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Abstract
We consider various aspects of longevity trend risk viewed through the prism of a finite time window. We
show the broad equivalence of value-at-risk (VaR) capital requirements at a p-value of 99.5% to conditional
tail expectations (CTEs) at 99%. We also show how deferred annuities have higher risk, which can require
double the solvency capital of equivalently aged immediate anuities. However, results vary considerably
with the choice of model and so longevity trend-risk capital can only be determined through consider-
ation of multiple models to inform actuarial judgement. This model risk is even starker when trying to
value longevity derivatives. We briefly discuss the importance of using smoothed models and describe two
methods to considerably shorten VaR and CTE run times.

Keywords: Longevity trend risk; Value-at-risk; Conditional tail expectation; Solvency II; ORSA; Immediate annuity;
Deferred annuity; Index products

1. Introduction
Solvency II in the European Union (EU), and similar regulations elsewhere, specify a value-at-
risk (VaR) approach to solvency assessment. Other territories specify regulations based around
conditional tail expectations (CTE), also known as tail-VaR (tVaR). Both solvency approaches
view risk over a 1-year horizon, and both calculations can be performed using the same sample
data.

However, there are other horizons besides 1 year where a VaR assessment of longevity trend
risk is useful. One example is the 3–5 year horizon for insurer business planning, another is for
pension schemes aiming to buy out their liabilities in the medium term and a third is the pay-
off of an index-based longevity hedge. This paper looks at n-year VaR and CTE assessments of
longevity trend risk for each of these scenarios and contrasts the results with the familiar 1-year
solvency view. We consider the longevity risk in both deferred and immediate annuities, and we
discuss some methods whereby VaR and CTE run times can be considerably shortened without
losing accuracy.

Section 2 provides some definitions. Section 3 outlines the data used and highights some impor-
tant differences to the data used in related past work. Section 4 gives an overview of the models
and how they are fitted. Section 5 considers insurer solvency calculations, while Section 6 consid-
ers insurers’ business planning. Section 7 looks at pension schemes with a medium-term horizon

Data were downloaded on 21 May 2019 from the Human Mortality Database (HMD). University of California,
Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Available at www.mortality.org or
www.humanmortality.de.
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for buyouts, while Section 8 considers the valuation of longevity hedging instruments. Section 9
concludes the paper.

2. Definitions
We denote by Vx,n the random variable representing the expected present value of a liability con-
tingent on a forecast of futuremortality rates for a person aged x in n years’ time. In this paper,Vx,n
will be either the reserve for an annuity in payment or else a deferred annuity. We assume that all
basis elements for the calculation of Vx,n are known apart from the future mortality improvement
rates, i.e., thatVx,n is randomwith respect to longevity trend risk only (we will discount cash flows
throughout the paper at a constant net rate of 1% per annum). The best-estimate of the liability is
assumed to be E[Vx,n] and the risk measures of interest are

VaRα,x,n =
(

Qα,x,n
E[Vx,n]

− 1
)

× 100% (1)

CTEα,x,n =
(
E[Vx,n|Vx,n >Qα,x,n]

E[Vx,n]
− 1

)
× 100% (2)

whereQα,x,n is the α-quantile of the distribution ofVx,n, i.e., Pr (Vx,n ≤Qα,x,n)= α. VaRα,x,n is the
percentage extra capital on top of the best-estimate to cover a proportion α of losses that might
occur over the following n years due to a change in the best-estimate assumption. CTEα,x,n is
the percentage extra capital on top of the best-estimate to cover the average expected loss if an
extreme event with probability 1− α occurs in the next n years. See Hardy (2006) for discussion
and contrast of the properties of VaR- and CTE-style approaches to risk measurement.Qa,x,n is an
order statistic, and in this paper, we will estimate it using the methodology from Harrell & Davis
(1982).

In the EU, the Solvency II regime for insurer solvency calculations is based on VaR99.5%,x,1,
while the Swiss Solvency Test is based on CTE99%,x,1. Both are 1-year views of risk and both
typically produce values in the interval (0%, 10%) for longevity trend risk.

Solvency II further specifies an Own Risk and Solvency Assessment (ORSA) for regular use in
business planning. This is also a VaRα,x,n calculation, but with n typically 3–5 years. A specific
value for α is not laid down, but we will use α = 95% in this paper for ORSA-style calculations.

