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MANY-ONE REDUCIBILITY WITH REALIZABILITY

TAKAYUKI KIHARA

Abstract. In this article, we propose a new classification of Σ0
2 formulas under the realizability

interpretation of many-one reducibility (i.e., Levin reducibility). For example, Fin, the decision of being
eventually zero for sequences, is many-one/Levin complete among Σ0

2 formulas of the form ∃n∀m ≥
n.ϕ(m, x), where ϕ is decidable. The decision of boundedness for sequences BddSeq and for width of
posets FinWidth are many-one/Levin complete among Σ0

2 formulas of the form ∃n∀m ≥ n∀k.ϕ(m, k, x),
where ϕ is decidable. However, unlike the classical many-one reducibility, none of the above is Σ0

2-complete.
The decision of non-density of linear orders NonDense is truly Σ0

2-complete.

§1. Introduction. In this article, we introduce the notion of many-one reducibility
for sets with witnesses and reanalyze the arithmetical/Borel/projective hierarchy
under this new reducibility notion. In computational complexity theory, the notion
of polytime many-one reducibility for sets with witnesses (i.e., search problems or
function problems) is known as Levin reducibility [4], but strangely enough, it seems
that its computable analogue has never been studied.

Definition 1.1 (Levin [4]). Let Σ be a finite alphabet. A search problem (or a
set with witnesses) is a binary relation R ⊆ Σ∗ × Σ∗, and any y satisfying R(x, y)
is called a witness (or a certificate) for x ∈ |R|, where |R| = {x : ∃yR(x, y)}. For a
complexity class C and search problems A and B, we say that A is C-Levin reducible
to B if there exist C-functions ϕ, r–, r+ such that for any x, y, z ∈ Σ∗ the following
holds:

1. x ∈ |A| if and only if ϕ(x) ∈ |B |.
2. If y is a witness for x ∈ |A| then r–(x, y) is a witness for ϕ(x) ∈ |B |.
3. If z is a witness for ϕ(x) ∈ |B | then r+(x, z) is a witness for x ∈ |A|.
As a closer look at the definition shows, Levin reducibility is nothing more

than the realizability interpretation of many-one reducibility. In this article, we
introduce the notion of many-one reducibility for subobjects in any category having
pullbacks, and observe that the same definition as computable Levin reducibility
is restored as many-one reducibility in the category of represented spaces. This
perspective unexpectedly connects the notion of Levin reducibility with the study of
arithmetical/Borel/projective hierarchy in intuitionistic systems.

The notion of many-one reducibility in intuitionistic/constructive systems was
first studied exhaustively by Veldman [9, 10, 12, 13] and later more recently by [3]
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Figure 1. The fine analysis of classical Σ0
2-complete sets.

and others. According to Veldman, the intuitionistic Borel/projective hierarchy
behaves differently from the classical hierarchy. For instance, Veldman showed that,
under a certain intuitionistic system, the union of two Π0

1 sets is not necessarily
Π0

1 [9], the set Fin of all sequences which is eventually zero is not Σ0
2-complete [12],

and the set IFKB of all trees which are ill-founded w.r.t. the Kleene–Brouwer ordering
is not Σ1

1-complete [13].
We see that these seemingly strange results can be clearly understood using Levin

reducibility. The category of represented spaces has the natural numbers object �,
the exponential object �� , and the interpretation of first-order logic, so one can
introduce the notion of arithmetic/Borel/projective subobjects by interpreting their
defining formulas in the internal logic. Moreover, in this category, a subobject is
nothing but a subset with witnesses. Based on these observations, for instance,
one can understand Veldman’s result as meaning that the witnessed version of
Fin is simply not Levin-complete among the witnessed Σ0

2 subsets (in classical
mathematics). The same applies to IFKB. In this way, even classical mathematicians
can clearly understand Veldman’s results on the intuitionistic hierarchy.

Of course, merely giving an interpretation of the existing results is not very
interesting, so we push this point of view forward with further analysis of many-
one/Levin degrees of witnessed sets. In this article, we focus in particular on Σ0

2 sets
with their existential witnesses. Our results are summarized in Figure 1.

For example, Fin is many-one/Levin complete among Σ0
2 sets defined by formulas

of the form ∃n∀m ≥ n.ϕ(m,x), where ϕ is decidable. The decision of boundedness
for posetsBddPO is also at the same level. The decision of boundedness for sequences
BddSeq is many-one/Levin complete among Σ0

2 sets defined by formulas of the form
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MANY-ONE REDUCIBILITY WITH REALIZABILITY 3

∃n∀m ≥ n∀k.ϕ(m, k, x), where ϕ is decidable. The decision of finiteness for width
FinWidth and height FinHeight for posets are also at the same level. The decision
of non-density of linear orders NonDense is truly Σ0

2-complete. In this way, the
focus on (existential) witnesses leads us to the discovery of a previously unknown
classification of Σ0

2 sets.

§2. Preliminaries.

2.1. Represented space. A coding system is a set Code of symbols for coding
various mathematical objects, with a prior specification of which functions on Code

are realizable. There are three typical coding systems:

1. Kleene’s first algebra K1: Code = �, and
realizable functions = computable functions on �.

2. Kleene’s second algebra K2: Code = �� , and
realizable functions = continuous functions on �� .

3. Kleene-Vesley algebra KV: Code = �� , and
realizable functions = computable functions on �� .

Here, � denotes the set of all natural numbers.

Notation. We writep ∗ x as the output result of feeding an input x to the realizable
function coded by p. For instance, e ∗ x in K1 stands for {e}(x) or ϕe(x) in traditional
notation.

Hereafter we assume that a coding system Code is one of K1, K2, or KV. Of
course, it is obviously possible to consider an arbitrary relative partial combinatory
algebra (or more) as a coding system [6]. However, in order to lower the threshold
for reading, we avoid unnecessary generalizations as much as possible.

Definition 2.1. A represented space X consists of an underlying set |X | and
a partial surjection �X :⊆ Code→ |X |. We sometimes use the symbol p 	X x to
denote �X (p) = x, and say that p is an X -name of x or p is a name of x ∈ X .

We sometimes use EX (x) to denote the set of all names of x ∈ X .

Example 2.2. Code itself is a represented space via the identity map id: Code→
Code.

Example 2.3. The terminal space 1 is defined as follows: The underlying set is
|1| = {•}, and any p ∈ Code is a name of its unique element •.

Example 2.4. The space of natural numbers Nat is defined as follows: The
underlying set is |Nat| = �. In K1, n ∈ � is a name of n ∈ Nat. In K2 or KV,
n0∞ ∈ �� is a name of n ∈ Nat, where n0∞ is the infinite string resulting from
concatenating n followed by the zero sequence 0∞; that is, (n0∞)(0) = n and
(n0∞)(k) = 0 for any k > 0. By an abuse of notation, we often use � to denote
Nat.

Example 2.5. The represented Sierpiński space S is defined as follows:

• The underlying set is |S| = {
,⊥}.
• (K1) If p ∗ 0 ↓ then p is a name of 
 else p is a name of ⊥.
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• (K2 or KV) The zero sequence 0∞ is a name of ⊥ and the other sequences are
names of 
.

See also Bauer [1] for a common construction of the Sierpiński space (a.k.a. the
Rosolini dominance) in general coding systems.

Definition 2.6. Let X and Y be represented spaces. A morphism f : X → Y is a
function f : |X | → |Y | such that there exists a partial realizable function F on Code

such that if p is a name of x ∈ X then F (p) is a name of f(x) ∈ Y . We often call F
a tracker of f.

Definition 2.7. For represented spaces X,Y , a morphism f : X → Y is mono if
it is injective on underlying sets.

§3. The structure of subobjects.

3.1. Witnessed subset. Our aim is to consider an arithmetic hierarchy over a
represented space. For this purpose, we carefully consider what a subset of a
represented space is.

Definition 3.1. A subspace of a represented space X is a represented space A
such that |A| ⊆ |X | and �A = �X �|A|; that is, the A- and X -names of x ∈ |A| are the
same.

The notion of a subspace seems most appropriate when viewing a subset of a
represented space as a represented space again. However, there could be another
possibility.

Definition 3.2. A subobject of a represented space X is a represented space A
such that |A| ⊆ |X | and there exists a partial realizable function which, given an
A-name of x ∈ |A|, returns its X -name.

A regular subobject of a represented space X is a subobject A of X such that there
exists a partial realizable function which, given an X -name of x ∈ |A|, returns its
A-name.

Observation 3.3. A represented space A is a subobject of X iff |A| ⊆ |X | and the
inclusion map i : A� X is a morphism.

A represented space A is a regular subobject of X iff it is a subobject of X and the
inclusion morphism i : A� X has a partial inverse morphism i–1 :⊆ X → A; that is,
i–1(i(x)) = x for any x ∈ |A|.

The most basic relation between subsets is the inclusion relation. We introduce
the inclusion relation between subobjects as follows:

Definition 3.4. For subobjects A,B of a represented space X, we say that A is
included in B (written A ⊆ B) if |A| ⊆ |B | and the inclusion map i : A ↪→ B is a
morphism. If A ⊆ B and B ⊆ A we say that A is equivalent to B and write A ≡ B .

Observation 3.5. A subspace of X is a regular subobject of X. Conversely, every
regular subobject of X is equivalent to a subspace of X.

Thus, one can understand that a regular subobject is a represented space obtained
by taking a subset of a represented space. What then is the value of non-regular
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MANY-ONE REDUCIBILITY WITH REALIZABILITY 5

subobjects? To answer this, it is better to think of the notion of a (non-regular)
subobject as a subset with additional information, such as a subset with witnesses,
rather than just a subset.

Definition 3.6. A witnessed subset A of a represented space X is a represented
space such that |A| ⊆ |X | and every name of x ∈ A is a pair 〈w,p〉 of an X -name p
of x and some w ∈ Code. In this case, w is called a witness for x ∈ A.

One can see that a subobject of a represented space is nothing more than a
witnessed subset:

Observation 3.7. A witnessed subset of X is a subobject of X. Conversely, every
subobject of X is equivalent to a witnessed subset of X.

Proof. For a witnessed subset A of X, the inclusion map i : A ↪→ X is clearly
tracked by the projection map �1 : 〈w,p〉 �→ p. Conversely, if A is a subobject of
X, that is, i : A ↪→ X is tracked by some f, then consider the following represented
space Af : The underlying set is |Af | = |A|, and 〈w,p〉 is a name of x ∈ Af iff
w is a name of x ∈ A and p = f(w). Then, Af is clearly a witnessed subset of
X. Moreover, Af ⊆ A is tracked by �0 : 〈w,p〉 �→ w, and A ⊆ Af is tracked by
w �→ 〈w,f(w)〉. �

Then we will quickly realize that there are numerous natural examples of non-
regular subobjects.

Example 3.8 (K2 or KV). In K2 and KV, the space �� is represented by the
identity map as in Example 2.2. Then a subobject Fin of �� is defined as follows:

• The underlying set is |Fin| = {x ∈ �� : (∃n)(∀m ≥ n) x(m) = 0}.
• A name of x ∈ Fin is a pair 〈n, x〉 of x ∈ �� and its witness n; that is, x(m) = 0

for any m ≥ n.

Note that the inclusion map Fin � �� is a morphism, tracked by the projection
�1 : 〈n, x〉 �→ x.

Proposition 3.9. Fin is a non-regular subobject of �� .

Proof. Suppose that Fin is regular. Then, there exists a partial realizable function
F which, given x ∈ |Fin|, returns an Fin-name of x, say F (x) = 〈n, x〉. By the
continuity of F, the witness n is determined after reading a finite initial segment
x � s of x. Put t = max{n, s}, and consider y = (x � t)�1�0∞. Then y ∈ |Fin|, so
F (y) returns a name of y ∈ Fin; that is, F (y) is of the form 〈m, y〉. As y extends
x � s , the first value of F (y) must be n; hence F (y) = 〈n, y〉. However, we have
t ≥ n and y(t) = 1, which means that 〈n, y〉 is not an Fin-name of y. �

One of the most typical ways to obtain a set is to describe a formula ϕ to define a
subset {x ∈ X : ϕ(x)} of X. Then, it is sometimes desirable to keep information
behind the construction of the subset, for example, a witness of an existential
quantification within ϕ. In such a case, non-regular subobjects can appear, as
described above. Our goal is to classify such “subsets with witnesses”.

Remark. Let us give some more background on Definition 3.2. In the case of sets,
one can identify an injectionm : S � X with its image, which is a subset of X. Then
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the inclusion relation between subsets of X can be characterized using injections
as follows. A monomorphism i : A� X is included in j : B � X if there exists a
morphism k : A→ B such that i = j ◦ k. If i is included in j and vice versa, we write
i ≡ j. Formally, a subobject is the≡-equivalence class of a mono. In the category of
represented spaces, any ≡-equivalence class of a mono contains an inclusion map,
which leads us to Definition 3.2. Similarly, a regular subobject is the ≡-equivalence
class of a regular mono.

Remark. One may also call a regular subobject of X a ¬¬-closed subobject of X.
For j : P(Code)→ P(Code), the j-closure Aj of a subobject A� X is defined as
follows:

|Aj | = |A|, EAj (x) = j(EA(x)) ∧ EX (x),

where recall that EA(x) is the set of all names of x ∈ A. A subobject A� X is
j-closed if the j-closure Aj � X is equivalent to A� X .

Then consider ¬¬ : P(Code)→ P(Code) defined by ¬¬U = P(Code) if U �= ∅;
otherwise ¬¬U = ∅. One can easily see that a subobject is ¬¬-closed iff it is regular.
To comment on the background of this notion, it is the closure by the universal
closure operator obtained from the double negation topology.

Remark. Example 3.8 gives a direct definition of the function space �� .
Alternatively, one may introduce �� as the exponential object NatNat. The notion
of �� then makes sense even in K1 since the category of K1-represented spaces
is cartesian closed, and in this case, NatNat is the space of all total computable
functions. Then one can formulate the definition of Fin within the system K1. In
fact, Proposition 3.9 holds in K1 as well. The details of this argument will be given
later.

3.2. Lattice of subobjects. Next, let us go a little further into the structure of
the inclusion relation among subobjects. Let us denote by Sub(X ) the set of all
subobjects of X. One can easily check the following:

Observation 3.10. (Sub(X ),⊆) is a poset.

In fact, in the category of represented spaces, one can see that a subobject poset
is always a Heyting algebra.

Proposition 3.11. The poset (Sub(X ),⊆) of subobjects of a represented space X
forms a Heyting algebra.

This is a consequence of the fact that the category of represented spaces is a
Heyting category, but it is important to give an explicit description of what the
lattice and Heyting operations actually are. Of course, as is well known, they are
given in a form corresponding to the realizability interpretation.

Definition 3.12. Let X,Y be subobjects of a represented space Z. Then their
witnessed union X � Y is defined as follows:

• The underlying set is |X � Y | = |X | ∪ |Y |.
• 〈i, p〉 is a name of x ∈ X � Y iff, if i = 0 then p is a name of x ∈ X else p is a

name of x ∈ Y .
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Definition 3.13. Let X,Y be subobjects of a represented space Z. Then their
witnessed intersection X � Y is defined as follows:

• The underlying set is |X � Y | = |X | ∩ |Y |.
• 〈p, q〉 is a name of x ∈ X � Y iff p is a name of x ∈ X and q is a name of
x ∈ Y .

Definition 3.14. Let X,Y be subobjects of a represented space Z. Then the
implication X � Y is defined as follows:

• 〈p, q〉 is a name of x ∈ X � Y iff p is a name of x ∈ Z, and if a is a name of
x ∈ X then q ∗ a is a name of x ∈ Y .

• The underlying set is the set of all x ∈ |Z| having (X � Y )-names.

