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Abstract
This paper presents bimodal mobility actuated by inertial forces with elastic bodies for an exploration robot
in a microgravity environment. The proposed bimodal locomotion mechanism can selectively achieve vibration
propulsion or rotational hopping mode based on centrifugal force and reaction torque exerted by the control of a
single eccentric motor, where the rotational hopping is the primary locomotion mode for practical applications.
The bimodal mobility performance under microgravity is experimentally examined using an air-floating testbed.
Furthermore, we also present theoretical modeling of the bimodal mobility system, and the model is verified by
comparison with the experiments.

1. Introduction

Exploration robots enable to achieve continuous scientific observation with higher resolution on multiple
areas of extraterrestrial surfaces. Surface mobility is an essential technology for the robots. Achieving
adaptive surface mobility on minor bodies with extremely low gravity fields, such as asteroids or
comets, is technically challenging. On such bodies, wheels or tracks are highly inefficient and inef-
fective for robotic mobility because of microgravity. Typical examples of mobile robots or landers for
minor body exploration are PROP-F [1] in the Phobos 2 mission and MINERVA [2] in the Hayabusa
mission. Both used hopping mobility and failed to land onto the surface. Following the Hayabusa mis-
sion, the Hayabusa 2 spacecraft operated by JAXA [3] carries three MINERVA-II rovers [4, 5] and
MASCOT [6] equipped with surface mobility, mainly hopping mobility. The MINERVA-II-1 rovers
and MASCOT successfully demonstrated the reaction torque-based rotational hopping mobility on the
asteroid Ryugu [7, 8]. With these practical hopping robots, various hopping mechanisms have been pro-
posed for robotic exploration in microgravity [9, 10, 11, 12]. In principle, motion convergence of these
hopping mechanisms is achieved by multiple rebounding on the surface . Hence, it is difficult for the
robots to accurately access a destination without a soft-landing mechanism. The conventional hopping
robots have been designed to give more priority to locomotion reliability than to destination accessibility
on minor bodies.

Meanwhile, we have applied a vibration propulsion mechanism actuated by a small eccentric motor
with surface elastic bodies to the robotic mobility in microgravity. [13, 14, 15] Vibration propulsion
is generated by inducing motor vibrations on inclined elastic bodies, such as a linear actuator [16, 17],
a micro-robot [18, 19, 20, 21], a conveyor [22], and an active scope camera [23]. Hence, this mobility
mechanism improves destination accessibility based on crawling motion. We have showed it is an appli-
cable locomotion technique on frictional low slope with microscale roughness from sub-millimeters to
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several millimeters [15]. With the latest observation of a highly rugged terrain of Ryugu [7], this mecha-
nism is expected to be used as a secondary locomotion mode on relatively smoother areas. Furthermore,
theoretically, conventional dynamics models cannot adequately simulate gravity effects and microscale
behaviors on an elastic body.

A robotic mobility system must also possess adaptability to rough terrains. Generally, adaptive
mobility, like with animals, is exerted by functionally controlling a multi-degree-of-freedom system.
To achieve such adaptability in mobile robots, one usually needs to have several actuators (e.g., a
multi-limbed free-climbing robot [24, 25, 26]). With strict limitations on available resources for space
applications, however, simultaneous pursuit of adaptive mobility and reduction of the number of actu-
ators is still technically challenging. Accordingly, in this paper, we propose bimodal mobility actuated
by a single eccentric motor with surface elastic bodies . The proposed mobility can selectively perform
vibration propulsion and rotational hopping motion by controlling inertial forces, centrifugal forces, and
reaction torques. These inertial forces are simultaneously generated on a different physical dimension of
the motor rotation: rotational acceleration and velocity squared. The key idea of the bimodal mobility is
that the different locomotion mode can be achieved by dominantly exerting either the centrifugal force
or the reaction torque. In the proposed bimodal mobility system, the rotational hopping is the primary
locomotion mode and the vibration propulsion is the secondary one. This paper elaborates the bimodal
mobility mechanism based on experimental and theoretical analyses and demonstrates its feasibility.
Moreover, we address dynamic modeling of the bimodal mobility such that both the gravity effects on
the locomotion and the microscale behaviors of the elastic body can be simulated.

