
Robotica (2004) volume 22, pp. 389–394. © 2004 Cambridge University Press
DOI: 10.1017/S0263574704000219 Printed in the United Kingdom

On the direct problem singularities of a class of 3-DOF
parallel manipulators
R. Di Gregorio
Department of Engineering, University of Ferrara, Via Saragat, 1; 44100 FERRARA (Italy)
E-mail: rdigregorio@ing.unife.it

(Received in Final Form: October 25, 2003)

SUMMARY
The 3-PS structure features one rigid body (platform)
connected to another rigid body (base) by means of three
kinematic chains (limbs) of type PS (P and S stand for
prismatic pair and spherical pair, respectively). All the 3-
degree-of-freedom parallel manipulators with three
connectivity-5 limbs, each one constituted of one passive
(i.e. not actuated) prismatic pair, one passive spherical
pair and one actuated kinematic pair of any type, become
3-PS structures when the actuated pairs are locked. Direct
kinematics of this class of manipulators is tied to the
properties of the 3-PS structure. In particular, the direct
position analysis is tied to the assembly modes of the 3-PS
structure; whereas the determination of the singularities of
the direct instantaneous problem is tied to the determination
of the singular geometries of the 3-PS structure, where
instantaneous relative motions between platform and base
are possible. The solution of these two problems is necessary
both for designing the manipulators and for controlling them
during motion. This paper deal with the determination of the
singular geometries of the 3-PS structure.

KEYWORDS: Direct kinematics; Parallel manipulators;
Singularities.

1. INTRODUCTION
Parallel manipulators with less than six degrees of freedom
(dof) have recently attracted the attention of the industrial
and academic world. Such an interest is mainly due to the
fact that a lot of specialized manipulation tasks require less
than six dof.

The use of less-than-six-dof manipulators in those
manipulation tasks is cheaper than the use of general purpose
6-dof manipulators, since they have simpler architectures and
control systems. Moreover, less-than-six-dof manipulators,
in general, exhibit a wider workspace because of the reduced
number of links they have.

Among less-than-six-dof manipulators, 3-dof manipu-
lators constitute an important family. In fact, planar
manipulators,1 spherical manipulators2–7 and translational
manipulators8–12 belong to this family. Moreover, in the
literature, 3-dof manipulators of mixed type13,14 have been
presented too.

Three-dof parallel manipulators can be obtained by
connecting the end effector to the frame by means of three
kinematic chains (limbs) with connectivity 5 (i.e. each limb
leaves 5 dof to the relative motion of end effector and frame)
and only one actuated joint. Such 3-dof manipulators become
isostatic structures, where one rigid body (hereafter called
platform) is connected to another rigid body (hereafter called
base) by means of three connectivity-4 limbs, when the
actuated joints are locked. The platform and the base of these
structures are the end effector and the frame, respectively, of
the manipulators they derive from.

Three-dof manipulators with different topology and three
connectivity-5 limbs can yield isostatic structures with
the same topology, when the actuated joints are locked.
Therefore, studying the properties of the structures that are
obtained by locking the actuators allows general conclusions
to be found which are applicable to the whole class of
manipulators they derive from.

In particular, the direct position analysis reduces itself
to the determination of all the possible assembly modes
of the structure obtained by locking the actuators.15,16

Moreover, the determination of the singularities of the
instantaneous direct problem (i.e. the determination of
the manipulator configurations where the end effector can
perform infinitesimal motions even if the actuators are
locked17) reduces itself to the determination of the singular
geometries of the structure, obtained by locking the actuators,
where infinitesimal relative motions are possible between
platform and base.

One particular structure where one rigid body (platform)
is connected to another rigid body (base) by means of three
connectivity-4 limbs is the 3-PS structure (Fig. 1). The 3-PS
structure has the platform connected to the base by means
of three limbs of type PS (P and S stand for prismatic pair
and spherical pair, respectively). All the 3-dof manipulators
with three connectivity-5 limbs, each one constituted of
one passive (i.e. not actuated) prismatic pair, one passive
spherical pair and one actuated kinematic pair of any type,
become 3-PS structures when the actuated pairs are locked.
By denoting the generic actuated joint, which is present
in each limb, with the letter X, the limbs of these 3-dof
manipulators belong to one out of the following three types:
XPS, PXS and PSX. In the literature, manipulators of this
type have been presented in Ceccarelli13 and Di Gregorio
et al.14

https://doi.org/10.1017/S0263574704000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704000219


390 Direct Problem singularities

Fig. 1. The 3-PS structure (P and S stand for prismatic pair and
spherical pair respectively).