Proof of Proposition 3.11. We show that the witnessed union � and the
intersection � give the join and the meet in any subobject poset. Let X,Y be
subobjects of Z. Then the inclusion maps X ↪→ X � Y and Y ↪→ X � Y are tracked
by a �→ 〈0, a〉 and b �→ 〈1, b〉, respectively. Now, let S � Z be such that X,Y ⊆ S.
Then the inclusion maps X ↪→ S and Y ↪→ S are tracked by some u and v,
respectively. Then consider the process that, given a name 〈i, p〉 of x ∈ X � Y ,
if i = 0 then returns u(p) else v(p). Note that if i = 0 then p 	X x, so u(p) 	S x.
Similarly, if i �= 0 then p 	Y x, so v(p) 	S x. Thus, in any case, the above process
yields a name of x ∈ S. This means that X � Y is included in S. Hence, X � Y is
the join of X and Y in the poset of subobjects of Z.

Next, the inclusion mapsX � Y ↪→ X andX � Y ↪→ Y are tracked by projections
�0 and �1, respectively. Now, let S � Z be such that S ⊆ X,Y . Then the inclusion
maps S ↪→ X and S ↪→ Y are tracked by some u and v, respectively. Then
p �→ 〈u(p), v(p)〉 tracks the inclusion map S ↪→ X � Y . To see this, if p 	S x then
u(p) 	X x and v(p) 	Y x, so 〈u(p), v(p)〉 	X�Y x. This means that S is included
in X � Y . Hence, X � Y is the meet of X and Y in the poset of subobjects of Z.

To see that � is the Heyting operation, for subobjects A,B,C � Z, first assume
A ⊆ B � C , which is realized by u. If 〈p, q〉 is a name of x ∈ A � B then, since p is
an A-name of x, u(p) is a (B � C )-name of x by our assumption. If u(p) is of the
form 〈u0(p), u1(p)〉, as q is a B-name of x, u1(p) ∗ q is a C-name of x. This shows
A � B ⊆ C . Conversely, assume A � B ⊆ C , which is realized by u. Assume that p
is a name of x ∈ A. As A is a subobject of Z, the inclusion map A� Z is tracked
by some i, so i(p) is a Z-name of x. If x �∈ B then anything is a (B � C )-name
of x. If q is a name ofx ∈ B then 〈p, q〉 is a (A � B)-name of x, so u(p, q) is a C-name
of x. Hence, 〈i(p), �q.u(p, q)〉 is a (B � C )-name of x. Note that�q.u(p, q) is always
defined, and thus �p.〈i(p), �q.u(p, q)〉 tracks the inclusion A ⊆ B � C . �

3.3. Quantifier. One of our objectives is to analyze arithmetical and Borel
hierarchies, especially in the latter case, it is useful to have the notion of countable
union and countable intersection. If a subobject lattice were complete, we could
automatically obtain infinitary operations. Of course, a lattice of regular subobjects
in the category of represented spaces is always a complete Boolean algebra (since
regular subobjects are merely subsets); however, the completeness of a subobject
lattice strongly depends on what is chosen as a coding system.
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Proposition 3.15 (K1). The poset (Sub(X ),⊆) of subobjects of a represented
space X is not necessarily a �-complete lattice. Indeed, (Sub(�),⊆) has neither �-join
nor �-meet.

Proof. For the non-existence of �-join, for each n ∈ �, think of the singleton
{n} as a subspace of �. Let I � � be such that {n} ⊆ I in Sub(�) for any n ∈ �.
Then |I | = �. Let EI (n) be the set of all I-names of n ∈ �. Since EI (n) �= ∅ for all
n ∈ �, take the least element s(n) ∈ EI (n). Construct a new subobject J � � as
follows: The underlying set is |J | = �, and the only J-name of n ∈ � is s ′(n), where
s ′ is the Turing jump of s. Clearly, {n} ⊆ J holds in Sub(�) for any n ∈ �. If I ⊆ J
in Sub(�) then some computable function f tracks the inclusion I ↪→ J . Since s(n)
is an I-name of n, f(s(n)) must be a J-name of n, which means f(s(n)) = s ′(n).
This implies that the jump s ′ is Turing reducible to s, a contradiction. Hence, I �⊆ J ,
which shows that any I cannot be a �-join of the singletons {n}.

For the non-existence of �-meet, consider a sequence g0 <T g1 <T ... , where ≤T
is Turing reducibility. For each i ∈ �, consider a subobject Ai � � such that its
underlying set is |Ai | = � and gi(n) is a unique name of n ∈ Ai . Assume thatB � �
is a subobject such that B ⊆ Ai for any i ∈ �. We construct a subobject C � �
such that C ⊆ Ai for any i ∈ � but C �⊆ B . Put |C | = �. We inductively define an
increasing sequence (ne)e∈� with n0 = 0. Assume that ne has already been defined.
If the eth partial computable function ϕe is not total then put ne+1 = ne + 1. If ϕe
is total, we claim that there exists n ≥ ne such that ϕe(〈gi(n)〉i≤e) is not a name
of n ∈ B . This is because, since B ⊆ Ae+1, if one knows a name of n ∈ B one can
compute ge+1(n). Thus, if the claim fails then we get ge+1 ≤T

⊕
i≤e gi ≡T ge , a

contradiction. Define ne+1 = n + 1 where n is a number in the above claim. Then
declare that, if ne ≤ n < ne+1, then 〈gi(n)〉i≤e is a unique name of n ∈ C . For almost
all n, the ith coordinate of a name of n ∈ C yields a name ofAi , so we have C ⊆ Ai .
Moreover, the above construction ensures thatϕe cannot be a tracker of the inclusion
C ⊆ B for any e, which means thatC �⊆ B . Consequently, any B cannot be a �-meet
of (Ai)i∈� . �

Of course, this only states that there are no external countable operations, and
there is no problem if one uses internal countable operations or quantifiers. In fact,
the arithmetical hierarchy is usually defined as the hierarchy of number quantifiers.

It is known that the existential quantifier and the universal quantifier are
characterized by the following adjoint rules:

A(x, y) 	 B(y) ⇐⇒ ∃xA(x, y) 	 B(y)

B(y) 	 A(x, y) ⇐⇒ B(y) 	 ∀xA(x, y).

In categorical logic, the existential quantification and the universal quantification
are introduced as follows: If A is a subobject of X × Y , then ∃XA and ∀XA are
subobjects of Y such that for any subobject B � Y the following holds in the
subobject posets:

A ⊆ X × B ⇐⇒ ∃XA ⊆ B
X × B ⊆ A ⇐⇒ B ⊆ ∀XA.
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As already mentioned, the category of represented spaces is a Heyting category,
so it has interpretations of the existential quantification and the universal
quantification. To develop our theory, it is useful to have explicit descriptions of
these notions.

Definition 3.16. Let X be a subobject of a represented space I × Z. Then its
witnessed projection ∃I X � Z is defined as follows:

• The underlying set is |∃I X | = {z ∈ Z : (∃i ∈ I ) (i, z) ∈ X}.
• 〈p, q〉 is a name of z ∈ ∃I X iff p is a name of some i ∈ I and q is a name of
z ∈ Z such that (i, z) ∈ X .

From a practical standpoint, we also want to use the notation ∃ZX for the
projection of X � I × Z into I. Then, however, the notation ∃I X for X � I × I
is ambiguous as to what it is quantifying. In order to describe it unambiguously, we
need to specify a projection, but it is often cumbersome and unintuitive. In some
cases, rather, a collection (Xi)i∈I of subobjects is given first, and the existential
quantification is defined as its (witnessed) union. To be more explicit:

Definition 3.17. Let I be a represented space, and for each i ∈ I let Xi be a
subobject of a represented space Z. Then their witnessed union

⊎
i∈I Xi is defined as

follows:

• The underlying set is |
⊎
i∈I Xi | =

⋃
i∈I |Xi |.

• 〈u, p〉 is a name of x ∈
⊎
i∈I Xi iff, if u is a name of j ∈ I then p is a name of

x ∈ Xj .

Note that for a subobject X � I × Z, we have ∃I X =
⊎
i∈I Xi , where Xi is the

subspace of I × Z whose underlying set is {z ∈ Z : (i, z) ∈ X}.

Definition 3.18. Let I be a represented space, and for each i ∈ I let Xi be a
subobject of a represented space Z. Then their witnessed intersection

�
i∈I Xi is

defined as follows:

• p is a name of x ∈
�
i∈I Xi iff, if z is a name of i ∈ I then p ∗ z is a name of

x ∈ Xi .
• The underlying set is the set of all x ∈ |Z| having

�
i∈I Xi -names.

These notions play the roles of the existential quantification and the universal
quantification, respectively; that is, for any subobjects A� I × Z and B � Z,

A ⊆ I × B ⇐⇒
⊎

i∈I
Ai ⊆ B

I × B ⊆ A ⇐⇒ B ⊆
�
i∈I
Ai .

where Ai is the subobject of Z such that |Ai | = {z ∈ |Z| : (i, z) ∈ |A|} and a name
of z ∈ Ai is a name of (i, z) ∈ A.

3.4. Reducibility. We will see later, for example, that Fin is not Σ0
2-complete. Of

course, in order to define the notion of completeness, we need a notion of reducibility,
which requires some discussion.
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Definition 3.19. For subsets A,B ⊆ �, we say that A is many-one reducible to B
(written A ≤m B) if there exists a computable function ϕ : � → � such that for any
n ∈ �

n ∈ A ⇐⇒ ϕ(n) ∈ B.

For a collection Γ of subsets of�, a setA ⊆ � is Γ-hard ifB ≤m A for anyB ∈ Γ.
If A ∈ Γ also holds, then A is called Γ-complete.

Definition 3.20. For subsets A,B ⊆ �� , we say that A is Wadge reducible to B
(written A ≤W B) if there exists a continuous function ϕ : �� → �� such that for
any x ∈ ��

x ∈ A ⇐⇒ ϕ(x) ∈ B.

For a collection Γ of subsets of �� , a set A ⊆ � is Γ-hard if B ≤W A for any
B ∈ Γ. If A ∈ Γ also holds, then A is called Γ-complete.

These notions of reducibility are for subsets and can be easily extended to
subspaces (or regular subobjects) of represented spaces, but it is less clear how to
extend them to non-regular subobjects. After a short time of gazing at the definitions,
one may find that both definitions of reducibility can be rewritten as A = ϕ–1[B].
That is, this is just a pullback. Using the notion of pullback, it is natural to extend
the notion of many-one/Wadge reducibility as follows:

Definition 3.21. Let X,Y be objects in a category C having pullbacks. A mono

A
i
� X is many-one reducible to B

j
� Y if A

i
� X is a pullback of B

j
� Y along

some morphism ϕ : X → Y .

A ��
��

��

��
B
��

��
X

ϕ
�� Y

Recall an explicit description of pullback in the category of represented spaces:

Definition 3.22. For represented spaces X and Y, for a subobject B � Y and
a morphism ϕ : X → Y , the pullback ϕ∗B of B along ϕ is defined as follows:

• The underlying set is |ϕ∗B | = ϕ–1[|B |] = {x ∈ |X | : ϕ(x) ∈ |B |}.
• A name of x ∈ ϕ∗B is a pair 〈p, q〉 of a name p of x ∈ X and a name q of
ϕ(x) ∈ B .

If B � Y is regular, then so is ϕ∗B � X , and the information of q in the name
of ϕ∗B is unnecessary.

The definition of many-one reducibility in the category of represented spaces can
be explicitly written as follows:

Definition 3.23. Let X and Y be represented spaces. A subobject A� X is
many-one reducible to B � Y if there exist a morphism ϕ : X → Y and partial
realizable functions r–, r+ :⊆ Code→ Code such that the following hold:

1. For any x ∈ |X |, x ∈ |A| if and only if ϕ(x) ∈ |B |.
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2. If p is an A-name of x ∈ |A| then r–(p) is a B-name of ϕ(x) ∈ |B |.
3. If p is an X -name of x ∈ |A| and q is a B-name of ϕ(x) ∈ |B | then r+(p, q) is

an A-name of x ∈ |A|.
In this case, we write A ≤m B . One can think of this as the realizability

interpretation of many-one reducibility; that is, r– is a realizer for “x ∈ A =⇒
ϕ(x) ∈ B”, and r+ is a realizer for “ϕ(x) ∈ B =⇒ x ∈ A”.

Observation 3.24. Definition 3.23 is equivalent to Definition 3.21 in the category
of represented spaces.

Proof. Definition 3.23 states that the subobject A� X is equivalent to the
pullback ϕ∗B � X in Definition 3.22. Indeed, if u is a tracker of ϕ, then p �→
〈u(p), r–(p)〉 tracks A ⊆ ϕ∗B , and r+ tracks ϕ∗B ⊆ A. Thus, A� X is also a
pullback of B � Y along ϕ. Conversely, if a subobject A� X is a pullback of
B � Y along ϕ, then one can easily see that A is equivalent to ϕ∗B . �

Example 3.25. Let Rep(K1) be the category of represented spaces over Kleene’s
first algebra K1. Then many-one reducibility for regular subobjects of � in Rep(K1)
is exactly the usual many-one reducibility.

Example 3.26. Let Rep(K2) be the category of represented spaces over Kleene’s
second algebra K2. Then many-one reducibility for regular subobjects of �� in
Rep(K2) is exactly the Wadge reducibility.

Example 3.27. Many-one reducibility for subobjects of � in Rep(K1) can be
thought of as computable Levin reducibility (cf. Definition 1.1).

To be more explicit, a witnessed subset A� X is many-one reducible to a
witnessed subsetB � Y if and only if there exist a morphismϕ : X → Y and partial
realizable functions r–, r+ such that for any name p of x ∈ X and v,w ∈ Code the
following holds:

1. x ∈ |A| if and only if ϕ(x) ∈ |B |.
2. If v is a witness for x ∈ |A| then r–(v, p) is a witness for ϕ(x) ∈ |B |.
3. If w is a witness for ϕ(x) ∈ |B | then r+(w,p) is a witness for x ∈ |A|.
Next, let us discuss an alternative to the definition of many-one reducibility.

Considering the “meaning” of many-one reducibility, it might be a bit questionable
whether Definition 3.23 is appropriate. The “meaning” of many-one reducibility
A ≤m B is that it is sufficient to know information about B in order to compute
information about A. That is, the computationally correct understanding ofA ≤m B
might not be “x ∈ A ⇐⇒ ϕ(x) ∈ B ,” but

ϕ(x) ∈ B =⇒ x ∈ A; and ϕ(x) �∈ B =⇒ x �∈ A.
The conditions (1) and (3) of Definition 3.23 reflect that meaning, but the

condition (2) is the opposite. Therefore, from a computational point of view, it would
be correct to remove the condition (2). In fact, for reducibility for function problems
in computational complexity theory (e.g., the definition of FNP-completeness), this
form of reducibility is often considered instead of Levin reducibility.

Definition 3.28. We say that a subobject A� X is demi-many-one reducible to
B � Y (written A ≤′

m B) if the conditions (1) and (3) in Definition 3.23 hold.
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Observation 3.29. A ≤m B =⇒ A ≤′
m B .

Of course, removing the condition (2) would be unnatural in the categorical
setting. Recall that the ¬¬-closure A¬¬ � X of a subobject A� X as the unique
regular subobject with |A¬¬| = |A|. In other words, it is the⊆-least regular subobject
including A.

Observation 3.30. A ≤′
m B iff there exists a morphism ϕ such that ϕ∗B ⊆ A ⊆

(ϕ∗B)¬¬.

Observation 3.31. If A,B � X are regular then A ≤m B iff A ≤′
m B .

Remark. One may notice that demi-many-one reducibility closely resembles
Weihrauch reducibility [2], which has been studied in depth in computable analysis.
In fact, demi-many-one reducibility corresponds to Weihrauch reducibility for
“hardest totalizations”. Here, the hardest totalization F ht of F :⊆ X ⇒ Y is the
totalization of F such that if x �∈ dom(F ) then F ht(x) = ∅.

3.5. Structure. Let us analyze the structure of many-one reducibility.

Observation 3.32. ≤m and ≤′
m form preorders.