3. Data
We use data from the Human Mortality Database (HMD) for the United Kingdom and the
Netherlands at ages 50–104 years over the period 1971–2016. The data are (i) dx,y, the deaths
classified by age last birthday, x, and year of occurrence, y, and (ii) Ecx,y, the corresponding central
exposed to risk. Data are available separately for males and females and lend themselves to mod-
elling the central rate of mortality, mx,y, without modification. The data also lend themselves to
modelling μx+ 1

2 ,y+ 1
2
, the force of mortality at age x+ 1

2 at time y+ 1
2 . In this paper, we will model

the force of mortality, and we will drop the + 1
2 for simplicity.

There are two aspects of the data which affect comparisons of the results in this paper with
those in earlier works. The first aspect concerns the UK data only, where population estimates
were updated following the 2011 census; see Cairns et al. (2015). Figure 1 shows the ratio of pop-
ulation estimates for 2010 before and after the census, showing large changes (reductions) in the
estimates at advanced ages. This will change the calibration of models in earlier papers that used
population estimates made prior to the 2011 census.
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Table 1. Models used in this paper

Label Reference Details

LC Lee & Carter (1992) logμx,y = αx + βxκy


DDE Delwarde et al. (2007) As LC, but with βx smoothed with P-splines


LC(S) Currie (2013) As LC, but with both αx and βx smoothed with P-splines
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

APC(S) logμx,y = αx + κy + γy−x with αx smoothed with P-splines


M5(S) Currie (2011) logμx,y = κ0,y + κ1,yS(x) where S(x) is a P-spline-smoothed function of age


2DAP Currie et al. (2004) 2Dmodel with P-splines for age and period


2DAC Richards et al. (2006) 2Dmodel with P-splines for age and cohort
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Figure 1. Population estimates for males in England & Wales in 2010: ratio of post-census estimate to pre-census estimate.
After the 2011 census, the population estimates above 90 years of age were revised downwards, thus increasing stated
mortality rates (the deaths data were unchanged). Source: own calculations using ONS data.

The second aspect is that theHMD revised itsmethods protocol in 2017 to improve estimates of
exposures using the distribution of births for each cohort; seeWilmoth et al. (2017). Updated pop-
ulation estimates for the UK and the Netherlands became available in May 2018; see Boumezoued
(2020) for further details of how exposure estimates are enhanced using fertility data, and why this
is necessary. The effects of this change are twofold: first, false cohort effects are removed from the
data; second, the volatility of mortality rates is reduced. Both of these effects will change model
fits, projection behaviour, and thus the results of any VaR assessments. Removal of false cohort
effects will obviously change the parameterisation of any model incorporating a cohort term,
while the reduction in volatility will change the calibration of any projection model based on a
time series. As shown in Kleinow & Richards (2016, Section 7), the volatility of the forecasting
process plays a dominant role in the 1-year VaR capital requirements for longevity trend risk.

4. Models and Their Fitting
We assume that the number of deaths at each age x in year y, dx,y, has a Poisson distribution
with mean Ecx,yμx,y. Models are fitted by maximising the log-likelihood with the functional forms
for μx,y shown in Table 1. Smoothing is achieved with the method of P-splines of Eilers & Marx
(1996). Here, parameters for individual ages are replaced by the coefficients in a regression model
where the regression matrix is computed with an appropriate basis of B-splines; the coefficients
are chosen by optimising a penalised likelihood. Over-dispersion of the Poisson death counts is
allowed for directly in the 2DAP and 2DAC models.
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Figure 2. Simulation of n years of population experience data. Rolling forward the population results in an increasingly large
triangle of missing pseudodata in the upper right. This region can be weighted out in the subsequent model refits, but as n
increases, it becomes trickier to fit models containing cohort terms.