This paper is organized as follows. Section 2 presents the locomotion principle of bimodal mobility,
vibration propulsion, and rotational hopping, actuated by the inertial forces with surface elastic bod-
ies in microgravity. We describe a basic framework of the experimental environment that can simulate
planar robot motion under microgravity. Section 3 elaborates the mobility performance of the vibra-
tion propulsion mode in microgravity based on experimental and theoretical analyses. The comparative
discussion exhibits the mobility performance more systematically. Section 4 also presents experimen-
tal and theoretical analyses of the rotational hopping mode. Its mobility performance is analyzed via
both the experiment and simulation as in Section 3. In Section 5, we discuss a synthetic correlation
between inertial forces and the resulting bimodal mobility. The correlation is experimentally and numer-
ically examined. Thus, the bimodal mobility mechanism in microgravity is clarified more systematically.
Section 6 summarizes the results and contributions of this paper.

2. Bimodal mobility

2.1. Fundamental principle

In this paper, we propose a novel bimodal surface mobility mechanism using inertial forces and surface
elastic bodies under microgravity, whereas each mobility has been demonstrated independently. The
proposed mobility mechanism takes advantage of both centrifugal force and reaction torque, which are
exerted by a single eccentric motor, and thereby can achieve different locomotion modes. Thus, it is
expected to produce more adaptive mobility to unstructured terrains without increasing the number of
actuators. This section delivers the fundamental locomotion principle of the proposed bimodal mobility
concept.

A conceptual principle of bimodal mobility is illustrated in Fig. 1. The robotic system is comprised
of a rigid main body, surface elastic bodies, and an eccentric motor installed in the main body. For
the basic locomotion mode, the robot can selectively perform vibration propulsion or rotational hop-
ping by controlling the motor rotation. Figure 1(b) shows a typical time-series relationship between the
input motor rotation and the output inertial forces. Here, ωMd , FMd , and TMd are defined as the absolute
value of the effective motor angular velocities, the effective centrifugal forces, and the effective reac-
tion torques for locomotion, respectively. In this paper, we focus on this typical input condition of the
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Figure 1. Conceptual principle of bimodal mobility actuated by inertial forces and elastic bodies
in microgravity: (a) fundamental idea of bimodal mobility; (b) typical time histories of rotational
conditions and inertial forces of an eccentric motor.

eccentric motor. Regarding basic application scenarios of the proposed mechanism, the robot utilizes
vibration propulsion on a relatively smooth surface. In this situation, a small reaction torque must be
simultaneously maintained so that the robot maintains stable locomotion without unexpected rotation.
In contrast, on rough or rocky terrain, the robot utilizes the rotational hopping mode by taking advan-
tage of the reaction torque. Thus, the robot enables more adaptive mobility to unstructured terrain under
microgravity, such as on asteroids. Such bimodal mobility by a single actuation is expected to con-
tribute to the enhancement of robotic exploration for space applications, whose available resources are
limited.

2.2. Demonstration equipment

2.2.1. Experimental environment
The experimentation for demonstration of the bimodal locomotion under microgravity is outlined below.
Figure 2(a) shows the experimental environment that can simulate motion under planar microgravity.
The inertial coordinate system, �I{X, Y , Z}, is defined and fixed on the stone plate having 1 × 1 m
in the X-Y plane. An air-floating testbed is used to simulate planar robot motion in microgravity.
The testbed can freely move in the X-Y plane on the plate, and microgravity works in the negative
direction of the Y -axis. The level of the planar microgravity is adjusted by changing the inclination
angle of the stone plate. As a simulated ground surface, a rigid and flat plate is fixed on the side
of the stone plate, where plastic tape was attached on its surface to simulate a uniform frictional
characteristic.