Proof. The proof for the many-one case follows from a general argument, but
we give an explicit description applicable to the demi-many-one case. Reflexivity
is trivial. For transitivity, for subobjects A,B,C of X,Y,Z, assume A ≤m B via
ϕ, r–, r+ and B ≤m C via 	, s–, s+. Only an outer reduction is nontrivial. Let p be a
tracker of ϕ. Given a name a of x ∈ X we know that p ∗ a is a name of ϕ(x) ∈ Y .
Thus, given a name c of 	(ϕ(x)) ∈ C , s+(p ∗ a, c) is a name of ϕ(x) ∈ B , and
r+(a, s+(p ∗ a, c)) is a name of x ∈ A. This process gives an outer reduction for
A ≤m C . This actually shows that ≤′

m is a preorder. �
The poset reflections of≤m and≤′

m are called the many-one degrees and the demi-
many-one degrees, respectively. It is easy to show the following property similar to
many order degree structures.

Proposition 3.33. The (demi-)many-one degrees on represented spaces form an
upper semilattice.

Proof. Again, the proof for the many-one case follows from a general argument,
but we give an explicit description applicable to the demi-many-one case. We
construct a join of subobjects A� X and B � Y . The coproduct X + Y of
represented spaces X and Y are defined as follows:

• The underlying set is |X + Y | = {(0, x) : x ∈ X} ∪ {(1, y) : y ∈ Y}.
• 〈i, p〉 is a name of (j, z) iff i = j and if i = 0 then p is a name of z ∈ X else p

is a name of z ∈ Y .

One can think of A+ B as a subobject of X + Y . Clearly, A,B ≤m A+
B . Assume that C is a subobject of Z such that A ≤m C via ϕ, r–, r+ and
B ≤m C via 	, s–, s+. Let [ϕ,	] : X + Y → Z be a morphism such that, for
any (i, x) ∈ X + Y , if i = 0 then [ϕ,	](i, x) = ϕ(x) else [ϕ,	](i, x) = 	(x).
Given 〈i, u〉 	A+B (i, x), if i = 0 then r–(u) 	C ϕ(x) = [ϕ,	](i, x) else s–(u) 	C
	(x) = [ϕ,	](i, x). Given 〈i, u〉 	X+Y (i, x) and c 	C [ϕ,	](i, x), if i = 0 then
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[ϕ,	](i, x) = ϕ(x), so r+(u, c) 	A x; thus 〈0, r+(u, c)〉 	A+B (i, x). Similarly, if
i �= 0 then 〈1, r+(u, c)〉 	A+B (i, x). This showsA+ B ≤m C . By a similar argument,
one can show that ≤′

m also yields an upper semilattice. �

The many-one degree structure has the following good property that other degree
structures do not have very often.

Theorem 3.34. The (demi-)many-one degrees on represented spaces form a
distributive lattice.

Proof. First consider ≤′
m. Given subobjects A� X and B � Y , we define the

space A� B of common information of A and B as follows: First consider the
subspace C (A,B) of Code such that 〈p, q, n〉 ∈ |C (A,B)| iff

(∃x, y) [(p ∗ n ↓ 	X x) & (q ∗ n ↓ 	Y y) & (x ∈ |A| ⇐⇒ y ∈ |B |)].

Then the equivalence relation ∼ on C (A,B) is defined as follows:

〈p, q, n〉 ∼ 〈p, q,m〉 ⇐⇒ �X (p ∗ n) = �X (p ∗m) & �Y (q ∗ n) = �Y (q ∗m).

Then let A� B be the quotient space C (A,B)/∼; that is, an (A� B)-name of
a ∼-equivalence class [p, q, n] is of the form 〈p, q,m〉 for some 〈p, q,m〉 ∈ [p, q, n].
Then we define a subobject A � B � A� B as follows:

• [p, q, n] ∈ |A � B | iff [p, q, n] ∈ |A� B | and �X (p ∗ n) ∈ |A|.
• 〈i, u, v〉 is a name of [p, q, n] ∈ A � B iff u is a name of [p, q, n] ∈ A� B and if
i = 0 then v is a name of �X (p ∗ n) ∈ A else v is a name of �Y (q ∗ n) ∈ B .

To see that A � B ≤′
m A, consider ϕ : [p, q, n] �→ �X (p ∗ n), which is well-

defined. If [p, q, n] ∈ |A� B | then ϕ([p, q, n]) ↓ ∈ X since 〈p, q, n〉 ∈ C (A,B).
Thus, [p, q, n] ∈ |A � B | iff ϕ([p, q, n]) ∈ |A|. Moreover, if 〈p, q,m〉 is a name of
[p, q,m] ∈ A� B and v is a name of ϕ([p, q, n]) ∈ A then 〈0, p, q,m, v〉 is a name of
[p, q, n] ∈ A � B .

Similarly, to see that A � B ≤′
m B , consider ϕ : [p, q, n] �→ �Y (q ∗ n), which

is well-defined. If [p, q, n] ∈ |A� B | then ϕ([p, q, n]) ↓ ∈ Y . By definition,
[p, q, n] ∈ |A � B | iff �X (p ∗ n) ∈ |A|, iff ϕ([p, q, n]) = �X (q ∗ n) ∈ |B | since
〈p, q, n〉 ∈ C (A,B). Moreover, if 〈p, q,m〉 is a name of [p, q,m] ∈ A� B and v
is a name of ϕ([p, q, n]) ∈ B then 〈1, p, q,m, v〉 is a name of [p, q, n] ∈ A � B .

For a subobject C � Z, if C ≤′
m A,B then there are ϕ,	 such that, for any

x ∈ |Z|, x ∈ |C | iff ϕ(x) ∈ |A| and 	(x) ∈ |B |. We also have r, s such that if u is a
name of ϕ(x) ∈ A then r ∗ u is a name of x ∈ C , and if v is a name of 	(x) ∈ B
then s ∗ v is a name of x ∈ C .

To showC ≤′
m A � B , let p and q be trackers of ϕ and	, respectively. Then if k is

a name of some x ∈ Z, then k 	Z x ∈ |C | iff p ∗ k ↓ 	X ϕ(x) ∈ |A| iff q ∗ k ↓ 	Y
	(x) ∈ |B |. Hence, [p, q, k] ∈ |A� B |, and moreover, k 	Z x ∈ |C | iff [p, q, k] ∈
|A � B |. Moreover, if k and 
 are names of x ∈ Z, then �X (p ∗ k) = �X (p ∗ 
) =
ϕ(x) and �Y (q ∗ k) = �Y (q ∗ 
) = 	(x); hence [p, q, k] = [p, q, 
]. Therefore, k �→
〈p, q, k〉 tracks some morphism � : Z → A� B such that x ∈ |C | iff [p, q, k] ∈ |A �
B |. Given a name 〈i, u, v〉of [p, q, k] ∈ A � B , if i = 0 then v is a name of �X (p ∗ k) =
ϕ(x) ∈ A, so r ∗ v is a name of x ∈ C . If i �= 0 then v is a name of �Y (q ∗ k) =
	(x) ∈ B , so s ∗ v is a name of x ∈ C . This completes the proof.
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The proof for ≤m is almost the same, but the construction is a little more
complicated. Consider the subspace D(A,B) of Code such that 〈p, q, a, b, c, d, n〉 ∈
|D(A,B)| iff 〈p, q, n〉 ∈ |C (A,B)| and the following hold:

• If v is a name of �X (p ∗ n) ∈ A then a ∗ (c ∗ v) is a name of �X (p ∗ n) ∈ A and
b ∗ (c ∗ v) is a name of �Y (q ∗ n) ∈ B .

• If v is a name of �Y (q ∗ n) ∈ B then a ∗ (d ∗ v) is a name of �X (p ∗ n) ∈ A and
b ∗ (d ∗ v) is a name of �Y (q ∗ n) ∈ B .

The construction after this is exactly the same as in the previous one, except for
the additional information α = (a, b, c, d ).

To see that A � B ≤m A, consider ϕ : [p, q, α, n] �→ �X (p ∗ n), which is well-
defined. If [p, q, α, n] ∈ |A� B | thenϕ([p, q, α, n]) ↓ ∈ X since 〈p, q, n〉 ∈ C (A,B).
Thus, [p, q, α, n] ∈ |A � B | iff ϕ([p, q, α, n]) ∈ |A|. Moreover, if 〈p, q, α,m〉 is
a name of [p, q, α,m] ∈ A� B and v is a name of ϕ([p, q, α, n]) ∈ A then
〈0, p, q, α,m, v〉 is a name of [p, q, α, n] ∈ A � B . Conversely, assume that
〈0, p, q, α,m, v〉 is a name of [p, q, α, n] ∈ A � B . If i = 0 then v is a name of
�X (p ∗ n) ∈ A. If i = 1 then v is a name of �Y (q ∗ n) ∈ B , so a ∗ (d ∗ v) is a name
of �X (p ∗ n) ∈ A. By the same argument, one can also show A � B ≤m B .

For a subobject C � Z, if C ≤m A,B then there are ϕ,	 such that, for any
x ∈ |Z|, x ∈ |C | iff ϕ(x) ∈ |A| and 	(x) ∈ |B |. Let p and q be trackers of ϕ
and 	, respectively. Then if k is a name of some x ∈ Z, then k 	Z x ∈ |C |
iff p ∗ k ↓ 	X ϕ(x) ∈ |A| iff q ∗ k ↓ 	Y 	(x) ∈ |B |. We also have a, b, c, d such
that v 	A ϕ(x) implies c ∗ v 	C x; v 	B 	(x) implies d ∗ v 	C x; and v 	C x
implies a ∗ v 	A ϕ(x) and b ∗ v 	B 	(x). In particular, v 	A ϕ(x) implies a ∗ (c ∗
v) 	A ϕ(x) and b ∗ (c ∗ v) 	B 	(x), and v 	B 	(x) implies a ∗ (d ∗ v) 	A ϕ(x)
and b ∗ (d ∗ v) 	B 	(x). As ϕ(x) = �X (p ∗ k) and 	(x) = �Y (q ∗ k), this implies
〈p, q, α, n〉 ∈ D(A,B). The rest of the proof of C ≤m A � B is the same as before.

To show distributivity, first consider ≤′
m. For subobjects A,B,C of X,Y,Z, it

suffices to show (A+ B) � (A+ C ) ≤′
m A+ (B � C ). We construct a reduction ϕ

as follows: Given [p, q, n] ∈ |(A+ B)� (A+ C )|, assume that p ∗ n and q ∗ n are of
the forms 〈i, u〉 and 〈j, v〉, respectively. If i = 0 then define ϕ([p, q, n]) = 〈0, �X (u)〉
else if j = 0 then ϕ([p, q, n]) = 〈0, �X (v)〉. For instance, if i = 1 and j = 0 then
�Y (u) ∈ |B | iff �X (v) ∈ |A|; hence [p, q, n] ∈ |(A+ B) � (A+ C )| iff �X (v) ∈ |A| iff
ϕ([p, q, n]) = 〈0, �X (v)〉 ∈ |A+ (B � C )|. If i �= 0 and j �= 0 then let p1 and q1 be
such that p1 ∗ n = u and q1 ∗ n = v and then define ϕ([p, q, n]) = 〈1, [p1, q1, n]〉. As
�Y (u) ∈ |B | iff �Z(v) ∈ |C | iff [p1, q1, n] ∈ |B � C | iff ϕ([p, q, n]) ∈ |A+ (B � C )|.
For an outer reduction, given a name 〈p, q,m〉 of [p, q, n] ∈ (A+ B)� (A+ C )
and a name 〈k,w〉 of ϕ[p, q, n] ∈ A+ (B � C ), if i = 0 or j = 0 then k = 0 and
w is an A-name of �X (u) or �X (v), so one can compute a name of [p, q, n] ∈
(A+ B) � (A+ C ). If i �= 0 and j �= 0 then w is of the form 〈
, p1, q1, m

′, z〉, where
if 
 = 0 then z 	B �Y (u) else z 	C �Z(v). Thus, if 
 = 0 then 〈1, z〉 	A+B (1, �Y (u))
else 〈1, z〉 	A+C (1, �Z(v)), so one can compute a name of [p, q, n] ∈ (A+ B) �
(A+ C ).

For≤m, if i �= 0 and j �= 0 then transformα = (a, b, c, d ) intoα′ = (a′, b′, c′, d ′),
where a′ = �x.�1(a ∗ x), b′ = �x.�1(b ∗ x), c′ = �x.c(1, x) and d ′ = �x.d (1, x).
Then defineϕ([p, q, α, n]) = 〈1, [p1, q1, α

′, n]〉. The rest of the discussion is the same
as above. �
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However, if one focuses only on subobjects of a single represented space, it is
generally not a lattice.

Proposition 3.35 (K1). Both (Sub(�),≤m) and (Sub(�),≤′
m) do not have binary

meet.

Let us prepare a lemma to prove this. A general argument shows that regular
subobjects are ≤m-downward closed.

Lemma 3.36. If a mono i : A� X is many-one reducible to a regular mono
j : B � Y , then i : A� X is also a regular mono.

Proof. Regular monos are stable under pullback. �

This can also easily be shown using explicit descriptions. In fact, explicit
descriptions lead us to more than that.

Lemma 3.37. If a mono i : A� X is demi-many-one reducible to a regular mono
j : B � Y , then i : A� X is also a regular mono.

Proof. AssumeA ≤′
m B viaϕ, r+. Given an X -name p of x ∈ |A|, using a tracker

of ϕ, one can find an X -name of ϕ(x) ∈ |B |. As B is regular, we get a B-name q of
ϕ(x). Then r+(p, q) is an A-name of x. Thus, A is regular. �

Proof of Proposition 3.35. For the non-existence of meet, it is known that every
increasing sequence of many-one degrees has an exact pair [5, Theorem VI.3.4]; that
is, for any sequence A0 <m A1 <m ... of subsets of � there exists B,C ⊆ � such
that A ≤m B,C if and only if A ≤m Ai for some i ∈ �, where ≤m is many-one
reducibility in the classical sense (Definition 3.19). Now note that ifR,S are regular
subobjects of � thenR ≤m S iffR ≤′

m S iff |R| ≤m |S|. For each i ∈ �, let us think
of Ai , B,C as regular subobjects of �. We claim that B and C do not have meet. If
A ≤′

m B,C then, by Lemma 3.37, A is also regular. Thus, the above property shows
A ≤m Ai for some i ∈ �. Then we get A <m Ai+1 <m B,C , which means that A is
not a meet of B and C. �

§4. Hierarchy.

4.1. Sierpiński dominance. Our objective is to analyze the arithmetical/Borel
hierarchy in the category of represented spaces. For this, we first need to define the
notion of Σ0

1 and Π0
1 subobjects. Let us first explain these notions for subobjects of

�� in K2 or KV, followed by the general definitions.

Definition 4.1 (K2 or KV). A subobject A� �� is open or Σ0
1 if there exists a

morphism ϕ : �� × � → � such that A is equivalent to the following subspace Eϕ
of �� :

Eϕ = {x ∈ �� : (∃n ∈ �) ϕ(x, n) �= 0}.

Similarly, a subobjectA� �� is closed or Π0
1 if there exists a morphismϕ : �� ×

� → � such that A is equivalent to the subspace of �� whose underlying set is
�� \ Eϕ .
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Via currying, a Σ0
1 subobject is a subspace of the form {x ∈ �� : ϕ(x) �= 0∞},

and a Π0
1 subobject is a subspace of the form {x ∈ �� : ϕ(x) = 0∞}. We would

like to consider a similar notion for K1, but we need to give a formal definition
of �� in K1.

Definition 4.2. By an abuse of notation, we use �� to denote the exponential
object NatNat. To be more explicit:

• In K2 and KV, the underlying set |NatNat| is the set of all functions on N.
A name of f ∈ NatNat is f itself (as in Examples 2.2 and 3.8).

• In K1, the underlying set |NatNat| is the set of all total computable functions
on N. A name of f ∈ NatNat is any program p ∈ Code computing f.

By adopting this definition, Definition 4.1 makes sense for K1 as well. Since
most of the concrete examples in this article are subobjects of �� , it is sufficient to
understand the above as definitions of open and closed subobjects. However, for the
sake of uniform discussion, we also give general definitions.

