
THE JOURNAL OF NAVIGATION (2018), 71, 21–43. c© The Royal Institute of Navigation 2017
doi:10.1017/S0373463317000510

Observability-based Mars Autonomous
Navigation Using Formation Flying

Spacecraft
Yangwei Ou and Hongbo Zhang

(College of Aerospace Science and Engineering, National University of Defence
Technology, Changsha, China)

(E-mail: zhanghb1304@nudt.edu.cn)

This paper concentrates on designing an autonomous navigation scheme for Mars exploration.
In this scheme, formation flying spacecraft are used to realise absolute orbit determination when
orbiting around Mars. Inertial Line-Of-Sight (LOS) vectors from “deputy” spacecraft to the
“chief” are measured using radio cross-link, optical devices and attitude sensors. Since the sys-
tem’s observability is closely related to the navigation performance, an analytical approach is
proposed to optimise the observability. In this method, the gravity gradient tensor difference is
chosen as the performance index to optimise two navigation scenarios. When there is one deputy
flying around the chief, optimal parameters are obtained by solving the constrained optimisation
problem. When a second deputy is added into the formation, the optimal configuration is also
obtained. These results reveal that the observability is mainly determined by the magnitude of
the in-track and cross-track distances in the configuration. An Extended Kalman Filter (EKF)
is used to estimate the position and velocity of the chief. The results of a navigation simulation
confirms that adding more deputies can significantly improve the navigational performance.
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1. INTRODUCTION. During the successfully conducted Mars exploration missions,
reliance has been placed on Earth-based radiometric measurements to determine the orbit
of the spacecraft (Schratz et al., 2014). To fulfil pinpoint landing, the top priority is to
deliver the spacecraft to the calculated atmosphere entry interface (Martinmur et al., 2014).
Hitherto, dependence has been on intensively conducted measurements, such as Doppler,
Direct-to-Earth X-band link and Delta Differential One-way Range (�DOR) to predict the
trajectory of the spacecraft a couple of weeks before entry (Schratz et al., 2014; Quadrelli
et al., 2015). However, accurate knowledge of the real-time state cannot be obtained
because of the time delay. As a result, real-time control of the spacecraft cannot be realised
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(Dutta and Braun, 2014). Hence, autonomous orbit determination is necessary for precise
control and guidance in Mars exploration.

As the abilities of small satellites have become increasingly versatile (Alfriend et al.,
2009), formation flying spacecraft have been used to fulfil autonomous navigation. The
advantages of using formation flying spacecraft include reducing the size of the space-
craft; reducing costs, increasing flexibility and offering a more robust navigation solution
(Ning et al., 2011). Markley (1984) initially proposed the method to determine the orbits
of the two spacecraft formation flying in low Earth orbits. Psiaki (2011) applied this
method to estimate the gravitational constant and J2 term of the moon. Yang presented
an autonomous navigation method for a spacecraft formation flying in the proximity
of an asteroid, on board optical devices and a LIDAR (Light Detection And Rang-
ing) were used to estimate the relative position and velocity of the formation with
respect to the asteroid (Yang et al., 2016). Maessen and Gill (2012) proposed a method
to estimate the relative state of the formation flying spacecraft using relative range
measurements.

Observability analysis is inevitable in designing a system using formation flying
spacecraft, because we cannot achieve satisfactory state estimation when the system is
unobservable. Almost all systems are nonlinear in dynamics and nonlinear measurements
are also widely exploited to realise autonomous navigation (Wang et al., 2016; Wang
and Zheng, 2014; Liu et al., 2017). Considering the observability analysis methods, two
approaches have been used to attack the observability of nonlinear systems (Wu et al.,
2012). The first one uses differential geometrical theory to obtain the observability matrix.
The system is said to be locally weakly observable if the full-rank condition is satis-
fied (Anguelova, 2007; Hermann and Krener, 1977). However, Lie derivatives should be
calculated, which ask for heavy computation for high dimensional systems. The second
method turns to the Piecewise Constant (PWCS) assumption and calculating the observ-
ability matrix for the linearized system (Goshen-Meskin and Bar-Itzhack, 1992a; 1992b;
Bemporad et al., 2000). Other approximate methods were also developed by researchers
(Yim et al., 2004; Hill and Born, 2007). Yu et al. (2015) proposed a method based on the
quadratic approximation of Lie derivatives, and the condition number of the observability
matrix was chosen as the performance index. Nevertheless, the approximation may induce
uncertainty to the observability analysis.

