
Canad. Math. Bull. Vol. 64 (2), 2021, pp. 340–348
http://dx.doi.org/10.4153/S000843952000048X
© Canadian Mathematical Society 2020

Continuity of condenser capacity under
holomorphic motions

Stamatis Pouliasis

Abstract. We show that condenser capacity varies continuously under holomorphic motions, and the
corresponding family of the equilibrium measures of the condensers is continuous with respect to
the weak-star convergence. We also study the behavior of uniformly perfect sets under holomorphic
motions.

1 Introduction

A condenser in the complex plane C is a pair (E , F) where E and F are non-empty
disjoint compact subsets of C. Let S(E , F) denote the family of signed measures
τ = τE − τF , where τE and τF are Borel probability measures supported on E and F,
respectively. �e energy of a measure τ ∈ S(E , F) is defined by

I(τ) ∶= ∬ log
1

∣z −w∣dτ(z)dτ(w).
Wenote that I(τ) > 0, for every τ ∈ S(E , F); see e.g., [11, p. 80].�e equilibriumenergy
of (E , F) is defined by

I(E , F) ∶= inf
τ∈S(E ,F)

I(τ),
and the capacity of (E , F) is given by

Cap(E , F) ∶= 2π

I(E , F) .
When Cap(E , F) > 0, there exists a unique measure σ ∈ S(E , F), called the equilib-
riummeasure of (E , F), satisfyingCap(E , F) ∶= 2π/I(σ). Formore information about
condenser capacity, we refer the reader to [3, 11].

A classical object of study in geometric function theory is the behavior of several
types of capacities (such as logarithmic, analytic, and Riesz capacity) of sets and
condensers in C, under geometric transformations such as conformal mappings,
symmetrizations, and polarization. We refer the reader to the books [4, 7] and the
references therein for an account of the methods and the applications of capacities
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in geometric function theory. In this note, we will study the behavior of condenser
capacity under holomorphic motions.

A holomorphic motion is a holomorphically parameterized family of injective
maps. Here is the precise description.

Definition 1.1 A holomorphic motion of a set A ⊂ C, parameterized by a domain
D ⊂ C containing 0 is a map f ∶ D × A↦ C satisfying:

(i) for any fixed z ∈ A, the map λ ↦ f (λ, z) is holomorphic in D;
(ii) for any fixed λ ∈ D, the map z ↦ f (λ, z) ∶= fλ(z) is an injection;
(iii) the mapping f (0, ⋅) is the identity on A.

Although there is no continuity assumption of f on D × A in the above definition,
the continuity (as a function of two complex variables) of holomorphic motions has
been proved, among other properties, by Mañé, P. Sad, and D. Sullivan [12], who
introduced the notion of holomorphic motions, in a result that is known as λ-lemma.
�e joint continuity will be used several times in our proofs. A fundamental result
in this theory, proved by Słodkowski [21], is that a holomorphic motion of any set
in the Riemann sphere parameterized by the unit disc D ∶= {z ∈ C ∶ ∣z∣ < 1} can be
extended to a holomorphicmotion of the whole Riemann sphere parameterized byD.
For an account of the properties of holomorphic motions (such as quasiconformality,
distortion, and non-extendability properties) and their applications, we refer the
reader to [1, 2, 10, 13] and the references therein.

�e behavior of different geometric quantities under holomorphic motions has
been studied by several researchers. Some examples are the Hausdorff dimension
[18, 20], the conformal modulus of doubly connected domains [5], the analytic and
the logarithmic capacity [16, 19], and the capacity of condensers [15].