In the experiments, several camera systems are used. A webcam records the overview motion of the
testbed, which takes a downward view normal to the X-Y plane. An external motion capture camera sys-
tem is also used for tracking the testbed motion. The sampling frequency of the tracking system is 100 Hz,
and its position detecting accuracy is less than 0.1 mm in the following experiments. Additionally, a

https://doi.org/10.1017/S0263574721000539 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000539


Robotica 297

(a)

(b)

(c) (d)

Figure 2. Experimental environment for simulating planar robot motion in microgravity on ground:
(a) overview, (b) air-floating testbed (from two viewpoints), (c) eccentric motor unit, and (d) elastic
body.

high resolution digital camera is used to observe the microscale behavior of the elastic body during the
experiments. The frame rate and resolution are set to 30 fps and 3840×2160 pixel, respectively.

2.2.2. Air-floating testbed
Figure 2(b) shows the air-floating testbed that simulates planar motion under microgravity. The testbed
has a weight of 4.32 kg, a moment of inertia of 1.54 × 10−2 kgm2, and a size of 15 × 15 cm in the
X-Y plane. The motor embedded in the testbed is a brushed DC motor (DCX32L, produced by maxon
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motor ag.) whose shaft is connected to an eccentric weight via clamp-coupling, as shown in Fig. 2(c).
The eccentric weight has a diameter of 65 mm and a height of 23 mm. Its weight, moment of inertia,
and eccentric distance from the rotational axle can be physically changed by adding small weights into
the spaces. Moreover, the testbed has a micro-controller with a battery. Therefore, we can remotely
control it via wireless communications. Throughout the experiments, we obtain time-series data of the
motor rotational angle.

Regarding surface elastic bodies, two polypropylene wire rods, whose diameter is 0.5 mm, are used.
They are attached onto the side of the testbed as shown in Fig. 2(a). According to our previous work [13,
14, 15], as a benchmark of feasible design parameters of an elastic body, their inclination angle and
natural length are, respectively, determined to be 70◦ and 20 mm, as shown in Fig. 2(d).

2.2.3. Microgravity environment
In the following experiments, the microgravity in the Y -axis direction is simulated such that the relative
error from the desired value becomes less than a ±5%. With respect to the microgravity in the X-axis
direction, it is set to approximately 10−5 G to not militate against the testbed motion.

3. Vibration propulsion

This section first presents motion analyses of the vibration propulsion mode based on the microgravity
experiments. Then, it models the vibration propulsion. Furthermore, comparative analyses of the exper-
iments and numerical simulations are elaborated. To discuss the motion with a steady-state velocity, the
resulting time-history data of vibration propulsion are shown as t = 0 (s) at the beginning of the steady
state.

3.1. Experimental analysis

3.1.1. Conditions
The vibration propulsion is experimentally analyzed. The experiments focus on effects of microgravity
on locomotion performance, including motion behaviors of the elastic body, which are not previously
examined. The effective motor rotational frequency was set to 2 Hz (i.e., ωMd = 4π (rad/s)) for ease of
observation of the microscale behaviors of the elastic body. The microscale motion of the elastic body
was analyzed using a kernelized correlation filter of OpenCV. The motor rotates in a counterclockwise
direction around the Z-axis. The experimental conditions were set as follows.

• g: 7.5 × 10−4, 1.0 × 10−3, 1.25 × 10−3, 1.5 × 10−3 G
• FMd ( = mereω

2
Md): 0.092, 0.164, 0.219 N

• TMd : 0.002 Nm

Here, g is the gravity acceleration, me is the mass of the eccentric motor, and re is the distance between
the center of mass (CoM) of the eccentric weight and the motor axle, respectively. In this work, the
motor rotational velocity was controlled to follow the ideal time histories shown in Fig. 1(b). In the
experiments, three different values of effective centrifugal force were applied by changing additional
weight of the eccentric weight. Furthermore, the experiments in each condition were conducted four
times. Hence, an average value of the resulting data is evaluated with an error bar of standard deviation.