The purpose of this paper is to fulfil Mars autonomous navigation using formation fly-
ing spacecraft. The top priority is to find the optimal configuration design parameters to
enhance the system’s observability. The methods mentioned above can only provide an
index to evaluate the configuration rather than directly giving the optimal parameters. In
view of this shortcoming, an analytical approach is proposed to directly find the optimal
configuration. The parameters are optimally found by solving the constrained optimisation
problem. When the second deputy is added into the formation, the parameters are also opti-
mally solved. We also provide a novel explanation for the system design result from the
perspective of the Fisher information theory. In simulation, the extended Kalman filter is
applied to estimate the state. When there is one deputy, the position determination accuracy
can be within 10 m and the velocity accuracy can be within 0·01 m/s. Furthermore, when
another deputy is added, the accuracies are significantly enhanced.

The rest of the paper is organised as follows. Section 2 gives the method to design
the spacecraft formation. In Section 3, we investigate the observability when there is one
deputy in the formation. When another deputy is added, the observability is optimised in
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Figure 1. Coordinates and formation flying spacecraft.

Section 4. In Section 5, the navigation simulation is conducted using the Extended Kalman
Filter (EKF). Section 6 concludes this paper.

2. FORMATION CONFIGURATION DESIGN.
2.1. Coordinate systems. Two coordinate systems are involved in this paper. The

Mars J2000·0 frame is used to describe the absolute motion of formation flying space-
craft when orbiting around Mars. The origin of this frame lies in the centre of Mars, the
XI axis points to the vernal equinox, the ZI axis points to the north pole of the Mars, and
the YI axis completes this right-handed system. The relative motion is described in the
Local-Vertical Local-Horizontal (LVLH) frame placed at the mass centre of the chief, in
which the x directs radially outwards from the chief, z is normal to the orbit plane and y
completes the frame. The two types of frame are depicted in Figure 1. We assume that the
measurement frame coincides with the body frame and the body frame is aligned to the
LVLH frame.

2.2. Formation configuration design. The formation configuration is designed using
the relative orbit elements. The Keplerian elements are defined as the semi-major axis a,
eccentricity e, inclination i, right ascension of ascending node �, argument of perigee ω,
and mean argument of latitude u. In Equation (1), five description parameters {p , s, α, θ , l}
are used to determine the relative motion in the LVLH frame (Zeng et al., 2012; Hu et al.,
2013; Ou et al., 2016). Based on the orbit elements of the chief, the relative orbit elements
are obtained with these parameters.

⎧⎪⎨
⎪⎩

x = −p cos(u − θ )
y = 2p sin(u − θ ) + l
z = s sin(u − ϕ)

(1)
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Figure 2. Parameters in relative motion frame.

p = aδe determines the semi-minor axis of the in-plane ellipse, s = aδi represents the cross-
track magnitude in the relative frame, θ is the initial phase angle of the in-plane motion and
φ is the initial phase angle of the cross-track motion. l represents the along-track offset
which is set to be zero in this paper, u = nt describes the mean motion and n is the orbit
angular velocity. Note that the phase angle difference α = θ − φ determines the spatial
orientation of the relative motion in LVLH. These parameters are depicted in Figure 2.

3. ONE-DEPUTY FORMATION NAVIGATION SCENARIO.
3.1. Nonlinear observability analysis with Lie algebra. Considering the observabil-

ity analysis for nonlinear systems, differential geometrical theory and Lie algebra have
received considerable attention. However, researchers are impeded by the burdensome
computation of Lie derivatives when dealing with high dimensional nonlinear systems.
In this section, we consider the nonlinear dynamical systems in the form


 :

{
x = f (x)
y = h(x)

The dynamical system is corrected by adding the dot on x


 :

{
ẋ = f (x)
y = h(x)

(2)

Where x ∈ R
n denotes the n-dimensional state vector, and y ∈ R

m denotes the m-
dimensional measurement vector. f (x) refers to the dynamical function and h(x) is the
measurement function.