Direct kinematics of this class of manipulators is tied to
the properties of the 3-PS structure. In particular, the direct
position analysis is tied to the assembly modes of the 3-PS
structure; whereas the determination of the singularities of
the direct instantaneous problem is tied to the determination
of the singular geometries of the 3-PS structure, where
instantaneous relative motions between platform and base
are possible. The solution of these two problems is necessary
both for designing the manipulators and for controlling them
during motion.

The determination of the assembly modes of the 3-PS
structure was presented in Parenti-Castelli et al.,15 where it
has been reduced to the solution of a system of three quadratic
equations. Such a system admits at most eight real solution
that, in Parenti-Castelli et al.,15 have been determined in
analytic form by determining the general expression of the
Sylvester’s eliminant of the system.

The singular geometries of the 3-PS structure have
been investigated by using static reasoning in Ebert-Uphoff
et al.18 and by using kinematic reasoning in Kong et al.19 and
Yang et al.20 Both Ebert-Uphoff et al.18 and Kong et al.19

conclude that “if four particular planes (one plane located
by the centers of the three spherical pairs and other three
planes perpendicular to the slide direction of one limb’s
prismatic pair and passing through the center of the spherical
pair of the same limb) have at least one point as common
intersection, then the 3-PS is singular”; whereas, the analytic
results reported in Yang et al.20 are the same as those reported
in Kong et al.,19 but their geometric interpretation is less
general.

This paper reconsiders the kinematic point of view for
searching the singular geometries of the 3-PS structure,
and writes the analytic form of its singularity condition in
a way which is different from the one presented in Kong
et al.19 and Yang et al.20 The new form makes it possible the
exhaustive enumeration of the geometric conditions, which
identify the singular geometries, and reveals that there are
some geometric conditions that were not identified in Ebert-
Uphoff et al.18 and Kong et al.19

Finally, in this paper, the determination of the analytic
expression of the singularity loci of 3-dof manipulators which
generate 3-PS structures, when the actuators are locked, will
be discussed.

Fig. 2. The i-th limb of the 3-PS structure.

2. BACKGROUND
This section recalls some analytic results, reported in Kong
et al.19 and Yang et al.,20 that will be used in the next sections.

Figure 2 shows the i-th limb of the 3-PS structure. With
reference to Fig. 2, point Bi is the center of the spherical
pair. Point A0i is fixed to the base. ui is the unit vector of the
sliding direction of the prismatic pair. Point Ai is the foot of
the perpendicular through Bi to the straight line, fixed to the
base, which passes through A0i and has the direction of ui.
hi is the length of the segment AiBi. si is the signed distance
from A0i to Ai and is the joint variable of the prismatic pair.
Hereafter, if it is not otherwise specified, all the vectors are
measured in a reference system fixed to the base, and a capital
bold letter will indicate the position vector of the point the
capital letter refers to.

With these notations, the closure equations of the 3-PS
structure can be written as follows

[mi + siui + A0i − mj − sjuj − A0j]
2 = c2

ij,

i, j ∈ {1, 2, 3|i �= j} (1)

with

mk = (Bk − Ak) k = 1, 2, 3 (2a)

cij = ‖Bi − Bj‖ i, j ∈ {1, 2, 3|i �= j} (2b)

In Eqs. (1), the vectors mk, uk and A0k, k = 1, 2, 3, and cij

are geometric constants of the 3-PS structure.
If the platform moves, only the joint variables si and sj may

vary in Eq. (1). Therefore, the first time derivative of Eqs. (1)
are:

u3 · (B3 − B2)
.
s3 − u2 · (B3 − B2)

.
s2 = 0 (3a)

u2 · (B2 − B1)
.
s2 − u1 · (B2 − B1)

.
s1 = 0 (3b)

u3 · (B3 − B1)
.
s3 − u1 · (B3 − B1)

.
s1 = 0 (3c)

where

Bk = mk + skuk + A0k k = 1, 2, 3 (4)
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Equations (3), in matrix form, become

H
.
s = 0 (5)

where

.
s = { .

s1,
.
s2,

.
s3}T (6a)

H =




u3 · (B3 − B2) −u2 · (B3 − B2) 0

0 u2 · (B2 − B1) −u1 · (B2 − B1)

u3 · (B3 − B1) 0 −u1 · (B3 − B1)




(6b)

Relative motions of platform and base will be possible if
and only if system (5) admits solutions different from zero.
Since system (5) is linear and homogenous, it will admit
solutions that are not trivial if and only if matrix H is singular.
The singular geometries of the 3-PS structure are the ones
that make matrix H singular.

