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ABSTRACT

Concentration data are reported for 18 trace elements in chalcopyrite from a suite of 53 samples from 15
different ore deposits obtained by laser-ablation inductively-coupled plasma-mass spectrometry.
Chalcopyrite is demonstrated to host a wide range of trace elements including Mn, Co, Zn, Ga, Se, Ag,
Cd, In, Sn, Sb, Hg, Tl, Pb and Bi. The concentration of some of these elements can be high (hundreds to
thousands of ppm) but most are typically tens to hundreds of ppm. The ability of chalcopyrite to host trace
elements generally increases in the absence of other co-crystallizing sulfides. In deposits in which the
sulfide assemblage recrystallized during syn-metamorphic deformation, the concentrations of Sn and Ga in
chalcopyrite will generally increase in the presence of co-recrystallizing sphalerite and/or galena,
suggesting that chalcopyrite is the preferred host at higher temperatures and/or pressures. Trace-element
concentrations in chalcopyrite typically show little variation at the sample scale, yet there is potential for
significant variation between samples from any individual deposit. The Zn:Cd ratio in chalcopyrite shows
some evidence of a systematic variation across the dataset, which depends, at least in part, on temperature of
crystallization. Under constant physiochemical conditions the Cd:Zn ratios in co-crystallizing chalcopyrite
and sphalerite are typically approximately equal. Any distinct difference in the Cd:Zn ratios in the two
minerals, and/or a non-constant Cd:Zn ratio in chalcopyrite, may be an indication of varying
physiochemical conditions during crystallization.

Chalcopyrite is generally a poor host for most elements considered harmful or unwanted in the smelting
of Cu, suggesting it is rarely a significant contributor to the overall content of such elements in copper
concentrates. The exceptions are Se and Hg which may be sufficiently enriched in chalcopyrite to exceed
statutory limits and thus incur monetary penalties from a smelter.
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Introduction

CHALCOPYRITE is the principal ore mineral of copper
(Geoscience Australia, 2015). Concentrates pro-
duced from chalcopyrite-rich ores may also be
enriched significantly in other elements. Silver is
one such element and is commonly extracted as an
economic by-product during copper smelting and
refining (Ayres et al., 2013). Other elements,
including As, Sb, Hg, Bi and Se, may become
enriched in copper concentrates during ore pro-
cessing and can, if present at high enough

concentrations, result in substantial financial
penalties when sold on the world market (e.g.
Fountain, 2013). Yet, regardless of the importance
of chalcopyrite in the minerals industry, there is a
relative lack of understanding as to the different
trace elements chalcopyrite can accommodate into
its structure, as well as the ranges of concentration
of these elements.
Detailed studies addressing trace-element con-

centrations in chalcopyrite are relatively scarce
when compared to other common sulfide miner-
als, notably pyrite (e.g. Huston et al., 1995;
Large et al., 2009; Winderbaum et al., 2012;
Belousov et al., 2016), or sphalerite and galena
(e.g. Bethke and Barton, 1971; Blackburn and
Schwendeman, 1977; Johan, 1988; Foord and
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Shawe, 1989; Cook et al., 2009; George et al.,
2015). Much of the published data for chalco-
pyrite (e.g. Harris et al., 1984; Cabri et al., 1985;
Kase, 1987; Brill, 1989; Huston et al., 1996;
Scott et al., 2001; Moggi-Cecchi et al., 2002;
Serranti et al., 2002; Shalaby et al., 2004; Demir
et al., 2008; Layton-Matthews et al., 2008;
Monteiro et al., 2008; Demir et al., 2013; Gena
et al., 2013; Reich et al., 2013; Cioacă et al.,
2014; Helmy et al., 2014; Wang et al., 2015a;
Wohlgemuth-Ueberwasser et al., 2015; Sadati
et al., 2016) is focused on a limited suite of trace
elements, and commonly the minimum detection
limits of the microanalytical techniques used are
too high to actually establish trace-element
diversity and concentration levels.
More work is thus necessary to establish the

ability of chalcopyrite to host trace elements in a
wide range of environments and settings. With
this objective in mind, we used laser-ablation
inductively-coupled plasma mass spectrometry
(LA-ICP-MS) to determine the concentration
ranges of 18 trace elements (elements typically
present at concentrations < 1 wt.%) in natural
hydrothermal chalcopyrite from a diverse suite of
53 samples from different ore types, settings and
environments, and physiochemical conditions of
ore formation. The trace-element chemistry of
chalcopyrite in deposits of magmatic origin is not
part of this study. A number of studies on the topic
have been published, enabling a sound under-
standing of trace-element partitioning in chalco-
pyrite-bearing magmatic ores (e.g. Barnes et al.,
2006; Holwell and McDonald, 2007; Godel and
Barnes, 2008; Dare et al., 2010; Djon and Barnes,
2012; Piña et al., 2012; Prichard et al., 2013; Chen
et al., 2014; Duran et al., 2015; Barnes and Ripley,
2016; Smith et al., 2016). The LA-ICP-MS
technique offers both sub-part-per-million-level
precision for many heavier elements and micro-
metre-scale spatial resolution. Laser-ablation ICP-
MS may also reveal the presence of micro-
inclusions within the analysed spot because if
they are large enough and distributed heteroge-
neously, they are recognizable on time-resolved
downhole spectra (e.g. George et al., 2015). The
dataset reveals chalcopyrite to be an important
trace-element carrier in many ore deposits. Our
data carries implications for both ore genesis and
mineral processing. We also show that the Cd:Zn
ratio in chalcopyrite (and co-existing sphalerite)
may assist in determining if physiochemical
conditions remained constant during base-metal
sulfide crystallization.

Background

Chalcopyrite crystal structure

Chalcopyrite crystallizes in a body-centred tetrag-
onal lattice system with tetrahedrally-coordinated
Cu, Fe and S atoms. Both Cu and Fe are ordered
into the cation sites. Pauling and Brockway (1932)
regarded the bonding between atoms in the
chalcopyrite structure as effectively covalent
with valencies of Cu and Fe atoms fluctuating
between monovalent-divalent, and divalent-
trivalent, respectively. The strong covalent nature
of chalcopyrite was also affirmed by Donnay et al.
(1958). Similarly, Hall and Stewart (1973) argued
for a strong covalent configuration with an effective
ionic state between Cu+Fe3+S2�

2 and Cu2+Fe2+S2�
2

Nevertheless, for the sake of convenience, chalco-
pyrite is generally represented with ions of specific
valencies, i.e. Cu+Fe3+S2�

2 .
Regardless, Todd and Sherman (2003), Todd

et al. (2003) and Mikhlin et al. (2005) have argued,
on the basis of X-ray absorption spectroscopy
(XAS) and X-ray absorption near-edge structure
(XANES) spectra, that the nominal valencies in
chalcopyrite should be Cu2+Fe2+S2�

2 . This was
rejected by Pearce et al. (2006), who affirmed that
Cu in chalcopyrite is nominally monovalent, and
that Fe is nominally trivalent. Nominally divalent
character in copper sulfides is very rare, and energy
peaks associated with Cu2+ can be explained by
contamination by Cu2+ species. Li et al. (2013)
confirmed that evidence for the presence of Cu2+

and Fe2+ has been largely discredited, but empha-
sizes that the actual valence state of chalcopyrite
should be understood as intermediate between
Cu+Fe3+S2�

2 and Cu2+Fe2+S2�
2 due to covalent

bonding.

Previous trace-element data

A number of previous studies addressed the
composition of natural chalcopyrite, yet most of
these had purposes other than to establish if
chalcopyrite is a good host for trace elements.
Chalcopyrite from various locations has been
described by Kase (1987), Brill (1989), Scott
et al. (2001), Serranti et al. (2002), Shalaby et al.
(2004), Demir et al. (2008), Layton-Matthews et al.
(2008), Monteiro et al. (2008), Demir et al. (2013),
Gena et al. (2013), Cioacă et al. (2014), Helmy
et al. (2014), Wang et al. (2015a) and Sadati et al.
(2016). However, in each case, only electron probe
microanalysis (EPMA) is used to determine
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chalcopyrite composition. With minimum detec-
tion limits in the order of hundreds of ppm unless
exceptionally long count times are used, EPMA is
not an adequate technique for determining many
trace-element abundances. Harris et al. (1984),
Cabri et al. (1985), Huston et al. (1996) andMoggi-
Cecchi et al. (2002) used a proton microprobe,
Reich et al. (2013) used secondary ion mass
spectrometry (SIMS) and Wohlgemuth-
Ueberwasser et al. (2015) used LA-ICP-MS to
investigate chalcopyrite from different localities.
While these analytical techniques boast minimum
detection limits significantly lower than EPMA,
none of these studies reported data for more than six
elements. The elements reported are typically
common trace constituents, so few inferences
about the presence of other trace elements could
be drawn. Chalcopyrite compositions were deter-
mined by Bajwah et al. (1987), Butler and Nesbitt
(1999) and Ulrich et al. (2002) by atomic
absorption spectroscopy (AAS), solution ICP-MS
and ICP optical emission spectrometry (OES),
respectively. These techniques remain bulk
methods and so are limited in their ability to
determine lattice bound trace constituents with
confidence. Other studies such as Subba Rao and
Naqvi (1997), McClenaghan et al. (2009), Cook
et al. (2011) and Maydagán et al. (2013) only
measured chalcopyrite in a limited number of
samples (maximum of four), as they primarily
focused on characterizing the chemistry of complex
phase assemblages. The different emphasis of such
studies highlights the need for a more detailed
investigation of a larger, more diverse sample suite,
considering a wider range of potential trace
elements, and utilizing an analytical technique with
lowminimum detection limits.We acknowledge that
the spectrum of elements analysed in chalcopyrite
has been somewhat restricted by the availability of
appropriate matrix-matched standards, particularly
with respect to some chalcophile semi-metals, and
thus data quality remains, to this day, better for some
elements than for others (e.g. Se, As, Au).
Regardless of their limitations, the prior studies

cited above, and indeed other more thorough
investigations of chalcopyrite composition (e.g.
Huston et al., 1995; Maslennikov et al., 2009;
Revan et al., 2014; Wang et al., 2015b; George
et al., 2016), provide a valuable background for
understanding chalcopyrite as a trace-element
carrier and serve as a broad foundation for the
present study. The maximum reported concentra-
tions of various trace elements in chalcopyrite from
different deposit types is summarized in Table 1.