The LC, DDE, LC(S) and APC(S) models project κy as an ARIMA time series, with the order
chosen by minimising the AIC (Akaike 1987) with a small-sample correction (Macdonald et
al., 2018, p 98). ARIMA models are fitted with R’s arima() command using a limited number
of attempts with different initial values and we select the fit that has the smallest AIC (see also
Appendix A). Standard linear identifiability constraints were used, although the precise choice
is irrelevant to both fit and forecast; see Currie (2020). The M5(S) model is a P-spline-smoothed
variant of Cairns et al. (2006), although {κ0,y, κ1,y} is still projected using a bivariate random walk
with drift. The 2DAP and 2DAC models are projected using a second-order penalty functions,
i.e., a linear extrapolation on a logarithmic scale. Further technical details of the models and
their fitting can be found in Richards et al. (2014, Appendices 1–4) and Richards et al. (2019,
Appendices B, C & D).

For the VaR calculations, we extend the method of Richards et al. (2014) as follows. Data are
selected for a given age range and date range, e.g., ages xmin − xmax over the years ymin − ymax as
depicted in Figure 2. A stochastic projection model is fitted to this data and the parameters are
estimated; we call this the baseline model. The baseline model is then used to generate sample
path realisations of mortality rates over the following n years. The details of this for the various
projection methods are described in Richards et al. (2014, Section 8). Where projections are car-
ried out by an ARIMA(p, d, q) model for κ , we restrict our attention to cases with d = 1 and where
the fitted ARIMA model has a valid estimate of the parameter covariance matrix, i.e., where the
leading diagonal contains only positive values. These simulated mortality rates are then used to
simulate the population experience from one year to the next, i.e., generate dx,y and Ecx,y for the
shaded region in Figure 2. The simulated pseudodata is then appended to the real data and the
model is refitted. In most of the calculations in this paper, the refitted model has the same struc-
ture and nature as the baseline model. However, in Section 8, we consider the impact of refitting a
model of a different nature to the baseline model.

The repeated model-fitting that underlies the methodology here is computationally intensive.
Other authors have developed approximations for financial functions under specific models, such
as Cairns et al. (2011) for the model of Cairns et al. (2006) and Liu & Li (2019) for simple drift
models for the time index in the models of Lee & Carter (1992) and Renshaw &Haberman (2006).
However, we want to keep our approach general and be able to use any model, and we particularly
want to use ARIMA models, not drift models, for the time index of the Lee–Carter model (see
Kleinow & Richards 2016 for a discussion). For these reasons, we use parallel processing to com-
plete the calculations in a manageable time frame (see Appendix A) and we do not re-estimate the
smoothing parameters between simulations (see Appendix B).
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Figure 3. VaR99.5%,x,1 capital requirements as percentage of best-estimate reserve for a selection ofmodels from Table 1. The
age distribution of liabilities is important, but model risk is key – solvency capital requirements have to be set by actuarial
judgement. Source: 1,000 refits for each model, immediate annuity liabilities with cash flows discounted at 1% p.a.

5. Insurer Solvency
Solvency II regulations in the EU specify a VaR99.5%,x,1 approach to longevity trend-risk capital.
Figure 3 shows the capital requirements as a percentage of best-estimate reserves for males and
females in the UK and Netherlands for a selection of four different models.

As has been documented elsewhere (Richards et al. 2014), the capital requirements in Figure 3
vary considerably by age and model choice. The variation by age means that an insurer’s longevity
trend-risk capital will depend on the age distribution of liabilities. The variation by model means
that the final choice of trend-risk capital must be a matter for actuarial judgement – the quite
different shapes in Figure 3 show that this actuarial judgement must be informed by the results of
a variety of models. Bank of England Prudential Regulatory Authority (2015, p. 10) and Woods
(2016, p. 8) describe using members of four model families, and the four models in Figure 3 were
chosen for their very different nature.

Solvency capital for longevity trend risk is different for deferred annuities. Figure 4 shows the
VaR99.5%,x,1 capital requirements for annuities where payment is deferred until age 67. As a rule
of thumb, whatever the choice of model, the deferred annuity capital requirements at age 50 are
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Figure 4. VaR99.5%,x,1 capital requirements as percentage of best-estimate reserve. Deferred annuities have up to double the
capital requirements for longevity trend risk at the age of 50 years. Source: 1,000 simulations for eachmodel, theNetherlands
data, immediate and deferred annuity liabilities with cash flows discounted at 1% p.a.

around double those for immediate annuities at the same age. This is one of a number of reasons
why insurers and reinsurers prefer to transact business related to annuities in payment, rather than
deferred annuities or pensions. Insurers often have a fixed capital budget to support new business,
and a greater volume of business can be written if that capital is applied to write immediate annu-
ities rather than deferred annuities. This difference affects insurers’ appetite for deferred annuities
and thus the keenness of their pricing. As a result, pension schemes may find that it helps to let
their deferred liabilities mature before approaching an insurer, i.e., allowing the proportion of
deferred liabilities to shrink by waiting for more lives to reach retirement age. This is considered
further in Section 7.