In order to acquire the observability matrix, theoretically, (n − 1)th-order Lie deriva-
tives should be computed for a n-dimensional dynamical system. The (k + 1)th-order Lie
derivative can be recursively computed from the kth-order Lie derivative with respect to
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the state equation f (x) as below

Lk+1
f h(x) =

∂
(

Lk
f h(x)

)
∂x

f (x) (3)

Particularly, the 0th-order Lie derivative is

L0
f h(x) = h(x) (4)

Then, the nonlinear observability matrix is expressed as

O(x) =
[
(dh(x))T

(
dL1

f h(x)
)T

· · ·
(

dLn−1
f h(x)

)T
]T

(5)

where the differential of Lk
f h(x) with respect to the state is defined as

dLk
f h(x) =

∂Lk
f h(x)

∂x
(6)

If the observability matrix satisfies the full-rank condition, the system is said to be
locally weakly observable (Kassas and Humphreys, 2014).

In contrast with the nonlinear observability analysis, the linearized approach is based on
the piecewise constant assumption. Considering the same dynamical system, the linearized
observability matrix is computed as (Chen and Xu, 2010).

On(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

H (xk)

H (xk+1) Φ (xk)

H (xk+2) Φ (xk+1) Φ (xk)

...
H
(
xk+(n−1)

)
Φ
(
xk+(n−2)

) · · ·Φ (xk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where the measurement matrix H and state transition matrix Φ are defined as

H =
∂h(x)
∂x

(8)

Φ = I +
∂f (x)

∂x
·T (9)

where T is the update step.
3.2. One-deputy observability optimisation. As is shown in Figure 3, the relative line-

of-sight vectors can be measured using LIDAR and other optical devices. Based on the
attitude sensors, the inertial line-of-sight vector measurements can be obtained by trans-
forming the relative line-of-sight measurements to the inertial frame. The orbit dynamical

https://doi.org/10.1017/S0373463317000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317000510


26 YANGWEI OU AND HONGBO ZHANG VOL. 71

Figure 3. Relative measurement model.

equation and measurement equation are[
ṙ
v̇

]
=

[
v

−μri/ ‖ri‖3

]
(10a)

y = r2 − r1

= CI
b

⎡
⎢⎣

ρ cos β cos γ

ρ cos β sin γ

ρ sin β

⎤
⎥⎦ (10b)

where CI
b is the attitude matrix transforming the relative measurements to the inertial frame,

ρ is the relative range, β is the elevation angle and γ is the azimuth angle.
Theoretically, n − 1 order Lie derivatives should be calculated and concatenated to

obtain the observability matrix (Anguelova, 2007). Based on the analysis from Psiaki
(2011), in order to find the conditions that make the system unobservable, we only need to
calculate the matrix to be square since the null space of Ok(x) x = 0 is necessarily contained
in the null space of Oj (x) x = 0 for all j < k. Inspired by this conclusion, the square-form
nonlinear observability matrix for the one-deputy system is computed as below

O(x) = d

⎡
⎢⎢⎢⎣

h(x)
v1 − v2

g1 − g2

G1v1 − G2v2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

I 0 −I 0
0 I 0 −I

G1 0 −G2 0

Ġ1 G1 Ġ2 −G2

⎤
⎥⎥⎥⎦ (11)

where the gravity gradient tensor Gi and its differentials with respect to the states Ġi are

Gi =
μ

‖ri‖3

(
3rirT

i − I
)
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Ġi =
μ

‖ri‖4

[
virT

i + rivT
i − (rT

i vi
) (

5rirT
i − I

)]
(12)

Generally, we tend to find the most observable configurations directly. Nevertheless,
methods available now just outline the unobservable cases which should be avoided.
Through close observation of the elements of the observability matrix, we conclude that
the observability is determined by the linear correlation between columns or rows. Intu-
itively, when these columns and rows of the observability matrix are weakly correlated, the
matrix is more positive definite. Therefore, the linear correlation between the columns or
rows can be exploited to enhance the observability.

In Equation (11), expanding the difference between G1 and G2 to enhance the matrix’s
positive definiteness is straightforward. In the physical sense, we are enlarging the disparity
of the two spacecraft’s gravity gradient tensors. Now, the Frobenius norm of matrix differ-
ence is ‖G1 − G2‖F , defined below, since this norm can reflect the matrix difference to the
maximal extent (Böttcher and Wenzel, 2008).