Silver is the trace element most commonly
reported in chalcopyrite. Shalaby et al. (2004)
described unusual green chalcopyrite from the Um
Samiuki volcanogenic massive sulfide (VMS)
deposit, Egypt, hosting up to 4.3 wt.% Ag. More
typically, concentrations are in the tens to hundreds
of ppm range, although sometimes reaching into
the thousands, for example from the Izok Lake Zn-
Cu-Pb deposit, Northwest Territories, Canada
(Harris et al., 1984), the Kidd Creek mine,
Ontario, Canada (Cabri et al., 1985), the Bottino
Mine, Italy (Moggi-Cecchi et al., 2002), and
Mantos Blancos, northern Chile (Reich et al.,
2013).
Experiments in the Cu-Fe-Zn-S system have

revealed that chalcopyrite may dissolve up to
0.9 at.% zinc at 500°C, 0.8 at.% at 400°C and 0.6
at.% at 300°C (Kojima and Sugaki, 1985). Indeed
Huston et al. (1995) measured Zn in chalcopyrite
from Australian volcanic-hosted massive sulfide
(VHMS) deposits at concentrations from below the
minimum detection limit up to as much as 5 wt.%.
They concluded that concentrations up to
2000 ppm probably reflect Zn in solid solution
(substituted for Fe), but that concentrations exceed-
ing 2000 ppm Zn are probably the result of micro-
inclusions of sphalerite. Moggi-Cecchi et al. (2002)
also concluded that high distributions of Zn in
chalcopyrite from Italian and Slovak deposits are
related predominantly to micro-scale inclusions of
Zn-bearing phases. Nevertheless, large Zn values
of 1.86 wt.%, 1.83 wt.%, 1.73 wt.% and 1.64 wt.%
have been measured in chalcopyrite by Shalaby
et al. (2004), Helmy et al. (2014), Serranti et al.
(2002) and Wang et al. (2015a), respectively, and
have not been attributed, in any of these cases, to
inclusion-related Zn.
Huston et al. (1995) measured arsenic in

chalcopyrite from Australian VHMS deposits into
the thousands of ppm. These high concentrations of
As could not readily be attributed to micro-
inclusions of distinct As-bearing phases and it
was concluded that As can substitute into the
chalcopyrite lattice up to ∼2000 ppm. Scott et al.
(2001) and Wang et al. (2015a) reported chalco-
pyrite containing up to 1600 ppm As from
Woodlawn, New South Wales, Australia, and the
Xiaozhen Cu deposit, Shaanxi Province, China,
respectively.
Bethke and Barton (1971) showed that chalco-

pyrite could accommodate as much as 0.5 mol.%
eskebornite (CuFeSe2) at 390°C, and thus may be
a significant host of selenium. Cabri et al. (1985)
reported as much as 0.46 wt.% Se in chalcopyrite
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TABLE 1. Maximum reported trace-element contents of chalcopyrite by deposit type as reported in the literature.

Deposit type Mn Co Ni Zn

Epithermal 43 ppm George et al. (2016) 3.3 ppm George et al. (2016) − 1.6 wt.% Demir et al. (2008)
Skarn 540 ppm Bajwah et al. (1987) 7500 ppm Bajwah et al. (1987) 925 ppm Bajwah et al. (1987) 1.83 wt.% Helmy et al. (2014)
Porphyry 0.02 wt.% Maydagan et al. (2013) 249 ppm Cioacă et al. (2014) 9 ppm Maydagan et al. (2013) 0.22 wt.% Maydagan et al. (2013)
Exhalative 642 ppm Revan et al. (2014) 40 ppm Maslennikov et al.

(2009)
3.2 ppm Maslennikov et al.

(2009)
810 ppm Huston et al. (1995)

Recrystallized
exhalative

196 ppm George et al. (2016) 2720 ppm Thole (1976) 3300 ppm Thole (1976) 1.86 wt.% Shalaby et al. (2004)

Deposit type Ga As Se Ag

Epithermal 1.3 ppm George et al. (2016) 0.73 ppm George et al. (2016) 300 ppm Moggi-Cecchi et al.
(2002)

630 ppm Moggi-Cecchi et al.
(2002)

Skarn 0.23 ppm George et al. (2016) 0.54 ppm George et al. (2016) 538 ppm Cook et al. (2011) 0.3 wt.% Helmy et al. (2014)
Porphyry − 0.05 wt.% Maydagan et al. (2013) 0.03 wt.% Rubin and Kyle (1997) 0.05 wt.% Maydagan et al. (2013)
Exhalative 0.13 ppm George et al. (2016) 282 ppm Maslennikov et al.

(2009)
0.46 wt.% Cabri et al. (1985) 0.19 wt.% Cabri et al. (1985)

Recrystallized
exhalative

16 ppm George et al. (2016) 2,000 ppm Huston et al. (1995) 480 ppm Serranti et al. (2002) 4.3 wt.% Shalaby et al. (2004)

Deposit type Cd In Sn Sb

Epithermal 24 ppm George et al. (2016) 14 ppm George et al. (2016) 2.3 wt.% Kase, 1987) 4.2 ppm George et al. (2016)
Skarn 25 ppm Bajwah et al. (1987) 2214 ppm Andersen et al. (2016) 47 ppm George et al. (2016) 0.28 ppm George et al. (2016)
Porphyry 0.55 ppm Maydagan et al. (2013) − 122 ppm Maydagan et al. (2013) 0.1 wt.% Maydagan et al. (2013)
Exhalative 10 ppm Huston et al. (1995 1119 ppm Cabri et al. (1985 1345 ppm Cabri et al. (1985) 488 ppm Maslennikov et al.

(2009)
Recrystallized
exhalative

77 ppm Serranti et al. (2002 100 ppm Huston et al. (1995 2940 ppm Huston et al. (1995) 31 ppm McClenaghan et al.
(2009)

Deposit type Te Au Hg Tl

Epithermal 0.04 ppm George et al. (2016) − 95 ppm George et al. (2016) 0.01 ppm George et al. (2016)
Skarn 6.6 ppm Cook et al. (2011) 0.2 ppm Cook et al. (2011) 2.9 ppm George et al. (2016) 0.03 ppm Cook et al. (2011)
Porphyry 306 ppm Cioacă et al. (2014) 0.05 ppm Maydagan et al. (2013) − −
Exhalative 7447 ppm Maslennikov et al. (2009 7.73 ppm Maslennikov et al. (2009 32 ppm George et al. (2016) 1 ppm Maslennikov et al.

(2009)
Recrystallized
exhalative

0.05 ppm George et al. (2016) 0.16 ppm McClenaghan et al.
(2009

2.3 ppm McClenaghan et al.
(2009)

0.14 ppm George et al. (2016)
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from Kidd Creek, Ontario, Canada, while
Monteiro et al. (2008) and Wang et al. (2015a)
each recorded over 2000 ppm Se in chalcopyrite
from Xiaozhen, China, and Sossego, Brazil,
respectively.
Exceptional reports of cobalt and nickel in

chalcopyrite suggest that the Cu-sulfide may, on
rare occasions, be a good host for Co and Ni.
Bajwah et al. (1987) documented chalcopyrite from
Big Cadia, New South Wales, Australia, which
hosted up to 7500 ppm Co and 925 ppm Ni. Thole
(1976) recorded up to 2700 ppm Co and 3300 ppm
Ni in chalcopyrite from the Shamrocke mine,
Zimbabwe. Wang et al. (2015a) measured up to
1700 ppm Co and 4100 ppm Ni in chalcopyrite
from the Xiaozhen Cu deposit, Shaanxi Province,
China, while Wang et al. (2015b) also reported
chalcopyrite containing 6178 ppm Co and
2496 ppm Ni from the Shilu Fe-Co-Cu ore district
in the Hainan Province of South China.
Lead concentrations in chalcopyrite are uncom-

monly reported in the thousands of ppm, though
such high concentrations are probably the result of
micro-inclusions of Pb-bearing phases, commonly
galena. Among such anomalous reports are
7054 ppm Pb in chalcopyrite from Yaman-Kasy,
Russia (Maslennikov et al., 2009), and 0.34 wt.%
Pb in chalcopyrite from the Xiaozhen Cu deposit,
Shaanxi Province, China (Wang et al., 2015a).
Maximum reported Pb concentrations in chalco-
pyrite are ordinarily in the hundreds of ppm (e.g.
Bajwah et al., 1987; Moggi-Cecchi et al., 2002).
High levels of bismuth and tellurium are

measured in chalcopyrite from active seafloor
hydrothermal systems. Gena et al. (2013) recorded
up to 0.32 wt.% Bi in chalcopyrite associated with
bismuthinite from the Tiger sulfide chimney,
Southern okinawa Trough, Japan, while 45 ppm
Te was measured in chalcopyrite from the Broken
Spur vent field by Butler and Nesbitt (1999).
Nevertheless, chalcopyrite is generally a poor host
of both elements with reported concentrations from
ore deposits rarely exceeding 10 ppm (e.g.
Maydagán et al., 2013; George et al., 2016).
Chalcopyrite may contain at most up to a few

ppm gold. Synthetic experiments carried out by
Simon et al. (2000) showed that up to 16 ppmAu is
soluble in chalcopyrite at 500°C, decreasing to
4 ppm at 400°C. Reports of chalcopyrite hosting
hundreds of even thousands of ppm Au are almost
certainly related to Au-bearing mineral inclusions
(e.g. Maslennikov et al., 2009). Nevertheless some
studies have reported tens of ppm Au in chalco-
pyrite (e.g. Revan et al., 2014).D
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Although there are some rare reports of thou-
sands of ppm antimony and cadmium in chalco-
pyrite (e.g. Revan et al., 2014), concentrations
rarely reach into the hundreds of ppm. Monteiro
et al. (2008) measured up to 330 ppm Sb in
chalcopyrite from the Sossego IOCG deposit,
Brazil, and up to 77 ppm Cd have been reported
from Arinteiro, Galicia, Spain (Serranti et al.,
2002).
Over 2.3 wt.% tin has been measured in

chalcopyrite from the Izumo vein, Toyoha mine,
Japan (Kase, 1987), and from a sulfide chimney in
an active seafloor hydrothermal system (Gena et al.,
2013). Both studies attributed the Sn to solid
solution. Huston et al. (1995) measured up to
2940 ppm Sn in chalcopyrite from the Dry River
South VHMS deposit, Eastern Australia, and
inferred that Sn substitutes for Fe. They noted that
the highest Sn concentrations occur in the more
reduced and highly metamorphosed deposits,
which is a reflection of the tendency of Sn to only
be transported in significant quantities at reduced,
high-temperature conditions (Eugster, 1986).
George et al. (2016) confirmed that in deposits
that have recrystallized at amphibolite facies and
above, chalcopyrite will typically host more Sn
than co-crystallizing sphalerite or galena.
Reports of high levels of manganese in chalco-

pyrite originate from VMS deposits. Revan et al.
(2014) reported chalcopyrite containing up to
958 ppm Mn from VMS deposits of the eastern
Pontide orogenic belt, NE Turkey, while
Maslennikov et al. (2009) measured up to
771 ppm Mn in chalcopyrite from the Yaman-
Kasy VMS deposit, Southern Urals, Russia.
Chalcopyrite is isostructural with roquesite

(CuInS2) and thus significant concentrations of
indium can be hosted in chalcopyrite, most
probably in the Fe site (Wittmann, 1974). In the
SW England ore region, chalcopyrite accounts for
the majority of the In budget (locally containing up
to 2200 ppm) despite sphalerite and stannite-group
minerals typically hosting higher concentrations
(Andersen et al., 2016). Cabri et al. (1985) reported
chalcopyrite from the Kidd Creek deposit, Canada,
carrying as much as 1119 ppm In, while Kieft and
Damman (1990) measured up to 0.9 wt.% In in
chalcopyrite from the Gåsborn area, West
Bergslagen, Sweden.
Reports of gallium, mercury and thallium in

chalcopyrite are rare and concentrations are almost
exclusively in the order of a few ppm (e.g.
Maslennikov et al., 2009; McClenaghan et al.,
2009; Cook et al., 2011). Revan et al. (2014) did,

however, report chalcopyrite containing up to
hundreds of ppm Tl.