One thing that immediate and deferred annuities share is that VaR99.5%,x,1 and CTE99%,x,1
produce comparable capital requirements. Figure 5 shows how closely the CTE99%,x,1 capital
requirements shadow the VaR99.5%,x,1 ones. The picture is similar for the Netherlands females
and for males and females in the UK (not shown). The CTE99%,x,1 capital requirements are in
fact slightly higher, but the difference is negligible in the context of the actuarial judgement that
needs to be exercised when considering model risk. For all practical purposes, VaR99.5%,x,1 and
CTE99%,x,1 can be considered equivalent for longevity trend risk.
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Figure 5. VaR99.5%,x,1 and CTE99%,x,1 capital requirements as percentage of best-estimate reserve. The two approaches pro-
duce comparable results, withmodel risk clearly dominant. Source: 1,000 simulations for eachmodel for Netherlandsmales,
immediate- and deferred-annuity liabilities with cash flows discounted at 1% p.a.

Figure 6. VaR95%,x,n capital requirements for immediate annuities to single-lifemales as percentage of best-estimate reserve
for n ∈ {1, 3, 5} using various models. The capital requirements have similar shapes across time horizons, and the figures for
a 3-year horizon are generally equidistant between the 1- and 5-year horizons (with the exception of the 2DAC model). As
always, model risk is very material. Source: 1,000 refits for each model, data for UKmales.

6. Insurer Business Planning
Beyond the 1-year solvency calculations, Solvency II also mandates the form of near-term busi-
ness planning. Insurers are supposed to carry out VaR-style investigations over the short term
using lower p-values under the ORSA. Fixed details are not laid down, but in this section, we
consider VaR capital requirements for annuities at a p-value of 95% over 1-, 3- and 5-year hori-
zons. Figures 6 and 7 show the results for UK males and females, respectively. As with the 1-year
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Figure 7. VaR95%,x,n capital requirements for immediate annuities to single-life females as percentage of best-estimate
reserve for n ∈ {1, 3, 5} using various models. The capital requirements have similar shapes across time horizons, and the
figures for a 3-year horizon are often equidistant between the 1- and 5-year horizons, albeit not for the 2DAP and 2DAC
models. As always, model risk is very material. Source: 1,000 refits for each model, data for UK females.

solvency capital calculations in Section 5, model risk is a major source of difference, as is varia-
tion by age. One new feature is that the capital requirements for a 3-year horizon are not always
equidistant between the 1- and 5-year horizons. While the LC(S), M5(S) and APC(S) models have
roughly equidistant gaps, the 2DACmodel requires relatively little extra for the jump from a 3- to
a 5-year horizon. As with solvency capital calculations, business planning capital is a question of
actuarial judgement.

7. Pension Scheme Funding Targets
Many defined benefit pension schemes find themselves wanting to buy out their liabilities with
a life insurer, but have insufficient funds to afford this in the near term. To achieve the buyout
goal, the scheme’s funding target can be defined as the buyout premium in n years’ time. The
scheme’s funding rate and investment policy are set accordingly, and the scheme’s buyout deficit
is monitored over time. This situation is sometimes referred to as the “glide path” to buyout,
although the actual financial journey may be rather bumpier than this expression implies.

