

+(−kt ) + C2) = 0.

Since H+(k) is a linear function of C1 and C2, so too are the above two equations.
Satisfying them specifies the constants C1 and C2 (which in turn specifies u′(0) and
v′(0)), and ensures that the only permissible solid boundary waves are those that
propagate outward from x = 0.

It is interesting to note that outward-propagating solid boundary waves,
corresponding to the other two zeros of the determinant in (4.16) at k = kl and
k = kt , both have zero residue for any choice of C1 and C2. This may be seen by
evaluating H+ at kl and kt to give

H+(kl) = i
klC1 + mC2

klA1(kl) + mA2(kl)
and H+(kt ) = i

mC1 − ktC2

mA1(kt ) − ktA2(kt )
,

and substituting this into (4.16). The poles at kl and kt therefore correspond to
removable singularities, and once C1 and C2 have been chosen as above so that the
poles at −kl and −kt also correspond to removable singularities, the only poles of U+

and V + are those of H+. The wave scattering is therefore seen to excite none of the
solid waves in the thin shell, although it can, and in general will, excite the quasi-solid
surfaces modes in the fluid.

The values of all four constants C1 to C4 have now been specified, giving a unique
solution, with the only assumptions being bounded pressure and causality. Since the
thin shell was assumed clamped at x = 0, w(0) = w′(0) = 0, and hence the deflection
of the surface streamline is O(x2) as x → 0.
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Figure 7. Rigid-wall (+) and thin-shell (×) modes in the k-plane. Dashed lines show the
Briggs–Bers trajectories. Surfaces modes for x > 0 are labelled SM. Parameters are as for
figure 2.

4.5. Analytic continuation to real frequencies

So far, Im(ω) = −ε has been taken, with the results for real ω to be inferred by
analytic continuation in the limit ε → 0. In this limit the rigid-wall modes approach
the real-k-axis, and the factorizing contour and the strip D must therefore be deformed
around such modes to maintain analyticity. This is exactly the same situation as for
the Briggs–Bers criterion; in other words, in choosing the position of the contours
and the strip D, it is necessary to consider the stability of the modes. It is also
necessary for kl and kt to lie below and −kl and −kt to lie above D, since H+(−kl),
H+(−kt ), K−(kl) and K−(kt ) appear in the solution, and H+ is only defined above
the factorizing contour, while K− is only defined below it. From a Briggs–Bers point
of view, this may be seen as requiring kl and kt to be right-propagating and −kl and
−kt to be left-propagating.

5. Numerical results
Figure 7 shows the numerically calculated rigid-wall and thin-shell poles in the

k-plane for an air-filled aluminium duct (see table 1) of 1 m radius and 1 mm shell
thickness, with ω and m as suggested by McAlpine & Wright (2006) as being
representative of rotor-alone fan noise in aeroengine intakes. For details of the
numerical procedure, see the Appendix §A.2. The majority of thin-shell modes are
almost identical to their rigid-wall counterparts, apart from the eight surface modes.
The Briggs–Bers stability analysis has been superimposed on figure 7, showing the
motion of the thin-shell modes as ε is varied, and consequently the stability of these
modes may be verified; it was shown in §3 that the Briggs–Bers criterion is valid in
this case, and that no absolute or convective instabilities are present. The factorizing
contour and the inversion contour coincide and are labelled Ck , which has been
chosen both to give the correct stability and also with regard to kl and kt . The
equation of this curve (following Rienstra 2007) is

k =
ω

1 − U 2

(
ξ − U + iY

4(ξ/q)

3 + (ξ/q)4

)
, ξ ∈ R, (5.1)

with in this case Y = 0.5 and q = 1.0.
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Figure 8. Scattering coefficients |Rjm| (+) and |Tjm| (×) for an inbound first-radial-order
mode. Parameters are as for figure 7.
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Figure 9. Rigid-wall (+) and thin-shell (×) modes in the k-plane. Dashed lines are the
Briggs–Bers trajectories for the thin-shell modes. One of the surface modes (labelled SM) is
not shown owing to the scale used. The fluid is air and the boundary is aluminium, with
U = 0.5, R = 0.5, b = 0, m = 1, ω = 16, and h = 10−4.

Figure 8 shows the numerically evaluated scattering response to an inbound first-
radial-order mode for the parameters used in figure 7. It shows the response to
the inbound mode is dominated by the first-radial-order thin-shell mode, with little
scattering or reflection taking place.