Sample suite

Fifty-three samples were analysed from 15 different
deposits in Australia, Bulgaria, Norway, Romania,
Serbia and Uzbekistan (Table 2). The selected
deposits are from a variety of different ore types
including epithermal, skarn, porphyry, VMS, and
sedimentary exhalative (SEDEX) systems. Some
VMS and SEDEX sulfide ores have been recrys-
tallized due to regional metamorphism and
deformation.
Seven samples originated from the Romanian

epithermal systems Herja and Toroiaga; and an
additional sample was added from the Kochbulak
epithermal deposit in Uzbekistan. Six samples
originated from the Romanian skarn deposits, Baita
Bihor and Oravita. The Bulgarian porphyry
deposits of Assarel and Elatsite contributed five
samples, and another porphyry sample was from
Bor (Serbia). The undeformed Vorta VMS deposit,
Romania, and SEDEX Kapp Mineral prospect,
Norway, contributed one sample each. SEDEX
deposits in which the sulfide assemblages recrys-
tallized during regional metamorphism and
deformation (recrystallized SEDEX) contributed
eight samples; two from Broken Hill, Australia, and
six from Bleikvassli andMofjell in Norway. Twelve
samples came from the Norwegian VMS deposit
Sulitjelma, in which the sulfide assemblages also
recrystallized during metamorphism and deform-
ation (recrystallized VMS). Finally, eleven samples
were added from the Kanmantoo deposit, South
Australia, interpreted as a metamorphosed, remo-
bilized syngenetic sulfide ore. Brief descriptions of
these deposits are provided as Supplementary
Appendix A, together with key references for each.

Experimental methods

Each sample was prepared as a polished block and
characterized by reflected light microscopy and
back-scattered electron (BSE) imaging prior to LA-
ICP-MS analysis. Only areas of chalcopyrite grains
free of noticeable inclusions were selected for LA-
ICP-MS analysis.
Laser-ablation ICP-MS analysis was carried out

using a Resonetics M-50-LR 193 nm Excimer laser
attached to an Agilent 7700cx Quadrupole ICP
mass spectrometer (Adelaide Microscopy, The
University of Adelaide). The Resonetics laser,
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TABLE 2. Summary of deposits and samples used in this study.

Deposit/Type Samples
Conditions of formation or
metamorphism References

Herja, Romania / Epithermal
(Neogene)

Hj13 Formed at ∼<200°C Lang (1979); Cook and Damian (1997)

Toroiaga, Romania / Epithermal
(Neogene)

Emeric2, T1a, TOR189,
TOR191, TOR197, Toroiaga R0

Formed at ∼350°C Szöke and Steclaci (1962); Gotz et al. (1990)

Kochbulak, Uzbekistan / Epithermal
(Late Paleozoic)

33 Formed at 200–400°C Kovalenker et al. (1997); Islamov et al.
(1999); Plotinskaya et al. (2006)

Baita Bihor, Romania / Skarn
Antoniu orepipe – proximal, Marta
orepipe – distal (Cretaceous)

BB55 (Antoniu)
BBH15-21 (Antoniu)

Formed at ∼500°C
(proximal), ∼375°C
(distal)

Cioflica et al. (1971, 1977); Shimizu et al.
(1995); Ciobanu et al. (2002)

Oravita, Romania / Skarn
(Cretaceous)

ORV1, ORV4, ORV4a, ORV4B Gheorghiţescu (1975); Cioflica and Vlad
(1981); Constantinescu et al. (1988)

Assarel, Bulgaria / Porphyry
(Cretaceous)

ASR 5A, ASR 10, ASR KB P12077 Base metal sulfides formed
at 300–150°C

Strashimirov (1993); Popov et al. (2000);
Strashimirov et al. (2002)

Bor, Serbia / Porphyry (Cretaceous) BOR14 − Jankovic ́ (1990); Jankovic ́ et al. (1998)
Elatsite, Bulgaria / Porphyry
(Cretaceous)

Elatsite b a, ELS 157 Various assemblages
deposited at 190–575°C

Dragov and Petrunov (1996); Georgiev (2008)

Vorta, Romania / VMS (Jurassic) DMV 99-22 Formed at 250–300°C Ciobanu et al. (2001)
Kapp Mineral, Norway / SEDEX
(Late Precambrian?)

Kmi 2a Very weakly metamorphosed Flood (1967)

Broken Hill, Australia /
Recrystallized SEDEX
(Proterozoic)

BH73, BH218 Granulite facies (750–800°C,
5–6 kbar)

Haydon and McConachy (1987); Parr and
Plimer (1993); Plimer (2007); Spry et al.
(2008)

Bleikvassli, Norway / Recrystallized
SEDEX (Ordovician)

Bv-1, Bv-4, V598572 Upper amphibolite-lower
granulite facies (570°C,
7.5–8 kbar)

Vokes (1963, 1966); Cook et al. (1998)

Mofjell, Norway / Recrystallized
SEDEX (Paleozoic)

Mo5, Mo16, Mo17A Amphibolite facies (550°C,
7 kbar?)

Saager (1967); Cook (2001)

Sulitjelma, Norway / Recrystallized
VMS (Ordovician)

CV01.1, CV01.2a, CV01.2b, CV01.3, CV01.4,
CV01.6b, NC4172, NC5839, NC6894, Su3, Sulis 1b,
Sulis2a

Lower amphibolite facies
(450–500°C)

Cook et al. (1990, 1993); Cook (1992, 1994;
1996); Barrie et al. (2010)

Kanmantoo, Australia /
Metamorphosed, remobilized
syngenetic sulfide ore (Cambrian)

KTDD086(8), KTDD086(9), KTDD086(11),
KTDD086(12), KTDD178(7), KTDD178(8),
KTDD178(12), KTDD180(3), KTDD180(7),
KTDD180S(4), KTDD180S(5)

Amphibolite facies (530–
630°C, 2.2–5.4 kbar)

Jensen and Whittle (1969); Verwoerd and
Cleghorn (1975); Seccombe et al. (1985);
Both et al. (1995); Spry et al. (2010)

Abbreviations: VMS = volcanogenic massive sulfide, SEDEX = sedimentary exhalative.
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designed by Laurin Technic Pty., uses a two-
volume ablation cell for outstanding trace-element
sensitivity, washout and stability (Müller et al.,
2009). The ablation cell was filled with UHP He
(0.7 L/min) that was mixed with Ar (0.93 L/min)
after leaving the cell, and was introduced directly to
the torch through a ‘squid’ (pulse homogenizing
device). The ICP-MS was calibrated regularly in
order to maximize sensitivity, whilst keeping
production of molecular oxide species (i.e.
232Th16O/232Th) and doubly-charged ion species
(i.e. 140Ce2+/140Ce+) as low as possible, and
typically <0.2%.
The laser beam energy output was set at 100 mJ

at a 26 µm spot size using a repetition rate of 10 Hz.
Each analysis comprised a 30 s background
measurement followed by 30 s of sample ablation,
while a 40 s delay was allowed after each spot
analysis to ensure adequate cell wash-out, gas
stabilization, and computer processing time.
Analysed isotopes include 34S, 55Mn, 57Fe, 59Co,
60Ni, 65Cu, 66Zn, 69Ga, 75As, 82Se, 95Mo, 107Ag,
111Cd, 115In, 118Sn, 121Sb, 125Te, 182W, 197Au,
202Hg, 205Tl, 206Pb, 207Pb, 208Pb and 209Bi. Dwell
times for In, Au and Tl were set to 0.05 s, while all
other elements were set to 0.01 s. Mean errors and
the minimum detection limits for common trace
elements in each sample are provided as
Supplementary Appendix B. Typically 10 analyses
were made on chalcopyrite in a given sample and as
many multiple grains were analysed as possible.
Multiple analyses of the MASS-1 sulfide reference
material (formerly PS-1; Wilson et al., 2002)
bracketed batches of up to 10 unknown analyses.
This allowed monitoring of instrument drift, and a
linear correction based on the bracketed MASS-1
analyses was applied to all unknown analyses. The
latest MASS-1 certificate of analysis (United States
Geological Survey, 2014) was used. The stoichio-
metric nature of chalcopyrite was checked and
confirmed by electron probe microanalysis, which
also indicated that trace elements were typically
present at concentrations belowminimum detection
limits for that method. Thus, a value of 34.63 wt.%
Cu (stoichiometric chalcopyrite) was used as an
internal standard.GLITTER data reduction software
(VanAchterbergh et al., 2001) was used to carry out
data calculations. Given poorly constrained sulfur
isotopic interference on 66Zn measurements (e.g.
Danyushevsky et al., 2011), we accept that the
concentration data for Zn reported here may be less
accurate than for some other elements. We also
acknowledge that there exist a number of other
polyatomic interferences that may necessitate, in

cases where concentrations of the interfered
element are sufficiently high, correction to derive
precise abundance data using LA-ICP-MS.
Examples include direct mass interference from
115Sn when measuring the content of In (Jenner and
O’Neill, 2012), or 59Co16O interference when
measuring 75As (Patten et al., 2013). We have not
made such corrections to the dataset, as, although
such interferences can impact on data quality when
the elements concerned are present at wt.%
concentration = s, we are confident that they are
negligible (well within instrumental error) for low
ppm values of the order reported here. An
exhaustive treatment of all potential interferences
for all trace elements would be well beyond the
scope of the present manuscript.