However, the buyout premium in n years’ time is not a static target. Among many other things,
insurer buyout prices will be influenced by yield curves, both for nominal and index-linked secu-
rities, and forecasts of mortality improvements. To calculate an estimated buyout premium in
n years, the pension scheme can use futures prices for the economic assumptions. However, no
such market prices exist for mortality improvements, so how can a pension scheme judge what
assumptions insurers might use for pricing in n years’ time? This obviously cannot be predicted
precisely, but a pension scheme can get an idea of the uncertainty and variability of insurers’ future
mortality forecasts by using the same VaR procedure with the time horizon extended to match the
buyout goal. For funding purposes, the pension scheme is also likely to use a lower p-value, say
90% instead of 99.5%. The two panels of Figure 8 illustrate the potential levels of uncertainty
caused by longevity trend risk over a 10-year term to buyout.
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Figure 8. VaR90%,x,10 excess over best-estimate for pensions in payment to males. According to these four models, there
is a 10% chance of buyout prices being at least 4% more expensive in 10 years’ time due solely to changed expectations of
longevity trend risk. Source: 1,000 refits of eachmodel valuing immediate annuities with cash flows discounted continuously
at 1% per annum.

On a practical note, the number of models in Figure 8 is rather limited. Specifically, the only
model with any year of birth or cohort patterns is the 2D P-spline model of Richards et al. (2006).
This is because the P-spline models can cope with the missing cohort triangle in Figure 2, which
becomes an increasingly challenging problem for models with individual cohort terms, such as the
APC(S) model. Another practical issue is that longer terms for n increase the risk of a restatement
of the data of the kinds described in Section 3.

8. Valuing Index-Based Hedging Instruments
A relatively recent financial innovation for managing longevity risk is the index-based hedge.
Several such hedges have been transacted in recent years by insurers in the Netherlands; see Blake
et al. (2018) for an overview. The basic idea is that the owner of longevity risk, e.g., an insurer
or pension scheme, uses a hedging instrument defined with reference to population mortality.
This critically assumes that the longevity trend risk in the owner’s portfolio moves in parallel
with the longevity trend risk in the reference population; if it does not, the owner is exposed to
basis risk. This basis risk is magnified by the tendency of portfolio liabilities to be heavily con-
centrated among a select subset of lives; see Richards & Currie (2009, Table 1) for an example of
this. The owner of the longevity risk is also left with the volatility arising from individual lifetimes
being longer or shorter than expected, known variously as idiosyncratic risk or binomial risk.
An index-based hedging instrument is therefore an imperfect risk management tool compared
with the more traditional practice of directly (re)insuring the entire longevity risk in the portfolio,
which covers trend risk, basis risk and idiosyncratic risk. Such all-encompassing (re)insurance is
sometimes known as an indemnity arrangement to contrast it with hedging instruments.

An index-based hedging contract needs a risk-taker on the other side. Tomeet the needs of such
investors, index-based hedges usually have a fixed term, n years say, as opposed to the perpetual
nature of an indemnity arrangement. In order to close out the hedging contract, some financial
metric needs to be calculated that bears a sufficiently strong relationship to the insurer’s balance-
sheet liability. An example might be that, at the end of n years, a specified mortality-forecasting
model would be fitted to the data available and an annuity factor would be calculated using the
resulting best-estimate projection. In such circumstances, the financial metric is the now-familiar
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Figure 9. Example hedge pay-off function, h(Vx,n), showing the attachment and exhaustion points for the contract analysed
in Table 2 for x= 70.

annuity factor, Vx,n. Since there is no market price for the hedge contract, we need to use a model
to value it (so-called “mark-to-model”). However, while the model used for the closeout calcula-
tion will be written into the hedge contract, there is no guarantee that the mortality rates over the
contract term will follow this model. In this section, we will explore the impact of model risk on
the pricing and valuation of such index-based contracts.

For the purpose of illustration, we assume a term of n= 15 years. Sincemost recent index-based
hedges have been written with Dutch insurers (Blake, et al. 2018, pp. 44, 48, 57–58), we will use
mortality data for the Netherlands. For our closeout forecast model, we will use the unsmoothed
Lee–Carter model for its simplicity and widespread acceptance, although Currie (2013) notes that
a smoothed version of the Lee–Carter model is unambiguously superior in terms of forecasting
quality. For our closeout metric, we will use an annuity factor for a life aged x in n years, with cash
flows discounted continuously at an interest rate of 1% per annum. Since this annuity factor is
unknown at the point of valuation of the index-based hedge, we treat it as a random variable, Vx,n,
whose value will be observed after n years when the final forecast is made and the annuity factor
can be calculated. We will follow Cairns & El Boukfaoui (2019) in not using the annuity factor “as
is”, but instead define the hedge pay-off function, h(Vx,n), as follows:

h(Vx,n)=max
(
0, min

(
Vx,n −AP
EP −AP

, 1
))

(3)

where AP is the attachment point, i.e., the minimum value the annuity factor has to reach before
any payment is made to the insurer, and EP is the exhaustion point, i.e., the annuity factor above
which the payout is capped. h(Vx,n) therefore takes values in [0, 1], as depicted in Figure 9, and it
can be scaled by a nominal amount to provide a suitable hedge value.