As a second example, for what follows the parameters used are U = 0.5, R = 0.5,
b = 0, m = 1, and ω = 16, for a 1 m radius aluminium duct with boundary thickness
0.1 mm, for which it may be checked (or inferred from figure 5) that no instabilities
are present. The rigid-wall and thin-shell modes in the k-plane are shown in figure 9,
with the Briggs–Bers trajectories showing the Ck contour to have been chosen to give
the correct stability. The simple Ck contour in (5.1) does not provide enough flexibility
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Figure 10. Scattering coefficients |Rjm| (+) and |Tjm| (×) due to an incoming
first-radial-order rigid-wall mode I1. Parameters are as for figure 9.
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Figure 11. Amplitude of pressure oscillations |p(r, x)| due to an inbound I1 mode. (b) A more
detailed plot of (a). Parameters are as for figure 9. An animation of this figure is given in
movie 1, available with the online version of the paper.

to do this, and the more general contour given by

k =
ω

1 − U 2

[
ξ − U + iY

4(ξ/q)

3 + (ξ/q)4

(
1 − 1 + g

1 + g(ξ/f + 1 − U/f )2

)]
, ξ ∈ � (5.2)

was used, with Y = 1.0, q = 0.4, f = 0.1, and g = 0.1.
Figure 10 shows the scattering response for the incoming first-radial-order mode

labelled I1 in figure 9. The surface modes play a major role near x = 0 in order to
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match the rigid-wall and thin-shell solutions smoothly, although their fast decay means
they have a negligible effect away from x = 0. For large positive x the dominant
mode is the first-radial-order thin-shell mode. However, note also the comparably
large coefficient for the sixth-radial-order reflected (left-propagating) mode labelled
R6, showing that both transmission and reflection are important in this situation.
Figure 11 shows the amplitude of pressure oscillations, obtained from summing the
above coefficients. In x < 0, the sum of two modes is prominently seen: the inbound
first-radial-order I1 mode (maximum amplitude at r = 1 and zero amplitude at
r = 0), and the sixth-radial-order R6 reflected mode (visible as six horizontal bands).
This may be seen more clearly in movie 1, available as a supplement to the online
version of the paper, which is an animation of figure 11. Figure 11(b) shows a more
detailed view around the boundary transition at x = 0 where the surface modes are
important, and demonstrates the continuity between x < 0 and x > 0 which is less
apparent in figure 11(a). Since solutions for x < 0 and x > 0 are calculated by
summing two different series, (4.13) and (4.14), this continuity provides a good check
on the numerical results. The surface streamline was also calculated for this example
(by numerically summing the poles in the inverse transform of H+) and showed the
predicted O(x2) behaviour at x = 0.

6. Conclusion
The mass–spring–damper boundary model is inappropriate for stability analysis,

since Im(ω(k)) is not bounded below for real k, and hence the Briggs–Bers criterion is
inapplicable. The same problem occurs with a Helmholtz resonator or enhanced
Helmholtz resonator boundary model (as described by Rienstra 2006). In fact,
problems for which Im(ω(k)) is not bounded below for real k are ill-posed, since
they do not satisfy the conditions of the Hille–Yosida theorem (Rudin 1991), and so
do not generate a continuous semigroup; in other words, there are initial conditions
for which the solution at t = 0 does not match with the solution at t = ε in the
limit ε → 0. There may not even be a sensible answer to the question of spatial
stability given a time-harmonic forcing for such problems, although they are certainly
temporally unstable for some initial conditions. The ill-posedness is also prevalent
in computer simulations. It is known (e.g. Tam & Auriault 1996) that time-domain
numerical calculations using the mass-spring-damper boundary are unstable, with the
instability wavelength comparable with the grid scale, and therefore the instability
changes as the grid is refined. Consequently, such instabilities are routinely filtered
out using a low-pass filter (Tam & Auriault 1996; Chevaugeon, Remacle & Gallez
2006; Tam & Ju 2006; Richter & Thiele 2007). However, we can now see that such an
instability is caused by the numerics attempting to realize the underlying arbitrarily
quickly growing absolute instability at arbitrarily small wavelengths.