Results

Distinguishing whether a trace element is present in
solid solution as opposed to microscale mineral
inclusions within a given mineral is an ongoing
difficulty for microanalytical research (e.g. Cook
et al., 2016). In order to produce a reliable dataset, it
is integral that all data is properly evaluated and
great care is taken to monitor information that may
suggest the presence of inclusions (for example
LA-ICP-MS downhole spectra; e.g. George et al.,
2015, assessing all element combinations that may
indicate inclusions; e.g. proton microprobe work of
Cabri et al., 1985 or Huston et al., 1995). If not,
doubt may be placed on the reliability of any
anomalous trace-element report from the literature,
especially those where wt.% levels have been
measured for trace elements typically present at
ppm levels. Nevertheless, onemust also be cautious
in attributing an anomalous trace-element report
from the literature to micro-inclusions of a distinct
phase, simply because it is uncharacteristic. Given
the right conditions, many minerals may host
anomalous concentrations of trace elements not
easily attributed to micro-inclusions. We have
endeavoured to only analyse areas of chalcopyrite
that were free of any noticeable inclusions.
Nevertheless, some analyses showed anomalous
results, and corresponding LA-ICP-MS downhole
spectra revealed irregular profiles implying the
presence of micro-inclusions beneath the chalco-
pyrite surface. Such analyses were discarded. The
remaining LA-ICP-MS downhole spectra were
relatively smooth indicating measurement of
trace-element concentrations in solid solution
(Fig. 1). In some cases, where inclusions were
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only present at the end of an individual downhole
spectrum (e.g. Fig. 1d), concentrations were still
calculated by only integrating the signal before the
inclusion-related peak. Table 3 summarizes the trace-
element data, showing 18 trace elements measured
in chalcopyrite. The full dataset is provided as
Supplementary Appendix C. Individual spot ana-
lyses were plotted as cumulative plots (Fig. 2)
allowing visualization of the trace-element variation
within each deposit as well as within deposit types.
Although the concentrations of some elements in

chalcopyrite varied significantly across sample
suites from individual deposits, variance was
generally limited within any given sample. There
was certainly no evidence of systematic grain-scale
zonation as has been reported for other base metal
sulfides (e.g. galena and sphalerite in low-
temperature epithermal ores from Herja; George
et al., 2015). Chondrite-normalized distribution
plots (Fig. 3) were used to depict the mean trace-
element compositions of chalcopyrite (as well as the
range of concentrations) in each different deposit

FIG. 1. Representative time-resolved LA-ICP-MS downhole spectra for chalcopyrite. Yaxis = counts per second, X axis
= time (s). On each figure the point the laser was fired is indicated on the X axis. (a–c) Relatively flat spectra reflecting
solid solution for Sn, In, Bi, Pb, Ag, Se, Cd, Zn and Co in chalcopyrite from Kanmantoo, Sulitjelma and Herja,
respectively. The slight downward trajectory of the spectra indicates a lessening of ablated material over time due to
gradual deepening of the ablation hole. (d ) Relatively flat spectra for Ga (Bleikvassli). Peaks at the end of the Zn, Sn and
Mn spectra (as marked on the figure) are suggestive of an inclusion of sphalerite. Concentrations are calculated by

selecting and integrating only the signal before the peak.
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TABLE 3. Summary of trace-element concentrations in chalcopyrite determined by LA-ICP-MS (data in ppm).

Locality Sample/BMS Mn Co Ni Zn Ga As Se Ag Cd In Sn Sb Te Au Hg Tl Pb Bi

Herja, Hj-13 M. (10) 51 4.2 0.39 1596 0.09 0.07 8.6 167 7.6 1.7 10 0.71 − 0.001 0.17 0.002 2.0 0.005
Romania Cp,Sp,Gn St. Dev. 14 1.4 0.57 699 0.05 0.04 7.7 59 2.7 0.77 3.4 0.77 − 0.001 0.04 0.002 1.6 0.003
Epithermal

Mn Co Ni Zn Ga As Se Ag Cd In Sn Sb Te Au Hg Tl Pb Bi

Toroiaga, EMERIC2 M. (9) 0.2 − 0.06 136 2.0 0.27 19 95 2 32 42 11 − 0.02 1.7 0.003 14 0.22
Romania Cp,Sp,Gn St. Dev. − − 0.07 − 1.4 0.31 13 60 − 13 25 9.3 − 0.04 2.0 0.002 15 0.30
Epithermal T1a M. (10) 2.4 0.03 − 533 0.60 1.1 1.7 41 10 15 20 2.5 0.25 0.004 0.23 0.001 2.4 0.03

Cp,Sp,Gn St. Dev. 2.4 0.05 − 385 0.31 0.97 1.7 38 7.8 2.4 10 2.0 0.40 0.01 0.13 0.001 1.4 0.03
TOR189 M. (10) 0.98 13 0.28 629 0.27 0.71 78 787 10 20 18 2.2 0.45 0.02 0.46 0.01 1.2 0.9
Cp St. Dev. 0.62 2.6 0.33 827 0.19 0.51 27 91 13.1 4.0 7.5 2.1 0.52 0.03 0.15 0.01 1.1 0.76
TOR191 M. (10) 0.8 0.04 0.02 939 0.27 − 1.4 34 19 33 27 0.91 0.02 0.01 234 0.003 1.4 0.01
Cp,Sp,Gn St. Dev. 0.97 0.05 0.02 844 0.11 − 1.8 45 17.4 21 16 0.63 0.02 0.02 91 0.002 1.4 0.01
TOR197 M. (10) 0.9 0.02 0.02 1419 0.12 1.2 1.5 203 25 19 11 1.7 0.10 0.01 292 0.004 3.3 0.02
Cp,Sp,Gn St. Dev. 1.4 0.05 0.03 857 0.10 0.86 1.3 75 16 4.7 4.1 1.6 0.10 0.01 214 0.004 4.5 0.02
Toroiaga R0 M. (10) 0.88 0.03 − 1192 0.44 1.6 1.6 5.4 18 18 15 0.56 − 0.002 0.28 − 1.5 0.03
Cp,Sp,Gn St. Dev. 1.1 0.10 − 580 0.44 1.1 1.2 7.3 7.8 7.5 12 0.35 − 0.004 0.17 − 0.77 0.02

Mn Co Ni Zn Ga As Se Ag Cd In Sn Sb Te Au Hg Tl Pb Bi

Kochbulak, 33 M. (10) 0.88 0.04 0.02 915 0.17 0.86 31 11 19 2.7 11 0.30 0.39 0.02 0.05 0.26 1.5 10
Uzbekistan Cp St. Dev. 0.89 − 0.07 285 0.15 0.50 6.2 5.5 4.7 1.1 3.6 0.27 0.39 0.03 0.05 0.23 0.69 2.8
Epithermal

Mn Co Ni Zn Ga As Se Ag Cd In Sn Sb Te Au Hg Tl Pb Bi

Baita Bihor, BB55 M. (10) 6.9 10 0.09 618 0.06 0.32 7.9 14 12 106 122 0.75 0.13 0.12 0.11 0.10 1.7 0.48
Romania Cp,Gn St. Dev. 5.5 7.6 0.10 240 0.04 0.36 3.9 14 13 8.8 19 1.1 0.15 0.10 0.04 0.15 3.7 0.44
Skarn BBH15-21 M. (10) 2.1 11 1.3 1041 0.82 0.99 136 35 41 185 176 0.03 1.9 0.03 0.09 0.03 4.6 6.7

Cp,Sp St. Dev. 5.3 5.8 0.91 153 0.18 0.91 23 7.1 10 37 32 0.03 1.14 0.06 0.06 0.04 2.6 3.2

Mn Co Ni Zn Ga As Se Ag Cd In Sn Sb Te Au Hg Tl Pb Bi

Oravita, ORV1 M. (10) 0.24 0.15 − 248 0.19 1.4 43 2.9 1.1 8.6 1.1 2.4 0.27 0.01 0.12 0.01 3.3 0.15
Romania Cp,Gn St. Dev. 0.19 0.10 − 120 0.12 1.0 14 1.3 0.96 2.6 1.0 3.2 0.30 0.01 0.13 0.01 4.6 0.12
Skarn ORV4 M. (10) 0.27 0.04 − 156 0.37 2.6 4.7 2.9 1.3 8.1 2.5 1.8 0.08 0.003 0.08 0.01 2.9 0.07

Cp St. Dev. 0.17 0.05 − 26 0.43 1.6 5.5 2.5 0.71 1.6 1.5 2.6 0.17 0.01 0.08 0.01 3.9 0.08
ORV4a M. (10) 0.17 0.01 0.03 140 0.23 1.0 10 8.0 1.3 9.2 2.0 10 0.22 0.01 0.12 0.05 4.0 0.35
Cp St. Dev. 0.11 0.02 0.09 29 0.14 0.81 10 4.4 1.1 1.2 1.1 21 0.31 0.01 0.07 0.09 5.5 0.97
ORV4B M. (10) 0.10 0.01 0.03 12 0.28 0.40 13 1.3 1.1 0.81 0.43 0.38 0.45 0.03 21 0.09 31 4.7
Cp,Sp,Gn St. Dev. 0.07 0.03 0.03 15 0.12 0.28 18 1.8 1.0 0.89 0.26 0.33 0.31 0.02 14 0.20 31 2.8

Mn Co Ni Zn Ga As Se Ag Cd In Sn Sb Te Au Hg Tl Pb Bi

Assarel, ASR 5A M. (10) 0.53 0.01 − 24 0.52 0.50 12 2.7 2.6 0.20 0.18 0.45 0.27 0.01 35 0.01 8 3.1
Bulgaria Cp,Sp,Gn St. Dev. 0.73 0.01 − 29 0.32 0.11 6.8 1.8 3.5 0.23 0.14 0.57 0.18 0.01 24 0.01 7.5 2.1
Porphyry ASR 10 M. (10) 0.24 − 0.04 11 0.51 0.82 18 2.8 0.27 7.0 0.91 0.12 0.11 0.02 0.07 0.01 5.8 1.3
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Cp St. Dev. 0.27 − 0.12 3.8 0.34 0.30 21 1.6 0.26 5.1 1.0 0.22 0.19 0.01 0.05 0.03 8.5 1.5
ASR KB P12077 M. (10) 0.36 0.02 − 8.4 0.20 1.5 226 2.1 0.73 2.8 1.0 0.07 0.54 0.02 0.08 0.02 16 20
Cp St. Dev. 0.50 0.02 − 4.5 0.14 1.3 64 2.0 0.51 0.69 0.33 0.11 0.99 0.02 0.08 0.07 27 17

Mn Co Ni Zn Ga As Se Ag Cd In Sn Sb Te Au Hg Tl Pb Bi

Bor, BOR14 M. (10) 2.4 0.05 − 65 0.14 1.3 2.4 12 0.77 0.69 16 0.13 0.04 0.06 0.09 0.23 12 6.2
Serbia Cp St. Dev. 1.7 0.06 − 32 0.14 1.1 1.7 9.0 0.98 0.21 10 0.11 0.12 0.06 0.09 0.17 10 3.3
Porphyry

Mn Co Ni Zn Ga As Se Ag Cd In Sn Sb Te Au Hg Tl Pb Bi

Elastite, Elastite b a M. (10) 0.60 0.82 − 1.2 0.34 0.78 313 2.5 0.11 2.4 2.0 0.99 0.19 0.002 0.06 0.05 10 1.0
Bulgaria Cp St. Dev. 1.1 0.65 − 1.5 0.41 0.41 240 2.9 0.19 0.25 1.6 0.97 0.29 0.004 0.06 0.06 10.6 1.2
Porphyry ELS 157 M. (6) 0.76 0.04 − 34 0.96 1.7 2.8 14 0.59 0.35 0.12 4.4 0.23 0.03 0.11 0.01 27 0.61

Cp,Sp,Gn St. Dev. 0.62 0.09 − 10 0.34 2.0 0.86 8.4 0.41 0.08 0.06 4.5 0.27 0.02 0.15 0.02 26 0.67

Mn Co Ni Zn Ga As Se Ag Cd In Sn Sb Te Au Hg Tl Pb Bi

Vorta, DMV 99-22 M. (8) 0.27 1.5 − 258 1.0 2.8 − 44 1.2 0.10 0.30 2.4 0.02 0.01 0.72 0.07 8 0.29
Romania Cp,Sp,Gn St. Dev. 0.29 4.1 − 235 0.66 2.3 − 28 1.2 0.27 0.31 2.1 0.05 0.02 0.81 0.07 18 0.79
VMS