In this paper, we will consider the behavior of condenser capacity under holo-
morphic motions. Let (E , F) be a condenser with positive capacity and let f be a
holomorphic motion of E ∪ F parameterized by a domain D containing 0. From
the continuity of the injective functions fλ(⋅) by the λ-lemma, it follows that fλ(E)
and fλ(F) are disjoint compact subsets of C, for every λ ∈ D. We will show that
T(λ) = Cap( fλ(E), fλ(F)) is a continuous subharmonic function on D. We note
that, applying the methods used in [15], one can show that the function T(λ) is
upper-semicontinuous and subharmonic inD, but the continuity proved here requires
different arguments. In [19], the authors showed that the logarithmic capacity of a
compact set also varies continuously under holomorphic motions. Although there
are estimates between condenser capacity and logarithmic capacity, the continuity of
condenser capacity is not a consequence of the corresponding result for logarithmic
capacity under holomorphic motions. In contrast to condenser and logarithmic
capacity, the analytic capacity of a compact set may vary discontinuously (see [19])
and, in general, is neither a subharmonic nor a superharmonic function under
holomorphic motions (see [16]). Also, we will show that the equilibrium measures{σλ}, λ ∈ D, of the condensers ( fλ(E), fλ(F)) vary continuously with respect to the
weak-star convergence.�e proof is based on the properties of pointwise suprema of
harmonic functions established in [19] and on Bagby’s formula for condenser capacity
via discrete charges [3].
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Earle and Mitra proved a much stronger result for a certain class of condensers
called rings. A condenser (E , F) is called a ring if both E and F are connected and
C/(E ∪ F) is a doubly connected domain. It was proved in [5] that if (E , F) is a
ring and f is a holomorphic motion of E ∪ F parameterized by a domain D, then the
equilibrium energy of ( fλ(E), fλ(F)) (which coincides with the conformal modulus
of the doubly connected domainC/( fλ(E) ∪ fλ(E))) is a real analytic function onD.
It is not known whether the equilibrium energy of ( fλ(E), fλ(F)) is a real analytic
function of λ for arbitrary condensers.

Anotion related to rings is uniformperfectness. LetK be a compact subset ofC.We
recall that a ring (E , F) is said to separate K if K ⊂ E ∪ F, K ∩ E ≠ ∅, and K ∩ F ≠ ∅.
We will denote by R(K) the set of rings that separateK. A compact set K ⊂ C is called
uniformly perfect if

P(K) ∶= sup{I(E , F) ∶ (E , F) ∈ R(K)} < +∞.

A uniformly perfect set is thick, in the above sense, close to each of its points; in
particular, it does not have isolated points. Uniform perfectness can be characterized
using several other quantities such as the logarithmic capacity or the density of the
hyperbolic metric. For more information, we refer the reader to [9, 14].

In our last result, we will give an estimate of the quantity P(⋅) for compact sets
moving under holomorphic motions, involving the Harnack distance.

In the following sectionwe describe some tools needed for the proofs of our results.
In Section 3, we prove the continuity of condenser capacity, and in Section 4, we
prove the continuity of the equilibrium measures with respect to weak-star conver-
gence. �e estimate of the quantity P(⋅) under holomorphic motions is proved in
Section 5.

2 Background Material

2.1 Bagby’s Formula

Let (E , F) be a condenser and suppose that both sets E and F contain infinitely many
points.�at holds for all condensers (E , F) having positive capacity. For any integer
n ≥ 2, let

Ln(E , F) ∶= {(a1 , . . . , an , b1 , . . . , bn) ∈ En × Fn ∶ a i ≠ a j and b i ≠ b j , i ≠ j},
Wn(E , F) = 1

n(n − 1) inf
⎧⎪⎪⎨⎪⎪⎩ ∑

1≤i< j≤n

log
⎛
⎝
∣a i − b j ∣∣a j − b i ∣
∣a i − a j ∣∣b i − b j ∣

⎞
⎠
⎫⎪⎪⎬⎪⎪⎭,

where the infimum is taken over all (a1 , . . . , an , b1 , . . . , bn) ∈ Ln(E , F). Although
every discrete signed measure in S(E , F) has infinite energy, the above sum can
be considered as a discrete version of the energy of a discrete measure having
point masses at the points a i and b i , i = 1, . . . , n. Bagby [3] proved the following
theorem relating the equilibrium energy with the discrete energies Wn(E , F) of a
condenser.

https://doi.org/10.4153/S000843952000048X Published online by Cambridge University Press

https://doi.org/10.4153/S000843952000048X


Continuity of condenser capacity under holomorphic motions 343

�eorem 2.1 [3] Let (E , F) be a condenser and suppose that both sets E and F contain
infinitely many points.�en the sequence {Wn(E , F)} is increasing and

I(E , F) = lim
n→∞

Wn(E , F).
2.2 Pointwise Infima of Harmonic Functions

�e following family of functionswas introduced and itsmain properties were studied
in [19].

