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Abstract

The �-invariants of Bieri–Neumann–Strebel and Bieri–Renz involve an action of a
discrete group G on a geometrically suitable space M . In the early versions, M was always
a finite-dimensional Euclidean space on which G acted by translations. A substantial litera-
ture exists on this, connecting the invariants to group theory and to tropical geometry (which,
actually, �-theory anticipated). More recently, we have generalized these invariants to the
case where M is a proper C AT (0) space on which G acts by isometries. The “zeroth stage”
of this was developed in our paper [BG16]. The present paper provides a higher-dimensional
extension of the theory to the “nth stage” for any n.

2020 Mathematics Subject Classification: 20F65 (Primary); 20J05, 59D19 (Secondary)

1. Introduction

1·1. Background

The Bieri–Neumann–Strebel invariant�(G,Z) of a finitely generated group G is a certain
subset of the sphere at infinity of Rd , where d is the rank of the abelianisation of G. Over
the years this elusive subset has been computed in many cases, and has been related to a
variety of issues in group theory and tropical geometry. The first major generalisation was
the higher-dimensional Bieri–Renz invariant �n(G; A), where A is a G-module of type
F Pn . (The case n = 1 with A the trivial G-module Z gives back the original �(G,Z)).

The invariant �n(G; A) is intrinsically associated with the natural action of G on R
d by

translations. This led us to a generalisation of the fundamental idea, in which, given G and
a G-module A of type F Pn , the translation action of G on R

d is replaced by an isometric
action of G on an arbitrary proper C AT (0) space M , leading us to a subset of the boundary
∂M playing the role previously played by the sphere at infinity. By clear analogy, we call
this subset �n(M; A).

C© The Author(s), 2021. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

https://doi.org/10.1017/S030500412000016X Published online by Cambridge University Press

https://doi.org/10.1017/S030500412000016X
mailto:bieri@math.uni-frankfurt.de
mailto:ross@math.binghamton.edu
https://doi.org/10.1017/S030500412000016X


134 ROBERT BIERI AND ROSS GEOGHEGAN

Even the case �0(M; A) has turned out to be remarkably interesting. Although compu-
tation is still in its infancy, it has already been deeply linked to buildings associated with
certain arithmetic groups, where M in that case is a symmetric space. The basic theory of
�0(G; A) is set out in our paper [BG16].

In this paper we set out the corresponding theory of�n(G; A), thus exhibiting the natural
place of�0(M; A)within a richer theory. We prove appropriate analogs of theorems already
known in the “classical” (i.e. Euclidean) case. This is far from routine, and new methods
have to be developed. Besides the basic theory, we find a product formula for � invariants,
and an interpretation of the whole theory in terms of Novikov homology.

1·2. Quick definition of �n(G; A)

We prefer to give this definition in context later in the paper, but for readers who wish to
know now, we include a short version here.

The given G-module A has type F Pn , so there is a free resolution F � A with chosen
finitely generated n-skeleton. Here, the lowest possible value of n is 0 so A is assumed to be
finitely generated throughout the paper. We choose a base point b ∈ M , and we define a G-
equivariant “control map” h : F → f M where f M denotes the G-set of finite subsets of M .

The definition of this map h proceeds in stages:

(1) first we define h :ZG → f M taking λ ∈ZG to the finite subset h(λ) := supp(λ) ·
b ⊆ M ;

(2) we extend this to a finitely generated free G-module F with chosen basis by defining
h : F → f M separately as above on each ZG-summand and then taking the union;

(3) this is then applied to the n-skeleton of the resolution F.

Roughly,�n(M; A) consists of those points e ∈ ∂M whose horoballs at e, He ⊆ ∂M , have
the property that every cycle z in the (n − 1)-skeleton F(n−1) with h(z)⊆ He bounds a chain
in F(n) with h(c)⊆ H ′

e where H ′
e depends only on (and is only slightly larger than) He.

1·3. The dynamical invariant

Given a base point b ∈ M we use the Busemann function βe : M →R, normalised by
βe(b)= 0, to measure the effect of the G-action and chain endomorphisms on the images
h(c) of the elements c ∈ F of dimension ≤ n. Specifically, we consider chain endomorphisms
ϕ : F → F with the properties:

(1) ϕ lifts the identity map of A;
(2) the difference βe(h(ϕ(c)))− βe(h(c)) has a positive lower bound as c runs through the

n-skeleton F(n) of F.

We call ϕ a “push” of the n-skeleton towards e. In the classical case, [BR88, theorem 4·1]
shows that the existence of such a G-equivariant push is equivalent to e ∈�n(G; A) – a key
fact often referred to as the “�n criterion”. Here in the C AT (0) situation we find that the set
of boundary points e ∈�n(M; A) for which a G-equivariant push ϕ : F(n) → F(n) towards
e exists is in general a proper subset – potentially interesting but not sufficiently closely
related to �n(M; A) since it vanishes in some of the most interesting examples. In [BG16]
(which was about �0(M; A) in the C AT (0) case) we introduced the notion of G-finitary
homomorphisms between G-modules. These are more general than G-homomorphisms but
still share their coarse metric properties. We define the subset ◦�n(M; A)⊆�n(M; A) to be
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Higher horospherical limit sets for G-modules over CAT(0)-spaces 135

the set of those points e ∈ ∂M such that there is a G-finitary push of the n-skeleton towards
e, and we call it the “dynamical invariant”. By using G-finitary chain homotopies in higher
dimensional homological algebra arguments, we prove:

THEOREM 1·1 (�n Criterion).

◦�n(M; A)= {e ∈ ∂M | cl(Ge)⊆�n(M; A)}.
(Here, closure is taken in the cone topology on ∂M .)
In the classical theory G acts trivially on ∂M , hence Theorem 1·1 is a true generalisation

of the classical �n criterion, and, just as back then, it is again the fundamental tool for all
further results.

1·4. The main results

THEOREM 1·2. Assume that the isometric action ρ of G on M is cocompact and that its
orbits are discrete subsets of M. Then �n(M; A)= ∂M if and only if A has type F Pn as a
Gb-module, where b is any point of M and Gb denotes its stabiliser.

We have openness theorems as follows:

THEOREM 1·3. (i) With ρ ∈ Hom(G, Isom(M)) an isometric action of G on M as
above, if �n(ρM; A)= ∂M then there is a neighbourhood N of ρ in this space (with
the compact-open topology) such that �n(ρ ′ M; A)= ∂M for all ρ ′ ∈ N.

(ii) ◦�n(ρM; A) is open in the Tits metric topology on ∂M.

�n
ρ(M; A) is not in general open in ∂M with the cone topology.
The next two theorems concerning the dynamical invariant ◦�n(M; A) – a homological

description and a product formula – are new, even in the 0-dimensional case [BG16].
Given a base point b ∈ M and a boundary point e ∈ ∂M we write ẐG

e
for the set all

infinite sums σ =�g∈Gagg with the property that each horoball H Be at e contains all but
a finite subset of supp(σ )b ⊆ M . This ẐG

e
is a right G-module which we call the Novikov

module at e.

THEOREM 1·4. If A is a ZG-module of type F Pn then1

◦�n(M; A)= {e ∈ ∂M | Tork(ẐG
e′
, A)= 0 for all e′ ∈ clGe and all k ≤ n}.

If (M ′, A′) is second pair consisting of a proper C AT (0) space M ′ and an abelian group
A′, both acted on by a group H , then we have a corresponding pair (M × M ′, A ⊗ A′) with
the obvious G × H action. Assuming A and A′ are of type F Pn as G- [resp. H -] modules,
we can take advantage of the identification ∂(M × M ′)= ∂M 	 ∂M ′ to ask for a formula
expressing �∗(M × M ′; A ⊗ A′) in terms of �∗(M; A) and �∗(M ′; A′). While there is no
intrinsic relationship between the subsets �∗(M; A) and �∗(M ′; A′) of ∂(M × M ′), the
tensor product A ⊗ A′ with ground ring Z could be zero. Hence there is no hope for a simple
formula without restrictions on the modules. For this reason we replace the ground ring Z

1The special case of Theorem 1·4 when M = Gab ⊗R is Euclidean is proved in Pascal Schweitzer’s
appendix to [Bie07].
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136 ROBERT BIERI AND ROSS GEOGHEGAN

by a field K in our product formula, and we interpret the �-invariants correspondingly.
As usual, formulas for these invariants are best expressed in terms of their complements
�c = ∂M −�.

THEOREM 1·5. Let K be a field and let A, A′ be K G- (resp. K H-)modules of type Fn,
with the additional assumption that ◦�0(M; A)= ∂M and ◦�0(M ′; A′)= ∂M ′. Then

◦�n(M × M ′; A ⊗K A′)c =
n⋃

p=0

◦� p(M; A)c ∗ ◦�n−p(M ′; A′)c.

Remarks 1·6.

(1) Theorem 1·5 extends our product formula for �n(G × H ; K ) in [BG10].
(2) In the discrete case the assumption that �0(M; A)= ∂M is equivalent to saying that the

G-action on M is cocompact and that A is finitely generated over any point stabilizer;
see [BG16]. For more details see the remarks in Section 12.

(3) An early (sometimes forgotten) product formula for the original Bieri–Strebel invari-
ant, defined for modules over finitely generated abelian groups, is not covered by
Theorem 1·5. It asserts that for such groups G and H and arbitrary K G- and
K H -modules A and A′,

�0(G × H ; A ⊗K A′)c =�0(G; A)c ∗�0(H ; A′)c. (*)

It is a fact that when G is finitely generated and abelian then �n(G; A)=�0(G; A) for
all n ≥ 0. So, in this “classical case” Theorem 1·5 holds without any restriction on �0.
The formula (∗) appeared in [BGr82] as the key to proving that every metabelian group
of type F P∞ is virtually of type F P . It would be highly interesting to have a general
formula for �n(G × H ; A ⊗K A′) that explains the role of �0(G; A) and �0(H ; A′).

2. Finitary homological algebra

We use the symbol f S to denote the set of all finite subsets of a given set S.
An additive homomorphism ϕ : A → B between G-modules2 is G-finitary (or just fini-

tary) if it is captured by a G-map 
 : A → f B, in the sense that ϕ(a) ∈
(a) for every
a ∈ A. We call the G-map 
 a G-volley (or just a volley) ϕ, and we say that ϕ is a selection
from the volley 
.

Two volleys 
 : A → f B and � : B → f C can be “composed” to give the volley �
 :
A → f C defined by �
(s) :=

⋃
t∈
(s)

�(t). A G-map ϕ : A → B may be regarded as the

G-volley which assigns to every element s ∈ S the singleton set {ϕ(s)}. Hence G-volleys
and G-homomorphisms can be composed in the above sense.

Every G-homomorphism is, of course, G-finitary, but G-finitary homomorphisms are
much more general. Unlike a G-homomorphism, a G-finitary map ϕ : A → B is not uniquely
determined by its values on a ZG-generating set X of A; however, the possible values on
a = gx (where g ∈ G and x ∈ X) are restricted to be in the finite set 
(a)= g
(x)⊆
g
(X).

2Until Section 11 the ground ring in this paper will be Z.
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LEMMA 2·1. If ϕ : A → B and ψ : B → C are G-finitary, so is the composition ψϕ :
A → C.

Proof. If ϕ : A → B and ψ : B → C are selections from the volleys 
 : A → f B, � : B →
f C , respectively, then ψϕ : A → C is a selection from the composed volley �
 : A → f C .

Thus there is a G-finitary category of G-modules.
By a based free ZG-module we mean a free (left) G-module F with a specified basis. We

write F = FX when we wish to emphasise this basis X . The letter Y will always stand for
the induced Z-basis Y = G X .