‖A‖F =

⎛
⎝ m∑

i=1

n∑
j =1

∣∣aij
∣∣2
⎞
⎠

1
2

(13)

The positions of the chief and the deputy can be expressed in the LVLH frame as below

r1 = [r1, 0, 0]T (14)

r2 = [r2 + x, y, z]T (15)

r1 is the distance from the chief to the centre of Mars, and [x, y, z]T is the relative position
vector in the LVLH frame. The difference of gravity gradient tensor is calculated as

G1 − G2 =
μ

‖r1‖3

(
3r1rT

1 − I
)− μ

‖r2‖3

(
3r2rT

2 − I
)

=
3μ

‖r1‖3 r1rT
1 − 3μ

‖r2‖3 r2rT
2 +
(

μ

‖r1‖3 − μ

‖r2‖3

)
I

=
3μ

‖r1‖3

⎛
⎝r1rT

1 − ‖r1‖3(
(r1 + x)2 + y2 + z2

) 3
2

− r2rT
2

⎞
⎠ +

(
μ

‖r1‖3 − μ

‖r2‖3

)
I

≈ 3μ

‖r1‖3

(
r1rT

1 −
(

1 − 3x
r1

)
r2rT

2

)
+
(

μ

‖r1‖3 − μ

‖r2‖3

)
I

≈ 3μ

‖r1‖3

(
r1rT

1 − r2rT
2

)

(16)

where the minutiae are omitted, then we turn to the new object

r2rT
2 − r1rT

1 =

⎛
⎝2r1x + x2 (r1 + x) y (r1 + x) z

(r1 + x) y y2 yz
(r1 + x) z yz z2

⎞
⎠ (17)
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The Frobenius norm of this matrix is computed as

∥∥r2rT
2 − r1rT

1

∥∥
F

=
√(

x2 + 2r1x
)2 + 2 (y (x + r1))

2 + 2 (z (x + r1))
2 + 2y2z2 + y4 + z4

(18)

Then the final performance index is chosen as

J =
(
2r1x + x2)2 + 2y2 (r1 + x)2 + 2z2 (r1 + x)2 + y4 + 2y2z2 + z4 (19)

For a formation system with only one deputy, the description parameters should be opti-
mised to elevate the system’s observability. Among the five parameters, the impact of r1
has been investigated thoroughly by other researchers and θ does not influence the spa-
tial configuration, l is set to zero in this paper. Three parameters {p , s, α} are left to be
optimised.

According to Equations (14) and (15) and Equation (1), we assume that the initial in-
plane phase angle is 0 when t = 0; the position vectors can be rewritten as

{
r1 = [r1, 0, 0]T

r2 = [r1 − p , 0, −s sin α]T (20)

The performance index is computed as

J =
(−2r1p + p2)2 + 2s2 (r1 − p)2 sin2 α + s4 sin4 α (21)

With the restriction, the constrained optimisation problem can be stated as

min − J (α, p , s)

S.t :

⎧⎪⎨
⎪⎩

0 < α ≤ 2π

0 < p ≤ q1

0 < s ≤ q2

(22)

To handle the preceding problem, the Lagrange function is defined as

L (α, p , s, γ1, γ2, γ3) = −J − γ1(2π − α) − γ2 (q1 − p) − γ3 (q2 − s) (23)

Where q1, q2 determine the size of the relative motion trajectory, and γ1, γ2, γ3 are the
Lagrange multipliers. The solution of this problem is α = π/2, 3π/2, p = q1, s = q2.

4. TWO-DEPUTY FORMATION NAVIGATION SCENARIO. When another deputy
is added to the original navigation scheme, more parameters are involved in designing the
configuration. When there are two deputies orbiting around the chief, the Lie derivatives
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Figure 4. Two-deputy navigation scheme.

are calculated as

L0
f h(x) = h(x) =

[
r1 − r2

r1 − r3

]

L1
f h(x) =

∂h (x)

∂x
f (x)

[
v1 − v2

v1 − v3

]

L2
f h(x) =

∂L1
f h (x)

∂x
f (x) =

[
g1 − g2

g1 − g3

]
(24)

The nonlinear observability matrix for the three-spacecraft formation is computed as

O(x) = d

⎡
⎢⎢⎢⎢⎢⎢⎣

h(x)
v1 − v2

v1 − v3

g1 − g2

g1 − g3

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 −I 0 0 0
I 0 0 0 −I 0
0 I 0 −I 0 0
0 I 0 0 0 −I

G1 0 −G2 0 0 0
G1 0 0 0 −G3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

The navigation scheme is depicted in Figure 4. We also assume that the initial phase
angles of the first deputy are θ1 = 0, α1 = π/2, and the initial phase angles of the second
deputy are θ2 = θ , α2 = α which will be optimised in this section. Following the previous
method, the position vectors can be rewritten as{

r2 = [r1 − p , 0, −s]T

r3 = [r1 − p cos θ , 2p sin θ , s sin (θ − α)]T (26)
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Using Equation (17), the performance index is calculated as