Definition 2.2 Let D ⊂ C be a domain. A function u ∶ D ↦ (−∞,+∞] is said to
belong to the classH↓(D) if the following properties hold:
(i) u is locally bounded below on D;
(ii) u is the pointwise infimum of a family of harmonic functions on D.

�e following proposition summarizes some properties of the members of the
familyH↓(D) that will be needed in the proofs of our results.

Proposition 2.3 ([19, Propositions 2.4 and 2.5]) Let D be a domain in C.�en

(i) if un is an increasing sequence of functions in H
↓(D) and u = limn→∞ un , then

u ∈H↓(D).
(ii) if u ∈H↓(D) and u /≡ +∞, then u < +∞ in D and u is a continuous superhar-

monic function in D.

Remark 2.4 In [19], the dual family H
↑(D) of pointwise suprema of harmonic

functions is considered, and the corresponding results stated above forH↓(D) follow
by standard modifications.

3 Continuity of Condenser Capacity

In this section, we will state and prove our first result concerning the continuity of
condenser capacity under holomorphic motions.

�eorem 3.1 Let (E , F) be a condenser with positive capacity and let f be a holomor-
phic motion of E ∪ F parameterized by a domain D ⊂ C containing 0.�en

T(λ) = Cap( fλ(E), fλ(F))
is a continuous subharmonic function on D.

Proof We note that since Cap(E , F) > 0, both E and F contain infinitely many
points. We will first show that the functions Rn(λ) ∶=Wn( fλ(E), fλ(F)) are in
H
↓(D). Let n ≥ 2 and note that since fλ is injective,

Ln( fλ(E), fλ(F)) = {( fλ(a1), . . . , fλ(an), fλ(b1), . . . , fλ(bn)) ∶
∶ (a1 , . . . , an , b1 , . . . , bn) ∈ Ln(E , F)}.
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Let (a1 , . . . , an , b1 , . . . , bn) ∈ Ln(E , F). Since fλ(⋅) is injective and depends holomor-
phically on λ, the functions

λ z→ ( fλ(a i) − fλ(b j))( fλ(a j) − fλ(b i))
( fλ(a i) − fλ(a j))( fλ(b i) − fλ(b j)) , i , j ∈ {1, . . . , n}, i ≠ j,

are holomorphic and have no zeros on D.�erefore, the function

λ z→
1

n(n − 1) ∑1≤i< j≤n

log(∣ fλ(a i) − fλ(b j)∣∣ fλ(a j) − fλ(b i)∣
∣ fλ(a i) − fλ(a j)∣∣ fλ(b i) − fλ(b j)∣)

is harmonic in D, since it is a finite sum of harmonic functions. We obtain that

Rn(λ) = inf { 1

n(n − 1) ∑1≤i< j≤n

log(∣ fλ(a i) − fλ(b j)∣∣ fλ(a j) − fλ(b i)∣
∣ fλ(a i) − fλ(a j)∣∣ fλ(b i) − fλ(b j)∣)},

where the infimum is taken over all (a1 , . . . , an , b1 , . . . , bn) ∈ Ln(E , F), is a pointwise
infimum of harmonic functions of λ in D. Let λ0 ∈ D. Since f (λ, z) is jointly contin-
uous in D × (E ∪ F), there exist an open neighborhood V of λ0 such that

inf
λ∈V

dist( fλ(E), fλ(F)) > 0,
sup
λ∈V

diam( fλ(E)) < +∞,

sup
λ∈V

diam( fλ(F)) < +∞.

It follows that Rn is locally bounded below on D. We conclude that Rn ∈H↓(D). By
�eorem 2.1, Rn is an increasing sequence of functions inH

↓(D) and
lim

n→+∞
Rn(λ) = I( fλ(E), fλ(F)), λ ∈ D.