Mn Co Ni Zn Ga As Se Ag Cd In Sn Sb Te Au Hg Tl Pb Bi

Kapp Mineral, kmi 2a M. (9) 14 0.16 0.26 216 0.16 1.0 2.5 174 3.3 1.4 15 30 0.04 0.01 47 0.06 − 0.26
Norway Cp,Gn St. Dev. 20 0.15 0.28 140 0.04 0.78 1.6 52 2.5 0.50 4.1 17 0.05 0.01 39 0.03 − 0.32
SEDEX

Mn Co Ni Zn Ga As Se Ag Cd In Sn Sb Te Au Hg Tl Pb Bi

Broken Hill, BH73 M. (5) 23 1.7 0.14 519 5.9 − − 1112 1.8 1.7 307 0.7 0.05 0.01 0.05 0.10 13 0.01
Australia Cp,Sp,Gn St. Dev. 25 1.4 0.13 336 1.3 − − 259 1.7 0.24 53 0.69 0.08 0.003 0.04 0.13 13.2 0.01
Recrystallized BH262 M. (10) 2.5 0.44 0.21 460 8.6 1.2 − 138 2.2 1.3 389 0.60 − 0.002 0.09 0.002 2.5 0.004
SEDEX Cp,Sp,Gn St. Dev. 1.4 0.57 0.44 128 4.6 0.86 − 127 1.4 0.19 69 0.52 − 0.003 0.07 0.003 2.0 0.01

Mn Co Ni Zn Ga As Se Ag Cd In Sn Sb Te Au Hg Tl Pb Bi

Bleikvassli, Bv-1 M. (5) 2.1 0.01 0.01 371 24 − 2.3 597 0.85 19 712 7.3 − 0.24 0.41 0.64 4.1 0.03
Norway Cp,Sp,Gn St. Dev. 2.1 0.02 0.01 66 14 − 1.9 295 0.25 3.5 571 4.2 − 0.35 0.28 0.65 3.4 0.03
Recrystallized Bv-4 M. (10) 34 0.24 0.10 425 22 1.2 3.5 4.3 2.0 36 1108 3.8 − 0.004 0.17 0.04 1.6 0.06
SEDEX Cp,Sp,Gn St. Dev. 11 0.35 0.25 67 9.2 0.84 2.3 2.39 0.91 3.0 362 2.9 − 0.01 0.08 0.03 1.35 0.09

V598572 M. (9) 46 0.29 1.3 490 1.7 0.39 13 12 5.6 24 1017 1.0 0.14 0.01 0.85 0.03 2.7 0.02
Cp,Sp,Gn St. Dev. 18 0.61 3.0 70 1.0 0.66 10 4.0 2.8 3.7 188 1.5 0.20 0.004 0.37 0.06 6.7 0.02

Mn Co Ni Zn Ga As Se Ag Cd In Sn Sb Te Au Hg Tl Pb Bi

Mofjell, Mo5 M. (10) 5.3 0.01 1.3 565 0.42 − 16 26 3.1 0.87 3.0 1.1 0.60 0.004 0.16 0.12 2.6 0.01
Norway Cp,Sp,Gn St. Dev. 3.3 0.02 0.83 145 0.17 − 5.4 1.8 0.75 0.35 1.3 1.8 0.70 0.004 0.09 0.27 1.5 0.01
Recrystallized Mo16 M. (10) 0.18 0.01 − 589 0.17 7.8 8.8 12 48 0.11 0.76 2.4 0.26 0.02 0.03 0.01 1.4 0.003
SEDEX Cp St. Dev. 0.14 0.02 − 86 0.10 4.0 2.2 1.0 18 0.06 0.19 2.7 0.29 0.02 0.03 0.01 1.1 0.003

Mo17A M. (10) 0.12 0.02 0.01 393 0.15 5.2 3.9 32 51 0.30 0.39 58 0.15 0.02 0.10 0.09 37 0.06
Cp,Gn St. Dev. 0.18 0.03 0.03 101 0.14 3.0 2.8 22 16 0.09 0.13 58 0.22 0.03 0.05 0.24 37 0.10

(continued)
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TABLE 3. (contd.)

Locality Sample/BMS Mn Co Ni Zn Ga As Se Ag Cd In Sn Sb Te Au Hg Tl Pb Bi

Sulitjelma, CV01.1 M. (10) 0.42 5.8 0.02 699 0.06 1.8 194 248 43 0.46 0.12 − 0.74 0.003 0.16 0.003 0.85 0.22
Norway Cp St. Dev. 0.29 4.7 0.05 31 0.04 1.0 14 32 3.2 0.07 0.09 − 0.64 0.003 0.09 0.002 0.54 0.15
Recrystallized CV01.2a M. (10) 0.44 7.2 0.09 722 0.10 1.2 166 240 44 0.39 0.08 0.07 1.7 − 0.11 0.002 0.68 0.32
VMS Cp St. Dev. 0.24 8.3 0.14 91 0.09 0.48 11 89 8.9 0.04 0.04 0.07 1.1 − 0.08 0.001 0.37 0.18

CV01.2b M. (10) 0.27 0.91 − 586 0.04 2.0 153 163 34 0.59 0.09 0.06 1.4 0.002 0.14 0.002 1.1 0.43
Cp St. Dev. 0.19 0.44 − 73 0.05 1.2 11 36 4.9 0.65 0.07 0.08 0.63 0.002 0.12 0.003 1.3 0.45
CV01.3 M. (10) 0.34 0.15 0.07 350 0.20 1.5 849 162 18 0.96 0.26 0.02 0.10 0.004 0.06 0.05 0.29 0.42
Cp,Sp St. Dev. 0.25 0.12 0.12 56 0.11 0.98 51 32 3.8 0.11 0.17 0.02 0.16 0.01 0.04 0.14 0.18 0.20
CV01.4 M. (10) 0.23 2.1 0.09 555 0.04 1.0 212 202 27 1.3 0.55 0.14 0.03 0.003 0.22 0.03 0.89 0.62
Cp St. Dev. 0.17 1.1 0.13 63 0.04 0.60 11 17 4.8 0.16 0.25 0.16 0.10 0.005 0.17 0.05 0.57 0.37
CV01.6b M. (10) 0.26 0.19 0.24 394 0.14 1.0 722 196 22 0.67 0.31 0.04 0.08 0.003 0.11 0.01 0.76 0.81
Cp,Sp St. Dev. 0.12 0.10 0.19 57 0.10 0.81 42 17 7.1 0.06 0.24 0.05 0.13 0.005 0.09 0.03 0.47 0.56
NC4172 M. (10) 6.0 3.4 0.65 282 0.63 0.97 22 41 4.0 5.4 10 10 0.60 0.01 0.10 0.85 17 4.5
Cp St. Dev. 3.3 2.0 0.78 110 0.74 0.71 6.3 17 1.5 1.8 1.6 3.2 0.68 0.01 0.06 0.93 10.0 2.8
NC5839 M. (10) − 1.1 0.18 471 12 0.94 46 38 2.8 6.3 66 1.5 1.1 0.02 0.13 0.01 1.4 0.25
Cp,Sp St. Dev. − 0.67 0.15 156 3.2 0.77 8.5 5.7 1.6 1.1 6.2 1.0 0.90 0.02 0.12 0.01 0.83 0.34
NC6894 M. (10) 0.24 0.02 0.02 128 0.37 2.9 68 8.4 2.1 20 53 0.13 1.2 0.05 0.39 0.002 0.46 0.07
Cp,Sp St. Dev. 0.20 0.04 0.03 10 0.12 1.9 9.4 2.4 0.59 2.6 6.6 0.09 0.75 0.04 0.26 0.001 0.34 0.06
Su3 M. (10) 0.58 2.4 3.1 148 0.39 0.91 8.7 31 3.3 14 22 0.07 0.70 0.24 0.15 0.001 2.5 5.9
Cp St. Dev. 0.83 0.60 1.3 59 0.14 0.53 3.3 12 0.75 0.64 7.8 0.08 0.26 0.23 0.09 0.001 2.3 2.6
Sulis 1b M. (10) 5.3 0.25 0.11 439 9.0 1.3 53 37 2.8 6.5 58 1.7 0.72 0.01 0.32 0.01 1.3 0.74
Cp,Sp St. Dev. 2.8 0.27 0.27 67 1.9 1.2 7.1 5.1 1.0 0.70 7.6 1.08 0.53 0.02 0.12 0.03 1.00 1.6
Sulis2a M. (10) 16 0.41 0.23 402 2.5 2.0 67 19 5.9 1.5 3.2 1.0 0.85 0.004 0.36 0.001 3.3 0.73
Cp,Sp St. Dev. 4.1 0.31 0.29 68 0.63 1.3 7.5 3.3 1.1 0.25 1.0 0.31 0.72 0.004 0.22 0.001 2.3 1.1

Mn Co Ni Zn Ga As Se Ag Cd In Sn Sb Te Au Hg Tl Pb Bi

Kanmantoo, KTDD086(8) M. (10) 1.3 0.54 1.3 350 2.4 1.1 106 83 1.5 16 80 0.18 0.14 0.12 0.07 0.01 21 2.2
Australia Cp St. Dev. 0.39 0.43 1.04 145 0.30 0.81 11 115 0.75 5.4 13 0.09 0.16 0.13 0.05 0.01 14 1.03
Metamorphosed KTDD086(9) M. (10) 0.68 0.34 0.18 427 2.2 1.4 234 19 1.5 13 58 0.22 0.12 0.07 0.09 0.003 43 2.7
remobilized Cp St. Dev. 0.40 0.12 0.17 75 1.3 0.79 64 6.6 0.33 3.4 10 0.18 0.09 0.05 0.07 0.003 23 1.4
syngenetic KTDD086(11) M. (10) 0.54 0.40 0.14 352 4.3 0.80 48 15 2.0 10 72 0.11 0.60 0.02 0.08 0.003 6.3 0.38
sulfide ore Cp St. Dev. 0.25 0.12 0.14 64 0.65 0.55 5.8 6.2 0.57 2.5 15 0.11 0.73 0.02 0.07 0.003 2.4 0.15