J = 16p4 sin4 θ +
(
(r1 − p cos θ)2 − (r1 − p)2)2 + 8 (p sin θ (r1 − p cos θ))2

+ 2 (s sin (θ − α) (r1 − p cos θ) + s (r1 − p))2 + 8 (ps sin θ sin (θ − α))2

+
(
s2 − s2 sin2 (θ − α)

)2 (27)

The constrained optimisation problem can be stated as

min − J (α, θ )

S.t :

{
0 < θ ≤ 2π

0 < α < 2π
(28)

Solving this constrained optimisation problem, four solutions are obtained as follows
and the details are given in the Appendix.

1.

{
α =

π

2
θ = π

, 2.

⎧⎨
⎩α =

3π

2
θ = π

(29)

3.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ = arccos t

t = −
−13p2 − 3s2 + 2pr1 − 2r2

1 +
√(

13p2 + 3s2 − 2pr1 + 2r2
1
)2 + 36pr1

(
s2 + 3pr1 + 2r2

1
)

18pr1
α = θ + π/2

4.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θ = ‖ arccos t‖
t =

1
18p2r1

(−13p3 − 3ps2 + 2p2r1 − 2pr2
1
)

− 1
18p2r1

√(
13p3 + 3ps2 − 2p2r1 + 2pr2

1
)2 + 36p2r1

(−ps2 + 3p2r1 + 2s2r1 + 2pr2
1
)

α = θ − π/2
(30)

To find out which is the global optimal solution, we use numerical methods. In this work,
the Particle Swarm Optimisation (PSO) algorithm is applied to obtain the global optimum.
As is shown in Figure 5, the optimal values for θ and α reside in the neighbourhood of
π and π/2. The deviations between solutions 1–2 and the results of PSO are depicted in
Figure 6, in which the difference between solution 1 and the global optimum varies within
0·02%. Solutions 3–4 are compared in Figure 7 and solution 4 is approximately the same
as solution 1. According to these results, the global optimal solution is{

θ = π

α =
π

2
(31)

Although we have obtained the optimal design parameters for the two-deputy formation
system, the Fisher information theory can also give us an insightful explanation of this
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Figure 5. The results of optimal parameters using PSO.

Figure 6. The results of solution 1–2 and their deviations with PSO.

result. In the estimation theory, the covariance matrix of any unbiased estimator satisfies

Cθ̂ ≥ I−1 (θ) (32)

where I (θ) is referred to as the Fisher information, and

[I (θ)]ij = −E
[
∂2 ln p(x; θ)

∂θ i∂θ j

]
(33)

where E denotes the expectation.
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Figure 7. The results of solutions 3–4.

When there are N IID (Independent Identically Distributed) observations with identical
probability density function p(x [n] ; θ), the overall Fisher information becomes

− E
[
∂2 ln p(x; θ)

∂θ∂θT

]
= −

N−1∑
n=0

E
[
∂2 ln p(x [n] ; θ)

∂θ∂θT

]
(34)

which is N times the single observation. Therefore, only when the observations between the
chief and the two deputies are independent and identically distributed, can the navigation
accuracy be doubled. Consider the problem confronted in this paper, the observations with
respect to the two deputies are shown as below

h1(k) = CI
b

⎡
⎢⎣

ρ1 cos β1cosγ1

ρ1 cos β1 sin γ1

ρ1 sin β1

⎤
⎥⎦ (k) + v (k)

h2(k) = CI
b

⎡
⎢⎣

ρ2 cos β2cosγ2

ρ2 cos β2 sin γ2

ρ2 sin β2

⎤
⎥⎦ (k) + v (k)

(35)

In view of the requirement, two observations should have the same mean in each period
and thus they will have the same covariance under identical measurement noises.

E [h1 (k)] = E [h2 (k)] (36)
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This means two measurements should have the same time history. Since the measurement
information with respect to each deputy is repeated every half of the period, the measure-
ments in each half cycle are statistically equivalent. Based on this, we obtain the following
constraint that should be followed

⎧⎪⎪⎨
⎪⎪⎩

ρ1 (k) = ρ2 (k)

β1 (k) = ±β2 (k)

γ1 (k) = ±γ2 (k) , γ2 (k) + π

(37)

Obviously, the result in Equation (34) satisfies this constraint and requires that two
deputies should be situated on the same trajectory and one always lags the other for half of
a period.