Definition 4.3. A subobject A� X is open or Σ0
1 if there exists a partial

realizable function F such that A is equivalent to the following subspace
EF of X :

x ∈ |EF | ⇐⇒ if p is an X -name of x then F (p) is an ��-name of 0∞,

x �∈ |EF | ⇐⇒ if p is an X -name of x then F (p) is an ��-name of some α �= 0∞.

Similarly, a subobject A� �� is closed or Π0
1 if there exists a partial realizable

function such that A is equivalent to the subspace of X whose underlying set is
|X | \ |EF |.

Let us explain the general theory behind this definition. Recall from Example 2.5
that S is the represented Sierpiński space. Here, (an ��-name of) the sequence 0∞

is a name of 
 ∈ S and any other sequence is a name of ⊥ ∈ S.
It is well-known that an open set in a topological space can be identified with a

continuous map to the (topological) Sierpiński space S, which consists of the open
point 
 and the closed point ⊥. To be precise, an open subset A of a topological
space X is exactly a set of the form ϕ–1{
} for some continuous map ϕ : X → S.
This idea can be generalized as follows:

Definition 4.4. A subobjectA� X is open if it is a pullback of
 : 1 � S along
some morphism ϕ : X → S. Similarly, a subobjectA� X is closed if it is a pullback
of ⊥ : 1 � S along some morphism ϕ : X → S.

To be more explicit, the pullback ϕ∗
 can be written as follows:

• The underlying set is |ϕ∗
| = {x ∈ X : ϕ(x) = 
}.
• A name of x ∈ ϕ∗
 is a name of x ∈ X .

Note that fixing a name of 
 ∈ S in advance makes it possible to omit the
information on a name of 
 form the above description of ϕ∗
. By definition
of the representation of S, it is easy to verify that this definition is consistent with
Definition 4.3. Also note, by definition, that A� X is open iff A ≤m (
 : 1 � S),
and A� X is closed iff A ≤m (⊥ : 1 � S).
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Observation 4.5. An open subobject is regular. Similarly, a closed subobject is
regular.

Proof. This is because an open subobject is a pullback of a regular subobject

 : 1 � S. The same applies to a closed subobject. See also the above explicit
description of the pullback. �

Example 4.6. 1. In K1: An open subobject of � is exactly a Σ0
1 subset of �,

and a closed subobject of � is exactly a Π0
1 subset of �.

2. In KV: An open subobject of �� is exactly a Σ0
1 subset of �� , and a closed

subobject of �� is exactly a Π0
1 subset of �� .

3. In K2: An open subobject of �� is exactly an open subset of �� , and a closed
subobject of �� is exactly a closed subset of �� .

One can generalize these equivalences to (computable) Polish spaces and more,
under appropriate (admissible) representations.

4.2. Arithmetical hierarchy. One of the main ingredients of the theory of
hierarchies is the extraction of subsets using formulas. This idea is common to
both arithmetic and Borel hierarchies.

Let Γ be a class of subobjects. A sequence (Ai)i∈I of subobjects of X is uniformly
Γ if there exists a Γ-subobject A� I × X such that Ai is the ith projection of A for
each i ∈ I .

Definition 4.7. Let A be a subobject of a represented space X.

1. A subobject A is Σ0
1 if it is an open subobject of X.

2. A subobject A is Π0
1 if it is a closed subobject of X.

3. A subobject A is Σ0
n+1 if there exists a uniformly Π0

n sequence (Bn)n∈� of
subobjects of X such that A ≡

⊎
n∈� Bn.

4. A subobject A is Π0
n+1 if there exists a uniformly Σ0

n sequence (Bn)n∈� of
subobjects of X such that A ≡

�
n∈� Bn.

In K2, this definition coincides with the standard definition of the Borel hierarchy.
In K1, this is the arithmetical hierarchy with witnesses.

Example 4.8. Recall from Example 3.8 that Fin is the subobject of�� consisting
of sequences which are eventually zero. Then Fin is a Σ0

2 subobject of �� .
This is because F = {(n, x) ∈ � × �� : (∀m ≥ n) x(m) = 0} is a closed subob-

ject of � × �� ; hence Fin = ∃�F =
⊎
n∈� Fn is Σ0

2.

Observation 4.9. Every Π0
2 subobject of a represented space X is regular.

Proof. Every Π0
2 subobject A� X is of the form

�
n∈� Bn for some open

subobject B � � × X . By Observation 4.5, B is regular, so a name of (n, x) ∈ B
is just the pair of n ∈ � and an X -name of x. By definition, a name of x ∈ A is a
name of a function that, given n ∈ �, returns an name of (n, x) ∈ B . In particular,
if p is a name of x ∈ X then the constant function n �→ p gives a name of x ∈ A.
This means that A� X is regular. �

4.3. Internal logic. It is also useful to introduce a method of defining a subobject
of a represented space using a first order formula. It is often easier to read the
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meaning of a construction of a subobject by using a formula than by combining set
operations.

Definition 4.10. Given a sequence (Xi)i≤n of represented spaces, let xi be a
variable symbol of type Xi . Put a subobject Ri � Xi as a relation symbol of type
Xi in our language. Then inductively define a subobject �x̄ : ϕ(x̄)� of X1 × ··· × Xn
as follows:

1. �(x1, ... , xn) : Ri(xi)� = X1 × ··· × Xi–1 ×Ri × Xi+1 × ··· × Xn.
2. �x̄ : ϕ(x̄) ∨ 	(x̄)� = �x̄ : ϕ(x̄)� � �x̄ : 	(x̄)�.
3. �x̄ : ϕ(x̄) ∧ 	(x̄)� = �x̄ : ϕ(x̄)� � �x̄ : 	(x̄)�.
4. �x̄ : ϕ(x̄)→ 	(x̄)� = �x̄ : ϕ(x̄)� � �x̄ : 	(x̄)�.

Moreover, for a represented space I,

5. �x̄ : ∃i ∈ I.ϕ(i, x̄)� =
⊎
i∈I �x̄ : ϕ(i, x̄)�.

6. �x̄ : ∀i ∈ I.ϕ(i, x̄)� =
�
i∈I �x̄ : ϕ(i, x̄)�.

Thereafter, a relation symbol R(x) in a formula is sometimes abbreviated to
x ∈ R. Also, we sometimes use a notation such as s(x) = t(y) in a formula, which
determines the subspace whose underlying set is {(x, y) : s(x) = t(y)}.

Hereafter, we mainly focus on the subobjects of �� . As already noted, in K2 and
KV, the object�� literally means the set of all infinite sequences of natural numbers,
while in K1, the exponential object�� is the space of all total computable functions.
Thus, our theory on many-one reducibility for subobjects of �� in K1 correspond
to the witnessed version of many-one reducibility for index sets within Tot in classical
terms, where Tot is the set of all indices of total computable functions on �.

§5. The structure of Σ0
2 sets.

5.1. Union of closed sets. According to Veldman [9], in certain intuitionistic
systems, interestingly, the union of two Π0

1 sets is not necessarily Π0
1. We first see

that this strange phenomenon can be given a clear interpretation even in classical
logic by using reducibility for non-regular subobjects.

Example 5.1. Let I be a represented space, and X,Y ⊆ I be its subspaces. Then
the tartan �I (X,Y ) is defined as the witnessed union (X × I ) � (I × Y ). In other
words, �I (X,Y ) = �(x, y) : X (x) ∨ Y (y)�.

Example 5.2. For the closed subspace {0∞} ⊆ �� , consider the tartan L =
��� ({0∞}, {0∞}). In other words, L = �(x, y) : x = 0∞ ∨ y = 0∞�.

Let Σ�∪� be the class of subobjects which can be written as a witnessed union of
two Π0

1 sets.

Observation 5.3. L ∈ Σ�∪�.

A typical way to show the non-regularity of a subobject in K2 or KV can be to use
the following notion.

Definition 5.4. For a subobject A� X , we say that x ∈ A is non-regular if, for
some 
 ∈ �, for any A-name p of x and X -name q of x, there exists a sequence
(yn)n∈� of points in A such that
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1. p � 
 cannot be extended to an A-name of yn for any n ∈ �.
2. for any m, q � m can be extended to an X -name of yn for some n ∈ �.

Example 5.5. L has a non-regular point. We claim that z = (0∞, 0∞) is a
non-regular point of L. To see this, note that a name of z ∈ L is of the form
qi = (i, 0∞, 0∞) for some i < 2. Then, put 
 = 1, y0

m = (0m1∞, 0∞) and y1
m =

(0∞, 0m1∞). Then qi � 
 cannot be extended to an L-name of yim for each i < 2,
while z � m can be extended to X -names of both y0

m and y1
m.

Lemma 5.6. If a subobject A� X has a non-regular point, then A is not regular.

Proof. Assume that A� X is regular. Then the inclusion map A� X has a
partial left-inverse morphism, so let r be its tracker. That is, if q is an X -name of
x ∈ |A|, then r(q) is an A-name of x. Now, suppose that A has a non-regular point
x ∈ A, and let 
 be a length for its non-regularity. For an X -name q of x and an
A-name r(q) of x, we get a witness (yt)t∈� for non-regularity. By continuity, after
reading some m bits of q, the first 
 bits of r(q) are determined. Then q � m can be
extended to an X -name q′ of yt ∈ |A|, so r(q′) must be an A-name of yt . However,
r(q′) extends r(q) � 
, which cannot be an A-name of yt . �

Corollary 5.7. A union of two Π0
1 subobjects of �� is not necessarily Π0

1. Indeed,
L is not Π0

2, and thus Σ�∪� �⊆ Π0
2.

Proof. By Lemma 5.6 and Example 5.5, L is not regular. However, by
Observation 4.9, every Π0

2 subobject is regular. Hence, L is not Π0
2. �

5.2. Non-complete Σ0
2 sets. Classically, it is well-known that Fin = {x ∈ �� :

(∃n)(∀m ≥ n) x(m) = 0} is Σ0
2-complete. Surprisingly, Veldman [12] showed that

this does not hold in certain intuitionistic systems. His insightful work suggests that
its witnessed counterpart is not Σ0

2-complete in our setting.

Fin := �x ∈ �� : (∃n)(∀m ≥ n) x(m) = 0� =
⊎

n∈�

�
m≥n
{x ∈ �� : x(m) = 0}

For the explicit description, recall Example 3.8. Our first goal is to show the
following:

Theorem 5.8. Fin is not Σ0
2-complete; indeed, L �≤m Fin.

To prove this, let us introduce a few notions. We say that a subobject A�
Z is almost Π0

1 if it is a finite witnessed union of Π0
1 subobjects of Z. We say

that a subobject A� Z is amalgamable if there exists A′ ≡ A and there exists a
partial realizable function F that, given a Z-name of x ∈ |A′| and a finite sequence
(p1, ... , pn), returns a name of x ∈ A′, whenever there exists i ≤ n such that pi is a
name of x ∈ A′.

Proposition 5.9. Fin is an amalgamable subobject of �� .

Proof. Let x ∈ |Fin| and (p1, ... , pn) be given. Assume that pi is a name of
x ∈ Fin for some i ≤ n. As a name of an element of Fin is of the form 〈s, z〉, it does
not lose generality to assume that each pi is of the form 〈si , zi〉. By our assumption,
at least one of these is a correct name of x ∈ Fin, so it is of the form pj = 〈sj, x〉
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for some j. Here, recall that 〈sj , x〉 is a name of x ∈ Fin if and only if x(t) = 0
for any t ≥ sj . Note that, if we put m = maxi≤n si , then 〈m,x〉 is also a name of
x ∈ Fin. This is because we have sj ≤ m, which implies x(t) = 0 for any t ≥ m. In
summary, F (x, p1, ... , pn) = 〈maxi≤n �0(pi), x〉 gives a name of x ∈ Fin. Hence, Fin
is amalgamable. �

Lemma 5.10. If an almost Π0
1 subobject A� X is many-one reducible to an

amalgamable subobject B � Y , then A is regular.

Proof. Assume thatA ≤m B is witnessed by ϕ : X → Y and r–, r+. To show that
A� Z is regular, suppose that an X -name p of x ∈ |A| is given. Since A is almost
Π0

1 and any Π0
1 subobject is regular, we may assume that a name of x ∈ A is of the

form (k, p) for some k < n. Then (r–(k, p))k<n is a sequence of candidates of names
ofϕ(x) ∈ B . That is, since (k, p) is a correct name of x ∈ A for some k < n, r–(k, p)
must be a correct name of ϕ(x) ∈ B . Here, note that r–(k, p) may be undefined, but
the condition x ∈ |Ak | is Π0

1(p), so once we see that this is refuted, we modify it to
output some value. In this way, we can assume that r–(k, p) is defined.

A tracker of ϕ transforms an X -name of x into an Y -name of ϕ(x), which,
together with the above candidates, can be used to obtain a correct B-name q of
ϕ(x) by the assumption that B is amalgamable. Then, r+(p, q) is an A-name of
x ∈ A. This concludes that A is regular. �

Proof of Theorem 5.8. By Proposition 5.9, Fin is amalgamable. Obviously, L is
almost Π0

1. Hence, by Lemma 5.10, if L ≤m Fin then L is regular, which is impossible
by Lemma 5.6 and Example 5.5. �

As in classical reducibility, one can see that Fin is Σ0
2-complete w.r.t. demi-many-

one-reducibility.

Observation 5.11. For any Σ0
2 subobject A� �� , we have A ≤′

m Fin.

Proof. The argument is similar to the classical Σ0
2-completeness proof of Fin.

Let A = �x : ∃n∀m�(n,m, x)� be given, where � is decidable. Given x, we construct
ϕ(x). In order to determine the value ofϕ(x)(s), we first calculate the largest ns ≤ s
fulfilling the following condition: For any k ≤ ns there exists m ≤ s – ns such that
¬�(k,m, x). If ns > ns–1 then put ϕ(x)(s) = 1; otherwise ϕ(x)(s) = 0. Note that if
x ∈ A and if n is the least witness for x ∈ A, then we have ns ≤ n for any s. Hence,
for the least s such that ns = n, the value s + 1 must be a witness for ϕ(x) ∈ Fin.
Conversely, if s is a witness for ϕ(x) ∈ Fin, then nt = ns for any t ≥ s . Then it is
easy to see that ns + 1 is a witness for x ∈ A. �

The above proof shows that given the least witness for x ∈ A, one can compute a
witness for ϕ(x) ∈ Fin. Of course, there may also be a non-least witness for x ∈ A,
but if it is always possible to obtain the least witness for any x ∈ A, this suggests
that A be many-one reducible to Fin. Let us explore this idea further.

5.3. Classification of Σ0
2-complete sets. A closer look at classical Σ0

2-complete sets
reveals that there are in fact various qualitative differences among them. A Σ0

2 set is a
countable union of Π0

1 sets, but there are various types of “countable union,” such as
separated union, disjoint union, increasing union, and ordinary union. In classical
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theory, separated union (coproduct) and ordinary union are distinguished, but
others are not.

This situation can also be understood as a classification of Σ0
2 formulas. First

note that Fin is defined by a Σ0
2 formula of the form ∃n∀m ≥ n.ϕ(m,x), where ϕ

is decidable. For such a formula, if a witness n is given, one can effectively find the
smallest witness n0 by checking ϕ(m,x) holds for any n0 ≤ m ≤ n. This means that
such a formula can be replaced with a Σ0

2 formula ∃n	(n, x) having the following
“unique witness property”:

∃n	(n, x) ⇐⇒ ∃! n	(n, x).

Also, many Σ0
2 sets can be written as an increasing union of Π0

1 sets. Expressed
as a formula ∃n	(n, x), this means that they have the following “increasing witness
property”:

m ≤ n & 	(m,x) =⇒ 	(n, x).

Of course, having the increasing witness property is precisely being defined by a
Σ0

2 formula of the form ∃n∀m ≥ n.ϕ(m,x), where ϕ is a Π0
1 formula.