Since I(E , F) < +∞, by Proposition 2.3, the function λ ↦ I( fλ(E), fλ(F)) belongs
toH↓(D) and is a continuous superharmonic function in D. Finally, from [17, p. 43],
it follows that T(λ) = 2π/I( fλ(E), fλ(F)) is a continuous subharmonic function
on D. ∎

4 Weak-star Continuity of Equilibrium Measures

In this section, we show that the equilibrium measures of condensers vary continu-
ously with respect to weak-star convergence under holomorphic motions. We recall
that a sequence of Borel probability measures µn on a compact set K ⊂ C converges
weak-star to a Borel probability measure µ on K if

lim
n→∞
∫ ϕ(z)dµn(z) = ∫ ϕ(z)dµ(z),

for every continuous function ϕ on K.

�eorem 4.1 Let (E , F) be a condenser with positive capacity and let f be a holomor-
phic motion of E ∪ F parameterized by a domain D ⊂ C containing 0. Let σλ be the
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equilibrium measure of the condenser ( fλ(E), fλ(F)), λ ∈ D.�en σλ converges to σλ0
in the weak-star sense, whenever λ → λ0 in D.

Proof From �eorem 3.1, it follows that Cap( fλ(E), fλ(F)) > 0; therefore, the
condenser ( fλ(E), fλ(F)) has a unique equilibriummeasure σλ = σ λ

E − σ λ
F , for every

λ ∈ D.
Let λn → λ0 in D. From the Riesz Representation �eorem and the sequential

version of Alaoglu’s�eorem (see e.g., [6, pp. 169 and 223]), we obtain that there exist

a subsequence σ
λnm
E of σ λn

E and ameasure ν0E such that σ
λnm
E

w∗

→ ν0E . Applying Alaoglu’s
�eorem and passing to a subsequence if needed, we can assume that there exists a

measure ν0F such that σ
λnm
F

w∗

→ ν0F .�en ν0E and ν
0
F are Borel probability measures, and

from the joint continuity of f (λ, z), it follows that they are supported on fλ0(E) and
fλ0(F), respectively. So ν0 ∶= ν0E − ν0F ∈ S( fλ0(E), fλ0(F)) and

I( fλ0(E), fλ0(F)) ≤ I(ν0).(4.1)

A simple computation (see e.g. [3, p. 318]) shows that for every condenser (K , L) and
for every τ = τK − τL ∈ S(K , L),

I(τ) =⨌ log( ∣z − v∣∣w − u∣∣z −w∣∣u − v∣ )dτK(z)dτK(w)dτL(u)dτL(v).
�e function

(z,w , u, v)z→ log( ∣z − v∣∣w − u∣∣z −w∣∣u − v∣ )
is lower-semicontinuous and bounded below on K × K × L × L. Since σ λnm

E

w∗

→ ν0E and

σ
λnm
F

w∗

→ ν0F , it follows that (see e.g., [8, p. 224])

σ
λnm
E × σ λnm

E × σ λnm
F × σ λnm

F

w∗

Ð→ ν0E × ν0E × ν0F × ν0F .
�erefore (see e.g. [11, pp. 78–79]), from the lower-semicontinuity of energy integrals
with respect to weak-star convergence, we get that

I(ν0) ≤ lim inf
m→∞

I(σ λnm
E − σ λnm

F ).(4.2)

Also, from�eorem 3.1 it follows that

lim
m→∞

I(σ λnm
E − σ λnm

F ) = lim
m→∞

I( fλnm (E), fλnm (F)) = I( fλ0(E), fλ0(F)).(4.3)

From equations (4.1), (4.2), and (4.3), we conclude that I( fλ0(E), fλ0(F)) = I(ν0)
and ν0 is an equilibrium measure of ( fλ0(E), fλ0(F)). From the uniqueness of
equilibrium measure, we get that ν0 = σλ0 . Since the w∗-convergent subsequences

σ
λnm
E and σ

λnm
F considered abovewere arbitrary, we conclude that the sequence σλn has

a uniquew∗-accumulation point, themeasure σλ0 . Since the space of Borel probability
measures on a compact set equippedwith theweak-star convergence ismetrizable and

by Alaoglu’s �eorem is w∗-compact, σλn
w∗

→ σλ0 . Given that the sequence λn → λ0
was arbitrary, the conclusion follows. ∎
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Remark 4.2 Similarly, it can be shown that the equilibrium measure ( for the
logarithmic capacity) of a compact plane set is w∗-continuous under a holomorphic
motion of the compact set.