A regularization of such boundary conditions that is well-posed is obviously needed,
particulary in the light of the interpretation by Brandes & Ronneberger (1995) that
they observe instablities in their experimental results (although the instability is
restricted to a short leading section of the lined duct and decays after this, so is very
different in nature to the instability suggested by Rienstra 2003). In this paper, the
problem is regularized by considering the boundary as a thin shell, as described by
Flügge’s equations. The influence of bending stiffness bounds Im(ω(k)) below for real
k, enabling the Briggs–Bers criterion to be applied. The mass–spring–damper model
is obtained in the limit h → 0. The ill-posedness mentioned above manifests itself as
an absolute instability of frequency ωp with Im(ωp) → −∞ as h → 0. Consequently,
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the solution to a time-harmonic forcing turned on at t = 0 grows arbitrarily fast in
time as h → 0. This also ties in with the surface mode behaviour, since there are two
real surface modes whose wavenumbers tend to infinity as h → 0, and that are not
included in the mass–spring–damper model.

The mass–spring–damper model was used by Rienstra (2003) as a model of an
acoustic lining in an aeroengine. Of course, the thin-shell boundary is a model of
a different physical system, and we do not suggest that real acoustic liners might
be modelled as thin shells. However, what we have shown is that modifying the
boundary condition for large k with the inclusion of bending stiffness, while replicating
mass–spring–damper-like behaviour for small and moderate k (see figure 3), enables
a rigorous stability analysis which leads to different conclusions about stability
from those reached for the mass–spring–damper system. In addition, the scattering
behaviour for a thin-shell boundary (O(x2) wall-streamline continuity) is neither the
behaviour of the mass–spring–damper boundary with an instability (O(x3/2)), nor
of the mass–spring–damper boundary without an instability (O(x1/2)), demonstrating
that regularizing the problem is important for more than simply determining stability.
We suggest that, in order to perform a stability or scattering analysis on a model
of an acoustic lining, the model needs to be modified in some way to include a k

dependence in the impedance Z, such that Im(ω(k)) is bounded below for real k (as
was also suggested by Brandes & Ronneberger 1995). For example, if � is the length
scale of some small-scale feature of the acoustic lining, such as the length scale of the
perforations of the facing sheet or the thickness of the boundary layer, then different
behaviour may well result for k� � 1.

From a fluid-loaded structures perspective, the incompressible stability analysis of
Peake (1997) has been extended to account for compressible effects; it has been
found that, for the parameters considered, the system exhibits either stable or
absolutely unstable behaviour, but not solely convective instability. The boundary
between absolute instability and stable behaviour is best summarized by figure 5 (the
equivalent of figure 2 in Peake 1997, although with a different non-dimensionalization).
The inclusion of compressibility has been shown to have a marked effect on the
absolute instability boundary, and the small-U incompressible predictions (Peake
1997, equation ((3.3)), which were very accurate in the incompressible case, are less
accurate in the compressible case. In the small-U limit, we have found the critical
shell thickness for instability to behave as O(U 8/3) or O(U 4/3), depending on whether
the Winkler foundation spring force is important or not, while in the incompressible
case the scaling is O(U 5/3). In deriving our asymptotic predictions, we have assumed
that the m2/(1 − U 2) terms could be neglected (which breaks down if both U ≈ 1 and
m �= 0) and that ωp = 0 on the absolute instability boundary. The latter assumption
has been true in all examples we considered, although no mathematical argument has
been given as to why this should be the case.

There remains a large amount of parameter space for which we have not
investigated stability. For example, interesting behaviour might be found for cl < 1
(a highly compressible boundary), ρs < 1 (a flimsy boundary), or U > 1 (supersonic
mean flow), all of which have been neglected in the present study.

The authors are very grateful to Dr P. D. Metcalfe and Dr B. Veitch for several
useful discussions. E.J.B. was supported by an EPSRC grant, and by Rolls-Royce plc
under the University Gas Turbine Partnership Research Programme, and would like
to thank both.
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Appendix. Details of the Wiener–Hopf scattering problem
A.1. Factorizing the Wiener–Hopf kernel

It is required to factorize K(k), defined in (4.8), such that K(k) = K+(k)/K−(k),
where K+(k) is analytic and non-zero for Im(k) > −δ and K−(k) is analytic and
non-zero for Im(k) < δ. The method used here is as described by Noble (1958), and
is very similar to the method used by Rienstra (2007). It follows from (4.4) that
K(k) = −B(1 − h2/12)k4 + O(k2) as |k| → ∞. Hence,