Using the same unsmoothed Lee–Carter model for both generating the sample paths and cal-
culating the closeout value of the hedge, we further follow Cairns & El Boukfaoui (2019) in setting
AP =Q60%,n and EP =Q95%,n. If we use the same model to generate the sample paths over the
following n= 15 years as the model used to set the attachment point, then there is by definition a
probability of 0.4 of a non-zero pay-off. Using 1,000 15-year simulations of sample paths accord-
ing to the unsmoothed Lee–Carter model, we agree the payout probability of 0.4; the average
pay-off of h(V70,10) is 0.338 (conditional on there being a payout, i.e., E[V70,10|V70,10 >AP]). The
insurer and investor can then negotiate what price should be paid to the investor to enter into this
contract, allowing for further items like expenses, discounting and profit margins.

But how do these figures change if mortality rates over the next n years follow a different
process than the one implied by the closeout forecasting model? To illustrate this, we use the
unsmoothed Lee–Carter model for both the pay-off calculation and setting the attachment and
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Table 2. Impact of different sample-path models on pay-off of 15-year
longevity hedge.

Model for sample paths Payout probability Mean pay-off

LC 0.400 0.338
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M5(S) 0.548 0.499
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2DAP 0.184 0.262
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2DAC 0.841 0.411

Source: own calculations using population data for males in the Netherlands, ages 50–104,
1971–2016. The attachment point is 14.61, being the 60th percentile of the annuity factor
under the unsmoothed Lee-Carter model, while the exhaustion point is 15.31, being the 95th
percentile. The hedge pay-off function is shown in Figure 9.

Table 3. Impact of different sample-path models on pay-off of 15-year
longevity hedge.

Model for sample paths Payout probability Mean pay-off

LC 0.397 0.413
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M5(S) 0.495 0.553
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2DAP 0.000 n/a
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2DAC 0.004 0.062

Source: own calculations using population data for females in the Netherlands, ages 50–104,
1971–2016. The attachment point is 17.02, being the 60th percentile of the annuity factor
under the unsmoothed Lee-Carter model, while the exhaustion point is 17.90, being the 95th
percentile.

exhaustion points, but vary the model generating the sample paths over the n years between set-
ting up the hedge and closing it out. Tables 2 and 3 show the resulting pay-off probabilities and
mean pay-offs under some alternative models for males and females.

The diverse results in Tables 2 and 3 do not necessarily affect the hedge contract’s effectiveness.
If the portfolio’s longevity trend truly moves in parallel with that of the reference population, then
the hedge contract will be effective if the insurer’s projection basis in n years’ time is the Lee–
Carter model. However, what Tables 2 and 3 do show is the difficulty in placing a value on the
hedge contract, either for the purpose of pricing at outset or for putting on the balance sheet once
written. Model risk is very significant in valuing the hedge pay-off – if mortality rates were to
follow the 2DAC model, then the payout probability would be more than doubled for males but
essentially zero for females. Of course, the converse could also apply: if the hedge contract were
defined with reference to the 2DAC model and mortality rates actually followed the Lee–Carter
model, the payout probability and mean pay-off would both be substantially lower for males, but
considerably higher for females.

Placing a value on such a hedge contract is therefore not a purely mathematical exercise, but
necessarily involves substantial actuarial judgement. Such judgement needs to take account of
model risk by exploring the results under various different models, but it is clear that valuing
an index-based hedge is even more sensitive to the choice of model than setting solvency capi-
tal requirements for either immediate or deferred annuities (see Section 5). A follow-on question
for regulators is what solvency capital relief (if any) can be granted for holding such index-based
contracts? A further conclusion from Tables 2 and 3 is that increasing the number of simula-
tions would be irrelevant; there is little benefit in increasing the accuracy of estimated payout
probabilities in the face of such overwhelming model risk.