Matrix H is singular when

det(H) = 0 (7)

where

det(H) = −[u3 · (B3 − B2)][u2 · (B2 − B1)][u1 · (B3 − B1)]

+ [u3 · (B3 − B1)][u2 · (B3 − B2)][u1 · (B2 − B1)].

(8)

Equation (7) is the analytic form of the singularity condi-
tion that has been reported in Kong et al.19 and Yang et al.20

3. ALTERNATIVE FORM OF THE SINGULARITY
CONDITION
If the terms appearing in expression (8) are collected in a
suitable way and the vector relationship

(B3 − B2) = (B3 − B1) − (B2 − B1),

is used, expression (8) becomes

det(H) = u1 · {(u3 · (B3 − B1))[(B2 − B1)(u2 · (B3 − B1))

− (B3 − B1)(u2 · (B2 − B1))] − (u2 · (B2 − B1))

× [(B2 − B1)(u3 · (B3 − B1)) − (B3 − B1)

× (u3 · (B2 − B1))]} (9)

In addition, the vector identity

a × (b × c) = (a · c)b − (a · b)c,

where a, b and c are any vectors, leads to the conclusion that

(B2 − B1)(u2 · (B3 − B1)) − (B3 − B1)(u2 · (B2 − B1))

= u2 × g1 (10a)

(B2 − B1)(u3 · (B3 − B1)) − (B3 − B1)(u3 · (B2 − B1))

= u3 × g1 (10b)

Fig. 3. Singular geometry of type (a.1).

where

g1 = (B2 − B1) × (B3 − B1) (11)

Finally, the introduction of expressions (10) into
relationship (9) yields

det(H) = u1 · f1 × g1 (12)

where

f1 = [u3 · (B3 − B1)]u2 − [u2 · (B2 − B1)]u3 (13)

Using relationship (12) and the properties of the mixed
product, singularity condition (7) becomes

v1 · f1 = 0 (14)

where

v1 = g1 × u1 (15)

Vector v1 has the direction of the common line between
the plane of the triangle B1B2B3 and the plane perpendicular
to u1 and passing through B1; whereas vector f1 belongs to
the span of the vector set {u2, u3}.

Since the numbering of the limbs is arbitrary, Eq. (14)
can be written in other two different ways by permuting
the indices {1, 2, 3} of the limbs. These three expressions of
the singularity condition are completely equivalent and are
satisfied by the same singular geometries. Therefore, without
losing generality, only expression (14) will be considered in
the following discussion.

4. GEOMETRIC INTERPRETATION OF THE
SINGULARITY CONDITION
The singularity condition (14) is satisfied if and only if the
scalar product v1 · f1 vanishes. Such a scalar product vanishes
if and only if one out of the following conditions occurs: (a)
v1 vanishes; (b) f1 vanishes; (c) v1 is perpendicular to f1.

Condition (a) (i.e. v1 vanishes) occurs if and only if one
out of the following geometric conditions is satisfied:

(a.1) the three points Bi, i = 1, 2, 3, are aligned (Fig. 3)
( proof: the magnitude of the vector g1 (see Eq. (11))
is equal to the area of the triangle B1B2B3; therefore,
when this condition occurs, g1 (see Eq. (11)) vanishes
and makes v1 (see Eq. (15)) vanish);
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Fig. 4. Singular geometry of type (a.2).

Fig. 5. Singular geometry of type (b.1).

(a.2)′ the unit vector u1 is perpendicular to the plane of the
triangle B1B2B3 (Fig. 4) ( proof: when this condition
occurs, u1 and g1 are parallel and make v1 vanish).

Condition (b) (i.e. f1 vanishes) occurs if and only if one
out of the following geometric conditions is matched:

(b.1)′ u2 and u3 are perpendicular to (B2 – B1) and (B3 – B1)
respectively ( proof: when this condition is satisfied,
in Eq. (13), the coefficients of u2 and u3 vanish and
make f1 vanish);

(b.2)′ u2 and u3 are parallel to one another and perpendicular
to (B3–B2) ( proof: this condition can be verified by
direct substitution in Eq. (13)).