3.1.2. Results and discussion
Figure 3 depicts the averaged locomotion velocity of the testbed in the X-axis direction against the
microgravity condition; each experimental plot involves an error bar. Here, the locomotion velocity
was evaluated by a steady-state value of when the testbed moves at a steady velocity. This result shows
that a larger effective centrifugal force provides larger locomotion velocity in all gravitational cases.
Additionally, the locomotion velocity decreases with an increase in gravity acceleration within the
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Figure 3. Experimental locomotion velocity of vibration propulsion under several microgravity
conditions.

experimented microgravity range. This shows a linear relationship and a larger centrifugal force case is
more sensitive to change of gravity.

Microscale observation. The microscale motion behavior of the elastic body was analyzed by the cap-
tured camera images. To compare the effect of gravity, the analysis focuses on the conditions of
FMd = 0.219 (N) and g = 7.5 × 10−4, 1.5 × 10−3 (G) in Fig. 3. As a typical example, Fig. 4(a) shows
the motion snapshot of the front elastic body under g = 7.5 × 10−4 (G). Furthermore, Fig. 4(b) shows
5-s motion profiles of the front elastic body under each gravity condition.

For a global behavior analysis, the elastic body shows a regular stick-slip motion in the relatively larger
microgravity. Meanwhile, it shows a cyclic motion in the relatively smaller microgravity. In both the
gravities, the motion was synchronized with a motor rotation frequency of 2 Hz. These profiles confirm
that the tip of the elastic body always contacts the ground surface in the larger gravity, whereas the elastic
body hops to 2 mm in height. Accordingly, we define the motion (or sub-mode) shown in Fig. 4(a) and
(b) as micro-hopping and crawling, respectively. The micro-hopping motion is also defined as the state
in which one or both elastic bodies float above the ground and comes from the resonant characteristic
of elasticity of the elastic body [15]. With analysis results of other gravity conditions, the crawling
motion is a major mode in the larger gravity, and the proportion of micro-hopping on the global motion
increased with a decrease in gravity. In the vibration propulsion mode actuated by a constant centrifugal
force, the elastic body motion continuously transits from crawling to micro-hopping with a reduction of
microgravity.

For local behavior analysis, the bending deflection and buckling (i.e., flexural deformation) of an
elastic body is smaller in the micro-hopping motion, because of the smaller gravity, as shown in Fig. 4.
By contrast, its equilibrium deformation becomes larger in the crawling motion because of the larger
gravity. Hence, the elastic force exerted by the elastic body is relatively larger in the crawling motion,
because of a larger normal force reacting from the ground to the testbed. This increase in the normal
force produces an increase in the friction between the elastic body and the ground surface. Thus, this
frictional difference results in velocity characteristics.

Vibration propulsion mechanism. The locomotion principle of vibration propulsion mechanism is orga-
nized below. From quantitative motion behaviors, the testbed motion is divided into the following four
phases, as shown in Fig. 5.

• Micro-hopping:

(1) The testbed moves forward and squats downward via the centrifugal force of the eccentric motor,
where the elastic body sticks and bends, and thereby propels the testbed forward.

https://doi.org/10.1017/S0263574721000539 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000539


300 Kenji Nagaoka et al.

Y
 (m

m
)

Micro-hopping: g = 7.5×10–4 (G)

Crawling: g = 1.5×10–3 (G)

X (mm)
0 10 20 30 40 50 60

0

10

20

(a)

(b)

5

15

Y
 (m

m
)

X (mm)
0 10 20 30 40 50 60

0

10

20

5

15

t=2 (s)

t=1 (s)

t=0 (s)

t=5 (s)

t=4 (s)

t=3 (s)Elastic body

Simulated
surface

Figure 4. Experimental results of the front elastic body motion during vibration propulsion: (a) motion
snapshots under g = 7.5 × 10−4 (G); (b) 5-s motion profiles based on image processing.
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Figure 5. Schematic sequence of vibration propulsion mechanism: micro-hopping motion and crawling
motion.