5. NAVIGATION SIMULATION. Numerical analysis is conducted in this section to
validate the above conclusions. The observability matrix is computed numerically with a
Piecewise Constant (PWCS) assumption to verify the result of the theoretical analysis. For
a discrete-time system as below, an EKF is designed to estimate the position and velocity
of formation flying spacecraft.

{
xk = φk−1 (xk−1) + wk−1

yk = hk (xk) + vk
(38)

wk ∼ N
(
0, Qk

)
is the process noise and vk ∼ N (0, Rk) is the measurement noise. The

discrete extended Kalman filter equations are given as follows (Brown and Hwang, 1997)

xk|k−1 = φk|k−1 (xk−1)

yk = hk
(
xk|k−1

)
Pk|k−1 = Φk−1Pk−1Φ

T
k−1 + Qk−1

K k = Pk|k−1H T
k

[
H kPk|k−1H T

k + Rk
]−1

xk = xk|k−1 + K k
(
yk − yk

)
Pk = (I − K kH k) Pk|k−1

(39)

5.1. One-deputy formation navigation performance. When there is one deputy
around the chief, at first, we investigate the relationship between the relative position and
the observability. The description parameters are randomly set as {p = 10 km, s = 20 km,
α = π/2, θ = 0}, and the initial orbit elements of the chief and the deputy are given in
Table 1.

According to the orbit elements, a numerical method is used to compute the observabil-
ity matrix using Equation (7), in which the measurement matrix and the state transition
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Table 1. Initial orbital elements of two spacecraft.

Orbital elements Chief Deputy

Semi-major axis [km] 3697 3697
Eccentricity 0·001 0·0037
Inclination [◦] 90·00 89·946
Right ascension of the ascending node [◦] 20·00 20·3052
The argument of perigee [◦] 10·00 9·999
Mean perigee [◦] 0·000 0·000

Figure 8. The variation of condition number with time.

matrix are

H =
[−I 0 I 0

]
(40)

Φ = I + A · T (41)

where A is the Jacobian matrix

A =

⎡
⎢⎢⎢⎣

0 I 0 0
G1 0 0 0
0 0 0 I

0̇ 0 G2 0

⎤
⎥⎥⎥⎦ (42)

The condition number is shown in Figure 8, and Figure 9 illustrates the performance
index in Equation (19). According to Figures 8 and 9, the performance index synchronously
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Figure 9. The variation of performance index with the time.

changes with the condition number, and the performance index reaches its nadir when the
condition number reaches the apogee. This result also reveals that the system’s observ-
ability is time-variant. Particularly, the most observable place lies at the point when the
deputy’s out-of-plane magnitude reaches the maximum. At this time, the deputy is far away
from the reference orbit plane and the gravity gradient tensor difference becomes the most
considerable.

Now we examine the influence of p , s when α = π/2; orbit elements for the deputy are
re-calculated with various p and s. Also, we observe the effect of α with p and s settled in
Equation (21). The results are depicted in Figure 10, which reveals that the effects of p and
s are more dominant than α. The variation of the performance index invoked by α is nearly
one magnitude less than that caused by the variation of p and s. Moreover, when α = π/2
and 3π/2 the observability becomes the best.

The analysis above has demonstrated the validity of the analytical solutions. In practice,
the improvement in navigational accuracy is the most straightforward way to evaluate the
performance of any proposed navigation system. Therefore, an extended Kalman filter is
applied here and the navigation accuracies are compared. The parameters in the filter are
presented in Table 2.

The dynamical model with J2 perturbation is considered in the filter, and the filtering
period is ten seconds. Figure 11 shows that the effects of p and s are considerable in improv-
ing the navigation accuracy, while the effect of α is limited. This result coincides with the
conclusion from Figure 10.

5.2. Two-deputy formation navigation performance. In this section, the parameters
used in the extended Kalman filter are identical to those in Table 2. We assume that the
initial phase angles for the first deputy are α1 = π/2, θ1 = 0 and α2 = α and θ2 = θ for the
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Figure 10. The variation of the performance index with p , s, α.

Table 2. Filter parameters setting (Unit:km2).