KTDD086(12) M. (10) 0.84 0.35 0.13 390 4.7 1.9 52 20 3.0 15 62 0.14 1.9 0.02 0.11 0.001 5.4 1.3
Cp St. Dev. 0.55 0.10 0.17 71 1.2 1.7 5.9 9.2 0.36 3.5 11 0.09 0.76 0.02 0.12 0.001 2.0 1.2
KTDD178(7) M. (10) 0.13 3.0 0.36 433 0.35 1.0 59 23 1.3 51 149 0.08 0.35 0.02 0.07 0.004 41 1.7
Cp St. Dev. 0.09 1.1 0.21 65 0.13 1.1 5.9 3.8 0.66 11 64 0.06 0.22 0.02 0.06 0.003 30 0.76
KTDD178(8) M. (9) 0.08 0.76 0.57 301 0.46 1.1 50 26 2.3 15 318 − 0.57 0.01 0.06 0.001 1.9 0.10
Cp St. Dev. 0.05 0.57 0.63 112 0.20 1.1 18.9 11.7 0.98 6.8 142 − 0.35 0.004 0.05 0.001 1.04 0.06
KTDD178(12) M. (10) 0.11 1.3 0.39 356 0.71 0.93 32 43 1.8 19 314 0.03 0.32 0.03 0.07 0.001 1.9 0.21
Cp St. Dev. 0.07 0.58 0.29 60 0.28 0.42 3.2 8.3 0.57 9.0 100 0.01 0.27 0.02 0.05 0.001 1.3 0.14
KTDD180(3) M. (7) 0.80 4.4 0.17 350 0.23 1.6 18 26 0.82 55 24 0.20 0.53 0.003 0.14 0.24 0.92 1.4
Cp St. Dev. 0.38 4.2 0.32 63 0.13 1.3 2.5 30 0.31 2.5 4.4 0.13 0.34 0.003 0.09 0.46 0.73 1.2
KTDD180(7) M. (10) 0.33 0.88 0.42 507 1.4 1.3 12 18 1.3 38 206 0.08 0.88 0.16 0.11 0.17 0.74 3.5
Cp St. Dev. 0.22 0.35 0.39 84 0.38 1.3 3.5 6.2 0.43 11 47 0.05 0.58 0.14 0.07 0.54 1.2 2.8
KTDD180S(4) M. (10) 0.44 2.1 0.06 520 0.59 2.0 54 86 2.3 49 298 0.09 0.37 0.07 0.17 0.01 44 16
Cp St. Dev. 0.47 1.18 0.08 63 0.13 1.5 4.5 13 0.43 2.5 141 0.08 0.31 0.05 0.08 0.01 14 23
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type. Molybdenum and W were seldom present in
chalcopyrite at concentrations above minimum
levels of detection (see footnote to Table 3).
Zinc was the trace element most highly concen-

trated in chalcopyrite – sample Hj-13 from Herja
(epithermal) contained chalcopyrite that hosted as
much as 1596 ppm Zn. Smooth LA-ICP-MS
downhole spectra from Hj-13 indicated the Zn
was present in solid solution (Fig. 1c). All
chalcopyrite in samples from the epithermal
deposits contained high levels of Zn; chalcopyrite
from porphyry deposits hosted small amounts of
Zn. Variation within samples from individual
deposits was extremely low, usually only over a
single order of magnitude. Chalcopyrite from the
epithermal, exhalative and recrystallized exhalative
deposit types all had remarkably uniform Zn
compositions.
The highest silver concentration in chalcopyrite

from any sample analysed here was 1112 ppm
(BH73, from the Broken Hill recrystallized SEDEX
deposit). High concentrations of Ag appeared
typical of chalcopyrite from un-recrystallized and
recrystallized exhalative deposits as well as
epithermal systems. Chalcopyrite in these deposit
types was all similarly enriched in Ag by ∼1000
times chondritic concentrations. Chalcopyrite from
the skarn at Oravita and the porphyry deposits had
the lowest Ag concentrations, usually <10 ppm.
Sample variation over one or two orders of
magnitude appeared normal within individual
deposits (e.g. Toroiaga – epithermal; Baita Bihor
– skarn; Mofjell – recrystallized SEDEX etc.).
Tin was highly concentrated in chalcopyrite from

the recrystallized SEDEX deposits Broken Hill and
Bleikvassli, and also at both Baita Bihor (skarn)
and Kanmantoo (metamorphosed, remobilized
syngenetic sulfide ore). The most Sn-rich chalco-
pyrite here was from sample Bv-4 (Bleikvassli;
recrystallized SEDEX), which hosted an average of
1108 ppm Sn. Smooth LA-ICP-MS downhole
spectra from Bv-4 suggested the Sn was present
in solid solution (Fig. 1d). Chalcopyrite from
Oravita (skarn), Assarel (porphyry), Elatsite (por-
phyry) and Vorta (VMS) all hosted low levels of Sn.
Variation appeared to be considerable within
samples from a single deposit, for example, in the
case of the Sulitjelma (recrystallized VMS)
samples, Sn concentrations in chalcopyrite fluctu-
ated over four orders of magnitude.
The highest concentration of selenium in chal-

copyrite here was 849 ppm (from sample CV01.3,
Sulitjelma; recrystallized VMS). Sample concen-
trations varied over three orders of magnitude at
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FIG. 2. Cumulative plots showing individual spot concentrations of Mn, Co, Zn, Ga, Se, Ag, Cd, In, Sn, Sb, Hg, Tl, Pb
and Bi in chalcopyrite from each deposit. Chalcopyrite concentration data for each deposit is sorted in ascending order
and plotted in succession along the X axis. Y axis = concentration (parts per million). Red points are from epithermal
deposits, green are from skarn deposits, yellow are from porphyry deposits, purple are from the Vorta VMS deposit, light
blue are from the Kapp Mineral SEDEX prospect, orange are from recrystallized SEDEX deposits, dark blue are from
the Sulitjelma recrystallized VMS deposit and grey are from the Kanmantoo deposit, interpreted as a metamorphosed,
remobilized syngenetic sulfide ore. The average composition for each deposit type is given as a horizontal coloured line.
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Sulitjelma, as well as in the Assarel (porphyry),
Elatsite (porphyry) and Toroiaga (epithermal)
samples. Typically, however, variation over two
orders of magnitude was observed in samples from
any deposit. Chalcopyrite from Kapp Mineral
(SEDEX) and Bor (porphyry) hosted the least Se.
Selenium concentrations in chalcopyrite from
exhalative deposits were very uniform, although
depleted relative to other deposit types. Overall,
mean Se concentrations in chalcopyrite from
different deposit types varied by two orders of
magnitude.
Chalcopyrite in sample BBH15-21 from Baita

Bihor (skarn) hosted 185 ppm In, the most of any
sample. Relative to other deposits, In was highly
enriched in chalcopyrite at Baita Bihor, as well as
Toroiaga (epithermal), Bleikvassli (recrystallized
SEDEX) and, to a lesser extent, also at Kanmantoo
(metamorphosed, remobilized syngenetic sulfide
ore). Indium concentrations in chalcopyrite varied
over one or two orders of magnitudewithin samples
from the same deposit, although at Assarel
(porphyry), sample concentrations fluctuated over
no less than four orders of magnitude. The
chalcopyrite in the Vorta (VMS) sample contained
the least In. Chalcopyrite from the different deposit
types varied in its In content over two orders of
magnitude.
We did not record more than 1 ppm mercury and

thallium in chalcopyrite across the sample suite,
although in a few individual samples chalcopyrite
hosted high levels of Hg: samples TOR197 and
TOR191 (Toroiaga; epithermal) both contained
chalcopyrite hosting over 200 ppm Hg, while tens
of ppm were present in chalcopyrite from kmi 2a
(Kapp Mineral; SEDEX) and ASR 5A (Assarel;
porphyry). Mean Tl concentrations in chalcopyrite
from different deposit types varied very little, all
approximately uniform with chondritic composi-
tions. Mercury concentrations in chalcopyrite, on
the other hand, varied over five orders of
magnitude; the most of any element here.
Chalcopyrite from recrystallized exhalative depos-
its was grossly depleted in Hg compared to other
deposit types.
Manganese, cadmium and lead were all com-

monly present in chalcopyrite at concentrations
between 0.1 and 50 ppm. Concentrations ofMn and
Cd in chalcopyrite samples from any single deposit
varied up to two orders of magnitude, although Cd
concentrations varied less than that for many
deposits. Lead concentrations in chalcopyrite on
the other hand fluctuated over three orders of
magnitude in samples from a given deposit. The

highest mean concentrations in chalcopyrite for
each element in any given sample were 51 ppmMn
(V598572; Bleikvassli; recrystallized SEDEX),
51 ppm Cd (Mo17A; Mofjell; recrystallized
SEDEX) and 44 ppm Pb (KTDD180S(4);
Kanmantoo; metamorphosed, remobilized syn-
genetic sulfide ore). All epithermal chalcopyrite
analysed herewas uniformly enriched in Cd relative
to other deposit types. While Cd concentrations in
recrystallized exhalative chalcopyrite were some-
times also high, the range of concentrations
measured was large and extended quite low.
Concentrations of antimony and bismuth in

chalcopyrite reached 58 ppm (Mo17A, Mofjell,
recrystallized SEDEX) and 30 ppm (KTDD180S
(5), Kanmantoo, metamorphosed, remobilized syn-
genetic sulfide ore), respectively. Concentrations of
both elements in chalcopyrite from samples of
individual deposits usually varied across two and
four orders of magnitude. Kochbulak (epithermal),
Baita Bihor (skarn), Assarel (porphyry) and
Kanmantoo (metamorphosed, remobilized syngen-
etic sulfide ore) all hosted chalcopyrite containing
high levels of Bi but low levels of Sb, whereas
Mofjell (recrystallized SEDEX) chalcopyrite con-
tained high levels of Sb but low levels of Bi. Overall,
Sb was most enriched in chalcopyrite from exhala-
tive deposits compared to other deposit types.
Concentrations of cobalt and gallium in chalco-

pyrite across the sample suite were typically
between 0.001 and 10 ppm. Relative to other
deposit types, chalcopyrite from the recrystallized
exhalative deposits was enriched in Ga, specific-
ally, Bleikvassli (recrystallized SEDEX) and
Broken Hill (recrystallized SEDEX). Chalcopyrite
concentrations in sample Bv-1 (Bleikvassli)
reached 24 ppm Ga. Cobalt concentrations in
chalcopyrite were highest in sample TOR189
(Toroiaga; epithermal) where 13 ppm Co was
measured. Porphyry chalcopyrite was depleted in
Co relative to other deposit types.
Arsenic, nickel, tellurium and gold were all

sometimes present at measurable concentrations in
chalcopyrite, however individual analyses were
frequently below the minimum limit of detection.
The highest concentrations of these elements in
chalcopyrite was 7.8 ppm As (Mo16; Mofjell;
recrystallized SEDEX), 3.1 ppm Ni (Su3;
Sulitjelma; recrystallized VMS), 1.9 ppm Te (in
both BBH15-21; Baita Bihor; epithermal, and
KTDD086(12); Kanmantoo; metamorphosed,
remobilized syngenetic sulfide ore) and 0.24 ppm
Au (in both Bv-1; Bleikvassli; recrystallized
SEDEX, and Su3; Sulitjelma; recrystallized VMS).
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FIG. 3. Chondrite-normalized distribution plots for 14 common trace elements in chalcopyrite from different deposit
types. Data normalized with values from McDonough and Sun (1995). (a) Comparison of the mean concentration of
each trace element in chalcopyrite from different deposit types. (b) Mean concentration and range of each trace element
in chalcopyrite from epithermal, skarn, porphyry, exhalative and recrystallized exhalative deposits. Epithermal deposits
consist of Herja, Toroiaga and Kochbulak, skarn deposits consist of Baita Bihor and Oravita, Porphyry deposits consist
of Assarel, Bor and Elatsite, exhalative deposits consist of Vorta and KappMineral and recrystallized exhalative deposits

consist of Broken Hill, Bleikvassli, Mofjell and Sulitjelma.
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Discussion