(2) The testbed performs micro-hopping upward and forward by releasing elastic energy stored in the
elastic body.

(3) The micro-hopping direction increases upward with decreased velocity via the centrifugal force.
(4) The testbed lands softly on the ground.

• Crawling:

(1) The testbed moves forward and squats downward via the centrifugal force of the eccentric motor,
where the elastic body sticks and bends, and thereby propels the testbed forward.
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(2) The elastic body slips forward, where the testbed continues moving forward and squats downward.
Simultaneously, the elastic body accelerates forward via the centrifugal force while increasing the
normal force to the ground. Thus, the testbed moves while increasing kinetic frictional resistance
between the elastic body on the ground.

(3) The testbed moves upward and forward with decreased forward velocity as the elastic body
recovers from its bending deflection and buckling.

(4) The testbed moves upward and the elastic body recovers from the deflection and buckling by the
centrifugal force.

The testbed motion clearly synchronizes with the change of centrifugal force. Moreover, the testbed
results in the forward movement caused by friction anisotropy between the inclined elastic body and the
ground surface.

3.2. Modeling

3.2.1. Equation of motion
In this paper, we focus on planar model for robot motion. Figure 6 illustrates the planar robot model for
the vibration propulsion. For planar motion modeling, the CoM position of the robot is defined as (x, y)
in the inertial coordinate, �I{X, Y}, where the origin of the Y -axis is set to the terrain surface. Let the
robot attitude angle be θ , where the counterclockwise direction is positive. Whereas two elastic bodies
are attached on the testbed, the number of the elastic bodies is modeled as N for generality, where an
i-th elastic body is represented by a subscript, i.

The equations of motion of the robot are given as follows:

Mẍ =
N∑

i=1

Ffi + FMx, (1)

Mÿ =
N∑

i=1

Ni + FMy − Mg, (2)

I θ̈ =
N∑

i=1

{
Ni(pix − x) − Ffi(piy − y)

} + vM × FM − TM , (3)

where M is the robot mass, I is the moment of inertia of the robot, Ffi is the friction force acting on the
tip of the i-th elastic body, Ni is the normal force acting on the tip of the i-th elastic body, pi(pix, piy) is the
tip position of the i-th elastic body, vM is the position vector from the robot CoM to the rotational axis
of the motor, FM(FMx, FMy) is the centrifugal force exerted by the motor in �I , TM is the driving torque
exerted by the motor, and subscripts x and y denote the X- and Y -axes components of each variable,
respectively.
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3.2.2. Inertial force of eccentric motor
As the inertial forces, the centrifugal force and reaction torque exerted by an eccentric motor are
modeled. The centrifugal force, FM(FMx, FMy), is given as follows:

FMx = FM cos (θM + θ ), FMy = FM sin (θM + θ ), (4)

where FM = mereω
2
M and θM is the motor angle in relative coordinates fixed in the robot base and

θ̇M =ωM .
In the robot model, a DC motor is assumed, and its driving torque, TM , is given as follows:

TM = (JM + νM)θ̈M + Tr , (5)

where JM is the entire moment of inertia of the motor rotor with the eccentric weight, νM is the motor’s
damping coefficient, and Tr is the external torque resistance. Here, νM can be assumed to be ideally 0
when a gear-head is not embedded in the motor. Tr is also approximated to be zero, owing to g<< 1.
Accordingly, the motor torque can be given as follows:

TM ≈ JM θ̈M , (6)

where the reaction torque, −TM , acts on the robot.

3.2.3. Contact force
To formulate the reaction forces, Ni and Ffi, the deformation change of elastic body must first be intro-
duced. In this paper, we represent the elastic body as a two-link system with rotational viscoelastic joints,
as illustrated in Fig. 7.