Parameters Value

Process noise covariance
Q1,2 = diag

([
10−12, 10−12, 10−12, 10−16, 10−16, 10−16

])
Qk = diag

([
Q1, Q2

])
Measurement noise covariance Rk = diag

([
10−6, 10−6, 10−6])

Initial covariance matrix
P1,2 = diag

([
100, 100, 100, 10−6, 10−6, 10−6

])
Pk = diag ([P1, P2])

Figure 11. The influence of p , s, α on position estimation accuracy (1σ ).
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Figure 12. The position estimation accuracy with different α, �θ (1σ ).

Table 3. Orbit elements of three spacecraft.

Orbit elements Chief Deputy 1 Deputy 2

Semi-major axis [km] 3697 3697 213·92
Eccentricity 0·001 0·0037 0·0017
Inclination [◦] 90·00 89·946 90·0538
Right ascension of the ascending node [◦] 20·00 20·3052 19·6947
The argument of perigee [◦] 10·00 9·999 189·9983
Mean perigee [◦] 0·000 0·000 −179·9984

second deputy. Four cases are compared in Figure 12, the result confirms that the influence
of α is quite limited.

The design parameters for the second deputy are set as α2 = π/2, θ2 = π and orbit
elements of this formation are listed in Table 3. The position and velocity estimation
results are displayed in Figures 13 and 14, in which the position determination accuracy
is within 10 m and the velocity accuracy is less than 0·01 m/s. Note that the parame-
ters obtained through optimisation are the global optimum over the whole time interval.
The reason is that we have optimised the relative in-plane phase angle difference �θ

between the two deputies. The angle α of the second deputy is invariant when flying
around the chief. Finally, the navigation performance of two navigation scenarios are
compared. As illustrated in Figure 15, the navigation errors using two deputies are half
those using only one deputy. This result encourages us to add another auxiliary micro-
spacecraft to expedite convergence and enhance the navigation accuracy. Additionally,
more auxiliary deputies can make the system robust and allow for the malfunction of one
deputy.

6. CONCLUSION. In this paper, an observability-based approach was proposed to
improve a Mars navigation system using formation flying spacecraft. Inspired by the
positive definiteness of the observability matrix that was calculated with a differential
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Figure 13. The position estimation error with α = π/2, �θ = π .

Figure 14. The velocity estimation error with α = π/2, �θ = π .

geometrical approach, the gravity gradient tensor difference was finally selected as the
performance index to optimise the observability. The solutions were obtained by analyti-
cally solving the constrained optimisation problem. Moreover, the numerical observability
analysis based on piecewise constant assumption was conducted to examine the validity
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Figure 15. The position estimation accuracy comparison (1σ ).

of these analytical solutions. Finally, the feasibility and correctness of these results were
demonstrated by the navigation simulations. These results reveal that the system’s observ-
ability is severely influenced by the magnitude of motion in the in-track and cross-track
directions. When there is only one deputy surrounding the chief, observability is mainly
determined by the magnitude of the relative distance. The observability varies with time
and is the best when the deputy lies far away from the chief’s orbit plane. When the sec-
ond deputy is added, the observability will be enhanced and the best situation happens
when the two deputies are situated in the same relative orbit and one deputy always lags
the other for half a period. Future work may include combining the performance index
with the orbit elements, which seems to be more appropriate in describing the relative
motion.
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APPENDIX

When p and s are in the same magnitude, α is trivial in affecting the observability and the navigation
performance. As a result, we only constrain the domain of θ in this work for simplicity. This problem
can be expressed as Kuhn-Tucker conditions as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂J (α, p , s)
∂θ

+ γ1 = 0

∂J (α, p , s)
∂α

= 0

γ1 (2π − θ) = 0

γ1 ≥ 0

(43)

Two cases should be discussed to simplify the solution.

1. When γ1 = 0, the constraints are reduced to

⎧⎪⎨
⎪⎩

∂J (α, p , s)
∂θ

= 0

∂J (α, p , s)
∂α

= 0
(44)

which is an unconstrained optimisation problem, now we are going to solve this equation
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

16p4 sin3 θ cos θ + 4p3 sin3 θ(r1 − p cos θ) + 4p2 sin θ cos θ(r1 − p cos θ)2

+ p2 sin θ(cos θ − 1) (r1 − p cos θ) (p cos θ + p − 2r1) − 2p2s2 sin2 θ sin2 θ sin 2(α − θ)

+ s (sin(α − θ ) (p cos θ − r1) − p + r1) (r1s cos (α − θ) ps cos(α − 2θ))