The notion of classical Σ0
2-completeness makes no distinction between these

special and general Σ0
2-formulas. The notion of many-one reducibility for nonregular

subobjects helps to clarify these qualitative differences.

Definition 5.12. Let A� X be a Σ0
2 subobject.

1. A has the unique witness property iff there exists a uniformly Π0
1 sequence

(An)n∈� of subobjects of X such that A ≡
⊎
n∈� An and |An| ∩ |Am| = ∅

whenever n �= m.
2. A has the increasing witness property iff there exists a uniformly Π0

1 sequence
(An)n∈� of subobjects of X such thatA ≡

⊎
n∈� An and |An| ⊆ |Am|whenever

n ≤ m.

Observation 5.13. Let A� X be a Σ0
2 subobject such that A = �x ∈ X :

∃n∀m ≥ n. f(m,x) = 1� for some morphism f : � × X → 2. Then A has the unique
witness property.

Proof. Define An = �x ∈ X : ∀m ≥ n.f(m,x) = 1 ∧ f(n – 1, x) = 0�. Then,
(An)n∈� is a uniform Π0

1 sequence, and |An| ∩ |Am| = ∅ for n �= m. Clearly, we have⊎
n An ⊆ A. To see A ⊆

⊎
n An, if n is a witness for x ∈ A, then search for the least

n0 ≤ n such that f(m,x) = 1 for any n0 ≤ m ≤ n. By our assumption on n, one
can see that n0 is the least witness for x ∈ A. Therefore, x ∈ An0 . As n �→ n0 is
computable, we have A ⊆

⊎
n An. �

Observation 5.14. A Σ0
2 subobject A� X has the increasing witness

property iff there exists a Π0
1 subobject P� � × X such that A = �x ∈ X :

∃n∀m ≥ n. P(m,x)�.

Proof. For the forward direction, x ∈ A iff x ∈ An for some n, and for such n,
x ∈ Am for anym ≥ n. For the backward direction, considerAn =

�
m≥n Pm, where

Pm � X is the mth projection of P. Then (An)n∈� is a uniform Π0
1 sequence, and

|An| ⊆ |Am| whenever n ≤ m. Note that n is a witness for x ∈ A iff x ∈ An, so it is
also a witness for x ∈

⊎
n∈� An. Thus, A ≡

⊎
n∈� An. �
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Observation 5.15. Let A� X and B � Y be Σ0
2 subobjects such that A ≤m B .

1. If B has the unique witness property, so does A.
2. If B has the increasing witness property, so does A.

Proof. (1) AssumeB ≡
⊎
n∈� Bn. IfA ≤m B viaϕ then we haveA ≡ ϕ∗B . Note

that ϕ∗(
⊎
n Bn) ≡

⊎
n ϕ

∗Bn. Hence, |Bn| ∩ |Bm| = ∅ implies |ϕ∗Bn| ∩ |ϕ∗Bm| =
ϕ–1[|Bn|] ∩ ϕ–1[|Bn|] = ϕ–1[|Bn| ∩ |Bm|] = ∅. Thus, ϕ∗(

⊎
n Bn) has the unique

witness property. Now, B ≡
⊎
n Bn implies A ≡ ϕ∗B ≡ ϕ∗(

⊎
n Bn); hence, A also

has the unique witness property.
(2) Note that |Bn| ⊆ |Bm| implies |ϕ∗Bn| = ϕ–1[|Bn|] ⊆ ϕ–1[|Bm|] = |ϕ∗Bm|.

Thus, by the same argument as above, one can see that A has the increasing witness
property. �

Proposition 5.16. If a Σ0
2 subobject A� X has the unique witness property then

it has the increasing witness property.

Proof. Assume A ≡
⊎
n∈� An, and consider A′

m =
⊎
k≤m Ak . Obviously,m ≤ n

implies |A′
m| ⊆ |A′

n|. One can see A ≡
⊎
m∈� A

′
m. This is because, if (n, p) is a name

of x ∈
⊎
n∈� An then (n, n, p) is a name of x ∈

⊎
m

⊎
k≤m Ak , and if (m, k, p) is a

name of x ∈
⊎
m

⊎
k≤m Ak then (k, p) is a name of x ∈

⊎
n∈� An.

Now note that, in general, even if An is Π0
1 for each n, A′

m is not necessarily
Π0

1. However, the unique witness property solves this problem. In this case, we
claim that A′

m is equivalent to a subspace Bm of X whose underlying set is |A′
m|.

Clearly,A′
m ⊆ Bm. Given a name p of x ∈ Bm, by the unique witness property, there

exists a unique k ≤ m such that x ∈ Ak . Now wait for x �∈ An to be recognized
for all n ≤ m except one k. By continuity of trackers of co-characteristic functions
of An’s, one can recognize this after reading a finite initial segment on p. Then we
must have x ∈ Ak . Now, as p is an X -name of x, by regularity, one can recover its
Ak-name pk . Then (k, pk) is a name of x ∈ A′

m.
It remains to check that Bm is a Π0

1 subobject of X. This is because p is not a name
of an element of Bm iff pk is not a name of an element of Ak for any k ≤ m, which
is recognizable. �

As an argument for modifying a given formula, let us introduce Veldman’s
notion of “perhaps” [11, 12]. Given a Σ0

2 formula 	 ≡ ∃a∀b�(a, b, x), consider
the following:

Perhaps(	) := �x ∈ �� : ∃a[∀b (¬�(a, b, x)→ ∃c∀d�(c, d, x)]�.
Note that the above has the same many-one degree as �x : ∃a[
(a, x)→

∃b¬
(b, x)]�, where 
(a, x) ≡ ∃z¬�(a, z, x). Veldman [11, Theorem 3.8] proved
that Perhaps(Fin) is Σ0

4 but not Π0
4, and in particular, it jumps out of Σ0

2. Here, we
consider its totalized version that falls into the framework of Σ0

2.

Half(	) := �x ∈ �� : ∃a, b[
(a, x)→ ¬
(b, x)]�.
To be more explicit, for a Σ0

2 formula 	 ≡ ∃a∀z�(a, z, x), the subobject
Half(	) � �� is given as follows:

• The underlying set is {x ∈ �� : 	(x)}.
• (a, b, x) is a name of x ∈ Half(	) iff either ∀z�(a, z, x) or ∀z�(b, z, x) holds.
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Definition 5.17. A subobject A� �� is half Σ0
2-hard if Half(	) ≤m A for any

Σ0
2 formula 	.

Later we will show that no half Σ0
2-hard subobject has the increasing witness

property.

5.4. Examples. We give some natural examples of witnessed sets whose underly-
ing sets are classically Σ0

2-complete. The examples listed below seem to fall into four
groups.

5.4.1. Unique witness property The first group consists of examples of the
“unique witness” type.

Example 5.18. A binary relation R ⊆ � × � is coded by its characteristic
function �R ∈ 2�×� . Let (Px,≤x) ∈ PO denote the partial order coded by x ∈ �� ,
where Px = {a ∈ � : a ≤x a}. In this way, the space PO of partial orders on a
subset of � can be introduced as a Π0

1 subspace of 2�×� . Consider the following
subobject POtop of �� :

• The underlying set is the set of all partial orders having greatest elements; that
is, |POtop| = {x ∈ �� : (∃a ∈ Px)(∀b ∈ Px) b ≤x a}.

• (a, p) is a name of x ∈ POtop iffp = x and a is the greatest element in (Px,≤x).

Since the greatest element is unique if it exists, it is obvious that it has the unique
witness property.

Proposition 5.19. Fin ≡m POtop.

Proof. POtop ≤m Fin: Given P = Px , consider P[s] = {p ≤ s : p ≤P p}. If
maxP[s] = maxP[s + 1] then put ϕ(x)(s) = 0; otherwise ϕ(x)(s) = 1. If p is
the ≤P-greatest element, then we have p = maxP[p] = maxP, so ϕ(x)(s) = 0
for any s ≥ p. Hence, p is a witness for ϕ(x) ∈ Fin. Conversely, if s is a witness
for ϕ(x) ∈ Fin, then ϕ(x)(t) = 0 for any t ≥ s . This means maxP[s] = maxP, so
compute the≤P-greatest element p among the finite set P[s]. Then p is a witness for
x ∈ POtop.

Fin ≤m POtop: Givenx ∈ �� , we construct a posetP = Pϕ(x). Wheneverx(s) �= 0
happens, we add a new top element to P; that is, if x(s) �= 0, put t <P s ≤P s for any
t < s ; otherwise we do not add anything to P. If s is a witness for x ∈ Fin then search
for the ≤P-greatest element p among the finite set {t ∈ P : t ≤ s}. Since nothing is
added to P after stage s, this p remains the≤P-greatest element in P, so p is a witness
for ϕ(x) ∈ POtop. Conversely, if p is the ≤P-greatest element in P then there is no
s > p such that x(s) �= 0. Otherwise, we add a new top element s >P p, which is
impossible. Thus, p is a witness for x ∈ Fin. �

Of course, partial orders may be changed to linear orders, and top elements
may be changed to bottom elements. This means that the decision of boundedness
BddPO of posets is also m-equivalent to Fin. Here are some other examples.

Example 5.20. Consider the following subobject Conv of �� :

• The underlying set is the set of all convergent sequences on �; that is, |Conv| =
{x ∈ �� : limn→∞ x(n) exists}.

• (s, p) is a name of x ∈ Conv iff p = x and x(t) = x(s) for all t ≥ s .
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Example 5.21. We consider a decision problem for real numbers, where a real
number is presented by accuracy-guaranteed rational approximations, so we deal
with a decision problem for such rational approximations. A pre-real is a rational
sequence (qn)n∈� such that |qn – qm| ≤ 2–n for any m ≥ n. Here, rational numbers
are coded by natural numbers in an obvious manner, so we can consider Rpre to be
a Π0

1 subobject of �� . In the following, we often identify a pre-real (qn)n∈� with
the real number limn→∞ qn. If the limit is rational, we say that it is a pre-rational.
Consider the following subobject Qpre of Rpre:

• The underlying set is the set of all pre-rationals.
• (m, n, p) is a name of x ∈ Qpre iff p is an Rpre-name of x, and x = k

m where
m ∈ � \ {0}, and n is a Z-name of k.

Here, for example, although there can be more than one witness km for x ∈ Qpre,
if restricted to only irreducible fractions, the witness for x ∈ Qpre is unique. Thus,
Qpre � Rpre can be described by a formula with the unique witness property without
changing the intrinsic complexity. In this sense,Qpre � Rpre is an object of the unique
witness type.

The case of Conv is a little more difficult. At first glance, Conv appears to be of
the increasing type, but closer analysis reveals that it is in fact of the unique witness
type. We will discuss this in detail later, but first let us see the following:

Observation 5.22. Conv ≡m Fin ≡m Qpre.

Proof. Conv ≤m Fin: Given x ∈ �� , define ϕ(x) ∈ �� as follows: If x(s + 1) �=
x(s), put ϕ(x)(s) = 1; otherwise ϕ(x)(s) = 0. Note that s is a witness for x ∈ Conv
iff x(t + 1) = x(t) for any t ≥ s iff ϕ(x)(t) = 0 for any t ≥ s iff s is a witness for
ϕ(x) ∈ Fin. Thus, using r–(s, x) = s and r+(s, x) = s work.

Fin ≤m Qpre: For f(n) = n2, the sum
∑∞
n=0 2–f(n) is irrational. Given x ∈ �� ,

consider ϕ(x) :=
∑
x(n)�=0 2–f(n). Note that x ∈ Fin iff the binary expansion of ϕ(x)

is eventually periodic iff ϕ(x) is rational. Given a witness s for x ∈ Fin, the value
ϕ(x) can be written as

∑
n≤s 2f(s)–f(n)/2f(s). The denominator and numerator are

both natural numbers, so the pair is a witness for ϕ(x) ∈ Qpre. Conversely, if ϕ(x)
is of the form a/b, the denominator b must be a multiple of some 2f(s). If x(t) �= 0
for some t > s , then 2–f(t) is added to ϕ(x), which makes it impossible to express
ϕ(x) as a multiple of 2–f(s). Thus, s + 1 is a witness for x ∈ Fin.

Qpre ≤m Conv: Given x ∈ Rpre, we first get its rational approximation with
accuracy 1, from which we can compute a positive integer b that is an upper
bound of |x|, so we get y = x/b ∈ [– 1, 1]. We define ϕ(x)(s) as the prediction
of the denominator of y at stage s; that is, the current prediction is n iff the
prediction that y = k/n for some – n ≤ k ≤ n is not refuted at that stage. Here,
the prediction that y = k/n is refuted at stage s means that |qs – k/n| > 2–s is
confirmed by looking at the information on a rational approximation qs of y with
accuracy 2–s . If the prediction n is refuted at s, change the prediction at stage s + 1
to ϕ(x)(s + 1) = n + 1.

If x is a rational number of the form a/b, then rewrite this into irreducible fraction
k/n. One can see that the denominator n is equal to lims→∞ ϕ(x)(s). We search for
the first s such that ϕ(x)(s) = n. This s is a witness for ϕ(x) ∈ Conv since ϕ(x) is
monotone. Conversely, if s is a witness for ϕ(x) ∈ Conv, then compute ϕ(x)(s) = n.
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By our construction, x must be of the form k/n for some – n ≤ k ≤ n. Looking at
an approximation of x with accuracy 2–n, the equation x = k/n is refuted except for
one k, so the last remaining k is the numerator of x. �

The reason why we introduced the notion of pre-real here is in the proof of
Qpre ≤m Conv. By our definition, a many-one reduction ϕ must be well-defined
on represented spaces; however, observe that there are few morphisms R→ �� ,
while there are many morphisms Rpre → �� . In the context of Wadge reducibility
(topological many-one reducibility; Definition 3.20), the difference between the
structures ofR and�� is examined in depth [8]. If we change the definition to a form
that allows a many-one reduction ϕ on the name space Code, as in Pequignot-style
Wadge reducibility [7] or Weihrauch reducibility [2], there is no need to introduce
the notion of pre-real.

5.4.2. Increasing witnes s property Next, let us discuss examples that are of the
“increasing” type.

Example 5.23. Consider the following subobject BddSeq� of �� :

• The underlying set is the set of all bounded sequences on�; that is, |BddSeq� | =
{x ∈ �� : (∃b)(∀n) x(n) ≤ b}.

• (b, p) is a name of x ∈ BddSeq� iff p = x and x(n) ≤ b for all n.

BddSeqQ � Q� and BddSeqR � R� can be defined in a similar manner.

It is not difficult to verify that these examples can be written as increasing
sequences of Π0

1 sets.

Observation 5.24. BddSeq� ≡m BddSeqQ ≡m BddSeqR.

Proof. A natural number is clearly a rational number, which is clearly a real
number. Given an upper bound b of a sequence (xn)n∈� of real numbers, first
extract a rational approximation m/n of b with precision 2–1. Then the natural
number |m|+ 1 is an upper bound of (xn)n∈� . �

An example other than decision problems on sequences is the decision that a
partial order has a finite height/width. Here, the height (width, resp.) of a poset P is
the supremum of the cardinality of chains (antichains, resp.) in P.

If one attempts to describe finiteness of the size of something by a Σ0
2-formula, it

is natural to write it as the existence of a finite upper bound of the size. Therefore, it
is appropriate to consider the witness of this formula as the value of an upper bound
of the size.

Example 5.25. Recall that Px is the poset coded by x ∈ �� . Consider the
following subobjects FinHeight and FinWidth of �� :

• |FinHeight| = {x ∈ �� : the height ofPx is finite}.
• |FinWidth| = {x ∈ �� : the width ofPx is finite}.
• (b, p) is a name of x ∈ FinHeight iff p = x and the height of Px is at most b.
• (b, p) is a name of x ∈ FinWidth iff p = x and the width of Px is at most b.

Observation 5.26. BddSeq� ≡m FinHeight ≡m FinWidth.
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Proof. FinHeight,FinWidth ≤m BddSeq� : Given P = Px , consider the cardi-
nality ϕ(x)(n) of a maximal chain or antichain in the finite set P[n] = {p ≤ n :
p ≤P p}.