Since the numbering of points Bi, i = 1, 2, 3, is arbitrary
the condition (a.2)′, (b.1)′ and (b.2)′ can be generalized as
follows:

(a.2) a unit vector ui, i = 1, 2, 3, is perpendicular to the
plane of the triangle B1B2B3;

(b.1) uj and uk are perpendicular to (Bj – Bi) and (Bk –
Bi), respectively (i, j, k ∈ {1, 2, 3|i �= j; i �= k; j �= k})
(Fig. 5);

(b.2) uj and uk (j, k ∈ {1, 2, 3|j �= k}) are parallel to one
another and perpendicular to (Bk – Bj).

The discussion of condition (c) (i.e. v1 is perpendicular
to f1) must consider the fact that f1 may be (see Eq. 13)

Fig. 6. Singular geometry of type (c.1).

Fig. 7. Singular geometry of type (c.2).

(i) parallel to u2 (which implies that u3 is perpendicular
to (B3 – B1)), (ii) parallel to u3 (which implies that u2 is
perpendicular to (B2 – B1) and (iii) a linear combination of
u2 and u3.

The analysis of condition (c) in the cases (i) and (ii) brings
to singular geometries that are special cases of (a.2) or of the
following case

(c.1) uj and uk (j, k ∈ {1, 2, 3|j �= k}) are perpendicular to
(Bk–Bj) (Fig. 6) (note that condition (b.2) is a special
case of this condition).

Condition (c.1) was also found in Yang et al.20

In the case (iii), if the expressions of the coefficients of u2

and u3, appearing in Eq. (13) are not considered, condition
(c) implies that v1 is contemporarily perpendicular to u1, u2

and u3. Therefore, by noting that v1 is always parallel to
the plane of the triangle B1B2B3, the following geometric
condition results

(c.2) the three unit vectors ui, i = 1, 2, 3, are parallel to one
plane which is perpendicular to the plane of the triangle
B1B2B3. (Fig. 7)

Finally, in the case (iii), if the special expressions of the
coefficients of u2 and u3 in Eq. (13) are considered, the
demonstration, reported in Kong et al.19 (which starts from
expression (8)), holds. Such a demostration brings to the
conclusion that, in this case, condition (c) brings to the
following geometric condition

(c.3) at least one point is in common among the plane of
the triangle B1B2B3 and three planes πi, i = 1, 2, 3,
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Fig. 8. Singular geometry of type (c.3).

defined as follows: πi is the plane passing through Bi

and perpendicular to ui; (Fig. 8) (note that conditions
(a.2), (b.1) and (c.1) are special cases of this condition).

Since the above-reported discussion is exhaustive, the
conclusion is that all the singular geometries of the 3-PS
structure must belong to at least one out of the cases (a.1),
(c.2) and (c.3). The geometric conditions (a.1) and (c.2) were
not identified in Ebert-Uphoff et al.18 and Kong et al.19 and
are new.

5. USE OF THE SINGULARITY CONDITION
OF THE 3-PS STRUCTURE
From an analytic point of view, condition (14) is one equation
which contains only vectors embedded either in the base or
in the platform. As a consequence, when these vectors are
all written in a unique reference system fixed either in the
base or in the platform, only the geometric constants, and the
parameters which identify the relative orientation between
platform and base appear in Eq. (14).

In order to apply condition (14) to the study of the 3-
dof manipulators which become 3-PS structures when the
actuators are locked, the following procedure can be used

(a.1) three parameters which identify the relative orientation
between end effector and frame are chosen as
generalized coordinates of the manipulator;

(a.2) by solving the inverse position analysis of the
manipulator with assigned relative orientation of end
effector and frame, the actuated joint variables are
explicitly expressed as function of the orientation
parameters, chosen in the step (a.1);

(a.3) the geometric parameters which depend on the actuated
joint variables, and become geometric constant of the
3-PS structure when the actuated joint are locked,
are explicitly expressed as function of the orientation
parameters, chosen in the step (a.1), by exploiting the
results obtained in step (a.2);

(a.4) the expressions obtained in step (a.3) are substituted
for the corresponding geometric constants in Eq. (14),
and the resulting equation, which, now, contains only
the geometric constant of the manipulator and the
orientation parameters, and is the analytic expression
of the direct-problem-singularity locus of the mani-
pulator, is used to draw the singularity locus of the

manipulator in a three-dimensional diagram whose
coordinates are the orientation parameters.

If the geometric constants of the manipulator are assigned,
the equation obtained at the end of the above procedure
is an scalar equation in three unknowns (the orientation
parameters). Thus, it is the analytic expression of a surface
of the three-dimensional space whose coordinates are the
orientation parameters. This surface is the geometric locus of
the direct problem singularities of the manipulator. The same
equation can be used to visualize the effect of variations in
the geometric constant of the manipulator on the singularity
locus.