+ 2p2s2 sin 2θ sin θ sin2(α − θ) + s4 sin(α − θ) cos3(α − θ) = 0

4s cos (α − θ)

(
4p2s sin2 θ sin (α − θ) − s3 sin(α − θ) cos2(α − θ)

−s(r1 − p cos θ) (sin(α − θ) (p cos θ − r1) − p + r1)

)
= 0

(45)
At first, we begin to discuss which part of the second equation is equal to zero.
(a) If cos (α − θ) = 0, α − θ = π/2, −π/2, 3π/2, −3π/2. In this case, we also need to discuss this

two situations as follows {
sin(α − θ) = 1

sin(α − θ) = −1
(46)

i. When in the case of sin(α − θ ) = 1, α − θ = π/2, −3π/2. Substitute cos(α − θ ) = 0 and
sin(α − θ ) = 1 into ∂J (α, p , s)

∂α
= 0.

p2 sin θ

(
−9p2 cos 3θ + cos θ

(
25p2 + 12s2)− 2pr1(4 cos θ + 9 cos 2θ + 3)

+ 8r2
1 (cos θ + 1) + 4s2

)
= 0 (47)

Since 0 < α < π , 0 < θ < 2π , we obtain the solution.

⎧⎨
⎩α =

3π

2
θ = π

(48)
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Another solution is solved by letting the polynomial in the bracket equal to zero. It worth noting
that minutiae are omitted since r1 
 p , r1 
 s.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ = arccos t

t = −−13p2 − 3s2 + 2pr1 − 2r2
1 +
√(

13p2 + 3s2 + 2pr1 − 2r2
1
)2 + 36pr1

(
s2 + 3pr1 + 2r2

1
)

18pr1
α = θ + π/2

(49)
ii. When in the case of sin(α − θ ) = −1, α − θ = −π/2, 3π/2. Substitute cos(α − θ ) = 0 and

sin(α − θ ) = −1 into ∂J (α,p ,s)
∂α

= 0

p sin θ

(
p
(−9p2 cos 3θ + cos θ

(
25p2 + 12s2)− 4s2) + 8pr2

1 (cos θ + 1)

−2r1
(
4p2 cos θ + 9p2 cos 2θ + 3p2 − 4s2)

)
= 0 (50)

Another particular solution is obtained ⎧⎨
⎩

α =
π

2
θ = π

(51)

Solution 4 is solved by letting the polynomial in the bracket equal zero. The minutiae are omitted
as well. Because this is just the approximate solution, the norm of arccos θ is applied to include the
cases when t is larger than one because of the error induced by approximation.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θ = ‖ arccos t‖
t =

1
18p2r1

(−13p3 − 3ps2 + 2p2r1 − 2pr2
1
)

− 1
18p2r1

√(
13p3 + 3ps2 − 2p2r1 + 2pr2

1
)2 + 36p2r1

(−ps2 + 3p2r1 + 2s2r1 + 2pr2
1
)

α = θ − π/2

(52)

(b) Then, we discuss another situation when

4p2s sin2 θ sin(α − θ ) − s3 sin(α − θ) cos2(α − θ)

− s (r1 − p cos θ) (sin(α − θ) (p cos θ − r1) − p + r1) = 0
(53)

This equation can be reduced to

sin (α − θ) =
s (r1 − p cos θ) (r1 − p)

4p2s sin2 θ − s2 cos2 (α − θ) + s (r1 − p cos θ)2

≈ (r1 − p cos θ) (r1 − p)

(r1 − p cos θ)2

≈ 1

(54)

which has been discussed above.
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2. The second case is when γ1 > 0, the constraints are reduced to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂J (α, p , s)
∂θ

+ γ1 = 0

∂J (α, p , s)
∂α

= 0

θ = 2n

γ1 ≥ 0

(55)

Corrected as γ1 > 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂J (α, p , s)
∂θ

+ γ1 = 0

∂J (α, p , s)
∂α

= 0

θ = 2π

γ1 ≥ 0

The equations are reduced to

{
s2 cos α

(
(sin α (p − r1) − p + r1) (r1 − p) + s2 sin α cos2 α

)
+ γ1 = 0

4s2 cos α
(
(r1 − p) (sin α (p − r1) − p + r1) + s2 sin α cos2 α

)
= 0

(56)

If α = 0, then γ1 = 0, which contradicts with the initial condition. If α �=0, γ1 is also equal to zero and
should be abandoned as well.
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