BddSeq� ≤m FinHeight: Given x ∈ �� , we construct a poset P = Pϕ(x). When-
ever a previously unseen large value appears in x, we add a new top element to P. To
be precise, let the underlying set of P be {〈n, t〉 : x(t) ≥ n and ∀s < t. x(s) < n}.
Here, n < m implies 〈n, t〉 <P 〈m, s〉 for any s, t. Note that for each n, P has at most
one element of the form 〈n, t〉.

If b is a witness for x ∈ BddSeq� , then x(t) ≤ n for any t. Thus, 〈m, s〉 ∈ P implies
m ≤ n. Then P can contain at most n + 1 elements as noted above, so the height of P
is at most n + 1. Therefore, n + 1 is a witness for ϕ(x) ∈ FinHeight. Conversely, if n
is a witness for ϕ(x) ∈ FinHeight then we claim that n is a witness for x ∈ BddSeq� .
Otherwise, there exists t such that x(t) > n. Hence, for any m ≥ n, let t(m) be
the least number such that x(t(m)) ≥ n. By definition, we have 〈m, t(m)〉 ∈ P. In
particular, (am

t(m))m≤n is a chain of length n + 1; thus the height of P is at least n + 1.
This contradicts our assumption, so n is a witness for x ∈ BddSeq� .

BddSeq� ≤m FinWidth: Given x ∈ �� , we construct a poset P = Pϕ(x). The
underlying set is the same as above. Now we declare that all distinct elements in
P are incomparable. The rest of the proof is exactly the same as above. �

5.4.3. Half Σ0
2-hard Let us discuss Σ0

2 subobjects that are half Σ0
2-hard. Obviously,

there exists a subobject of�� which is complete w.r.t. the ones of the formHalf(	) �
�� for some Σ0

2 formula 	. To see this, just take a universal Σ0
2 formula 	.

Example 5.27. Consider the following subobject HalfTruthΣ0
2
� �� :

• The underlying set is {(xn)n∈� ∈ (��)� : (∃n ∈ �) xn = 0∞}.
• (n,m, p) is a name of x = (xn)n∈� ∈ DisConn iff p = x and either xn = 0∞ or
xm = 0∞ holds.

Observation 5.28. HalfTruthΣ0
2

is half Σ0
2-hard.

However, this is just a meta-mathematical example of a half Σ0
2-complete

subobject. A natural example of a half Σ0
2-hard subobject may be presented from

graph theory.
There are two ways to formalize the notion of a graph. One is to introduce edges

as pairs of vertices. That is, a directed graph is a pairG = (V,E) satisfying E ⊆ V 2.
We call this a subset presentation of a directed graph.

The other is to treat edges as data with specified source and target vertices. In
other words, a directed multigraph is a map 〈d, c〉 : E → V 2, where d (e) denotes
the source vertex (tail) of edge e and c(e) denotes the target vertex (head) of edge e.
This is also a very standard way of presenting a directed multigraph, which we call
a function presentation of a graph. We sometime use the symbol u e−→ v to denote
an edge e with d (e) = u and c(e) = v.

From here on, we only deal with undirected graphs. In the case of a presentation
of an undirected graph, we consider E ⊆ [V ]2 and � : E → [V ]2. Here, [V ]2 =
{(u, v) ∈ V 2 : u < v} for V ⊆ �, and each (u, v) ∈ [V ]2 is often written as {u, v}
or {v, u}; that is, we do not distinguish between {u, v} and {v, u} as usual.
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Note that subset and function presentations (even restricted to undirected simple
graphs) are not computability–theoretically equivalent in a certain sense, but they
are equivalent as far as the following disconnectedness problem is concerned.

Example 5.29. A subset presentation of a graph G = (V,E) with V ⊆ � and
E ⊆ [V ]2 is coded as their characteristic functions �V ∈ 2� and �E ∈ 2(�2) � 2� .
LetGx = (Vx,Ex) be the subset presentation of the graph coded by x. Consider the
following subobject DisConn of �� :

• The underlying set is the set of all subset presentations of disconnected graphs;
that is, x ∈ |DisConn| iff not every two vertices are connected by a finite path
in Gx .

• (a, b, p) is a name of x ∈ DisConn iff p = x and a, b ∈ Vx are not connected
by any finite path in Gx .

Example 5.30. A function presentation of a graph � : E → [V ]2 with V ⊆ �
and E ⊆ � is coded as the triple (�, �V , �E). Let �x : Ex → [Vx ]2 be the function
presentation of the graph coded by x. Consider the following subobject DisConnfun
of �� :

• The underlying set is the set of all function presentations of disconnected
graphs; that is, x ∈ |DisConnfun| iff not every two vertices are connected by a
finite path in �x .

• (a, b, p) is a name of x ∈ DisConnfun iff p = x and a, b ∈ Vx are not connected
by any finite path in �x .

These are clearly Σ0
2 subobjects of �� . A function presentation of a graph may

appear, for example, in the context of group actions.

Example 5.31. An action α : G × S → S of a countable group G ⊆ � on a
set S ⊆ � is coded via their characteristic functions, where a code of G ⊆ � also
involves the operation ∗ ∈ ��×� and the inverse ◦–1 ∈ �� . Let (Gx, Sx, αx) denote
the countable group action coded by x ∈ �� . Consider the following subobject
Orbit≥2 of �� :

• The underlying set is the set of all countable group actions on subsets of �;
that is, x ∈ |Orbit≥2| iff αx : Gx × Sx → Sx has at least two orbits.

• (a, b, p) is a name of x ∈ Orbit≥2 iff p = x and a, b ∈ Sx belong to different
orbits; that is, there is no g ∈ Gx such that αx(g, a) = b.

When a group action α is given, α(g, a) is often abbreviated as g · a.

Proposition 5.32. DisConn ≡m DisConnfun ≡m Orbit≥2.

Proof. DisConn ≤m DisConnfun: It is obvious since any subset E ⊆ [V ]2 can be
thought of as an inclusion map E ↪→ [V ]2.

DisConnfun ≤m DisConn: Let a function presentation of a graph � : E → [V ]2

is given. For each v ∈ V , put 2v ∈ V ′. If �(a) = {u, v} then put {2u, 2〈u, v, a〉+
1}, {2〈u, v, a〉+ 1, 2v} ∈ E ′. Note that the graph φ(�) = (V ′, E ′) is the result of
adding one vertex to the midpoint of each edge of the graph (V,E). For the
forward reduction, clearly {u, v} is disconnected in (V,E) iff {2u, 2v} is disconnected
in (V ′, E ′). For the backward reduction, assume that {2u, 2〈v,w, a〉+ 1} is
disconnected in (V ′, E ′). By definition, 2v is adjacent to 2〈v,w, a〉+ 1, so {2u, 2v}
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must also be disconnected; hence {u, v} is disconnected in (V,E). Similarly, if
{2〈u, v, a〉+ 1, 2〈u′, v′, a′〉+ 1} is disconnected in (V ′, E ′), so is (2u, 2u′); hence
(u, u′) is disconnected in (V,E).

Orbit≥2 ≤m DisConnfun: Given a group actionG × S → S, consider the (directed)
graph � : G × S → S2 defined by �(g, a) = (a, g · a). Intuitively, � consists of edges
of the form a

g−→ g · a, but this must be distinguished from b
g−→ g · b for b �= a,

so we add the information on tails to the names of these edges; that is, the name of
the former is (g, a) and the latter is (g, b). Now every g ∈ G is invertible, so we have
�(g–1, g · a) = (g · a, a). As the information of ◦–1 is contained in a code of G, given
an edge u e−→ v in �, one can always effectively find an edge v c−→ u in �; that is,
if e = (g, a) then c = (g–1, g · a). Hence � can be modified to an undirected graph
� ′ : G × S → [S]2. Now, it is easy to see that a, b ∈ S belong to the same orbit iff a
and b are connected by a finite path in � ′.

DisConnfun ≤m Orbit≥2: Given a function presentation of a graph � : E → [V ]2,
consider the free group FE over the set E. Then define the FE -action on V as follows:
For a ∈ E, if �(a) = {u, v} then put a · u = v and a · v = u. For w ∈ V \ {u, v},
put a · w = w. Then a and b are connected by a finite path in � iff a, b ∈ S belong
to the same orbit. �

Interestingly, as we will see later, DisConn is half Σ0
2-hard, but not Σ0

2-complete.

5.4.4. Σ0
2-complete The last group consists of “genuine” Σ0

2-complete sets.
Of course, a meta-mathematical example of a Σ0

2-complete subobject of �� is
�x ∈ �� : ∃a ∈ �∀b ∈ ��(a, b, x)�, where ∃a∀b�(a, b, x) is a universal Σ0

2 formula.
This is equivalent to the following:

Example 5.33. Consider the following subobject TruthΣ0
2
� �� :

• The underlying set is {(xn)n∈� ∈ (��)� : (∃n ∈ �) xn = 0∞}.
• (n, p) is a name of x = (xn)n∈� ∈ TruthΣ0

2
iff p = x and xn = 0∞ holds.

Observation 5.34. TruthΣ0
2

is complete w.r.t. Σ0
2 subobjects of �� .

Next, we give some order-theoretic examples of Σ0
2-complete subobjects.

Example 5.35. The space of linear orders LO on a subset of � is a Π0
1 subspace

of 2�×� . Let (Lx,≤x) ∈ LO denote the linear order coded by x ∈ �� , where Lx =
{a ∈ � : a ≤x a}. Consider the following subobject NonDense of �� :

• The underlying set is the set of all non-dense linear orders; that is, |NonDense| =
{x ∈ �� : ¬(∀a, b ∈ Lx) [a <x b → (∃c ∈ Lx) a <x c <x a]}.

• (a, b, p) is a name of x ∈ NonDense iff p = x, a <x b and for any c ∈ Px either
c ≤x a or b ≤x c holds.

Example 5.36. A bottomed poset is a tuple (P,≤P,⊥P), where (P,≤P) is a poset,
and ⊥P is the least element in P. An atom of a bottomed poset P is an element
which is minimal among non-bottom elements in P. For P ⊆ �, a bottomed poset
(P,≤P,⊥P) is coded by the pair of the characteristic function of≤P and the natural
number⊥P ∈ P ⊆ �. In this way, the space of bottomed posets PO⊥ on a subset of
� can be introduced as a Π0

1 subspace of 2�×� × �.
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Let (Px,≤x,⊥x) ∈ PO⊥ denote the bottomed poset coded by x ∈ �� , where
Px = {a ∈ � : a ≤x a}. Consider the following subobject POatom of �� :

• The underlying set is the set of all partial orders having atoms; that is,
|POatom| = {x ∈ �� : (∃a ∈ Px)(∀b ∈ Px) b <x a → b = ⊥x}.

• (a, p) is a name of x ∈ POatom iff p = x, for any c ∈ Px either c ≤x a or
b ≤x c holds.

Proposition 5.37. NonDense is complete w.r.t. Σ0
2 subobjects of �� .

Proof. It suffices to show TruthΣ0
2
≤m NonDense. Given x = (xn)n∈� , we

construct a linear order L = Lϕ(x). First put (n, 0) <L (n + 1, 0) for any n ∈ �.
As long as xn = 0∞ is true, nothing is enumerated between (n, 0) and (n + 1, 0).
If we see xn �= 0∞ at stage s, we enumerate elements of the form (n, t) for t ≥ s
between (n, 0) and (n + 1, 0) so that the ≤L-interval [(n, 0), (n + 1, 0)] eventually
becomes dense.

If n is a witness for x ∈ TruthΣ0
2
, i.e., xn = 0∞, then there is no element between

(n, 0) and (n + 1, 0), so this pair is a witness for ϕ(x) ∈ NonDense. Conversely,
let 〈(n, i), (m, j)〉 be a witness for ϕ(x) ∈ NonDense. We may assume n ≤ m. If
n + 1 < m then we have (n, i) < (n + 1, 0) < (m, j), so 〈(n, i), (m, j)〉 cannot be a
witness. If n = m and i �= j, then either i �= 0 or j �= 0; that is, some (n, k) for
k �= 0 is enumerated into L. By our construction, this means that the ≤L-interval
[(n, 0), (n + 1)] becomes dense, and any element of the form (n, k) is enumerated into
this interval. In particular, (n, i) and (n, j) are contained in the ≤L-dense interval
[(n, 0), (n + 1)], so some (n, k) is enumerated between (n, 0) and (n + 1, 0); hence
〈(n, i), (m, j)〉 cannot be a witness. Therefore, we have m = n + 1, but there is no
element between (n, i) and (n + 1, j) then we must have i = j = 0, which means
xn = 0∞; that is, n is a witness for x ∈ TruthΣ0

2
. �

Proposition 5.38. POatom is complete w.r.t. Σ0
2 subobjects of �� .

Proof. It suffices to show TruthΣ0
2
≤m POatom. Given x = (xn)n∈� , we construct

a partially ordered setP = Pϕ(x). Put⊥ ∈ P and (n, 0) ∈ P for each n ∈ �. As long
as xn = 0∞ is true, nothing other than⊥ is enumerated below (n, 0), which becomes
an atom in P. If we see xn �= 0∞ at stage s, we enumerate an infinite decreasing
sequence (n, 0) >P (n, s) >P (n, s + 1) >P ... .

If n is a witness for x ∈ TruthΣ0
2
, i.e., xn = 0∞, then (n, 0) is an atom in P.

Conversely, if (n, s) is an atom in P, we must have s = 0 and xn = 0∞; that is, n is a
witness for x ∈ TruthΣ0

2
. �

We also introduce a Σ0
2-complete subobject concerning trees.

Example 5.39. Let Tr2 be the represented space of binary trees. Consider the
following subobject Tr2(≥ 2) of Tr2:

• The underlying set is the set of all binary trees which have at least two infinite
paths.

• (�, �, p) is a name of T ∈ Tr2(≥ 2) iff p is a Tr2-name of T, and � and � are
incomparable finite strings which are extendible to infinite paths in T.
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Proposition 5.40. Tr2(≥ 2) is complete w.r.t. Σ0
2 subobjects of �� .

Proof. It suffices to show TruthΣ0
2
≤m Tr2(≥ 2). Given x ∈ �� , construct a tree

Tx such that 0m ∈ Tx for anym ∈ � and 0n1s ∈ Tx iff xn = 0∞ is not yet recognized
when x is read up to s. Note that 0∞ is always an infinite path through Tx , and 0n1∞

is an infinite path through Tx iff xn �= 0∞. Therefore, x ∈ |A| iff Tx has at least two
infinite paths, i.e., Tx ∈ |Tr2(≥ 2)|.

Given a witness n for x ∈ A, we know xn �= 0∞, so (0n+1, 0n1) is an incomparable
extendible pair in Tx ; hence r–(n, x) := (0n+1, 0n1) is a witness for Tx ∈ Tr2(≥ 2).
Conversely, if (�, �) is a witness for Tx ∈ Tr2(≥ 2), either � or � is of the form 0m1k ,
and in this case, we have xm �= 0∞; hence r+(�, �, x) := m is a witness for x ∈ A. �

5.5. Many-one degree structure.

5.5.1. Completeness and hardness Let us first confirm that each of the first two
levels of Σ0

2 subobjects has a complete subobject.

Theorem 5.41. Fin is complete w.r.t. Σ0
2 subobjects of�� having the unique witness

property.

Proof. We first check that Fin has the unique witness property. The idea is to use
a process to search for the least witness for x ∈ Fin using its name. First, we divide
Fin according to what its least witness is. Namely, let Fn be a subspace of �� whose
underlying set is:

|Fn| = {x ∈ �� : (∀m ≥ n) x(m) = 0 ∧ (∀m < n)(m ≤ ∃k < n) x(k) �= 0}.