As with the pension fund “glide path” to buyout in Section 7, the choice of models that can
be used in Tables 2 and 3 is limited by the large number of missing cohorts in the shaded area of
Figure 2. Of course, the data in this triangle will not be missing at the point the hedge contract is
closed. However, the risk of a restatement of the past data – of the kinds described in Section 3 –

https://doi.org/10.1017/S174849952000007X Published online by Cambridge University Press

https://doi.org/10.1017/S174849952000007X


Annals of Actuarial Science 273

is even greater with longer terms like n= 15. As a result, hedge contracts need carefully drafted
clauses to handle restated data. A particularly challenging scenario would be where a hedge con-
tract terminated around the same time as data were restated, as the opposing parties would favour
different versions of the data.

9. Conclusions
Solvency capital requirements from 1-year views of longevity trend risk are very similar between
the VaR method at a p-value of 99.5% and the CTE method at 99%. Deferred annuities are more
sensitive to longevity trend risk than annuities in payment; at the age of 50 years, the 1-year
solvency capital requirement is doubled. This has implications not only for insurer solvency
calculations but also for pension schemes aiming to buy out their liabilities.

Model risk is important throughout, and solvency capital can ultimately only be determined by
actuarial judgement. Such judgement should be informed by the results of using several different
models. Both VaR and CTE capital requirements can be calculated from the same sample, and
an adequate sample size is obviously necessary to minimise the standard error of VaR-style order
statistics. However, since actuarial judgement is the final stage in determining capital require-
ments, toomuch focus on increasing the sample size risks detracting from themost important task
of exploring multiple models to inform that judgement. This is particularly the case for valuing
index-based hedge contracts, where model risk becomes almost overwhelming.
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Appendices

A. Calculation platform
All models in this paper were fitted using R Core Team (2017), version 3.3.3. Note that versions
of the arima() function in R prior to v3.0.1 could sometimes return parameters for a local maxi-
mum of the likelihood; see Hyndman (2013) for details. Despite this bug being fixed, R’s arima()
function can still return results dependent on the initial parameter values supplied. To minimise
the risk of selecting a model that is a local optimum, we make several calls to arima() with
different initial values and choose the parameters with the lowest AIC.

Our installation of R in turn relied on version 3.7.0 of the basic linear algebra subprograms
(BLAS/LAPACK). Note that versions of LAPACK prior to 3.2.2 contained an unfixable bug in
the QR decomposition routine; see Langou (2010). This library is used by R’s svd() function,
among other matrix functions, which means that earlier versions of LAPACK will produce slight
differences in fitted parameters in R, especially where smoothing is involved.

Calculations were performed on an eight-core Debian Linux virtual server. The core count is
relevant because we use process parallelism to reduce the time taken to perform the large number
of model refits. A custom Java program balanced at most seven concurrent R processes at any one
time. Table A.1 shows the substantial reduction in run times afforded by parallel processing, and
the near-linear scaling with the number of cores used.
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Table A.1. Elapsed times in seconds for VaR99.5%,x,1 calculations based
on 1,000 simulations using an unsmoothed Lee-Carter model. The
model refits are independent of each other and so can be spread over
a varying number of processes. The rightmost column shows the time
taken as a percentage of the single-process case.

Number of processes Time taken Time factor (%)

1 5,692 100
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 1,495 26
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 867 15

Source: own calculations.

TableB.1. Elapsed times in seconds for 1,000 VaR99.5%,x,1 calculations using Lee–Cartermod-
els with differing degrees of smoothing. Calculations were spread over seven processes in
each case and the elapsed time is shown as a percentage of the unsmoothed case.

Lee–Carter variant Time taken Time factor (%)

Unsmoothed, logμx,y = αx + βxκy 867 100
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Smoothing βx , as per Delwarde et al. (2007) 1,505 174
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Smoothing αx and βx , as per Currie (2013) 2,450 283

B. Smoothing
Many stochastic mortality models are over-parameterised. One consequence is that forecasts can
have undesirable features, such as mortality rates crossing over at adjacent ages. Delwarde et al.
(2007) showed how to improve forecast performance with the Lee–Carter model by smoothing
one of the age-related parameters. Currie (2013) went further and showed how to smooth both
age-related parameters in the Lee–Carter model and how this also reduced the effective dimension
of the model without compromising the overall fit. Smoothing is therefore desirable for many age-
related parameters, although some (non-age-related) parameters are unsuitable for smoothing;
Richards et al. (2019) discuss when parameters should not be smoothed in mortality models.