Chalcopyrite as a trace-element host

Chalcopyrite is generally considered to be a
relatively poor host for trace elements, at least if
compared to other common Cu-(Fe)-sulfides (e.g.
bornite and chalcocite; Cook et al., 2011), sphalerite
(Cook et al., 2009) or galena (George et al., 2015).
Indeed, LA-ICP-MS element distribution maps in
George et al. (2016) demonstrated that chalcopyrite
is generally the ‘least preferred’ host for a range of
trace elements when chalcopyrite, sphalerite and
galena are inferred to co-crystallize.
A summary of relevant literature reveals that only

Ag, Zn, As, Se, Co and Pb are usually reported as
trace components in solid solution within chalco-
pyrite, whereas Mn, In, Tl, Ga and Hg are seldom
referred to, if at all. There is also a relative scarcity
of empirical concentration data for natural chalco-
pyrite compared to other sulfides, and in cases
where data are reported, often the full range of
elements were not checked, or the minimum levels
of detection for many trace elements were too high
to gain a proper appreciation of concentration
ranges (e.g. Harris et al., 1984; Cabri et al., 1985;
Kase, 1987; Brill, 1989; Huston et al., 1996; Scott
et al., 2001; Moggi-Cecchi et al., 2002; Serranti
et al., 2002; Shalaby et al., 2004; Demir et al.,
2008; Layton-Matthews et al., 2008; Monteiro
et al., 2008; Demir et al., 2013; Gena et al., 2013;
Reich et al., 2013; Cioacă et al., 2014; Helmy et al.,
2014; Wang et al., 2015a; Wohlgemuth-
Ueberwasser et al., 2015; Sadati et al., 2016). The
dataset presented in this study, encompassing a
wider range of trace elements, and with the
generally lower minimum detection limits afforded
by LA-ICP-MS, thus allow for a new evaluation of
chalcopyrite as a trace-element carrier.
Zinc was the most abundant trace element

present in the chalcopyrite analysed here with
individual spot concentrations exceeding
2000 ppm in the Herja and Toroiaga epithermal
systems. The only other trace elements commonly
present at >100 ppm were Se, Ag and Sn. As such,
the trace-element budget for chalcopyrite was
generally lower than in other co-existing base-
metal sulfides for which data are available (e.g.
Cook et al., 2011; George et al., 2016). Yet
regardless of the lower overall concentrations
compared to other common sulfides, particularly
when they co-crystallize with chalcopyrite, it is
apparent that the latter is able to incorporate a wide
range of trace elements. Manganese, Co, Zn, Ga,

Se, Ag, Cd, In, Sn, Sb, Hg, Tl, Pb and Bi were all
commonly present at measurable levels in chalco-
pyrite. Generally, trace-element concentrations
showed little variation at the sample scale, yet
most elements showed significant variation of four
to five orders of magnitude across the sample suite
and even from samples within individual deposits.
Significantly, Mn, In, Tl, Ga and Hg were all
commonly present at measurable concentrations in
chalcopyrite despite rarely being reported in most
previous studies. Other trace elements that were
occasionally present in chalcopyrite include Ni, As,
Te and Au. Thus, considering the greater abundance
of chalcopyrite relative to other sulfides in many
Cu-ores, in a given deposit chalcopyrite may be the
main sulfide host for many of the elements listed
above.

Trace-element incorporation

The incorporation of trace elements into the
chalcopyrite structure is more complex than in
other common base-metal sulfides, particularly
sphalerite or galena. Covalent bonding in chalco-
pyrite means that Goldschmidt’s rules
(Goldschmidt, 1954) cannot be used to predict
partitioning trends as for purely ionic structures
(e.g. George et al., 2016). Instead, in any given ore
system, the trace-element content of chalcopyrite
will depend principally on the presence or absence
of other co-crystallizing sulfides, particularly
sphalerite and galena. All trace elements analysed
here (except for Zn in the absence of sphalerite)
preferentially partition into co-crystallizing sphal-
erite or galena if those phases are present (George
et al., 2016). This is demonstrated in Figs 4a and b,
which show the concentration of different trace
elements in chalcopyrite from Toroiaga and
Oravita, respectively. In the first case, Co, Se, Ag
and Bi concentrations are all significantly lower in
hydrothermal chalcopyrite that co-crystallized with
sphalerite and galena than in chalcopyrite from
assemblages in which the other base-metal sulfides
are absent (Fig. 4a). This supports observations
(George et al., 2016) that Co will preferentially
partition into sphalerite, and Se, Ag and Bi into
galena, when those base-metal sulfides co-
crystallize with chalcopyrite in hydrothermal set-
tings. At Oravita, Co, Zn, Ag, In and Sn
concentrations are all significantly lower in chal-
copyrite associated with sphalerite compared to
chalcopyrite that has crystallized without any
sphalerite in the polished section (Fig. 4b). Again
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the sphalerite has incorporated a significant
proportion of the trace-element budget. We thus
conclude that hydrothermal chalcopyrite crystalliz-
ing without sphalerite and/or galena, is likely to
host greater concentrations of Co, Zn, Se, Ag, In, Sn
and Bi, whereas the concentration of these elements
will be reduced when sphalerite and/or galena co-
crystallize. Consequently, chalcopyrite may be
thought of as a sink that will incorporate much of
the ‘leftover trace-element budget’ not taken up into
other co-crystallizing sulfides (sphalerite and
galena in the cases above), and explains efficiently
why chalcopyrite is able to host a wide range of
trace elements while measured concentrations are
generally low. A similar relationship exists between
chalcopyrite and pyrite, the latter well known to
incorporate high levels of As, Co and Ni, and
possibly also others (e.g. Large et al., 2009;
Winderbaum et al., 2012). Similarly, in ores contain-
ing bornite and/or chalcocite, such as Olympic Dam,
South Australia, theseminerals are likely to host, and
control the distribution of Ag and Bi, with
chalcopyrite only an important Ag-Bi-host when
bornite and chalcocite are absent (Cook et al., 2015).
In the case of those deposits in which the sulfides

recrystallized during syn-metamorphic deformation
(Broken Hill, Bleikvassli, Mofjell and Sulitjelma),
the presence or absence of other co-crystallizing
base-metal sulfides influences trace-element
incorporation into chalcopyrite in a different way.
Under metamorphic conditions of amphibolite
facies or above, both Ga and Sn will partition
typically into chalcopyrite over co-crystallizing
sphalerite, distinct from the preferred host of these
trace elements at lower temperatures (sphalerite in
the case of Ga; George et al., 2016). This is
illustrated by Fig. 4c, which shows the concentra-
tion of different trace elements in chalcopyrite from
recrystallized samples from the Sulitjelma VMS
deposit. Concentrations of Co are significantly lower
in chalcopyrite that has recrystallized together
with sphalerite if compared to chalcopyrite-only
assemblages. This is the same trend depicted in Figs
4a and b, showing that Co is preferentially
partitioned into sphalerite over chalcopyrite at all
temperatures and pressures (George et al., 2016).
The trends for Ga and Sn contrast, however, with
those shown by Co, in that the concentrations of both
Ga and Sn are significantly higher in chalcopyrite
that has recrystallized with sphalerite. Our interpret-
ation is that, during recrystallization associated with
sub-solidus deformation, Ga and Sn present in pre-
existing sphalerite has been remobilized and re-
partitioned into chalcopyrite thus increasing the

concentration of these elements in the latter, more so
than if it had recrystallized alone.
Other factors certainly also play a contributing

role in trace-element incorporation into chalco-
pyrite. For example, Tl is incorporated preferen-
tially into galena over either chalcopyrite or
sphalerite (George et al., 2016). However, in the
absence of galena and/or sphalerite, chalcopyrite
will still not host more than negligible concentra-
tions of Tl (never more than a few ppm in the
sample suite analysed here). There must therefore
be factors intrinsic to the chalcopyrite crystal
structure that influence trace-element incorpor-
ation. Bonding in the chalcopyrite structure is
strongly covalent with an effective ionic state
between Cu+Fe3+S2�

2 and Cu2+Fe2+S2�
2 (Li et al.,

2013). Yet Goldschmidt’s rules for trace-element
incorporation into ionic structures (Goldschmidt,
1954) may still be helpful in understanding the
observed trace-element trends in chalcopyrite. As
per Goldschmidt’s rules, the ionic radius of a
substituting trace element is a major control on
trace-element incorporation. The ionic radii of Zn2
+, Sn4+ and In3+ in tetrahedral coordination all fall
within a ‘window’ between the ionic radii of Fe3+

and Fe2+ (Fig. 5). Although Ag+ is significantly
outside this ‘window’, it is still the monovalent ion
closest in size to Cu+ in tetrahedral coordination.
These elements (plus Se which can be assumed to
substitute for S) were the highest concentration
trace constituents measured in chalcopyrite here.
Ni2+ and Co2+ also fall within the Fe3+ and Fe2+

‘window’ but were never significantly concentrated
in chalcopyrite here, possibly due to their incorpor-
ation into nearly ubiquitous pyrite. Occasional
studies have, however, measured high concentrations
of Co and Ni in chalcopyrite (e.g. Bajwah et al.,
1987; Thole, 1976; Wang et al., 2015a; Wang et al.,
2015b). Despite the above observations, mechan-
isms of trace-element incorporation into covalent
structures represents a significant research gap and
further study is needed to understand partitioning
controls.

Correlation between Cd and Zn

A noteworthy correlation between Cd and Zn
concentrations in chalcopyrite is observed across
the dataset. This strong correlation is unique as all
other trace-element pairs show little to no correl-
ation. In general, higher Zn concentrations in
chalcopyrite are associated with higher Cd con-
centrations. Concentration data from a number of
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FIG. 4. Plots showing the dependency of the trace-element composition of chalcopyrite on co-crystallizing base-metal
sulfides (BMS). Chalcopyrite concentration data for each BMS assemblage in each deposit is sorted in ascending order
and plotted in succession along the X axis. (a) Chalcopyrite in samples from Toroiaga. Data to the left of plot is from
chalcopyrite co-crystallizing with sphalerite and galena. Data to the right of plot is from chalcopyrite crystallizing
without other BMS nearby. (b) Chalcopyrite in samples from Oravita. Data to the left of plot is from chalcopyrite co-
crystallizing with sphalerite. Data to the right of plot is from chalcopyrite crystallizing without other BMS nearby. (c)
Chalcopyrite at Sulitjelma. Data to the left of plot is from chalcopyrite co-crystallizing with sphalerite. Data to the right

of plot is from chalcopyrite without other BMS crystallized nearby.
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individual deposits fit well to lines of differing
positive slope that pass through the origin (Fig. 6a),
such that chalcopyrite from individual deposits
display relatively constant Cd:Zn ratios. This ratio
increases from the VMS Vorta deposit (0.002), to
the Herja epithermal system (0.003), to the SEDEX
Kapp Mineral deposit (0.007), to the Toroiaga
(0.010) and Kochbulak (0.012) epithermal systems,
to the Baita Bihor skarn (0.017) and finally to the
recrystallized VMS and SEDEX deposits
Sulitjelma (0.021) and Mofjell (0.042), respect-
ively. The Cd:Zn ratio in chalcopyrite (Cd/Zncp)
increases with the inferred temperature of crystal-
lization, thus strongly suggesting that temperature is
a significant factor influencing Cd/Zncp, as illu-
strated by Fig. 7. We note that this same trend is
observed when chalcopyrite data are plotted for
samples without any coexisting sphalerite (Fig. 6b).
The data are thus unlikely to be influenced by
sphalerite inclusions accidently (co)-analysed in
the chalcopyrite, except perhaps in one population
of chalcopyrite from Mofjell with low Cd but
relatively high Zn.
Although crystallization temperature clearly