Example 2·2. In this paper a G-volley will usually be given on a based free G-module
FX . Indeed, if B is an arbitrary G-module, every map 
 : X → f B extends to a canonical
volley 
 : FX → f B as follows: On elements y = gx of the Z-basis Y = G X , 
 is uniquely
determined by G-equivariance: 
(y) := g
(x); and for arbitrary elements c =

∑
y∈Y

ny y ∈
FX , in the unique expansion, we put


(c) :=
∑
y∈Y

ny
(y) :=
⎧⎨
⎩

∑
y∈Y

nyby | by ∈
(y), for all y ∈ Y

⎫⎬
⎭ .

It is straighforward to check that 
(gc)= g
(c). We call 
 : FX → f B the canonical
G-volley induced by 
 : X → f B.

With respect to the canonical G-volley, finitary homomorphisms are easy to construct on
FX : a finitary homomorphism ϕ : FX → B can be given by first choosing 
(x) ∈ f B for
each x ∈ X , and then picking ϕ(gx) ∈ g
(x) for all (g, x) ∈ G × X .

Examples 2·3. (1) If H ≤ G is a subgroup of finite index, and A, B are G-modules then
every H -homomorphism ϕ : A → B is G-finitary.

(2) If N ≤ G is a finite normal subgroup, and A is a G-module then the additive
endomorphism of A given by multiplication by λ ∈ZN is G-finitary.

For more details, see [BG16].

2·1. Graded volleys and finitary chain maps

In order to extend the results of [BG16] to higher dimensions we need to know that a
Comparison Theorem (Theorem 2·4) for projective resolutions is available for G-finitary
homomorphisms.

Here are our standing notations and conventions:
Until Section 11, F � A denotes a free ZG-resolution of the G-module A by free

G-modules Fk , i.e. F is graded as
⊕
k≥0

Fk with boundary morphism ∂ : F → F; in the final sec-

tions we allow more general ground rings than just Z. Usually, the free G-modules Fk will be
finitely generated in dimensions ≤ n. The truncation of F obtained by setting Fk = 0 when
k > n is the n-skeleton of F and is denoted by F(n). Our free resolutions are based, meaning
that each Fk comes with a specified free ZG-basis Xk . We write Yk for the induced Z-basis
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138 ROBERT BIERI AND ROSS GEOGHEGAN

G Xk . We write X and Y for the unions of the Xk and of the Yk respectively. Motivated by
topology, we often refer to members of F as chains and to members of Y as cells.

The augmentation morphism is ε : F0 � A. The corresponding augmented resolution is
the acyclic chain complex F � A.

The based free resolution F � A is admissible if its basis X has the feature that ∂x = 0
for every x ∈ X , and ε(x) = 0 for every x ∈ X0. It is easy to replace an arbitrary basis X by
a basis which makes F admissible – either by deleting basis elements x with ∂x = 0, or by
replacing them by x + x ′ if there is some x ′ ∈ X with ∂x ′ = 0. We will always assume that
our based free resolutions are admissible.

THEOREM 2·4 (Finitary Comparison Theorem). Let F � A and F′ � A′ be admissible
free resolutions of G-modules A and A′. Then every G-finitary homomorphism f : A → A′

can be lifted to a G-finitary chain homomorphism ϕ : F → F′ and any two such lifts are
chain homotopic by a G-finitary chain homotopy.

In view of the straightforward construction of G-finitary maps on a based free G-module
(see Example 2·2) the first part of the theorem — the existence of a lift — is obvious. The
rest of this section is concerned with the second assertion.

To get control of G-finitary chain maps and chain homotopies on free resolutions F → F′

we need volleys 
 : F → f F′ of chain complexes. We assume such volleys to be graded of
some degree k, i.e.,
(Fn)⊆ F ′

n+k , for all n ≥ 0; but we do not require compatibility with the
differentials. However, degree 0 volleys 
 : F → f F′ will only be used in connection with
chain maps, and hence in degree 0 a selection will always be understood to be a chain-map-
selection from 
. And graded volleys will always be understood to be degree 0 unless some
other degree is specified. We say that the volley
 : F → f F′ induces the G-homomorphism
f : A → A′, if, for each c ∈ F0, ε ′
(c) is (the singleton) f ε(c). This implies that all chain-
map-selections from 
 induce f .

PROPOSITION 2·5. Let F � A and F′ � A′ be admissible free resolutions of G-modules
A and A′, and 
 : F → f F′ a degree 0 G-volley, inducing the zero map A → A′, i.e., with
ε ′
(F0)= 0. Then there is a degree 1 G-volley, � : F → f F′, with the property that every
chain map ϕ which is a selection from
 is homotopic to 0 by a homotopy which is a selection
from �.

Proof. We construct the volleys � : F(n) → f F′(n+1) by induction on n, starting with n = 0.
As im 
0 ⊆ ker ε ′ = im ∂ ′

1, we can find, for each element x of the G-basis X0 of F0, a finite
subset �0(x)⊆ F ′

1 with ∂ ′�0(x)=
0(x). This defines a canonical G-volley �0 : F0 →
f F ′

1, and by G-equivariance we have ∂ ′�0(y)=
0(y) for all y ∈ Y0 = G X0. Selections are
determined by their restrictions to the Z-basis Y0 = G X0, so for each selection ϕ from 
0

there is a selection σ from �0, with ϕ = ∂ ′σ .
Now we take n ≥ 1, assuming the volley � | F(n−1) : F(n−1) → f F′(n) is already con-

structed, with the property that every (chain-map) selection ϕ | F(n−1) : F(n−1) → f F′(n−1)

is homotopic to zero by a homotopy which is a chain-homotopy selection from � | F(n−1).
For every chain-map-selection ϕ from
 | F(n) there are (possibly several) selections σ from
� | F(n−1) with ϕ | F(n−1) = ∂ ′σ + σ∂ . We consider all of them and use them to define, for
each c ∈ Fn ,
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�(c) := {ϕ(c)− σ∂(c) | ϕ is a selection from 
 : F(n) → f F′(n), and

σ is a selection from � : F(n−1) −→ f F′(n), with ϕ | F(n−1) = ∂ ′σ + σ∂}. (2·1)

We claim that � : Fn → f F ′
n is a G-volley. To see this, let g ∈ G, and let ϕ and σ be as

in (2·1). Then3 (gϕ) | F (n−1) = g(ϕ | F (n−1))= g(∂ ′σ + σ∂)= ∂ ′(gσ)+ (gσ)∂ . Moreover,
since ϕ and σ are selections from the G-volleys 
 | F(n) resp. � | F(n−1), so are gϕ and gσ .
Hence (g(ϕ − σ∂))(c)= g((ϕ − σ∂)(g−1(c)) ∈ �(c), for all c. Replacing c by gc shows
g�(c)⊆ �(gc), and replacing g by g−1 establishes the opposite inclusion. This shows that �
is G-equivariant. As � is given in terms of the Z-homomorphisms ϕ − σ∂ , the requirements
for a volley hold.

Now we claim that ∂ ′� = 0. Indeed, with ϕ and σ as in (2·1), we find for all c ∈ Fn ,

∂ ′(ϕ(c)− σ∂(c))= ϕ∂(c)− ∂ ′σ∂(c)= ϕ∂(c)− (ϕ | F(n−1) − σ∂)∂(c)= 0.

For every basis element x ∈ Xn , we can now choose a finite subset �n(x)⊆ F ′
n+1, with

∂ ′�n(x)= �(x). This defines a canonical G-volley �n : Fn → f F ′
n+1, extending � | F(n−1)

to � | F(n). By G-equivariance we have ∂ ′�n(y)= �(y), for all y ∈ Yn = G Xn .
Let ϕ be a chain-map-selection from 
 | F(n). By induction there is a selection σ from

� | F(n−1), with ϕ | F(n−1) = ∂ ′σ + σ∂ . Then ϕ(c)− σ∂(c) ∈ �(c), for every c ∈ Fn , hence
γ = (ϕ − σ∂) | Fn is a selection from � : Fn → f F ′

n . Since selections are determined by
their restrictions to the Z-basis Yn = G Xn , there is a selection σn : Fn → F ′

n+1 from �n with
∂ ′σn = γ = (ϕ − σ∂) | Fn . Thus σn extends σ to a selection τ from � | F(n), with ϕ = ∂ ′τ +
τ∂ , as asserted.

COROLLARY 2·6. Let F � A and F′ � A′ be admissible free resolutions of G-modules A
and A′, 
, � : F → f F′ two degree 0 volleys. Then there is a degree 1 volley, � : F → f F′,
with the property that any two chain-map-selections ϕ from 
 and ψ from �, inducing the
same G-homomorphism f : A → A′, are homotopic by a chain-homotopy-selection of �.

Proof. Consider the map � : F → f F′, given by

�(c)= {ϕ(c)−ψ(c) | ϕ, ψ chain-map-selections of 
, resp. �, both lifting f }.
Then � is a degree 0 volley inducing the zero map, and ε ′�(F0)= 0. Hence the Corollary
follows from Proposition 2·5.

The Finitary Comparison Theorem 2·4 follows from Corollary 2·6.

3. Controlled based free resolutions

3·1. The control space

Throughout the paper (M, d) is a proper non-compact C AT (0) metric space. The closed
ball of radius r centered at b is denoted by Br (b). We write ρ : G → Isom(M) for an action
of the group G on M by isometries. Unless specified, there are no further assumptions about

3Recall that the natural G-action on HomZ(A, B) is defined by (gϕ)(a)= gϕ(g−1a). It follows that if ϕ is
a selection from 
 so is gϕ.
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140 ROBERT BIERI AND ROSS GEOGHEGAN

ρ; its orbits might be indiscrete, and it might not be cocompact4. Except in connection with
the Openness Theorem in Section 10, the action ρ is fixed throughout.

The boundary of M at infinity, denoted by ∂M , is the set of asymptoty classes of geodesic
rays in M . It is assumed to carry the (compact metrisable) cone topology, unless it is clear
from context that ∂M is being considered with the Tits metric topology. If γ is a geodesic
ray in M determining e ∈ ∂M we write γ (∞)= e. (For given e there is such a γ with γ (0)
arbitrary.) We write βγ : M →R for the Busemann function5 determined by γ and we write
H B(γ,t) for the (closed) horoball about e determined by the point γ (t). Usually we are inter-
ested in a difference of the form βγ (p)− βγ (q) and such a difference depends on e, rather
than on the particular choice of γ with γ (∞)= e.

3·2. Controlled based free G-modules

The support c ∈ FX , supp(c)⊆ Y , is the set of all y ∈ Y = G X occurring in the unique
expansion of c over Z. By a control map on F we mean a G-map h : F → f M given6

by composing the support function supp : F → f Y with an arbitrary G-equivariant map
f Y → f M , where h(0) is defined to be the empty set. Thus h is uniquely given by its
restriction h|X : X → f M . We will always assume that our control maps h are centerless
in the sense that h(x) is non-empty for all x ∈ X (and hence h(c) = ∅ for all 0 = c ∈ F).
Controlled free based G-modules and resolutions are always understood to come with a
specific control map h.

3·3. Valuations on free modules

Let the point e ∈ ∂M be determined by the geodesic ray γ : [0,∞)→ M . Composition
of the control map h : F → f M , with the Busemann function βγ : M →R assigns to each
element of F a finite set of real numbers; taking minima defines the function

vγ := min βγ h : F →R∪ {∞}. (3·1)

In particular vγ (c)= ∞ if and only if c = 0.
Following [BR88] we call vγ a valuation on F .

LEMMA 3·1. (i) vγ (−c)= vγ (c), for all c ∈ F.
(ii) vγ (c + c′)≥ min{vγ (c), vγ (c′)}, for all c, c′ ∈ F.