The joint angles, φ1i and φ2i of the elastic body, can be expressed as follows:

φ1i = φi + cos−1
(

hi

h0

)
, φ2i = 2 cos−1

(
hi

h0

)
, (7)

where h0 is the natural length of the elastic body, and φi and hi are, respectively, defined as the equivalent
joint angle and length of the elastic body, as shown in Fig. 6. hi is given as follows:

hi =
√(

x + rix cos θ − riy sin θ − pix
)2 + (

y + riy sin θ + riy cos θ
)2, (8)

where ri(rix, riy) is the vector from the robot CoM to the base position of elastic body. φi is also defined
as the angle between the robot base and the line connecting the tip and root of the elastic body, and can
be given as follows:

φi = tan−1
(

y + rix sin θ + riy cos θ
x + rix cos θ − riy sin θ − pix

)
− θ . (9)

https://doi.org/10.1017/S0263574721000539 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000539


Robotica 303

Hence, the displacement of the first joint, �φ1i, and the second joint, �φ2i, is written by

�φ1i = φ0 − φ1i, �φ2i = φ2i. (10)

where φ0 is the angle of φ1i in the undeformed state.
Given that kj and dj are, respectively, the elastic stiffness and viscous damping of joint j (j = 1, 2) of

the elastic body shown in Fig. 6, the joint’s viscoelastic torque, τi(τ1i, τ2i), can be expressed as follows:

τ1i = k1(φ0 − φ1i) − d1φ̇1i, τ2i = k2φ2i + d2φ̇2i. (11)

By the moment equilibrium about the joints, an elastic force, Fi(Fix, Fiy), acting on the tip of elastic
body, can be represented as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Fix = τ1i cosψ2i − τ2i (cosψ1i + cosψ2i)

l sin φ2i
, (12a)

Fiy = −τ1i sinψ2i + τ2i (sinψ1i + sinψ2i)

l sin φ2i
, (12b)

where ψ1i = φ1i + θ , ψ2i =ψ1i − φ2i, the link length, l, is constant (l = h0/2), and φ2i �= 0 is assumed
to be satisfied during contact. The friction force, Ffi, acting on the tip of the i-th elastic body, can also
be modeled as follows:

Ffi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 for piy > 0 (w/o contact), (13a)

Fix for piy ≤ 0 ∧ ṗix = 0 (sticking), (13b)

−μ′
dNi for piy ≤ 0 ∧ ṗix > 0 (slip forward), (13c)

μ′
dNi for otherwise (slip backward), (13d)

where the normal force is given as Ni = Fiy and μ′
d is the apparent kinetic frictional coefficient.

Generally, the elastic body model has friction anisotropy [16, 27, 28]; μ′
d can be represented as

follows:[16].

μ′
d =

⎧⎪⎪⎨
⎪⎪⎩

μd

1 −μd tanψ2i
for ṗix ≤ 0, (14a)

μd

1 +μd tanψ2i
for otherwise, (14b)

where μd is the kinetic friction coefficient.

3.2.4. Elastic body shape
To calculate the contact force, the tip position of the elastic body is derived based on elastic potential
energy.

Contact detection. For the contact detection, the vertical tip position, piy, which is given by the following,
is discussed.

piy = y + rix sin θ + riy cos θ − h0 sin (φ0 + θ) . (15)

When piy ≤ 0, the contact force is calculated based on the subsequent steps.

Stick-slip detection. The contact state is divided into four conditions, depending on the state of the elastic
body in one calculation step prior.
(b-1) Case (i): piy > 0 in the previous step: As the contact position between the tip of elastic body and
the ground surface, pix in the current step is calculated based on only the previous step. With pix, the
reaction force, Fi, acting on the elastic body, is calculated. Then, by comparing Fix and the maximum
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static friction, the stick-slip state is detected: stick for |Fix| ≤μ′
sNi, slip forward for Fix >μ

′
sNi, and slip

backward for otherwise. Here, μ′
s is the apparent static frictional coefficient and μ′

sNi ≥ 0. As with the
apparent kinetic friction, μ′

s can be represented as follows:

μ′
s =

⎧⎪⎪⎨
⎪⎪⎩

μs

1 −μs tanψ2i
for ṗix ≤ 0, (16a)