Then we claim that Fin ≡
⊎
n Fn. One can easily observe that |Fin| = |

⊎
n Fn|,

and any name of x ∈
⊎
n Fn is also a name of x ∈ Fin. Given a name (n, x) of

x ∈ Fin, search for its least witness; that is, the least m ≤ n such that x(k) = 0 for
any m ≤ k ≤ n. One can see that x ∈ Fm for such m. Then (m,x) is a name of
x ∈

⊎
n Fn.

For the completeness, assume that A has the unique witness property via A ≡⊎
n An. Let fn be a witness for closedness of An; that is, x ∈ An iff fn(x) = 0∞.

Given x ∈ �� , by continuity of fn, if x �∈ An (i.e., fn(x) returns some nonzero
value), that can be recognized after reading a finite initial segment of x. Starting
from n = 0, ϕ(x) keeps outputting 0 untilfn recognizes x �∈ An. When it recognizes
x �∈ An, ϕ(x) outputs 1, and then repeat the same procedure with n + 1. This
reduction is exactly the same as the proof of the classical Σ0

2-completeness, which
shows that x ∈ |

⊎
n An| iff ϕ(x) ∈ |Fin|.

Given a name (n, x) of x ∈
⊎
n An, we have x ∈ An. By uniqueness, we also have

x �∈ Am for anym < n. Therefore, the above procedure eventually recognizesx �∈ Am
for each m < n, and thus, it arrives at a state waiting for fn to recognize x �∈ An at
some stage sn. Since x ∈ An, it is never recognized, so ϕ(x) continues to output 0
forever after stage sn. Therefore, r–(n, x) = (sn, ϕ(x)) is a name of x ∈ Fin.

Given a name (s, p) of ϕ(x) ∈ Fin, run the above procedure for s steps. At that
point, the process is waiting for fk to recognize x �∈ Ak for some k. If it is ever
recognized, ϕ(x) outputs 1 at somewhere after the sth bit, which is impossible
because of the assumption that (s, p) is the name of ϕ(x) ∈ Fin. Therefore, x �∈ Ak
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is never recognized, that is, x ∈ Ak . Therefore, r+(x, (s, p)) = (k, x) is a name of
x ∈

⊎
n An. �

Combining with Observation 5.13, this verifies our claim that Fin is complete
among Σ0

2 subobjects defined by a formula of the form ∀n∃m ≥ n.ϕ(m,x), where ϕ
is decidable.

Theorem 5.42. BddSeq� is complete w.r.t. Σ0
2 subobjects of �� having the

increasing witness property.

Proof. For each k ∈ �, consider Bk = �x ∈ �� : (∀n) x(n) < k�. Then clearly
|Bk | ⊆ |Bk+1| and BddSeq� =

⊎
k∈� Bk . Hence, BddSeq� has the increasing witness

property.
For the completeness, assume that A has the increasing witness property via

A ≡
⊎
n An. Letfn be a witness for closedness ofAn; that is, x ∈ An ifffn(x) = 0∞.

Given x ∈ �� , by continuity of fn, if x �∈ An, that can be recognized after reading
a finite initial segment of x. Starting from n = 0, ϕ(x) keeps outputting 0 until fn
recognizes x �∈ An. When it recognizes x �∈ An, ϕ(x) outputs n, and then repeat the
same procedure with n + 1. This reduction is exactly the same as the proof of the
classical Σ0

2-completeness, which shows that x ∈ |
⊎
n An| iff ϕ(x) ∈ |BddSeq�|.

Given a name (k, x) of x ∈
⊎
n An, we have x ∈ Ak . For the least n ≤ k such that

x ∈ An, we have x �∈ Am for any m < n. Therefore, the above procedure eventually
recognizes x �∈ Am for each m < n, and thus, it arrives at a state waiting for fn
to recognize x �∈ An at some stage. Since x ∈ An, it is never recognized, so ϕ(x)
continues to output 0 forever after the stage. This means, in particular, that ϕ(x)
only outputs values less than n. Now, since n ≤ k, k gives an upper bound of ϕ(x).
Therefore, r–(n, x) = (k, ϕ(x)) is a name of x ∈ BddSeq� .

Given a name (b, p) of ϕ(x) ∈ BddSeq� , note that b is an upper bound of ϕ(x),
so let k ≤ b the least upper bound of ϕ(x). In particular, during the above process,
ϕ(x) outputs k at some stage, but never output k + 1. This means thatfk recognizes
x �∈ Ak , but fk+1 never recognizes x �∈ Ak+1; hence, x ∈ Ak+1. As k + 1 ≤ b + 1,
r+(x, (b, p)) = (b + 1, x) is a name of x ∈

⊎
n An. �

Next, we show that a half Σ0
2-hard subobject bounds these two levels. For this

purpose, we compare these notions with amalgamability.

Observation 5.43. If a Σ0
2 subobject A� X has the increasing witness property,

then A is amalgamable.

Proof. Assume that A has the increasing witness property via A ≡
⊎
n∈� An.

Let p be a name of x ∈
⊎
n An. Given (n1, p1), ... , (nk, pk), if at least one of them,

say (ni , pi), is a correct name of x ∈
⊎
n An then x ∈ |Ani |, and thus x ∈ |Am| for

any m ≥ ni by the increasing witness property. Hence, (m,p) is also a name of
x ∈

⊎
n An. Thus, if we putm = maxj≤k nj then (m,p) is a name of x ∈

⊎
n An. �

Proposition 5.44. If A� �� is half Σ0
2-hard, then B ≤m A for any amalgamable

Σ0
2 subobject B � �� .

Proof. Let 	(x) ≡ ∃a�(a, x) be a Σ0
2 formula defining B, where � is Π0

1. Then,
for each witness a for x ∈ B , (a, a) is a witness for x ∈ Half(	). Conversely, if
(a, b) is a witness for x ∈ Half(	), then either a or b is a witness for x ∈ B . As B is
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amalgamable, from the information on (a, b, x), one can compute a correct witness
for x ∈ B . Hence, B ≤m Half(	) ≤m A. �

By Observation 5.43 and Proposition 5.44, we get BddSeq� ≤m HalfTruthΣ0
2
. We

next show HalfTruthΣ0
2
≤m DisConn.

Proposition 5.45. DisConn is half Σ0
2-hard.

Proof. We show that HalfTruthΣ0
2
≤m DisConn. Given x ∈ �� , we construct a

graph G = (V,E). First put a special vertex v0 ∈ V . As long as xn = 0∞ is true, we
enumerate a path (n, 0)→ (n, 1)→ (n, 2)→ ... into E. If we see xn �= 0∞ at some
stage s, terminate the construction of this path at (n, s) and then enumerate the edge
(n, s)→ v0 into E. Note that if xn = 0∞ holds then {(n, i) : n ∈ �} is a connected
component in G; otherwise (n, i) is connected to v0.

Now assume that (n,m) be a witness for x ∈ HalfTruthΣ0
2
. Then either xn = 0∞ or

xm = 0∞ holds. If n = m then xn = 0∞, so (n, 0) is not connected to v0 by a finite
path, so 〈(n, 0), v0〉 is a witness for G ∈ DisConn. Assume n �= m. If xn = 0∞ then
{(n, i) : i ∈ �} is a connected component in G which does not contain (m, 0) since
n �= m. If xn �= 0∞ then we must have xm = 0∞, so {(m, i) : i ∈ �} is a connected
component which does not contain (n, 0). Thus, (n, 0) and (m, 0) are not connected
by a finite path; that is, 〈(n, 0), (m, 0)〉 is a witness for G ∈ DisConn.

Conversely, assume that a witness for G ∈ DisConn is given. First consider the
case that the witness is of the form 〈(n, i), (m, j)〉. If both xn �= 0∞ and xm �= 0∞

hold then both (n, i) and (m, j) are connected to v0. This is impossible. Hence, either
xn = 0∞ or xm = 0∞ holds; that is, (n,m) is a witness for x ∈ HalfTruthΣ0

2
. Next, if

the witness is of the form 〈(n, i), v0〉, then (n, i) is not connected to v0, so we must
have xn = 0∞. Therefore, (n, n) is a witness for x ∈ HalfTruthΣ0

2
. �

5.5.2. Separation We will see that these levels of Σ0
2 subobjects have different

strengths. In other words, our goal here is to prove the following:

Theorem 5.46. Fin <m BddSeq <m HalfTruthΣ0
2
<m DisConn <m TruthΣ0

2
.

For this purpose, we first show a technical lemma. An element x ∈ |A| of a
subobjectA� X is splittable if for any 
 ∈ � and j, k there existsx′ ∈ |A| extending
x � 
 such that j is no longer a witness for x′ ∈ A, but if k �= j is a witness for x ∈ A,
then k is still a witness for x′ ∈ A.

Lemma 5.47 (Split Lemma). For subobjects A� X and B � Y , assume that
A ≤m B holds via ϕ, r–, r+ (in the sense of Example 3.27). If k is a witness for x ∈ A
for some splittable element x ∈ |A| then r+(r–(k, x), x) = k holds.

Proof. Let B � Y be given, and assume that A ≤m B via ϕ, r–, r+. If j is a
witness for x ∈ A, then r–(j, x) is a witness for ϕ(x) ∈ B . Hence, r+(r–(k, x), x)
must be a witness for x ∈ A. Suppose for the sake of contradiction that we have
r+(r–(k, x), x) = j �= k for some k.

By continuity, we have r+(r–(k, x) � 
, x � 
) = j for sufficiently large 
. Similarly,
for sufficiently large 
 ′ ≥ 
, the sequence r–(k, x � 
 ′) extends r–(k, x) � 
. By
splittability of x ∈ A, there exists x′ ∈ |A| extending x � 
 ′ such that j is not
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a witness for x′ ∈ A, but k is a witness for x′ ∈ A. By our choice of 
 ′, we
have r+(r–(k, x′), x′) = j. As k is a witness for x′ ∈ A, r–(k, x′) is a witness for
ϕ(x′) ∈ B , so r+(r–(k, x′), x′) = j must be a witness for x′ ∈ A, which leads to a
contradiction. �

Abstractly speaking, this roughly says that, if x is splittable, r–(·, x) and r+(·, x)
form a section-retraction pair; in particular, r–(·, x) is a split mono. We first separate
BddSeq from Fin.

Proposition 5.48. BddSeq� does not have the unique witness property.

Proof. Suppose that BddSeq� has the unique witness property via BddSeq� ≡⊎
n∈� An. We may assume that An is a subspace of �� . Let i, j be trackers of

BddSeq� ⊆
⊎
n An and

⊎
n An ⊆ BddSeq� . For any x ∈ |BddSeq�| there exists a

unique n such that x ∈ |An|. Thus, if (m,x) is a name of x ∈ BddSeq� , we must
have i(m,x) = (n, x). Moreover, as (n, x) is a name of x ∈

⊎
n∈� An, j(n, x) is a

name of x ∈ BddSeq� , which is of the form (b, x).
Of course, (b + 1, x) is also a name ofx ∈ BddSeq� , and we have j ◦ i(b + 1, x) =

j(n, x) = (b, x). By continuity of i and j, the first value b is determined after reading
b + 1 and a finite initial segment x � t of x. However, x � t has an extension which is
bounded by b + 1, but not by b. For instance, consider an extension y of x such that
y(k) = b for any k ≥ t. Again, 〈b + 1, y〉 is a correct name of y ∈ BddSeq� , but
nevertheless the first value j ◦ i(b + 1, y) must be b, which is not an upper bound
of y. In particular, j ◦ i(b + 1, y) cannot be a name of y ∈ BddSeq� . �

We next separate HalfTruthΣ0
2

from BddSeq.

Proposition 5.49. If a Σ0
2 subobjectA� �� is amalgamable, thenHalfTruthΣ0

2
�≤m

A. In particular, HalfTruthΣ0
2

is not amalgamable.

Proof. Suppose that HalfTruthΣ0
2
≤m A via ϕ, r–, r+. SinceA� �� is amalgam-

able, there exists a partial morphism F such that if either a or a′ is a witness for
ϕ(x) ∈ A, then F (a, a′, x) is a witness for ϕ(x) ∈ A. First put xn = 0∞ for each
n ∈ �. For x = (xn)n∈� , both {0, 1} and {2, 3} are witnesses for x ∈ HalfTruthΣ0

2
,

so both a := r–({0, 1}, x) and a′ := r–({2, 3}, x) are witnesses for ϕ(x) ∈ A. By
amalgamability, F (a, a′, x) returns a witness b for ϕ(x) ∈ A. Then r+(b, x) returns
a witness {j, k} for x ∈ HalfTruthΣ0

2
.

Note that this b is a natural number since A is Σ0
2. Hence, the above mentioned

computations are determined after reading a finite initial segment of x. By
changing only sufficiently large values, modify xj and xk to x′j and x′j so that
x′j �= 0∞ and x′k �= 0∞ respectively while keeping x′i = 0∞ for each i �∈ {j, k}.
In particular, x′i = 0∞ holds for some i < 4. Hence, either {0, 1} or {2, 3} is a
witness for x′ ∈ HalfTruthΣ0

2
, so either a = r–({0, 1}, x′) or a′ = r–({2, 3}, x′) is

still a witness for ϕ(x′) ∈ A. Since only sufficiently large values of x are modified
to x′, we maintain F (a, a′, x′) = b, which must be a witness for ϕ(x′) ∈ A by
amalgamability. However, r+(b, x′) = {j, k} is not a witness for x ∈ HalfTruthΣ0

2
since our construction makes x′j �= 0∞ and x′k �= 0∞. �
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Figure 2. (left) A reduction pair for DisConnfun ≤m HalfTruthΣ0
2

if it exists; (right)

An example of our action if r+ moves a pair {z
mn, z
p
qr}out of the triangle {u0, u1, u2}.

We next show that DisConn is not only half Σ0
2-hard, but is strictly stronger than

any half Σ0
2 subobject of �� .

Proposition 5.50. DisConnfun �≤m HalfTruthΣ0
2
.

Proof. Assume DisConnfun ≤m HalfTruthΣ0
2

via ϕ, r–, r+. A witness for

HalfTruthΣ0
2

is in the form of a pair (a, b), but since it is symmetric, we may

write it as {a, b}; that is, we always have r–({u, v}, α), r+({a, b}, α) ∈ [�]2.
Begin with the edgeless graph α : E → V 2 with V = N and E = ∅. Note that

α ∈ Disconnfun is splittable since even if some finite information α � 
 of α is fixed,
for each pair (u, v) of V, by putting u e−→ v for e ∈ E larger than 
, only (u, v) is
made connected and all other pairs are maintained to be disconnected.

Now, for three distinct vertices u0, u1, u2 ∈ V , {uj, uk} is a witness for disconnect-
edness for any j �= k. Let us consider r–({uj, uk}, α) = {z0

jk, z
1
jk}, which is a witness

for ϕ(α) ∈ HalfTruthΣ0
2
. Here, ϕ(α) is a sequence in �� . By abuse of notation,

we write its nth term as ϕ(n, α). Note that if j �= k then either ϕ(z0
jk, α) = 0∞ or

ϕ(z1
jk, α) = 0∞ holds.

We are now in the situation shown in the left half of Figure 2: We have
six candidates {z0

01, z
1
01, z

0
02, z

1
02, z

0
12, z

1
12} for witnesses for ϕ(α) ∈ HalfTruthΣ0

2
. We

analyze to which pair of vertices r+ moves each pair of these six candidates.

Claim 1. For any 
,m, n, p, q, r, if 〈
, {m, n}〉 �= 〈p, {q, r}〉 then r+({z
mn, z
p
qr}, α)

⊆ {u0, u1, u2}.