(iii) vγ (c)= vgγ (gc), for all c ∈ F, g ∈ G.
(iv) If c and c′ are non-zero then vγ (c)− vγ (c′) depends only on the endpoint γ (∞)= e,

not on the ray γ , and |vγ (c)− vγ (c′)| ≤ dH (h(c), h(c′)) where dH denotes Hausdorff
distance.

Once we have picked the control map h : F → f M , our free resolution is equipped with
a valuation vγ := min βγ h : F →R∪ {∞}, for each geodesic ray γ : [0,∞)→ M . On the
augmented resolution we have vγ (a)= ∞, for each a ∈ A. In our applications the finitely
generated free module F will be the n-skeleton F(n) of a free resolution F � A where A is a
G-module.

4The action is cocompact if there is a compact subset D such that every point lies in the translate of D
under some isometry.
5Our convention is that βγ (x) goes to +∞ as x approaches e.
6Recall that we write f M for the G-set of all finite subsets of M .
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Example 3·2. This example comes from topology. Take A =Z and F = C∗(K̃ ), the integral
simplicial chains in the universal cover of a simplicial K (G, 1)-complex K . In this case
F comes with a canonical Z-basis, the simplexes of K̃ , and we can define a G-map ĥ :
C∗(K̃ )→ f M on each simplex σ of K by

ĥ(σ )= h({vertices of σ }).
Remark. In this example we have h(∂c)⊆ h(c) for each c ∈ C∗(K ). As a consequence we
have vγ (∂c)≥ vγ (c), so that the chains with non-negative valuation form a subcomplex.
One could mimic that in the general situation by first choosing h(x) = ∅ for each x ∈ X0,
and then defining h(x) on the higher skeleta by h(x) := h(∂x). However, there is no need
for this in general and so our control maps can ignore the boundary aspect of the resolution.

4. Controlling homomorphisms over M

4·1. Controlling homomorphisms on free modules

Let the based free modules FX and F ′
X ′ be endowed with control maps h and h′ mapping to

M . We want to measure how far, in terms of the metric d on M , an additive homomorphism
ϕ : F → F ′ moves the members of F . We define the norm of ϕ by

||ϕ|| := inf{r ≥ 0 | h′(ϕ(c))⊆ Nr (h(c)); c ∈ F} ∈R∪ {∞} (4·1)

the shift function towards e, shϕ,e : F →R∪ {∞}, by

shϕ,e(c) := v′
γ (ϕ(c))− vγ (c) ∈R∪ {∞}, c ∈ F, (4·2)

and the guaranteed shift towards e by,

gshe(ϕ) := inf{shϕ,e(c) | c ∈ F}. (4·3)

We call a Z-submodule L ≤ FX cellular if it is generated by L ∩ Y . Sometimes L will be
given, and we will be interested in the norm or guaranteed shift of ϕ | L . To have information
for that case we include L in the next lemmas.

LEMMA 4·1. Let ϕ : L → F ′ be the restriction to L of an additive homomorphism
F → F ′.

(i) shϕ,e(y)≥ −||ϕ||, for all y ∈ L ∩ Y ; hence gshe(ϕ)≥ −||ϕ||.
(ii) ||gϕ|| = ||ϕ||, shgϕ,ge = shϕ,e and gshge(gϕ)= gshe(ϕ), for all g ∈ G.

LEMMA 4·2. Let ϕ : F → F ′ and ψ : F ′ → F ′′ be two additive endomorphisms, and let
K ≤ F and L ≤ F ′ be cellular Z-submodules with ψ(K )⊆ L. Then

gshe(ϕ|L ◦ψ |K )≥ gshe(ϕ|K )+ gshe(ψ |L).

In particular,

gshe(ϕ
k)≥ k · gshe(ϕ), for all natural numbers k.
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Proof.

gshe(ϕ | L ◦ψ | K )= inf
c∈K

{v′′
γ (ϕψ(c))− vγ (c)}

= inf
c∈K

{v′′
γ (ϕψ(c))− v′

γ (ψ(c))+ v′
γ (ψ(c))− vγ (c)}

≥ inf
c∈K

{v′′
γ (ϕψ(c))− v′

γ (ψ(c))} + inf
c∈K

{v′
γ (ψ(c))− vγ (c)}

≥ inf
b∈L

{v′′
γ (ϕ(b)− v′

γ (b)} + inf
c∈K

{v′
γ (ψ(c))− vγ (c)}

= gshe(ϕ|L)+ gshe(ψ |K ).
We say that an additive endomorphism ϕ : F → F pushes L towards e ∈ ∂M , and we call

ϕ a push towards e, if the guaranteed shift of ϕ|L towards e is positive; i.e., gshe(ϕ|L) > 0.

4·2. Pushing submodules towards limit points of orbits in ∂M

When ϕ is G-finitary then ||ϕ|| and gshe(ϕ) are finite. When
 is a finite G-volley we call
the number ||
|| := inf{r ≥ 0 | h′(
(c))⊆ Nr (h(c))} the norm of 
. Then ||ϕ|| ≤ ||
|| for
all selections ϕ from 
.

In this subsection we assume that the cellular submodule L ≤ F is in fact a ZG-
submodule. It will then be generated, as a ZG-module, by X ′ = L ∩ X ⊆ X . The map ϕ
is assumed to push the G-submodule L towards e with guaranteed shift δ > 0; it follows
that the G-translate gϕ of ϕ pushes L with the same guaranteed shift δ towards ge. In the
special case when ϕ|L is G-finitary we can do better: given any ê ∈ cl(Ge), the closure of
the G-orbit Ge ∈ ∂M , we can still construct endomorphisms pushing towards ê which are
“approximated” by G-translates of ϕ | L:

THEOREM 4·3. Let L ≤ F be a cellular G-submodule of F = FX and let ϕ : L → F be
a selection from the finite G-volley 
 : L → f F with gshe(ϕ)= δ > 0. Then for every end-
point ê ∈ cl(Ge) there is a selection ψ : L → F of 
 with gshê(ψ)≥ δ/2. In fact, this can
be done so that on each finitely generated Z-submodule L ′ ⊆ L, ψ coincides with some
G-translate gϕ.

The proof can be found in [BG16].

5. The dynamical invariants ◦�n(M; A)

Let F � A be a controlled based free resolution of the G-module A, with finitely gen-
erated n-skeleton F(n). For n ≥ 0 we define the nth dynamical invariant of the pair (M, A)
to be

◦�n(M;A) := {e ∈ ∂M | there is a G-finitary chain map inducing idA pushing F(n) towards e}.
PROPOSITION 5·1 (Invariance). Let e ∈ ∂M. The existence of a G-finitary chain map ϕ :
F(n) → F(n) inducing idA and pushing F(n) towards e is independent of the choice of the
resolution F � A and of the control map h : F → f M. In other words, ◦�n(M; A) is well
defined.

Proof. Let F′ � A be a second such resolution with finitely generated n-skeleton. The iden-
tity map idA can be lifted to G-chain homomorphisms α : F → F′, β : F′ → F which are
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chain homotopy inverse to one another. Assume there exists a G-finitary push ϕ : F(n) → F(n)

lifting idA. Then αϕβ : F′(n) → F′(n) is a G-finitary chain endomorphism lifting idA. By
Lemmas 4·1 and 4·2, gshe(αϕ

kβ)≥ −||α|| + k · gshe(ϕ
k)− ||β||. If we choose k large

enough to ensure that k · gshe(ϕ) > ||α|| + ||β||, the map αϕkβ : F′(n) → F′(n) becomes a
G-finitary push towards e. This shows that the existence of a finitary push towards e lift-
ing idA is independent of the particular free resolution. Independence of the control map is
proved as a special case: take F = F′, α an automorphism, and β the inverse of α.

The set ◦�n(M; A) is invariant under the topological action of G on ∂M induced by the
isometric action of G on M . For inductions we define 0�−1(M; A)= ∂M .

A slight adaptation of Theorem 4·3 yields a closure result:

THEOREM 5·2. The G-set ◦�n(M; A) contains the closure of each of its orbits.

Proof. Let ϕ : F(n) → F(n) be a G-finitary chain map pushing F(n) towards e ∈ ◦�n(M; A).
The proof of Theorem 4·3 constructs a G-finitary map ψ : F(n) → F(n) pushing towards
an arbitrary point of the closure of Ge with the property that for every finitely generated
Z-submodule L ≤ F(n) there is some element g ∈ G, with ψ | L = (gϕ) | L . It remains to
show that ψ is a chain map. But since gϕ is a chain map, so is ψ | L , for each L . This
suffices.

6. The geometric invariants �n(M; A)

Here we define the nth geometric invariant �n(M; A). It is the strict homological analog
of the “homotopical” invariant �n(ρ) described in [BGe03].

6·1. Controlled acyclicity

Recall that once we have picked the control map h : F → f M , our free resolution is
equipped with valuation vγ := min βγ h : F →R∪ {∞}, for each geodesic ray γ : [0,∞)→
M . On the augmented resolution we have vγ (a)= ∞, for each a ∈ A.

Let n ≥ 0 and let γ (∞)= e. We say that the augmented controlled based free resolution
F � A is controlled (n − 1)-acyclic over e ∈ ∂M , in short C An−1 over e, if for every real
number s there is a lag λ(s)≥ 0, with s − λ(s)→ +∞ as s → +∞, and such that, for −1 ≤
i ≤ n − 1, every i-cycle z ∈ F with vγ (z)≥ s is the boundary, z = ∂c, of an (i + 1)-chain
c ∈ F with vγ (c)≥ s − λ(s). When n = 0 this is to be understood as a condition on the
augmented chain complex.

6·2. Invariance

Let (F, ∂) and (F′, ∂ ′) be controlled based free resolutions of the G-module A, with ε, ε ′

the corresponding augmentation maps.

PROPOSITION 6·1 (Invariance). Let F and F′ have finitely generated n-skeleta. If F′ is
C An−1 over e, so is F.

Proof. Consider F and F′ with bases X , X ′ and corresponding control maps h and h′. There
are G-chain-homomorphisms ϕ : F → F′ and ψ : F′ → F, inducing the identity on A, and a
chain-homotopy σ : F → F, with ψϕ = 1 + ∂σ + σ∂ . For 0 ≤ i < n let z be an i-cycle of F
with vγ (z)≥ s. We denote by ϕ,ψ , σ , and ∂ the chain maps, the homotopy, and the boundary
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as above, but restricted to the n-skeleta. By Lemma 4·1, v′
γ (ϕ(z))≥ vγ (z)− ||ϕ||. As F′ is

C An−1 over e there is a chain c′ in F′, with ∂ ′c′ = ϕ(z), and

v′
γ (c

′)≥ v′
γ (ϕ(z))−λ(v′

γ (ϕ(z)))≥ vγ (z)−||ϕ|| − λ(v′
γ (ϕ(z))), where λ is independent of c′.

Put c′′ =ψ(c′)− σ(z). Then

∂c′′ = ∂ψ(c′)− ∂σ(z)=ψ∂ ′(c′)− ∂σ(z)=ψϕ(z)− ∂σ(z)= z + σ∂z = z,

and we have,

vγ (c
′′)≥ min{vγ (ψ(c′)), vγ (σ (z))}

≥ min{v′
γ (c

′)− ||ψ ||, vγ (z)− ||σ ||}
≥ min{vγ (z)− ||ϕ|| − λ(v′

γ (ϕ(z)))− ||ψ ||, vγ (z)− ||σ ||}
proving that F is C An−1 over e.

6·3. The geometric invariants

We can now introduce the geometric (or �-) invariants of the pair (M, A) where the
G-module A is of type F Pn . Choosing a free resolution with finitely generated n-skeleton
F � A, we define

�n(M; A) := {e ∈ ∂M | F � A is C Ak over e for all k with − 1 ≤ k < n}.
By Theorem 6·1 this is an invariant of (M; A), i.e. (n − 1)-acyclicity over e is independent

of the choice of free resolution F � A such that F(n) is finitely generated, and of the choice
of control map. In particular, this subset of ∂M is invariant under the topological action of
G on ∂M induced by the isometric action ρ of G on M . For proofs using induction on n we
define �−1(M; A) := ∂M .