influences Cd/Zncp, it is unlikely to be the sole
factor controlling incorporation of the two ele-
ments. For instance, the Cd/Zncp for Broken Hill
(0.002) and Bleikvassli (0.004) appear anomalous
as they are far too low to solely reflect sulfide

crystallization temperature in these high-
temperature deposits. Schwartz (2000) noted
similar systematic variation in the Cd:Zn ratio of
sphalerite (Cd/Znsp) in different deposit types,
particularly among Mississippi Valley-type
(MVT) and exhalative (VMS and SEDEX) depos-
its. Schwartz reasoned that temperature played a
role in determining Cd/Znsp but noted that reduced
fS2

and pH were also significant. These three factors
control the stability of Cd and Zn complexes in an
ore fluid, and thus the partitioning coefficients of
Cd and Zn. Regardless, these influences alone
cannot explain Cd:Zn ratios in natural sphalerites,
prompting Schwartz (2000) to conclude that the
Cd:Zn ratio in the ore-forming fluid is the most
important factor in determining Cd/Znsp. A similar
conclusion was reached by Gottesmann and Kampe
(2007).
It is probable that the Cd:Zn ratio in the ore-

forming fluid, as well as factors controlling the
stability of Cd and Zn complexes in the fluid (e.g.
temperature, sulfur activity, pH), would also control
Cd/Zncp. Thus specific physiochemical condi-
tions should result in a particular Cd:Zn ratio in
either sphalerite or chalcopyrite, and this ratio
should remain constant if the physiochemical
conditions do not change. Consequently, chalco-
pyrite from an individual deposit that has a
relatively constant Cd:Zn ratio probably

FIG. 5. Plot showing the ionic radius of various trace-element ions in tetrahedral coordination – as in chalcopyrite (data
from Shannon, 1976). Red dots represent Fe3+, Cu2+, Cu+ and Fe2+. The red area represents the zone in which trace

elements have ideal ionic radii for incorporation into chalcopyrite.
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FIG. 6. Binary plots showing the correlation between Cd and Zn in chalcopyrite. (a) Data for Herja, Toroiaga,
Kochbulak, Baita Bihor, Vorta, Kapp Mineral, Mofjell and Sulitjelma fit well to lines of positive slope that pass through
the origin. (b) Only data from samples with no coexisting sphalerite are plotted. As general trends remain, the data are
unlikely to be influenced by sphalerite inclusions accidently (co)-analysed in the chalcopyrite. (c) Data from Oravita,

Assarel, Elatsite and Kanmantoo do not fit to lines of positive slope. See text for explanation.
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crystallized in a system during which the
physiochemical conditions remained constant.
In deposits such as Oravita, Assarel, Elatsite
and Kanmantoo, where the Cd vs. Zn plots for
chalcopyrite do not correlate well along a line of
positive slope (Fig. 6c), chalcopyrite probably
crystallized under evolving, and possibly highly
localized physiochemical conditions.
The mean Cd:Zn ratios in chalcopyrite and co-

crystallizing sphalerite are shown in Fig. 8. In most
samples chalcopyrite and sphalerite have very
similar Cd:Zn ratios. As the Cd:Zn ratio in the
ore-forming fluid is the most important factor in
determining Cd/Znsp, the relationship between
chalcopyrite and sphalerite is probably a reflection
of co-crystallization from a common ore-forming
fluid, in which case the ore fluid Cd:Zn ratio is also
the most critical factor in controlling Cd/Zncp.
Nevertheless, some samples do show differences in
the Cd:Zn ratios of the two minerals. Typically,
when a difference is present, the Cd:Zn ratio is
higher in chalcopyrite than in sphalerite. Samples
from Oravita, Assarel and Elatsite reveal mean
chalcopyrite Cd:Zn ratios that are an order of
magnitude greater than in sphalerite. Interestingly,
these are the same deposits for which chalcopyrite

Cd vs. Zn plots do not correlate well, and where
changing physiochemical conditions were invoked
to explain the observed trends (Fig. 6c). It thus
seems that evolving physiochemical conditions
may affect Cd/Zncp to a greater extent than Cd/
Znsp, leading to marked differences in the mean Cd:
Zn ratios of the two minerals. This is intuitive as Cd
and Zn concentrations in chalcopyrite may vary
over three and four orders of magnitude, respect-
ively, allowing Cd/Zncp to change over a possible
seven orders of magnitude. In sphalerite, however,
Cd concentrations generally vary over only one
order of magnitude (Cook et al., 2009), and Zn
concentrations are fixed, so limiting the Cd/Znsp to
vary no more than one order of magnitude.
The Cd:Zn ratios in chalcopyrite and sphalerite

may be useful in indicating whether physiochemical
conditions remained constant during base-metal
sulfide crystallization. A fixed Cd/Zncp approxi-
mately equal to Cd/Znsp would indicate co-
crystallization of the two sulfides from the same
ore-forming fluid under constant physiochemical
conditions. If Cd/Zncp is constant yet distinct from
Cd/Znsp, the two sulfides probably crystallized at
different times and/or from different ore-forming
fluids. A non-constant Cd/Zncp, especially if

FIG. 7. Plot showing the correlation between the Cd:Zn ratio in chalcopyrite and inferred chalcopyrite crystallization
temperature. Inferred crystallization temperatures are only estimates. Deposits with no known crystallization
temperatures have not been plotted, nor have those deposits for which chalcopyrite Cd vs. Zn plots do not correlate

well along a line of positive slope. Error bars represent one standard deviation.
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combined with a distinct difference in Cd/Znsp
indicates varying physiochemical conditions during
sulfide crystallization. A more thorough investiga-
tion is required to determine how Cd/Zncp depends
on ore-forming fluid chemistry and/or other factors.
The temperature-dependant nature of the Cd:Zn ratio
in both sphalerite and chalcopyrite may even
potentially allow a geothermometer to be defined
based on the partitioning of Cd and Zn among
sphalerite-chalcopyrite pairs, assuming other factors
affecting Cd/Zncp and Cd/Znsp can be accounted for.

Deleterious elements

Knowledge of, or the ability to predict, the trace-
element chemistry of base-metal sulfides carries
critical economic implications. The presence of
harmful or unwanted elements (deleterious ele-
ments) in sulfide copper ores is a significant
concern for many mining operations selling their
concentrate on the world market. If bound within
the lattice of the common Cu-(Fe)-sulfides (chal-
copyrite, bornite, chalcocite) or as inclusions
within those minerals, elements including Co, Zn,
As, Se, Cd, Sb, Hg, Pb and Bi will move to copper

concentrates after froth flotation (Mular et al.,
2002). Such elements reduce the overall grade of
the copper concentrate and may require further,
typically costly treatment to remove them from final
copper products. Smelters thus impose financial
penalties on concentrates which contain deleterious
elements at greater than certain tolerated levels.
Different smelters have different lists of deleterious
elements and different penalty rates for unwanted
elements in a copper concentrate (e.g. Lane et al.,
2016). Table 4 shows approximate maximum
concentrations of deleterious elements that may
be present in a copper concentrate before a financial
penalty is incurred. Many mining operations
therefore work hard to separate deleterious ele-
ments from their final saleable concentrate or seek
to blend ores from different sources.
Integral to any approach to reducing the

concentrations of potential penalty elements in a
concentrate is an understanding of the mineral-
ogical hosts for each element in primary ore. As the
copper minerals collected from a froth flotation
circuit are usually the final saleable copper
concentrate (Zanetell, 2007), the concentration of
deleterious elements in a concentrate generated

FIG. 8. Plot showing the similarity between the Cd:Zn ratios in chalcopyrite and co-crystallizing sphalerite from various
deposits. Error bars represent one standard deviation.
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from a chalcopyrite-dominant ore will be related
directly to the concentration of deleterious elements
within chalcopyrite. Ordinarily, chalcopyrite hosts
low enough concentrations of most penalty ele-
ments as to not be a significant contributor of such
elements in a final copper concentrate. On the basis
of the data presented here, only in exceptional
circumstances could chalcopyrite itself be expected
to contribute to excessive Co, Zn, As, Cd, Sb, Pb
and Bi in a copper concentrate. Grains of, for
example, arsenopyrite, enargite or tennantite (for
As), tetrahedrite (for Sb), galena (for Pb) and
Bi-chalcogenides (for Bi) could be considered the
likely ‘culprits’, and efforts may be made to prevent
flotation of these minerals.
Chalcopyrite can, however, potentially host

sufficient Se or Hg to be a culpable host. Copper
concentrates may incur monetary penalties from
the smelter if they contain in excess of 500 ppm
Se. We measured Se concentrations in chalcopyrite
up to 1000 ppm, which could potentially produce
copper concentrates with high Se that is difficult to
remove prior to smelting. Mercury may represent
an even more serious problem in chalcopyrite-
dominant copper concentrates. A number of
chalcopyrite samples analysed here contain more
Hg than the smelter limit of 10 ppm; we even
measured hundreds of ppm Hg in chalcopyrite.
Japanese smelters charge additional monetary
penalties for every 1 ppm over the 10 ppm Hg
limit while the Chinese government has banned
the import of copper concentrates that exceed
100 ppm Hg altogether (Fountain, 2013). This
renders concentrates produced from a Hg-rich
chalcopyrite ore of limited value, or in the worst
case, unsaleable.

Conclusions

Chalcopyrite may host a wide range of trace
elements including Mn, Co, Zn, Ga, Se, Ag, Cd,
In, Sn, Sb, Hg, Tl, Pb and Bi. The readiness of
chalcopyrite to host trace elements generally
increases in the absence of other co-crystallizing
sulfides, particularly sphalerite and galena.
In deposits that have recrystallized sulfide

assemblages, the concentration of Sn and Ga in
chalcopyrite will generally increase in the presence
of co-recrystallizing sphalerite and/or galena.
Trace-element concentrations in chalcopyrite

typically show little variation at the sample scale,
yet there is potential for significant variation
between samples from any individual deposit.
The Zn:Cd ratio in chalcopyrite shows system-

atic variation that depends, in part, on crystalliza-
tion temperature.
Under constant physiochemical conditions (e.g.

temperature, fS2
, pH), the Cd:Zn ratios in co-

crystallizing chalcopyrite and sphalerite are typic-
ally approximately equal. A distinct difference in
the Cd:Zn ratios, and/or a non-constant chalco-
pyrite Cd:Zn ratio, may indicate varying conditions.
Chalcopyrite is generally a poor host of most

penalty elements, Exceptions are Se and Hg, which
can be sufficiently enriched in, and difficult to remove
from, chalcopyrite-dominant copper concentrates.
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