Proof. Otherwise, {v, v′} := r+({z
mn, z
p
qr}, α) �⊆ {u0, u1, u2}. If {m, n} = {q, r}

then 
 �= p, so by Split Lemma 5.47, we must have {v, v′} = r+({z
mn, z
p
qr}, α) =

r+({z0
mn, z

1
mn}, α) = {um, un}, which is impossible by our assumption. Therefore,

{m, n} �= {q, r}.
Next, we assume that either ϕ(z1–


mn , α) �= 0∞ or ϕ(z1–p
qr , α) �= 0∞ holds. In

the former case, by reading α up to a sufficiently large t, we recognize ϕ(z1–

mn ,

α � t) �= 0∞, so connect vertices v and v′ by an edge e ∈ E larger than t. Then,
{v, v′} is not a witness for disconnectedness of the new graph α′, but as t is
large, r+(z
mn, z

p
qr , α

′) = {v, v′} is maintained. This forces {z
mn, z
p
qr} not to be a
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witness for ϕ(α′) ∈ HalfTruthΣ0
2
; in particular, ϕ(z
mn, α

′) �= 0∞. Therefore, this

construction forcesϕ(zimn, α
′) �= 0∞ for each i < 2. However, {um, un} is maintained

to be disconnected, so r–({um, un}, α′) = {z0
mn, z

1
mn} still returns a witness, which

means that ϕ(zimn, α
′) = 0∞ must be true for some i < 2, which is impossible.

The same argument applies in the case that ϕ(z1–p
qr , α) �= 0∞ holds. Hence, both

ϕ(z1–

mn , α) = 0∞ and ϕ(z1–p

qr , α) = 0∞ are true.
By our assumption, the intersection {v, v′} ∩ {u0, u1, u2} has at most one element,

and {m, n} �= {q, r}, so we have either {v, v′} ∩ {um, un} = ∅ or {v, v′} ∩ {uq, ur} =
∅. We assume that the former holds. The argument is the same for the latter case.

Then, consider the case that for any i, j, k if r+(z1–

mn , z

i
jk, α) is defined then this

value is included in {um, un}. Since both ϕ(z1–

mn , α) = 0∞ and ϕ(z1–p

qr , α) = 0∞

are true, r+(z1–

mn , z

1–p
qr , α) is defined, so this value is included in {um, un} by

our assumption. Indeed, this value must be {um, un} since it is a witness for
disconnectedness. Consider a graphα′ with sufficiently large edges v → v′ and um →
un so that r+(z
mn, z

p
qr , α

′) = {v, v′} and r+(z1–

mn , z

1–p
qr , α

′) = {um, un} are maintained.
This makes {v, v′} and {um, un} connected, but the assumption {v, v′} ∩ {um, un} =
∅ guarantees that no other pair is connected in α′. See the right half of Figure 2.
Now {v, v′} and {um, un} are not witnesses for disconnectedness of α′, so this
forces {z
mn, z

p
qr} and {z1–


mn , z
1–p
qr } not to be witnesses for ϕ(α′) ∈ HalfTruthΣ0

2
.

In particular, we get ϕ(ziqr , α
′) �= 0∞ for each i < 2. Since {m, n} �= {q, r}, the

assumption {v, v′} ∩ {um, un} = ∅ guarantees that {uq, ur} is maintained to be
disconnected in α′ as mentioned above, so r–({uq, ur}, α′) = {z0

qr , z
1
qr} must be a

witness for ϕ(α′) ∈ HalfTruthΣ0
2
. This means ϕ(ziqr , α

′) = 0∞ for some i < 2, which
is impossible.

Hence, there exists i, j, k such that r+(z1–

mn , z

i
jk, α) is defined, but the value {w,w′}

is not included in {um, un}. Then consider a graph α′ with sufficiently large edges
v → v′ and w → w′ so that necessary computations are maintained. Now {v, v′}
and {w,w′} are not witnesses for disconnectedness of α′, so this forces {z
mn, z

p
qr}

and {z1–

mn , z

i
jk} not to be witnesses for ϕ(α′) ∈ HalfTruthΣ0

2
as before. In particular,

we get ϕ(zimn, α
′) �= 0∞ for each i < 2. Since {v, v′} ∩ {um, un} = ∅ and {w,w′} �⊆

{um, un}, the intersection {v, v′, w,w′} ∩ {um, un} has at most one element, so
{um, un} is maintained to be disconnected in α′. Thus, r–({um, un}, α′) = {z0

mn, z
1
mn}

must be a witness for ϕ(α′) ∈ HalfTruthΣ0
2
. This means ϕ(zimn, α

′) = 0∞ for some
i < 2, which is impossible. �

Claim 2. r+({zj01, z
k
02}, α) ⊆ {u0, u2} for some j, k < 2.

Proof. Suppose not. First consider the case that for each j if ϕ(zj01, α) = 0∞

then there exists k such that r+({zj01, z
k
02}, α) ⊆ {u1, u2}. In this case, consider a

graph α′ with a sufficiently large edge u1
e−→ u2 so that necessary computations

are maintained. Then {u1, u2} is not a witness for disconnectedness of α′, so
if ϕ(zj01, α) = 0∞, by our assumption, this forces {zj01, z

k
02} not to be a witness

for ϕ(α′) ∈ HalfTruthΣ0
2

as before. In particular, we get ϕ(zj01, α
′) �= 0∞ and

ϕ(zk02, α
′) �= 0∞. If ϕ(zj01, α) �=∞, then this still holds for α′ since e above is
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Figure 3. Some examples of our actions.

sufficiently large. Therefore, in any case, we obtain ϕ(zj01, α
′) �= 0∞ for each j < 2.

However, {u0, u1} is still a witness for disconnectedness of α′, so r–({u0, u1}, α′) =
{z0

01, z
1
01} must be a witness for ϕ(α′) ∈ HalfTruthΣ0

2
. This means ϕ(zi01, α

′) = 0∞

for some i < 2, which is impossible.
Hence, there exists j such that ϕ(zj01, α) = 0∞ and r+({zj01, z

k
02}, α) �⊆ {u1, u2} for

any k. Note that r+({zj01, z
k
02}, α) is defined for each k < 2 since ϕ(zj01, α) = 0∞.

By our assumption, we also have r+({zj01, z
k
02}, α) �⊆ {u0, u2}; hence by Claim 1,

this value must be {u0, u1}. In this case, consider a graph α′ with a sufficiently
large edge u0 → u1 so that necessary computations are maintained. Then {u0, u1}
is not a witness for disconnectedness of α′, which forces {zj01, z

k
02} not to be a

witness forϕ(α′) ∈ HalfTruthΣ0
2

for each k < 2. In particular, we getϕ(zk02, α
′) �= 0∞

for each k < 2. However, {u0, u2} is still a witness for disconnectedness of α′, so
r–({u0, u2}, α′) = {z0

02, z
1
02} must be a witness for ϕ(α′) ∈ HalfTruthΣ0

2
. This means

ϕ(zk02, α
′) = 0∞ for some k < 2, which is impossible. �

Fix j, k < 2 satisfying the condition in Claim 2. Now, choose a new vertex u3 ∈ V ,
and focus on {u0, u1, u3}. As in Claim 2, one can see r+({z
01, z

m
13}, α) ⊆ {u1, u3} for

some 
,m. We first assume j �= 
. Then, consider a graph α′ with sufficiently large
edges u0 → u2 and u1 → u3 so that necessary computations are maintained. See the
leftmost part of Figure 3. Since r+({zj01, z

k
02}, α) ⊆ {u0, u2} and r+({z
01, z

m
13}, α) ⊆

{u1, u3}, this forces ϕ(z, α′) �= 0∞ for each z ∈ {zj01, z
k
02, z



01, z

m
13}. In particular,

ϕ(zi01, α
′) �= 0∞ for each i < 2 since j �= 
. Since we have taken different vertices,

{u0, u2} ∩ {u1, u3} = ∅. Hence, {u0, u1} is still a witness for disconnectedness of
α′, so r–({u0, u1}, α′) = {z0

01, z
1
01} must be a witness for ϕ(α′) ∈ HalfTruthΣ0

2
. This

means ϕ(zi01, α
′) = 0∞ for some i < 2, which is impossible.

Thus, we now assume j = 
. If ϕ(z1–j
01 , α) �= 0∞, then consider a graph α′ with a

sufficiently large edge u0 → u2 so that necessary computations are maintained. Since
r+({zj01, z

k
02}, α) ⊆ {u0, u2}, which is maintained in α′, this forces ϕ(zi01, α

′) �= 0∞

for each i < 2. However, {u0, u1} is still disconnected inα′, so we getϕ(zi01, α
′) = 0∞

for some i < 2 as before, which is impossible. Hence, we get ϕ(z1–j
01 , α) = 0∞. Thus,

r+({z1–j
01 , z

p
02}, α) is defined for each p < 2.

If r+({z1–j
01 , z

p
02}, α) ⊆ {u0, u1} for each p < 2, then consider a graph α′ with

a sufficiently large edge u0 → u1 so that necessary computations are maintained.
In particular, this forces ϕ(zp02, α

′) �= 0∞ for each p < 2; however, {u0, u2}

https://doi.org/10.1017/jsl.2024.68 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.68


MANY-ONE REDUCIBILITY WITH REALIZABILITY 37

is still disconnected in α, this is impossible as before. Therefore, we obtain
r+({z1–j

01 , z
p
02}, α) �⊆ {u0, u1} for some p < 2.

Assume r+({z1–j
01 , z

p
02}, α) = {v, v′}. If {v, v′} = {u1, u2}, then consider a graphα′

with sufficiently large edges u1 → u2 and u1 → u3 so that necessary computations are
maintained. See the middle part of Figure 3. Since r+({z
01, z

m
13}, α) ⊆ {u1, u3}, this

forces ϕ(z, α′) �= 0∞ for each z ∈ {z1–j
01 , z

p
02, z



01, z

m
13}. In particular, ϕ(zi01, α

′) �= 0∞

for each i < 2 since j = 
. However, {u0, u1} is still disconnected in α′, which is
impossible as in the previous argument.

If {v, v′} �= {u1, u2}, then consider a graph α′ with sufficiently large edges v → v′
and u0 → u2 so that necessary computations are maintained. See the rightmost part
of Figure 3. Since r+({zj01, z

k
02}, α) ⊆ {u0, u2}, this forces ϕ(z, α′) �= 0∞ for each

z ∈ {z1–j
01 , z

p
02, z

j
01, z

k
02}. In particular, ϕ(zi01, α

′) �= 0∞ for each i < 2. Now note that
{u0, u1} is still disconnected in α′ since {v, v′} �= {u1, u2}. Thus, this leads to a
contradiction as before. �

Finally, we show that DisConn is not Σ0
2-complete. In fact, DisConn cannot even

reduce L, even though it is not amalgamable. Here, recall that L is a Σ�∪� subobject
of �� introduced in Example 5.2.

Proposition 5.51. L �≤m DisConn.

Proof. Otherwise, L ≤m DisConn via some ϕ, r–, r+. Begin with x0 = x1 =
0∞. Clearly, x := (x0, x1) ∈ L is splittable. Then r–(i, x) = {ui0, ui1} is a witness
for disconnectedness of the graph Gx := ϕ(x). By Split Lemma 5.47, we get
r+({ui0, ui1}, x) = i . Now, consider r+({uik, u

j

 }, x) = aijk
 for each i, j, k, 
. Let t be a

sufficiently large value such that r–(i, x � t) = {ui0, ui1} and r+({uik, u
j

 }, x � t) = aijk


are determined. Similarly, if {uik, u
j

 } is connected in Gx , restrain x � t so that

ϕ(x � t) contains a path connecting these vertices.
Assume that {a01

00 , a
01
11} is at most singleton; that is, there exists i < 2 such that if

a01
kk is defined then a01

kk = i for any k < 2. Then set x′i �= 0∞ by changing some value
of xi greater than t. Since r+({ui0, ui1}, x′) = i , this forces {ui0, ui1} to be connected
in Gx′ . Given k < 2, if a01

kk is defined, then r+({u0
k, u

1
k}, x′) = a01

kk = i , so {u0
k, u

1
k}

must also be connected inGx′ . If a01
kk is undefined, this means that r+({u0

k, u
1
k}, x) is

undefined, so {u0
k, u

1
k} must be connected in Gx . By our choice of t, {u0

k, u
1
k} is still

connected in Gx′ . As k is arbitrary, now note that each of {u1–i

 , u

i

}, {ui
 , ui1–
} and

{ui1–
 , u
1–i
1–
} is connected in Gx′ ; see Figure 4 for i = 1. By connecting all of these

paths, we conclude that {u1–i

 , u

1–i
1–
} is connected in Gx′ . However, since x′1–i = 0∞,

r–(1 – i, x′) = {u1–i
0 , u

1–i
1 } must be a witness for disconnectedness of Gx′ , which is

impossible. Hence, we must have a01
00 �= a01

11 , both of which are defined. By the same
argument, one can see a01

01 �= a01
10 , both of which are defined; see also the left side of

Figure 5, where different values are represented by different types of lines.
Now assume a01

k0 = a01
k1 for some k < 2. Let i be this value. Then we get a01

1–k,1 �=
a01
k0 = a01

k1 �= a01
1–k,0, so a01

1–k,0 = a01
1–k,1 = 1 – i holds. Hence, we get a01

k0 = a01
k1 = 0 for

some k. Then set x′0 �= 0∞ by changing some value of x0 greater than t. Since
r+({u0

k, u
1

 }, x′) = a01

k
 = 0, this forces {u0
k, u

1
0} and {u0

k, u
1
1} to be connected in Gx′ .

Similarly, since r+({u0
0 , u

0
1}, x′) = 0, this also forces {u0

0 , u
0
1} to be connected inGx′ .

This implies that {u1
0 , u

1
1} is also connected in Gx′ ; see Figure 5 for k = 0. However,
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Figure 4. If {a01
00 , a

01
11} ⊆ {1}, our action forces {u0

0 , u
1
0}, {u1

0 , u
1
1} and {u1

1 , u
0
1} to

be connected.

Figure 5. If a01
00 = a01

01 = 0, our action forces {u0
0 , u

1
0}, {u0

0 , u
1
1} and {u1

1 , u
0
1} to be

connected.

since x′1 = 0∞, r–(1, x′) = {u1
0 , u

1
1} must be a witness for disconnectedness of Gx′ ,

which is impossible.
Thus, a01

k0 �= a01
k1 for any k < 2. Then we have a01

0
 �= a01
0,1–
 �= a01

1
 , which implies
a01

0
 = a01
1
 . As in the above argument, we get a01

0
 = a01
1
 = 1 for some 
. Then set

x′1 �= 0∞ by changing some value of x1 greater than t. Since r+({u0
k, u

1

 }, x′) =

a01
k
 = 1, this forces {u0

0 , u
1

 } and {u0

1 , u
1

 } to be connected in Gx′ . Similarly, since

r+({u1
0 , u

1
1}, x′) = 1, this also forces {u1

0 , u
1
1} to be connected in Gx′ . This implies

that {u0
0 , u

0
1} is also connected in Gx′ . However, since x′0 = 0∞, r–(0, x′) = {u0

0 , u
0
1}

must be a witness for disconnectedness of Gx′ , which is impossible. �

Proof of Theorem 5.46. By Theorem 5.41 and Proposition 5.48, Fin has the
unique witness property, butBddSeq� does not. By Observation 5.15, ifBddSeq� ≤m

Fin, then BddSeq� must have the unique witness property, which is false; hence
BddSeq� �≤m Fin. By Proposition 5.16, Fin has the increasing witness property;
hence Theorem 5.42 implies Fin <m BddSeq� . Again by Proposition 5.48, BddSeq�
is amalgamable, so by Propositions 5.44 and 5.49, we get BddSeq� <m HalfTruthΣ0

2
.

By Propositions 5.45 and 5.45, we obtain HalfTruthΣ0
2
<m DisConn. Finally, by

Proposition 5.51, DisConn is not Σ0
2-complete; hence DisConn <m TruthΣ0

2
. �

Finally, let us recall that we are free to choose K1, K2, or KV as our coding
system. This means that the results we have presented in this section are for the
witnessed version of any of “many-one reducibility for index sets within Tot,”
“Wadge reducibility,” and “effective Wadge reducibility.”
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In conclusion, the notion of many-one reducibility for witnessed subsets is
expected to bring new perspectives for finer analysis of definable subsets. In this
article, we have only classified Σ0

2 subobjects, but the author and his colleagues have
already started to classify higher levels of the arithmetic hierarchy, the Σ1

1 level, and
the difference hierarchy.
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