We will use the phrase “e ∈�n(M; A) with constant lag λ ∈R” if the function λ(s) in the
definition of C An−1 in Section 6·1 can be taken to be the constant λ. For trivial reasons, all
members of �0(M; A) have constant lag.

7. Characterisation of ◦�n(M; A) in terms of �n(M; A)

In this section we characterize ◦�n(M; A) as a specific subset of �n(M; A)}
(Theorem 7·1), and we give conditions under which ◦�n(M; A)=�n(M; A)
(Theorem 7·4).

7·1. Statement of the theorem

THEOREM 7·1 (Characterisation Theorem). For each G-module A of type F Pn, n ≥ 0,
we have

◦�n(M; A)= {e ∈ ∂M | cl(Ge)⊆�n(M; A)}.
This shows that ◦�n(M; A) is determined by �n(M; A)}.

Remarks. (i) In the special case where all the endpoints e ∈ ∂M are fixed under the
induced action of G on ∂M , Theorem 7·1 implies �n(M; A)= ◦�n(M; A). Hence
Theorem 7·1 is a direct generalisation of the various “�-Criteria” found in [BS80,
proposition 2·1], [BNS87, proposition 2·1], [BR88, theorem C]. These were the main

https://doi.org/10.1017/S030500412000016X Published online by Cambridge University Press

https://doi.org/10.1017/S030500412000016X


Higher horospherical limit sets for G-modules over CAT(0)-spaces 145

technical tools in all previous stages of �-theory. In all those cases, the action of G
was by translations on a Euclidean space, so that all end points were fixed.

(ii) The homotopy version of Theorem 7·1 was proved in [BGe03].

The proof of Theorem 7·1 will be given in two steps: the inclusion ⊆ follows from
Proposition 7·2 together with Theorem 5·2. The other inclusion ⊇ follows from the
(stronger) Theorem 7·4, below.

7·2. From pushing skeletons to constant lag

We start by proving that ◦�n(M; A)⊆�n(M; A); while doing that we will also collect
important information on the lag. More precisely, we prove:

PROPOSITION 7·2. Let F � A be a controlled based free resolution with finitely generated
n-skeleton, n ≥ 0. Let ϕ : F(n) → F(n) be a G-finitary chain endomorphism inducing idA, and
let σ : ϕ ∼ idF be a G-finitary chain homotopy. If ϕ pushes F(n) towards e then the following
hold:

(i) e ∈�n(M; A), with constant lag ||σ ||, and
(ii) If F(n+1) is finitely generated and e is in �n+1(M; A) then it is so with constant

lag ||σ ||.
Proof. (i) Let z be a j-cycle of F, with j ≤ n − 1, and let c be a chain, with z = ∂c. Using
ϕ − idF = σ∂ + ∂σ , and writing ϕk for the k-th iterate of ϕ, we find that τ := (ϕk + ϕk−1 +
· · · ϕ + 1)σ is a G-finitary homotopy ϕk+1 ∼ idF . So

ϕk+1(c)= c + ∂τ(c)+ τ(∂c), hence

z = ∂c

= ∂ϕk+1(c)− ∂τ(∂c)

= ∂c′, where c′ = ϕk+1(c)− τ(∂c).

Let μ> 0 be a guaranteed shift of ϕ towards e. Using Lemma 4·2 we find

vγ (ϕ
k(c))≥ vγ (c)+ k ·μ;

hence we may choose k so large that vγ (ϕk+1(c))≥ vγ (z). Then

vγ (c
′)≥ min{vγ (ϕ(k+1)(c)), vγ (τ (z))} ≥ min(vγ (z), vγ (τ (z))).

But

vγ (τ (z))= vγ ((ϕ
k + ϕk−1 + · · · ϕ + 1)σ (z))

≥ min{vγ (ϕ pσ(z)) | 0 ≤ p ≤ k}
≥ min{vγ (σ (z))+ p ·μ | 0 ≤ p ≤ k} by Lemma 4·2,
= vγ (σ (z)).

So

vγ (c
′)≥ min(vγ (z), vγ (σ (z))).
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By the definitions in Section 4·1, vγ (σ (z))≥ vγ (z)− ||σ ||; hence vγ (c′)≥ vγ (z)− ||σ ||,
showing that e ∈�n(M; A), with lag ||σ ||. This proves statement (i).

(ii) The assumption e ∈�n+1(M; A) asserts that F is C An over e. Thus there is a lag λ(s)
with the property that every n-cycle z with vγ (z)≥ s is the boundary of some (n + 1)-chain
c with vγ (c)≥ s − λ(s), and (s − λ(s))→ ∞, as s → ∞. We fix an n-cycle z and apply the
lag condition to the sequence of n-cycles ϕk(z). Put sk := vγ (ϕ

k(z)). As before let μ> 0 be a
guaranteed shift of ϕ towards e. By Lemma 4·2, sk ≥ vγ (z)+ k ·μ, hence sk → ∞. Thus we
can choose k so that sk+1 − λ(sk+1) > s0 = vγ (z). It follows that there is some (n + 1)-chain
c′ with ∂c′ = ϕk+1(z) and vγ (c′)≥ sk+1 − λ(sk+1) > vγ (z).

Much as in part (i), and using this new choice of k, we put τ := σ(ϕk + ϕk−1 + · · · ϕ + 1).
This is a G-finitary homotopy ϕk+1 ∼ idF . Since z is a cycle we have ϕk+1(z)= z + ∂τ(z).
Writing c′′ = c′ − τ(z) we have ∂c′′ = z and

vγ (c
′′)≥ min{vγ (c′), vγ (τ (z)}

≥ min{vγ (z), vγ (τ (z))}.
Now,

vγ (τ (z))= vγ (σ (ϕ
k + ϕk−1 + · · · ϕ + 1)(z))

≥ min{vγ (σϕ p(z)) | 0 ≤ p ≤ k}
≥ min{vγ (ϕ p(z))− ||σ || | 0 ≤ p ≤ k}, by Lemma 4·2
≥ min{vγ (z)+ p ·μ− ||σ || | 0 ≤ p ≤ k}
= vγ (z)− ||σ ||.

Thus vγ (c′′)≥ vγ (z)− ||σ || and we conclude that ||σ || is a constant lag for the C An-property
of F over e.

If 
 : F(n) → f F(n) is a G-volley then, by Corollary 2·6, there is a finite degree 1 volley
� : F(n) → f F(n+1) with the property that every selection ϕ of 
 is chain contractible by a
selection σ of �. The norm of σ has an upper bound depending only on �. This yields the
following uniform version of Proposition 7·2.

COROLLARY 7·3. Let E ⊆ ∂M be a set of endpoints. Let
 : F(n) → f F(n) a G-volley induc-
ing idA, with the property that each e ∈ E admits a (chain map) selection ϕe : F(n) → F(n) of

 pushing the n-skeleton towards e. Then the following hold:

(i) E ⊆�n(M; A), with uniform constant lag, (i.e., the same constant lag for all e ∈ E);
(ii) if F(n+1) is finitely generated and E ⊆�n+1(M; A) then it is so with uniform

constant lag.

Proof. We apply 7·2 to each ϕe; with � as above, there is a chain contraction σe : ϕe ∼ id
which is a selection from �. The lags are therefore independent of e.

7·3. Closed G-invariant subsets of ∂M

The next theorem gives conditions under which ◦�n(M; A) and �n(M; A) agree. In
particular, it contains Theorem 7·1.
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THEOREM 7·4. Let F � A be a controlled based free resolution with finitely generated
n-skeleton. The following conditions are equivalent for a closed G-invariant set of endpoints
E ⊆ ∂M :

(i) E ⊆�n(M; A);
(ii) E ⊆ ◦�n(M; A);

(iii) there is a uniform constant λ such that for all e ∈ E, e ∈�n(M; A) with constant lag λ;
(iv) there is a uniform constant ν > 0 and a G-volley
 : F(n) → f F(n) inducing idA with the

property that for each e ∈ E there is a chain map selection ϕe from
with gshe(ϕe)≥ ν.

Proof. All implications except (i) ⇒ (ii) and (i) ⇒ (iv) have been proved, and the latter is
the stronger of these two, so we prove (i) ⇒ (iv). The proof is by induction on n.

When n = 0 it follows from [BG16, theorem 7·2] that there is no difference between (ii)
and (iv). Assume E ⊆�0(M; A). For each x ∈ X0 and e ∈ E we choose c̄(e, x) ∈ F0 such
that ε(c̄(e, x))= ε(x) and vγ (c̄(e, x))− vγ (x) > 0, where γ (∞)= e. If this inequality holds
for e and x , then it also holds for e′ and x when e′ lies in a suitably small neighbourhood of e.
Since E is compact there is a finite subset E f ⊆ E such that for all e ∈ E there is some e′ ∈
E f such that vγ (c̄(e′, x))− vγ (x) > 0 when γ (∞)= e. For every e ∈ E we choose such an e′

and define c(e, x) := c̄(e′, x). Thus inf
e∈E

{vγ (c(e, x))− vγ (x)}> 0. Define �(x)= {c(e, x) |
e ∈ E}, a finite set of 0-chains. For y = gx , define �(y)= g�(x). Then the induced � :
F0 → f F0 is a G-volley inducing idA.

For e ∈ E and y = gx define an additive endomorphism ψe : F0 → F0 by ψe(y) :=
gc(g−1e, x); this makes sense because E is G-invariant. Then εψe = ε, and

vγ (ψe(y))− vγ (y)= vγ (gc(g−1e, x))− vγ (gx))

= vg−1γ (c(g
−1e, x))− vg−1γ (x).

Thus inf
e∈E

{gshe(ψe)}> 0. This proves E ⊆ ◦�0(M; A) and finishes the case n = 0.

Now we assume n ≥ 1. We are given that E ⊆�n(M; A), and by induction we may
assume the statement of (iv) when n is replaced by n − 1. We also know that Fn is
finitely generated. So, by Corollary 7·3(ii) we conclude that E ⊆�n(M; A) with a uni-
form constant lag λ≥ 0. We have a G-volley 
 : F(n−1) → f F(n−1) inducing idA such that
for each e ∈ E there is a chain map selection ϕe from 
 with gshe(ϕe)≥ ν > 0. Hence, by
Lemma 4·2, for any positive integer k we have gshe(ϕ

k
e )≥ kν. We may choose k so that

kν ≥ λ+ ||∂ | F(n)|| + δ where δ > 0 is arbitrary. The endomorphisms ϕk
e are selections from

the finite G-volley 
k : F(n−1) → f F(n−1).
For x ∈ Xn define �(x) := {g−1ϕk

e (g∂x) | g ∈ G, e ∈ E}. This is a finite set of cycles,
hence of boundaries. For each (e, p) ∈ E ×�(x) we choose c(e, x, p) ∈ Fn such that
∂(c(e, x, p))= p and

vγ (c(e, x, p)) > vγ (p)− λ≥ vγ (p)− kν + ||∂ | F(n)|| + δ.