5 Uniformly Perfect Sets

In this section, we will study the change of the quantity P(⋅), measuring the thickness
of a uniformly perfect compact set, under holomorphic motions. Our estimates use
the Harnack distance, which is defined as follows.

Let D ⊂ C be a domain and let z,w ∈ D.�eHarnack distance onD between z and
w is the smallest number τD(z,w) such that

h(w)
τD(z,w) ≤ h(z) ≤ τD(z,w)h(w),

for every positive harmonic function h on D. Moreover, if D is a bounded domain,
then log τD(z,w) is a complete metric on D. See [17, pp. 14–21] for more information
about the Harnack distance.

�eorem 5.1 Let K ⊂ C be a uniformly perfect compact set and let f be a holomorphic
motion of C parameterized by a bounded domain D ⊂ C containing 0.�en

P(K)
τD(λ, 0) ≤ P( fλ(K)) ≤ τD(λ, 0)P(K),(5.1)

for every λ ∈ D.
Proof Let (E , F) ∈ R(K) such that I(E , F) < +∞. Let ν = νE − νF be any signed
measure in S(E , F) having finite energy. We note that, due to the singularity of the
logarithmic kernel, we must have ν × ν((E ∪ F)2/A(E , F)) = 0, where

A(E , F) ∶= {(z,w) ∈ (E ∪ F)2 ∶ z ≠ w}.
For every λ ∈ D, let νλ ∶= νE ○ f −1λ − νF ○ f −1λ . Since the injective functions fλ

are continuous and therefore Borel measurable on E ∪ F by the λ-lemma, νλ ∈
S( fλ(E), fλ(F)), λ ∈ D, and

I(νλ) =∬
A(E ,F)

log
1

∣ fλ(z) − fλ(w)∣d(ν × ν)(z,w).
Since fλ(z) is a holomorphic function of λ and an injective function of z, we obtain
that the function λ ↦ log[1/(∣ fλ(z) − fλ(w)∣)] is harmonic on D, whenever (z,w) ∈
A(E , F). It follows (see e.g., [8, p. 16]) that uν(λ) = I(νλ) is a positive harmonic
function on D. �erefore,

I(ν)

τD(λ, 0)
≤ I(νλ) ≤ τD(λ, 0)I(ν), λ ∈ D,(5.2)

where τD(λ, 0) > 1, for all λ ∈ D/{0}, since the domain D is assumed to be bounded.
Noting that S( fλ(E), fλ(F)) = {νλ ∶ ν ∈ S(E , F)} and taking the infimum in (5.2)
over all ν ∈ S(E , F) having finite energy, we obtain that
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I(E , F)

τD(λ, 0)
≤ I( fλ(E), fλ(F)) ≤ τD(λ, 0)I(E , F), λ ∈ D.(5.3)

Also, R( fλ(K)) = {( fλ(E), fλ(F)) ∶ (E , F) ∈ R(K)}. We conclude that (5.1) follows
by taking the supremum in (5.3) over all (E , F) ∈ R(K). ∎

In the case that the parameterizing domain of the holomorphic motion is the unit
disc, a precise estimate follows from�eorem 5.1.

Corollary 5.2 Let K ⊂ C be a uniformly perfect compact set and let f be a holomorphic
motion of K parameterized by the unit disc D.�en

1 − ∣λ∣
1 + ∣λ∣P(K) ≤ P( fλ(K)) ≤

1 + ∣λ∣
1 − ∣λ∣P(K),(5.4)

for every λ ∈ D.
Proof From Słodkowski’s �eorem [21], f can be extended to a holomorphic
motion of the Riemann sphere parameterized by D. �e conclusion follows from
�eorem 5.1 and the formula (see [17, p. 14])

τD(z, 0) = 1 + ∣z∣
1 − ∣z∣ , z ∈ D,

of the Harnack distance for D. ∎
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