6. CONCLUSIONS
Three-degree-of-freedom parallel manipulators with three
limbs, each one constituted of one passive prismatic pair,
one passive spherical pair and one actuated kinematic pair
of any type, become 3-PS structures when the actuated pairs
are locked.

Direct kinematics of this class of manipulators is tied to
the properties of the 3-PS structure. In particular, the direct
position analysis is tied to the assembly modes of the 3-PS
structure; whereas the determination of the singularities of
the direct instantaneous problem is tied to the determination
of the singular geometries of the 3-PS structure.

This paper has studied the singular geometries of the 3-PS
structure.

In particular, the kinematic point of view, presented in
Kong et al.19 and Yang et al.,20 for searching the singular
geometries of the 3-PS structure has been reconsidered. The
analytic form of the 3-PS structure’s singularity condition
has been transformed into a new form. The new form has
made it possible the exhaustive enumeration of the geometric
conditions, which identify the singular geometries, and has
revealed that there are some geometric conditions which were
not identified in the literature.

Finally, the determination of the analytic expression of the
singularity loci of 3-dof manipulators which generate 3-PS
structures, when the actuators are locked, has been discussed.
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9. J. M. Hervé and F. Sparacino, “Structural synthesis of parallel
robots generating spatial translation,” Proc. of the 5th Int. Conf.
on Advanced Robotics, Pisa, Italy (1991) pp. 808–813.

10. L. W. Tsai, “Kinematics of a three-dof platform with three
extensible limbs,” Recent Advances in Robot Kinematics
(J. Lenarcic and V. Parenti-Castelli, eds.) (Kluwer Academic
Publishers, 1996) pp. 401–410.

11. R. Di Gregorio and V. Parenti-Castelli, “A translational 3-dof
parallel manipulator,” Advances in Robot Kinematics: Analysis
and Control (J. Lenarcic and M. L. Husty, eds.) (Kluwer
Academic Publishers, 1998) pp. 49–58.

12. L. W. Tsai, “The enumeration of a class of three-dof parallel
manipulators,” Proc. of the 10th World Congress on the Theory
of Machine and Mechanisms, Oulu, Finland, pp. 1121–1126
(1999) pp. 1121–1126.

13. M. Ceccarelli, “A new three d.o.f. spatial parallel mechanism,”
Mechanism and Machine Theory 32, No. 8, 896–902 (1997).

14. R. Di Gregorio and V. Parenti-Castelli, “Position analysis in
analytical form of the 3-PSP mechanism,” ASME Journal of
Mechanical Design 123, No. 1, 51–55 (2001).

15. V. Parenti-Castelli and C. Innocenti, “Direct displacement
analysis for some classes of spatial parallel mechanisms,” Proc.
of the 8th CISM-IFToMM Symp. on Theory and Practice of
Robots and Manipulators, Cracow, Poland (1990) pp. 126–
133.

16. V. Parenti-Castelli and C. Innocenti, “Forward displacement
analysis of parallel mechanisms: closed form solution of PRR-
3S and PPR-3S structures,” ASME Journal of Mechanical
Design 114, No. 1, 68–73 (1992).

17. C. M. Gosselin and J. Angeles, “Singularity analysis of closed-
loop kinematic chains,” IEEE Transactions on Robotics and
Automation 6, No. 3, 281–290 (1990).

18. I. Ebert-Uphoff, J.-K. Lee and H. Lipkin, “Characteristic
tetrahedron of wrench singularities for parallel manipulators
with three legs,” Proc. of the “Ball 2000 Symposium”,
Cambridge (UK) (July, 2000). http://robot.me.gatech.edu/
PAPERS/BALL2000.pdf (also published in IMechE Journal of
Mechanical Engineering Science 216, No. C1, 81–93, 2002).

19. X. Kong and C. M. Gosselin, “Uncertainity singularity analysis
of parallel manipulators based on the instability analysis of
structures,” Int. J. of Robotics Research 20, No. 11, 847–856
(2001).

20. G. Yang, I.-M. Chen, W. Lin and J. Angeles, “Singularity
analysis of three-legged parallel robots based on passive-
joint velocities,” IEEE Trans. on Robotics and Automation 17,
No. 4, 413–422 (2001).

https://doi.org/10.1017/S0263574704000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704000219