Just as in the case n = 0, above, the compactness of E allows us to make our choices c(e,
x, p) from a finite set �(x)⊆ Fn . Putting �(y) := g�(x), when y = gx ∈ Yn , we get a G-
volley � : F(n) → f F(n) extending 
k . Let ψe : Fn → Fn be the homomorphism defined by

ψe(y) := gc(g−1e, x, g−1ϕk
e ∂y).
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Then ∂ψe = ϕk
e ∂ , so ψe is a chain map extending ϕk

e . When γ (∞)= e we have

vγ (ψe(y))= vγ (gc(g−1e, x, g−1ϕk
e (g∂x)))

= vg−1γ (c(g
−1e, x, g−1ϕk

e (∂y)))

> vg−1γ (g
−1ϕk

e (∂y))− kν + ||∂ | F(n)|| + δ

= vγ (ϕ
k
e (∂y))− kν + ||∂ | F(n)|| + δ

≥ vγ (∂y)+ gshe(ϕ
k
e )− kν + ||∂ | F(n)|| + δ

≥ vγ (y)+ δ.

So gshe(ψe)≥ δ. Thus (iv) holds for n, and the induction is complete.

8. The meaning of �n(M; A)= ∂M

From now on we assume the module A is non-zero. In this section and the next we study
the meaning of�n(M; A)= ∂M . We note that, by Theorem 7·4, the statements�n(M; A)=
∂M and ◦�n(M; A)= ∂M are equivalent. Our first goal is Theorem 8·10, which explains
how these properties are also equivalent to what we will call “controlled (n − 1)-acyclicity
over M”.

8·1. Controlled acyclicity over points b ∈ M

Controlled acyclicity over a point b ∈ M is analogous to controlled acyclicity over an end-
point e ∈ ∂M . The role of the valuation on the augmented controlled based free resolution
F � A is played by the function Db : F →R≥0 defined by Db(c) := max{d(p, b) | p ∈ h(c)}
when c = 0 and Db(c)= 0 when c = 0. We extend Db to the module A by Db(a)= 0 for all
a ∈ A. We say F � A is controlled (n − 1)-acyclic over b ∈ M , in short C An−1 over b, if
there is a lag function λ :R≥0 →R≥0, such that, for any −1 ≤ i ≤ n − 1, each (augmented)
i-cycle is the boundary, z = ∂c of some (i + 1)-chain c satisfying

Db(c)≤ Db(z)+ λ(Db(z)). (8·1)

PROPOSITION 8·1. (i) If λR : [R,∞)→R≥0 satisfies the inequality (8·1) when Db(z)≥ R,
and if λR is extended to [0,∞) by defining λR(s)= λR(R)+ R − s when 0 ≤ s ≤ R,
then the extended λR satisfies that inequality for all z, and hence is a lag function in
the above sense.

(ii) If d(b, b′)= δ and λR is a lag function with respect to b, then λR + 2δ is a lag function
with respect to b′.

Proposition 8·1(i) implies that if in the definition of “C An−1 over b” the lag function can
be chosen to be constant on some interval [R,∞) then it can be chosen to be constant over
all. Proposition 8·1(ii) implies that if the action ρ is cocompact (so that there is a fundamental
domain of finite diameter) and if we have C An−1 over some point b, then we have C An−1

over all points b with the same lag function being applicable everywhere. We refer to this as
a uniform lag. We say that F � A is C An−1 over M if it is C An−1 over each b ∈ M with a
uniform lag function.

In particular, “C A−1 over M” means that there is a number λ (= λ(0)) such that for every
a ∈ A and b ∈ M there is a 0-chain c with ε(c)= a and h(c)⊆ Bλ(b). Since A is non-zero
and finitely generated this implies that the action ρ is cocompact.
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PROPOSITION 8·2. Let F � A be a controlled based free resolution with finitely generated
n-skeleton. Let ϕ : F(n) → F(n) be a G-finitary chain endomorphism inducing idA, and let
σ : ϕ ∼ idF be a G-finitary chain homotopy. If ϕ pushes F(n) towards some point of M then
the following hold:

(i) ρ is cocompact, and F is C An−1 over M with constant lag;
(ii) if F(n+1) is finitely generated and F is C An over M, then it is so with constant lag.

Proof. The proof is entirely analogous to that of Proposition 7·2, and the details are therefore
omitted. Instead of pushing towards some e ∈ ∂M we are now pushing towards b. Of course,
there exists R ≥ 0 such that those portions of our chains already over the ball of radius R
about b do not make progress towards b, but Proposition 8·1 implies that this makes no
difference.

Remark. In fact there is a radius R such that for any b ∈ M the lag outside BR(b) can be
||σ ||.
8·2. Bounded support and cocompactness of ρ

We first consider the special case n = 0. We say the module A has bounded support over
M if there is a bounded subset B ⊆ M with the property that for each a ∈ A there exists
c ∈ F0 with ε(c)= a and h(c)⊆ B. By the triangle inequality, it is easy to see that this
property is independent of the point b ∈ M , though the number r varies with b. It is also
independent of the choice of F and h.

THEOREM 8·3. Let A be a finitely generated non-zero G-module. The following are
equivalent:

(i) �0(M; A)= ∂M ;
(ii) F � A is C A−1 over M ;

(iii) ρ is cocompact and A has bounded support over M.

The example of SL2(Z) acting on the hyperbolic plane – here A is the trivial module Z –
shows that “having bounded support” does not imply “cocompact”.

Remarks on the proof. The equivalence of (ii) and (iii) is clear. We spelled out the meaning of
“C A−1 over M”, and (using that notation) there is a ball of radius λ inside any horoball; so
(ii) implies (i). That (i) implies cocompactness follows from [BG16, proposition 6·6]. The
remaining item, the fact that (i) implies bounded support, is given in the next subsection7.
Since it is the n = 0 case of a bigger theorem, Theorem 8·10, some of the methods get used
later. In the next section we sketch the rest of the proof of Theorem 8·3 referring to [BG16]
for some details.

8·3. Shifting towards base points

Let F = FX be a finitely generated based free G-module, choose a base point b ∈ M
and consider the canonical control map h : F → M with respect to b and the basis X . Let
ϕ : F → F be an additive endomorphism, and let L ≤ F be a cellular Z-submodule of F .

7Theorem 8·3 appears with full proof in our paper [BG16]
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The shift function of ϕ | L towards b ∈ M measures the loss of distance from b ∈ M ; it is
denoted by shϕ,b : L ∩ Y →R, and is defined by

shϕ,b(y) := Db(y)− Db(ϕ(y)) ∈R, y ∈ L ∩ Y. (8·2)

The notion of guaranteed shift towards b ∈ M is more subtle than the corresponding notion
for endpoints e ∈ ∂M because if elements are already too close to b it may not be possible
to push them any closer. Therefore we have to restrict attention to elements y ∈ L ∩ Y with
h(y) outside some ball centered at b. When α ∈R and R ≥ 0, the pair (α, R) defines a
guaranteed shift for ϕ | L if shϕ,b(y)≥ α whenever y ∈ L ∩ Y and Db(y) > R. The (almost)
guaranteed shift of ϕ on L is

gshb(ϕ | L) := sup{α | for some R, (α, R) defines a guaranteed shift for ϕ | L}.
We call a number R occurring in such a pair (α, R) an event radius for ϕ.

For a proof of the following lemma see [BG16, section 9]:

LEMMA 8·4. (i) −||ϕ | L|| ≤ gshb(ϕ | L)≤ ||ϕ | L||.
(ii) If ψ : F → F, and K is a cellular submodule with ψ(K )⊆ L then

gshb(ϕ | L ◦ψ | K )≥ gshb(ϕ | L)+ gshb(ψ | K ).

We note that when ϕ is G-finitary then ||ϕ | L||<∞ and gshb(ϕ | L) is attained. If
gshb(ϕ | L) > 0 we say that ϕ pushes L towards b ∈ M .

COROLLARY 8·5. If ϕ in Lemma 8·4 (ii) pushes L towards b, and ϕ(L)⊆ L then ϕk ◦ψ
pushes L towards b when k >−gshb(ψ | K )/gshb(ϕ | L). In fact, gshb(ϕ

k ◦ψ | L) > η when
k > (η− gshb(ψ | K ))/gshb(ϕ | L).

The C AT (0) metric space M is almost geodesically complete if there is a number μ≥ 0
such that for any b and b′ ∈ M there is a geodesic ray γ starting at b and passing within μ
of b′. An example lacking this property is the half line [0,∞). The following is proved in
[GO07]:

THEOREM 8·6. Every non-compact cocompact proper CAT(0) space is almost geodesi-
cally complete.

LEMMA 8·7. Let M be a proper C AT (0) space, and let r ≥ 0, δ > 0.

(i) If (b, e) ∈ M × ∂M is given then, by choosing p = p(b, e) ∈ M sufficiently far out on
the geodesic ray γ from b to e, we can achieve

|(βγ (q)− βγ (p))− (d(p, b)− d(q, b))|< δ whenever d(p, q)≤ r. (8·3)

(ii) Assume M is almost geodesically complete and let μ be as in that definition. There is
a number R = R(r, δ) such that (8·3) holds whenever d(p, b)≥ R, γ is a geodesic ray
starting at b and passing within μ of p, and d(p, q)≤ r .

Proof. (i) is immediate from the definition of horoballs and Busemann functions. The proof
of (ii) is contained in the proof of theorem 15·3 of [BGe03].
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The next proposition is proved in [BG16, section 9]:

PROPOSITION 8·8. Let M be an almost geodesically complete proper C AT (0) space. The
following are equivalent for a G-volley 
 : F → f F:

(i) ∀e ∈ ∂M 
 admits a selection pushing F towards e which induces idA;
(ii) ∀b ∈ M 
 admits a selection pushing F towards b which induces idA.

Completion of proof of Theorem 8·3. We assume (i) and we know that this implies cocom-
pactness since A is finitely generated. Hence, by Theorem 8·6 M is almost geodesically
complete. So for any b ∈ M Theorem 7·4 and Proposition 8·8 give us a G-volley ϕ having
a selection ϕ with gshb(ϕ) > 0. Let (α, R) define a guaranteed shift for ϕ, where α > 0. For
any a ∈ A there is a 0-chain c mapped by ε to a such that

Db(ϕ(c))≤ max {R + ||ϕ||, Db(c)− α}.
By iterating ϕ we can thus move c over M to a new c′ such that ε(c′)= a and h(c′) lies over
the ball centered at b with radius R + ||ϕ||, a number independent of a.

8·4. The higher dimensional case

PROPOSITION 8·9. Let F � A be a based free resolution over M with finitely generated
n-skeleton, where n ≥ 1, and let h : F → f M be a canonical control function at b ∈ M with
respect to the basis X. Let ϕ : F(n−1) → F(n−1) be a G-finitary chain map inducing the identity
on A, with ϕ pushing F(n−1) towards b. If�n(M; A)= ∂M then some iterate ϕk of ϕ admits a
G-finitary chain map extension ψ : F(n) → F(n) pushing F(n) towards b ∈ M. The guaranteed
shift, the event radius of ψ , and the number k depend on ϕ and the uniform lag, but are
independent of b ∈ M.

Proof. Let
 : F(n−1) → f F(n−1) be a G-volley from which ϕ is a selection. By Theorem 7·4
we know that F(n) is C An−1 with respect to every endpoint e ∈ ∂M , with uniform constant
lag λ. Now, Corollary 8·5 asserts that for suitable k, ϕk∂ : F(n) → F(n) pushes all of F(n)

towards b ∈ M ; in fact, by choosing k sufficiently large, we can achieve

gshb(ϕ
k∂)≥ λ+ 3δ, where δ > 0 is arbitrary. (8·4)

We aim to extend the kth iterate
k to a G-volley on the n-skeleton by our usual compactness
argument. It suffices to define this extension on the finite G-basis Xn . Let x ∈ Xn . We observe
that the set of chains

�(x) := {g−1ϕk(g∂x) | g ∈ G}
lies in g−1
k(∂gx) and hence is finite, with ∂�(x)= 0. For each pair (e′, p) ∈ ∂M ×�(x)
we can choose an n-chain c(e′, p) ∈ Fn , with ∂c(e′, p)= p, and

vγ ′(c(e′, p)) > vγ ′(p)− λ, (8·5)

where γ ′(∞)= e′.
Fixing p for a moment, we observe that if (8·5) holds for some e′ ∈ ∂M then there is a

neighborhood N (e′) of e in ∂M such that

vγ ′′(c(e′, p)) > vγ ′′(p)− λ for all e′′ = γ ′′(∞) ∈ N (e′).
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Since ∂M is compact, finitely many of these neighbourhoods cover ∂M . This shows that
we can improve on the choice of the n-chains c(e′, p) as follows: we can find a finite set of
n-chains, which we denote �(x)⊆ Fn , with the property that for each (e′, p) ∈ ∂M ×�(x)
there is some c(e′, p) ∈�(x), with ∂c(e′, p)= p which satisfies the inequality (8·5). Putting
�(gx) := g�(x) defines a G-volley � : Fn → f Fn .