L(k) ≡ − K(k)

B(1 − h2/12)(k2 + X2)2
= 1 + O(k−2),

where X > δ is an arbitrary real positive constant. Since both K(k) and (k2 +X2)2 are
analytic and non-zero in the strip D, so too is L(k), and hence log L may be defined
so as to be analytic in D. Using Cauchy’s integral representation,

2πi log(L(k)) =

∫ Y−iδ

−Y−iδ

+

∫ Y+iδ

Y−iδ

+

∫ −Y+iδ

Y+iδ

+

∫ −Y−iδ

−Y+iδ

log(L(ξ ))

ξ − k
dξ,

where the integration contours are straight lines between the endpoints, and k lies
inside this closed contour. Since log(L(ξ ))/(ξ − k) = O(ξ−3), the end integrals tend to
zero as Y → ∞ and the other two integrals converge, so that

log(L(k)) =
1

2πi

∫ ∞−iδ

−∞−iδ

log(L(ξ ))

ξ − k
dξ − 1

2πi

∫ ∞+iδ

−∞+iδ

log(L(ξ ))

ξ − k
dξ. (A 1)

The first integral is analytic for Im(k) > −δ, and similarly the second integral is
analytic for Im(k) < δ. Calling the first integral log(L+(k)) and the second integral
log(L−(k)) gives the decomposition L(k) = L+(k)/L−(k). Hence

K+(k) = i(B(1 − h2/12))1/2(k + iX)2L+(k),

K−(k) = −i(B(1 − h2/12))−1/2(k − iX)−2L−(k),

gives the required decomposition K(k) = K+(k)/K−(k). Noble (1958, p. 15, theorem C)
states that L+ and L− found using this method remain bounded as |k| → ∞ provided
log L = O(k−q) as |k| → ∞ for q > 0. Here, log L = O(k−2), and so L+(k) and L−(k)
are both O(1) as |k| → ∞; hence, K+(k) = O(k2) and K−(k) = O(k−2).

Requiring K+/K− = K with K+ and K− analytic and non-zero in their respective
half-planes determines K+ and K− up to multiplication by an arbitrary analytic
non-zero function. Since the asymptotic behaviour of these specific K+ and K− is
known, they are in fact specified up to multiplication by an arbitrary constant. This
is the degree of freedom provided by the arbitrary constant X above. However, such
a constant has no effect on the final solution, as can be seen from (4.11).

The decomposition of iωZ0(k)K−(k) into F +(k) + F −(k) is more straightforward.
The only poles of iωZ0(k)K−(k) in the lower half-plane are the simple poles of iωZ0

at kl and kt . Hence, F −(k) = iωZ0(k)K−(k) − F +(k), where

F +(k) =
Rl

k − kl

+
Rt

k − kt

, (A 2)

and Rl and Rt are the residues of iωZ0(k)K−(k) at kl and kt , as given in (4.12). The
large-k behaviour of F + and F − is easily derived from (4.5), (A 2), and the asymptotic
behaviour of K−(k), giving F +(k) = O(k−1) and F −(k) = O(k−1) as |k| → ∞.
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A.2. Numerical evaluation

Our first task is to compute the locations of the poles kjm and τjm, as defined in §4.3.
The values of kjm were obtained using a Newton–Raphson iteration to find the (real)
roots αjm of J′

m(α) = 0, using asymptotics from Abramowitz & Stegun (1964, p. 371)
as starting points for the iteration. The values of τjm were obtained using a Newton–
Raphson iteration to find the roots of χ(k) = 0, using kjm and the surface mode
asymptotics of §2.2 as starting points. In addition, a grid of starting points was used
to discover any other thin-shell modes not close to these starting points.

The factorization of K(k) into K+(k)/K−(k) was done by numerically integrating
(A 1) along a contour k(ξ ) with ξ ∈ � (see equations (5.1) and (5.2)), using a change
of variables ξ = s/(1 − s2) to get a finite integration range s ∈ (−1, 1). Care must
be taken to ensure that the numerically calculated log(L(ξ )) remains analytic along
the contour, and does not jump by a multiple of 2πi at any point. The coefficients
Rjm and Tjm were then calculated, and finally the modes were summed to give the
total pressure. The summations were truncated once the magnitude of the coefficients
became sufficiently small; for example, figure 8(b) shows how the reflection and
transmission coefficients decay as |Im(k)| increases.
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