A drawback of smoothing with penalised splines is that it is computationally intensive in the
context of the repeated model refits required for the calculations in this paper. This is particu-
larly the case where smoothing parameters are re-optimised for each model refit; see Currie et al.
(2004). Table B.1 shows how, as the amount of smoothing increases in a model, so does the run
time. Compared to Table A.1, we can see that re-optimised smoothing undoes much of the benefit
of parallel processing.

However, in a VaR-style calculation, we usually add a relatively small amount of extra pseu-
dodata to the real data, and we simulate the new pesudodata with a model which should have
similar smoothing characteristics to the fitted model. To accelerate run times in this paper, we
therefore applied the smoothing parameters of the baseline model without re-estimating the
smoothing parameters anew each time. This is a departure from the VaR results cited in previ-
ous works like Richards et al. (2014), Kleinow & Richards (2016) and Richards et al. (2019), and
a natural question is whether this “baseline-driven smoothing” materially changes the resulting
capital requirements? Figure B.1 shows the VaR99.5%,x,1 capital requirements using baseline-driven
smoothing versus reoptimised smoothing; there is no material difference in the capital require-
ments and so there is no reason not to accept the performance improvement from baseline-driven
smoothing shown later in Table B.2.

In addition to the smoothing parameters, some models allow for over-dispersion, i.e., the
tendency for mortality counts to exhibit greater variation than the Poisson assumption allows.
Examples of such models are the 2D P-spline-smoothed models in Richards et al. (2006). Such
models have an additional over-dispersion parameter, which is estimated from the data and which
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Table B.2. Elapsed times in hours for VaR99.5%,x,1 calculations based on
5,000 refitted models with re-optimised smoothing parameters and baseline-
smoothed parameters, together with the time factor showing the baseline
case as a percentage of the re-optimised case. In each case, the simulations
are spread over seven processes.

Smoothing parameters

Model (i) re-optimised (ii) baseline values (ii)/(i)×100%
LC(S) 1.06 1.04 98

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M5(S) 3.03 1.01 33
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

APC(S) 4.12 2.07 50
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2DAP 17.54 1.11 6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2DAC 30.19 2.08 7

Figure B.1. VaR99.5%,x,1 capital requirements as percentage of best-estimate reserve, calculated using (a) full reoptimisation
of smoothing parameters and (b) baseline smoothing applied to all simulations. Baseline-driven smoothing does not change
the capital requirements for any of the three models shown. Source: 5,000 simulations for each model fitted to data for UK
males, immediate-annuity liability with cash flows discounted at 1% p.a.

Figure B.2. VaR99.5%,x,1 capital requirements as percentage of best-estimate reserve, calculated using (a) full reoptimisation
of smoothing parameters and (b) using baseline smoothing applied to all simulations. Baseline-driven smoothing does not
affect the results from the 2DAC model, but produces more sensible results for the 2DAP model. Source: 5,000 refits of each
model for UKmales, immediate annuity liability with cash flows discounted at 1% p.a.
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can therefore be re-estimated along with the smoothing parameters in each VaR refit (or not, if
we apply the baseline value of the over-dispersion parameter along with the baseline values of
the smoothing parameters). Figure B.2 shows the effect on capital requirements of re-estimating
both the over-dispersion parameter and the smoothing parameters. While there is no material
change for the 2DAC model, for the 2DAP model there is a wild difference between the results;
the baseline-smoothed results are clearly more sensible than the re-optimised ones.

Figure B.2 leads us to prefer baseline-driven smoothing because it produces more stable and
sensible results for models with over-dispersion parameters. Figure B.1 shows that there is no dif-
ference in results for models without over-dispersion parameters. However, there is an additional
benefit of faster run times, sometimes dramatically so, as shown in Table B.2.

Cite this article: Richards SJ, Currie ID, Kleinow T and Ritchie GP (2020). Longevity trend risk over limited time horizons.
Annals of Actuarial Science 14, 262–277. https://doi.org/10.1017/S174849952000007X
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