Since �n(M; A)= ∂M , Theorems 8·3 and 8·6 imply that M is almost geodesically com-
plete. Let μ> 0 be a number given by that definition8. For every y ∈ gx ∈ Yn we choose
an endpoint e = e(y), with the property that the geodesic ray γ = γy from γ (0)= h(y) to
e = γ (∞), passes the point b ∈ M at distance <μ. We put ψ(y) := gc(g−1e(y),
g−1ϕk(g∂x)) ∈ g�(x), noting that ∂ψ(gx)= g∂c(g−1e(gx), g−1ϕk(g∂x))= ϕk(∂gx),
hence ∂ψ = ϕk∂ , as required.

It remains to show that ψ pushes towards b ∈ M . Let R1 = R(||
k∂||, δ) be the radius
given by Lemma 8·7 where δ > 0 is arbitrary. Then Lemma 8·7 yields

|shϕk∂,e(y)(y)− shϕk∂,b(y)|< δ, for all y = gx ∈ Yn with Db(y))≥ R1. (8·6)

Now, we take R2 to be an event radius for ϕk∂ : F(n) → F(n). For every y = gx ∈ Yn , with
Db(y)≥ R2 and γ = γy the ray from h(y) to e = e(y), we find

vγ (ψ(y))− vγ (y)= vγ (gc(g−1e, g−1ϕk(∂y)))− vγ (y)

= vg−1γ (c(g
−1e, g−1ϕk(∂y)))− vγ (y), by Lemma 3·1,

> vg−1γ (g
−1ϕk(∂y))− vγ (y)− λ, by (8·5),

= vγ (ϕ
k∂y)− vγ (y)− λ, by Lemma 3·1,

= shϕk∂,e(y)− λ,

≥ shϕk∂,b(y)− δ − λ, by (8·6)

≥ gshb(ϕ
k∂)− δ − λ,

≥ 2δ. by (8·4).

Hence shψ,e(y)(y)≥ 2δ, and therefore, by Lemma 8·7 there exists R3(||�||, δ) such that
shψ,b(y)≥ δ when Db(y) > R3. Thus we find gshb(ψ) > 0, i.e. ψ pushes Fn towards b.

THEOREM 8·10. Let M be a proper C AT (0) space. Let F � A be an augmented G-free
resolution with finitely generated n-skeleton, and h : F → f M a control map. The following
are equivalent:

(i) �n(M; A)= ∂M ;
(ii) there are positive numbers (R, α) with the property that for every b ∈ M there is G-

finitary chain map ϕb : F(n) → F(n), inducing idA and pushing all of the n-skeleton
towards b ∈ M, with guaranteed shift α and event radius R;

(iii) F � A is controlled (n − 1)-acyclic over M ;
(iv) F � A is controlled (n − 1)-acyclic over M with a constant lag.

Proof. We begin with (i) ⇒ (ii). From Theorem 7·4 we know that there is a volley

 : F (0) → f F(0) inducing the identity on A and satisfying (i) of Proposition 8·8. Thus

8i.e. for every a and b there is a geodesic ray starting at a and passing within μ of b.
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Proposition 8·8 applied to this volley gives a chain map ϕb : F(0) → F(0) pushing F(0) towards
b. From the proof of Proposition 8·8 we see that the event radius and the guaranteed shift of
ϕb depend only on 
 and not on b. This starts an induction, the inductive step being given
by Proposition 8·9.

(ii) ⇒ (iv). This follows from Proposition 8·2(i).
(iv) ⇒ (i). Let the geodesic ray γ define an end point e and let H Bγ (t) be a horoball.

A cycle over this horoball also lies over some ball centered along γ . If the constant lag in
the hypothesis is λ then this cycle bounds a chain over the ball obtained by increasing the
previous ball’s radius by λ. That ball lies in the horoball H Bγ (t)−λ.

(iii) ⇒ (iv). This follows from Proposition 8·2(ii). (iv) ⇒ (iii) is trivial.

For b ∈ M we write Gb for the subgroup of G fixing b. For any other b′ the group Gb′ is
commensurable with Gb.

COROLLARY 8·11. Assume that the action ρ is cocompact and that its orbits are discrete
subsets of M. Then �n(M; A)= ∂M if and only if A has type F Pn as a Gb-module, where
b ∈ M.

Proof. Filter F by h−1( f Br (b)), where b ∈ M , r ≥ 1, and the notation means the largest
Z-subcomplex mapped by h into f Br (b). These subcomplexes are Gb-invariant, and
because the orbits are discrete these subcomplexes are finitely generated modulo Gb.
According to (an obvious adaptation of) Theorem 2.2 of [Bro87], A has type F Pn as a
Gb-module if and only if F � A is C An−1 over M . By Theorem 8·10 the Corollary follows.

A variant is:

COROLLARY 8·12. Assume that the orbits of the action ρ are discrete subsets of M and
that the group ρ(G) acts properly discontinuously and cocompactly (aka “geometrically”)
on M. Then �n(M; A)= ∂M if and only if A has type F Pn as a Z[ker(ρ)]-module.

Proof. The hypothesis implies that ker(ρ) and Gb are commensurable.

9. Dispensing with lags

We continue to assume the (finitely generated) module A is non-zero. Let F � A be
a controlled based free resolution with finitely generated n-skeleton with control map
h : F → f M . In this section we show that when �n(M; A)= ∂M we can replace F by
another such resolution F′ and define a control map h′ : F′ → f M so that the pre-images
under h′ of horoballs and of large balls are (n − 1)-acyclic. In short, we can reduce the lags
to zero.

We begin with the horoball case, and with n = 0. When e ∈�0(M; A) then for each x ∈
X0 and ν > 0, there exists c ∈ F0 with ε(c)= ε(x) and

vγ (c)− vγ (x) > ν. (9·1)

where γ is a geodesic ray with γ (∞)= e. We write F(γ,t) for the subcomplex generated by
{y ∈ Y |vγ (y)≥ t}.
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PROPOSITION 9·1. When e ∈�0(M; A) the augmentation map ε takes F (γ,t)
0 onto A.

This is equivalent to saying that F is C A−1 over e.
Next, assume �0(M; A)= ∂M . Just as in the n = 0 proof of Theorem 7·4, a compactness

argument shows that for each x ∈ X0 there is a finite set
(x) so that for every e ∈ ∂M (9·1)
holds for some c ∈
(x). The resulting function X0 → f F0 defines a G-volley 
 : F0 →
f F0. We now alter F1 and F2 by performing “elementary expansions”. For each c ∈
(x)
we choose d ∈ F1 with ∂d = x − c. We add new generators ξ to X1 and η to X2, defining
∂ξ = x − c and ∂η= d − ξ . We extend h to h′ by h′(ξ)= h(x)∪ h(c) and h′(η)= h(x)∪
h(c)∪ h(d). The resulting enlarged chain complex F′ � A is again a free resolution with
finitely generated n-skeleton. We note that ξ = ξ(x, c) with x ∈ X0 and c ∈
(x). Define
�(x) := {ξ(x, c) | c ∈
(x)}. This function X0 → f F1 defines a finite degree 1 G-volley
� : F0 → f F1. The definition of h′(ξ(x, c)) ensures

vγ (ξ(x, c))= vγ (x). (9·2)

LEMMA 9·2. For each e ∈ ∂M there are selections ϕe from 
 and σe from � such that,
for all y ∈ G X0, ∂σe(y)= y − ϕe(y), vγ (ϕe(y))− vγ (y) > ν, and vγ (σe(y))= vγ (y).

Proof. Fix e ∈ ∂M . Let y = gx . Using (9·1) and (9·2) pick c and ξ(x, c) so that:

(i) vg−1γ (c)− vg−1γ (x) > ν;
(ii) vg−1γ (ξ)= vg−1γ (x); and

(iii) ∂ξ = x − c.

Then vγ (gc)− vγ (y) > ν and vγ (gξ)= vγ (y). Define ϕe(y)= gc and σe(y)= gξ . Then
∂σe(y)= y − ϕe(y).

Lemma 9·2 provides a G-finitary push ϕe towards each e and a G-finitary chain homo-
topy σe : id ∼ ϕe. We think of these chain homotopies as “monotone” because they have the
property that vγ (σe(c))≥ vγ (c) for all chains c.

PROPOSITION 9·3. Assume �0(M; A)= ∂M. Let e ∈�1(M; A) and let h′ be the extended
control map on F′. Then the resolution F′ � A is C A0 over e with zero lag. Equivalently, for
any t, F′(t) is 0-acyclic.

Proof. Writing e = γ (∞) there is a lag λ(e, t) as in the definition of C A0 in Section 6. Let
z be a 0-cycle over H Bγ,t . For k a positive integer we consider the chain homotopy σ̄e,k :=
σe(ϕ

k
e + ϕk−1

e + · · · + ϕe + 1) as in the proof of Proposition 7·2(ii). If k is large enough,
ϕk(z) bounds over H Bγ,t and because σe is monotone σ̄e,k provides a homology over H Bγ,t
between z and ϕk(z). Thus z bounds over H Bγ,t .

Next, we repeat for n = 1 what we have just done for n = 0. Assuming �1(M; A)= ∂M
we extend the G-volleys
 and� by defining
 : F1 → f F1 and� : F1 → f F2, adding new
generators in dimensions 2 and 3. The only difference is that in the analog of Lemma 9·2
we will have ∂σe(y)= y − ϕe(y)− σe∂y. The pattern for higher n is now clear. We have
proved:
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PROPOSITION 9·4. When �n−1(M; A)= ∂M there is a controlled based free resolution
F � A with finitely generated n-skeleton which is C An−1 with zero lag over every e ∈
�n(M; A).

Essentially the same proof gives:

PROPOSITION 9·5. Let E be a closed G-invariant subset of ∂M. When �n−1(M; A)⊇ E
there is a resolution F � A with finitely generated n-skeleton which is C An−1 with zero lag
over every e ∈ E ∩�n(M; A).

Proposition 9·5 applies, in particular, to a singleton set {e} where e is a fixed point of the
G-action on ∂M . For example, in the Euclidean case, where G acts by translations, every
point of the boundary is fixed by G, and this recovers [BR88, theorem 4·2].

A straightforward adaptation of the proof of Proposition 9·4 gives the following addition
to Theorem 8·10:

THEOREM 9·6. �n(M; A)= ∂M if and only if there is a controlled based free resolution
F � A with finitely generated n-skeleton and a radius R with the property that h−1( f B) is
(n − 1)-acyclic when B is any ball of radius ≥ R (or any horoball, for that matter).

10. Openness theorems

When E ⊆ ∂M we write RE := Hom(G, Isom(M, E)), the set of all isometric actions
of G on M which leave E invariant. We endow the sets Isom(M, E) and RE with the
compact-open topology9. The boundary ∂M carries the cone topology.

In this section, when we discuss a particular action ρ ∈RE we will write ρM rather than
M . We choose a base point b ∈ M . The canonical control map hρ : F → f (ρM) takes the
Z-generator gx to the singleton set {ρ(g)b} ⊆ M .

THEOREM 10·1 (Openness Theorem). Let E be a compact subset of ∂M, and let ρ ∈RE

be such that E ⊆ ◦�n(ρM; A). There is a neighbourhood N of ρ in RE such that for all
ρ ′ ∈ N , E ⊆ ◦�n(ρ ′ M; A). Moreover, we can choose N so that there is a uniform constant
ν > 0 and a G-volley 
 : Fn → f Fn inducing idA such that for each e ∈ E and ρ ′ ∈ N there
is a selection ϕe,ρ ′ from 
 with gsheϕe,ρ ′ ≥ ν.

Of course, by Theorem 7·4 the same holds when ◦�n is replaced by �n .

Proof. The proof of Theorem 10·1 is by induction on n. The case n = 0 was proved in
[BG16] We will use the following ([BG16, lemma 8·1]):

LEMMA 10·2. For given c ∈ F, the valuation ve,ρ(c) is (jointly) continuous in (e, ρ).

To keep notation simple, we prove the n = 1 case of the theorem in detail; the general
inductive case proceeds in the same way, and is left to the reader.

So, we assume that E ⊆ ◦�1(ρM; A) and for all ρ ′ in a neighbourhood N0(ρ) of ρ that
E ⊆ ◦�0(ρ ′ M). By the previous sections we can assume more:

9G is of course discrete.
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(1) E ⊆�1(ρM; A) with uniform constant lag λ≥ 0 — see [BG16, remark 8·3];
(2) there is a G-volley 
 : F0 → f F0 lifting idA and a number ν > 0 such that for every

e ∈ E and every ρ ′ ∈ N0 there is a selection ϕe,ρ ′ from 
 with gshe(ϕe,ρ ′) > ν — see
Theorem 7·4.

For any positive integer k, gshe(ϕ
k
e,ρ ′)≥ kν. We choose k so that kν ≥ λ+ ||∂ | F(1)|| + δ

where δ > 0 is arbitrary.
When e ∈ E and ρ ′ ∈ N0 the endomorphisms ϕk

e,ρ ′ are selections from the finite G-volley

k : F(0) → f F(0).

For each x ∈ X1 define �(x) := {g−1ϕk
e,ρ ′(g∂x) | g ∈ G, e ∈ E, ρ ′ ∈ N0}. This is a finite

set of cycles, hence of boundaries.
We fix x ∈ X1 and p ∈�(x) for a moment. For each e ∈ E we choose c̄(e) ∈ F1 such that

∂(c̄(e))= p and

ve,ρ(c̄(e)) > ve,ρ(p)− λ.

Then there is a neighbourhood N (e, ρ)= N (e)× Ne(ρ) such that for all (e′, ρ ′) ∈ N (e, ρ)

ve′,ρ ′(c̄(e)) > ve′,ρ ′(p)− λ> ve′,ρ ′(p)− kν + ||∂ | F(n)|| + δ.

Since E is compact, a finite set of neighbourhoods N (ei) covers E . Write N = (
⋂

i Nei )∩
N0, a neighbourhood of ρ.

Still fixing x and p, for each e ∈ E we choose i such that e ∈ N (ei), and we define c(e) to
be c̄(ei). Then

ve,ρ ′(c(e)) > ve,ρ ′(p)− kν + ||∂ | F(n)|| + δ.

Recall that ∂c(e)= p. This suggests consideration of the set {c(e) | e ∈ E} ∈ f F1. Letting
p vary, and writing c(e, x, p) in place of c(e), we define

�(x)= {c(e, x, p) | e ∈ E, p ∈�(x)} ∈ f F1.

We then extend � to the associated canonical volley F1 → f F1.
For (e, ρ ′) ∈ E × N the additive homomorphism F1 → F1 defined by

ψe,ρ ′(gx) := gc(ρ ′(g−1)e, x, g−1ϕk
e,ρ ′(g∂x))

is a selection from the volley �. Moreover ∂ ◦ψe,ρ ′ = ϕk
e,ρ ′ ◦ ∂ , so this selection extends a

previous chain map selection from the volley
k . A calculation shows that it has guaranteed
shift ≥ δ.
COROLLARY 10·3. Let ρ be an isometric action on M as above. If �n(ρM; A)= ∂M then
there is a neighborhood N of ρ such that �n(ρ ′ M; A)= ∂M for all ρ ′ ∈ N.

Our other openness theorem, the second part of Theorem 1·3, is:

THEOREM 10·4 (Tits Openness). ◦�n(M; A) is open in the Tits metric topology on ∂M.

Proof. The proof of this is exactly the same as the corresponding proof for ◦�0(M; A)
in [BG16]. We briefly recall it here. The set ◦�n(M; A) can be described as the union of
subsets of the form
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�(ϕ) := {e | gshe(ϕ) > 0},
where ϕ runs through all G-finitary endomorphisms of Fn which commute with the aug-
mentation ε and satisfy gshe > 0 for some e ∈ ◦�n(M; A). The norm of a G-finitary map
is always finite, so the theorem follows from [BG16, theorem 3·9] which asserts that under
these conditions �(ϕ) is an open subset of ∂M in the Tits metric topology.

11. Connections with Novikov homology

11·1. The Novikov module

Assume given: an isometric action of G on M , an end point e ∈ ∂M , and a base point
b ∈ M . As we have seen, this action extends to a topological action of G on ∂M ; let Ge

denote the subgroup of G which fixes e.
From now on we allow any commutative ring K as ground ring10 unless we restrict it

explicitly.
The Novikov module K̂ G

e
is the (K Ge, K G)-bimodule defined as follows: As a set, it

consists of all finite and infinite sums
∑

g∈G,rg∈K rgg such that, for any horoball H B at e, all
but finitely many of the points gb for which rg ∈ R is non-zero lie in H B. This definition is
independent of b. The abelian group structure is termwise addition. The right action of G is
by termwise right multiplication; note that K̂ G

e
is preserved under right multiplication by

g ∈ G because the effect is merely to change the base point from b to gb. Left multiplication
by g ∈ G preserves K̂ G

e
if and only if g ∈ Ge. One thinks of K̂ G

e
as a sort of “comple-

tion towards e” of the group algebra K G. It is a generalisation of what is often called the
“Novikov ring”; however, in the present generality there is no obvious multiplication which
would make K̂ G

e
a ring.

11·2. Novikov chains

Starting with a controlled based free resolution F � A (over M) we consider the homol-
ogy of the chain complex K̂ G

e ⊗K G F of left K Ge-modules. This is the Novikov homology
of A with respect to ρ and e ∈ ∂M .

To give this a more geometric interpretation we describe the chain complex in a differ-
ent way. As before, Xk denotes the given basis for Fk and Yk = G Xk is the corresponding
K -basis. A Novikov k-chain (with respect to e) is a (possibly) infinite k-chain of the form
c = ∑

y∈Yk
ry y such that:

(i) for every horoball H B at e all but a finite subset of suppY (c) lies over H B, and
(ii) there is a finite subset Xk(c) of Xk such that all the members of suppY (c) are (left)

G-translates of members of Xk(c); i.e. the X -support of c is finite.

When Xk is finite the second condition is redundant. Typically Xk is finite for the values
k ≤ n of interest, but the second condition can be important in the next dimension n + 1.

We write Ce
k for the set of all such chains, with the obvious left Ge-module structure.

Thus we get a chain complex Ce and we write H e
k for the corresponding homology. The

map Ce → K̂ G
e ⊗K G F which rewrites

∑
y∈Yk

ry y as
∑

x∈Xk
(
∑

g∈G rg,x g)x and takes it to

10In fact all our work up to this point goes through for such a ground ring K .
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x∈Xk

(
∑

g∈G rg,x g)⊗ x is an isomorphism of chain complexes. Thus H e
k is isomorphic to

Tork(K̂ G
e
, A) as an K Ge-module, and is therefore independent of the choice of resolution

of A.

11·3. Homological characterisation of ◦�n(M; A)

THEOREM 11·1. Assume F(n) is finitely generated over K G. Let e ∈ ∂M.

e ∈ ◦�n(M; A) if and only if Tork(K̂ G
e′ ; A)= 0 for all e′ ∈ clGe and all k ≤ n.

In proving this theorem we can replace Tork(K̂ G
e′ ; A) by H e′

k . Let ϕ : F(n) → F(n) be
a K -chain map which pushes F(n) towards e. A Lipschitz deformation for ϕ is a K -chain
homotopy σ : F(n) → F between the identity map and ϕ such that there exists a function
ν :R→R satisfying

vγ (σ (y))≥ vγ (y)− ν(vγ (y)) (11·1)

for every y ∈ Y . This suggests a new �-invariant, namely:

�̃n(M; A)= {e ∈ ∂M | there is such a push and Lipschitz deformation }.
By definition �̃−1 = ∂M .

We note that the resolution F is a subcomplex of Ce. The chain map

ϕ̄e := 1 + ϕ + ϕ2 + · · · : (Ce)(n) −→ (Ce)(n)

is well defined. The valuation vγ on F extends to Ce in the obvious way, hence also do such
notions as “guaranteed shift”.

LEMMA 11·2. ◦�n(M; A)⊆ �̃n(M; A)

Proof. If ϕ is a G-finitary push of F(n) towards e then any G-finitary chain homotopy
between the identity map and ϕ is a Lipschitz deformation for ϕ.

LEMMA 11·3. If e ∈ �̃n(M; A) then e ∈ �̃n−1(M; A) and H e
n = 0.

Proof. If z is an n-cycle in Ce then a calculation gives z = ∂ϕ̄eσ(z).

LEMMA 11·4. If e ∈ �̃n−1(M; A) and H e
n = 0 then e ∈�n(M; A).

Proof. The case n = 0 is clear, so we assume n > 0. Let z ∈ Fn−1 be a cycle. Define w :=
ϕ̄eσ(z) ∈ Ce

n where σ comes from the �̃ hypothesis. Then ∂w= z and (see the inequality
(11·1)):

vγ (w)≥ vγ (z)− ν(vγ (z)).

Since F is acyclic in dimension n − 1, z = ∂c for some finite n-chain c. The chain w− c is
a cycle in Ce

n , and H e
n = 0, so there is a chain u ∈ Ce

n+1 with ∂u =w− c. The free module
Ce

n+1 is a direct sum of copies of K̂ G
e
. The condition (ii) in the definition of Novikov

chains means that there is a finite direct summand, indexed by Xn+1(u), such that u is a
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K G-combination of elements lying in those factors. So there is a number λ≥ 0 such that
vγ (∂u)≥ vγ (u)− λ. Thus we can write u = u1 + u2 where u1 is finite and

vγ (∂u2)≥ vγ (z)− ν(vγ (z)).

Define c′ :=w− ∂u2. Then ∂c′ = ∂w= z, c′ is a finite chain because c′ = ∂u1 + c, and
vγ (c′)≥ vγ (z)− ν(vγ (z)).

COROLLARY 11·5. e ∈ ◦�n(M; A) if and only if, for all e′ ∈ clGe, e′ ∈ �̃n−1(M; A) and
H e′

n = 0.

Proof. Let e′ ∈ clGe. We use the Lemmas: e ∈ ◦�n(M; A) implies e′ ∈ ◦�n(M; A) (by
Theorem 5·2), hence e′ ∈ �̃n(M; A). This implies e′ ∈ �̃n−1(M; A) and H e′

n = 0; hence e′ ∈
�n(M; A), which implies e ∈ ◦�n(M; A) by the Characterisation Theorem (Theorem 7·1).

Proof of Theorem 11·1. It follows from Corollary 11·5 by induction, using the fact that

Tork(K̂ G
e′ ; A)= H e′

k .

Remark 11·6. If we define �n
Tor(M; A) to be the set of end points e such that H e

k = 0 for all
k ≤ n, then the lemmas in this section establish the following containments:

◦�n(M; A)⊆ �̃n(M; A)⊆�n
Tor(M; A)∩ �̃n−1(M; A)⊆�n(M; A).

11·4. Behavior of the dynamical invariant on exact sequences

Let A′ � A � A′′ be a short exact sequence of finitely generated K G-modules. For each
e ∈ ∂M there is an exact coefficient sequence

· · · −−−−−−→ Tork (K̂ Ge; A′) −−−−−−→ Tork (K̂ Ge; A) −−−−−−→ Tork (K̂ Ge; A′′) ∂∗−−−−−−→ Tork−1(K̂ Ge; A′) −−−−−−→ · · ·

This, together with Theorem 11·1 gives:

THEOREM 11·7. Let A and A′ be finitely generated and let e ∈ ◦�n+1(M; A′′). Then
e ∈ ◦�n(M; A′) if and only if e ∈ ◦�n(M; A).

Since Tor commutes with direct sums, we have:

PROPOSITION 11·8. ◦�n(M; A′ ⊕ A′′)= ◦�n(M; A′)∩ ◦�n(M; A′′).

12. Products

This section is about the behavior of the �-invariants with respect to direct products of
groups and tensor products of modules. In particular, we prove Theorem 1·5. The set-up is
as follows: We are given:

(i) F � A and F′ � A′, admissible free resolutions of the K G-module A and the K H -
module A′ respectively, which are finitely generated in dimensions ≤ n, and

(ii) isometric actions of groups G and H on proper C AT (0) spaces M and M ′ respectively.

These define a resolution F ⊗K F′ � A ⊗K A′ of the G × H module A ⊗K A′ and an iso-
metric action of G × H on the proper C AT (0) space M × M ′. Again, this resolution is
finitely generated in dimensions ≤ n.
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We begin by generalising a theorem of Meinert [Geh98]:

THEOREM 12·1. Assume K has no zero-divisors.

◦�n(M × M ′; A ⊗K A′)c ⊆
n⋃

p=0

◦� p(M; A)c ∗ ◦�n−p(M ′; A′)c.

For the proof we need a lemma:

LEMMA 12·2. Let γ be a geodesic ray with γ (∞)= e where e ∈ ◦�k(M; A) for k ≤ n.
There exists ν ≥ 0 such that for any μ≥ 0 there is a finitary chain map ζ : F(n) → F(n) lifting
idA such that gshe(ζ |F(k))≥μ, and

vγ (ζ(c))≥ vγ (c)− ν,

for all c ∈ F(n).

Proof. Let ϕ : F(k) → F(k) be a G-finitary chain map inducing idA and pushing F(k) towards e.
By Lemma 2·4, ϕ and id are chain homotopic by a G-finitary chain homotopy σ : F(k) →
F(k+1). Extend ϕ to F(n) as follows: Define ψk+1 : Fk+1 → Fk+1 by ψk+1(c)= c − σ∂c, and
define ψ(c)= c when c has degree ≥ k + 2. Then ψ is a chain map, and if σ is extended
by defining it to be the zero map on chains of degree ≥ k + 1, then σ is a G-finitary chain
homotopy between ψ and id.

Let r > 0 be such that r · gshe(ϕ) > μ. We will show that ζ :=ψr+1 and ν := ||∂|| + ||σ ||
satisfy the requirements of the lemma. Certainly, gshe(ψ

r+1|F(k))≥μ.
Consider the chain homotopy

τ := σ(id +ψ + · · · +ψr )

between id and ψr+1. Then for any c ∈ F(n) we have

vγ (τ (c))= vγ σ (id +ψ + · · · +ψr−1 +ψr )(c)

≥ min{vγ σ (ψ pσ(c)) | 0 ≤ p ≤ k}
≥ min{vγ (c)+ p · ε − ||σ || | 0 ≤ p ≤ k}
= vγ (c)− ||σ ||.

If c has degree k + 1 then ψr+1(c)= c − τ∂c. So

vγ (ψ
r+1(c))≥ min{vγ (c), vγ (τ∂c)}

≥ min{vγ (c), vγ (∂c)− ||σ ||}
≥ min{vγ (c), vγ (c)− ||∂|| − ||σ ||}
= vγ (c)− ||∂|| − ||σ ||.

And if c has degree > k + 1 then ψr+1(c)= c.

Proof of Theorem 12·1. By [BH99, section I·5·15] there is a canonical identification of
∂(M × M ′) with the join ∂M ∗ ∂M ′. Following [BH99, page 266], if e ∈ ∂M and e′ ∈ ∂M ′,
the θ-point on the join line from e to e′ is denoted by cosθ e + sinθ e′ where 0 ≤ θ ≤ π/2.
Picking base points b ∈ M and b′ ∈ M ′ let γ, γ ′ and γ ′′ be the geodesic rays in M, M ′ and
M × M ′ determining e, e′, and cosθ e + sinθ e′. Then γ ′′(t)= (γ (tcosθ), γ ′(tsinθ)).
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Assuming cosθ e + sinθ e′ /∈ ⋃n
p=0

◦� p(M; A)c ∗ ◦�n−p(M ′; A′)c, we will show that

cosθ e + sinθ e′ ∈ ◦�n(M × M ′; A ⊗K A′).

Case 1. 0< θ < π/2 and e ∈ ◦�n(M; A)c. Let p be the largest integer such that e ∈◦

� p−1(M; A). Thus e ∈◦ � p(M; A)c, so e′ ∈◦ �n−p(M ′; A′). Then

vγ ′′(c ⊗ c′)= cosθ vγ (c)+ sinθ vγ ′(c′).

(For this one needs supp(c ⊗ c′)= supp(c)× supp(c′) which is true because K has no zero
divisors.)

Let ε > 0 be fixed. Let ν and ν ′ be as in Lemma 12·2. Choose μ so that cosθ μ− sinθ ν ′ >
ε, and choose μ′ so that sinθ μ′ − cosθ ν > ε. By Lemma 12·2 there are finitary chain maps
ζ : F(n) → F(n) lifting idA and ζ ′ : F′(n) → F′(n) lifting idA′ such that

vγ (ζ(c))≥ vγ (c)+μ for all c ∈ F(p−1)and

vγ (ζ(c))≥ vγ (c)− ν for all c ∈ F(n).

When c ⊗ c′ has degree ≤ n and c has degree ≤ p − 1 then, by [BH99, section II·8·24],
we have

vγ ′′(ζ(c)⊗ ζ ′(c′))= cosθ vγ (ζ(c))+ sinθ vγ ′(ζ ′(c′))
≥ cosθ[vγ (c)+μ] + sinθ[vγ ′(c′)− ν ′]
= vγ ′′(c ⊗ c′)+ cosθ μ− sinθ ν ′

> vγ ′′(c ⊗ c′)+ ε.

When c ⊗ c′ has degree ≤ n and c has degree ≥ p then a similar discussion gives

vγ ′′(ζ(c)⊗ ζ ′(c′)) > vγ ′′(c ⊗ c′)+ ε.

So gshe(ζ ⊗ ζ ′)≥ ε, and thus cosθ e + sinθ e′ ∈ ◦�n(M × M ′; A ⊗K A′).

Case 2. 0< θ < π/2 and e ∈◦ �n(M; A). If c ⊗ c′ has degree ≤ n, the above argument
again gives

vγ ′′(ζ(c)⊗ ζ ′(c′)) > vγ ′′(c ⊗ c′)+ ε.

Case 3. If θ = 0 then e ∈ ◦�n(M; A), and id′
F plays the role previously played by ζ ′. The

case θ = π/2 is handled similarly.

We turn to the opposite inclusion “⊇”, starting with the observation that it cannot hold
generally in a situation where A = 0 = A′ while A ⊗ A′ = 0. Therefore, from now on we
will assume that K is a field.

THEOREM 12·3. Let K be a field, A a K G-module of type F Pp and A′ a K H-module of
type F Pq. If �0(M; A)= ∂M and �0(M ′; A′)= ∂M ′ then

� p(M; A)c ∗�q(M ′; A′)c ⊆� p+q(M × M ′; A ⊗K A′)c.

Remarks. (1) The statement that �0(M; A)= ∂M is equivalent to saying that the G-action
on M is cocompact and A has bounded support; see [BG16, theorem 9·1]. When the G-
action has discrete orbits, this reduces to cocompactness together with A being finitely
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generated over the point stabilizer Gb for some (equivalently, any) point b ∈ M . See also
Theorem 8·10 and Corollary 8·11. (2) In [BG10] we established the product formula for
�n(G × H ; K ), i.e. the case where M = Gab ⊗R and M ′ = Hab ⊗R are Euclidean and
A = K = A′, where the 0-dimensional assumptions discussed in the previous remark are
trivially satisfied. The proof of Theorem 12·3 given below lifts the key arguments of [BG10]
to the C AT (0) case with modules A, A′, but this lifting only works when those assumptions
hold.

Proof of Theorem 12·3. We use the projective K (G × H)-resolution ε ⊗ ε ′ : F ⊗K F′ �
A ⊗ A′, noting that if p = 0 = q then the chain arguments used in the proof of theorem 5·2
of [BG10] away from H0(F ⊗K F′)= A ⊗ A′ carry over mutatis mutandis. Therefore, with-
out loss of generality it only remains to consider the case q = 0. And, as we assume
�0(M ′; A′)= ∂M ′, we need only show

∂M ∩� p(M × M ′; A ⊗ A′)⊆� p(M; A). (**)

For this we can ignore the H -action, choose a K G-embedding A � A ⊗ A′ with a
K -splitting, and lift it to a K -split K G-embedding s : F � F ⊗K F′ with corresponding pro-
jection π : F ⊗K F′ � F; we then have π ◦ s = idF. The horoballs of M × M ′ at e ∈ ∂M ⊆
∂(M × M ′) are of the form H Be(M × M ′)= H Be(M)× M ′, and the Busemann function
βe : M × M ′ →R ignores the M ′ contribution. Hence the valuation ve : F ⊗K F′ → M ×
M ′ →R restricts to the corresponding valuation F →R, and this implies the inclusion (**).

To complete the proof of Theorem 1·5, i.e. to prove

◦�n(M × M ′; A ⊗K A′)c =
n⋃

p=0

◦� p(M; A)c ∗ ◦�n−p(M ′; A′)c,

it only remains to replace � by ◦� in Theorem 12·3. Let

cosθ e0 + sinθ e′
0 ∈ ◦� p(M; A)c ∗ ◦�n−p(M ′; A′)c.

First assume 0< θ < π/2. Then, by the Characterisation Theorem 7·1, cl Ge ∩
� p(M; A)c = ∅ and cl He′ ∩�n−p(M ′; A′)c = ∅. Pick e0 ∈ cl Ge ∩ � p(M; A)c and e′

0 ∈
cl He′ ∩ �n−p(M ′; A′)c. Consider cosθ e0 + sinθ e′

0. By Theorem 12·3 this lies in�n(M ×
M ′; A ⊗ A′)c.

We are to show cosθ e0 + sinθ e′
0 ∈ ◦�n(M × M ′; A ⊗ A′)c. Suppose not. Then

cl[(G × H)(cosθ e0 + sinθ e′
0)] ⊆�n(M × M ′; A ⊗ A′)).

Since e0 ∈ cl Ge, e0 is the limit elements of the form ge. Similarly, e′
0 is the limit elements

of the form he′. So cosθ e0 + sinθ e′
0 lies in cl[(G × H)(cosθ e0 + sinθ e′

0)] ⊆�n(M ×
M ′; A ⊗ A′). This is a contradiction.

Obvious alterations of this argument cover the cases θ = 0 and θ = π/2.
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