μs

1 +μs tanψ2i
for otherwise, (16b)

where μs is the static friction coefficient. When stick is detected, the tip position is constrained at the
contact point. In the other cases, the simulation goes to the next calculation step.
(b-2) Case (ii): piy ≤ 0 ∧ ṗix = 0 in the previous step: The stick-slip detection is evaluated using the tip
position in the previous step, based on the same procedure with Case (i), because the robot body moves
and the elastic body is deformed.
(b-3) Case (iii): piy ≤ 0 ∧ ṗix > 0 in the previous step: The elastic body is assumed to slip forward in the
+X direction, and the simulation goes to the next step.
(b-4) Case (iv): piy ≤ 0 ∧ ṗix < 0 in the previous step: The elastic body is assumed to slip backward in
the −X direction, and the simulation goes to the next step.

Tip position determined by potential energy. In the case where slip is detected in the current step, the tip
position of the elastic body is derived. According to the law of energy conservation, the work-energy
theorem is thus satisfied. That is, the work done by the robot body motion on the elastic bodies is equal
to an increase in kinetic and potential energy of elastic bodies, where the kinetic energy can be ignored
because it is negligibly small compared to the potential. Based on the principle of minimum potential
energy, the elastic body deforms so that its potential energy is minimized. Here, a non-conservative
friction force acting on the tip of elastic body is also involved. Thus, the joint angles of the elastic body
can be derived as the solution of the following equation:

∂

∂pix

(
U(pix) +μd

∫ pix

pix0

Ni(pix)dpix

)
= 0. (17)

where U(pix) is the potential energy at pix and pix0 is the reference position.
(c-1) Reference potential energy: As the reference potential energy, the tip position of elastic body in
the current step is used. The X-axis component of the tip position is re-defined as pix = pix0. U(pix) is
written as follows:

U(pix) = 1
2

k1 (�φ1i(pix))2 + 1
2

k2 (�φ2i(pix))2 , (18)

where �φ1i(pix) and �φ2i(pix) are the angle variations of the first and second joints, respectively, and
they can be represented as functions of pix. The reference potential energy in the current step is also
given as U(pix0).
(c-2) Comparison between U(pix0) and U(pix) with movement of �pix: The tip of the elastic position
moves a microdistance, �pix, from pix0. The tip position, pix, is given as pix = pix0 ±�pix in response
to the slip direction of the elastic body. In order for the tip position to reach pix, the sum of U(pix) at
pix and dissipation energy during the movement of �pix is needed to be smaller than U(pix0). Thus, the
following relation must be satisfied:

U(pix0)>U(pix) +μd

∫ pix

pix0

Ni(pix)dpix. (19)

(c-3) The tip position in the current step: Because the elastic body intends to deform in order to store
a lower potential energy, the tip’s slippage is changed by adding or subtracting �pix and by satisfying
Eq. (19). Assuming that there is no limit to migration distance of the elastic body during a calculation
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Table 1. Robot model parameters used in the numerical simulation.

Symbol (unit) Value Symbol (unit) Value

M (kg) 4.32 μs (-) 0.54

I (kgm2) 0.0154 μd (-) 0.19

me (kg) 0.634 k1 (Nm/rad) 7.20 × 10−3

JM (kgm2) 2.75 × 10−4 d1 (Nms/rad) 7.20 × 10−7

re (m) 2.16 × 10−3 k2 (Nm/rad) 1.20 × 10−3

KT (Nm/A) 0.0195 d2 (Nms/rad) 1.20 × 10−7

RM (�) 0.165 φ0 (rad) 7π/18 (= 70.0◦)

h0 (m) 0.02
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Figure 8. Comparison result of the robot velocity in the X-axis with FM = 0.219 (N) under several
microgravity conditions.

step, the tip position of the elastic body is changed with slip until the potential energy becomes a local
minimal value. This calculated tip position is a final reaching point, and the elastic body is deemed to
have velocity.

3.3. Comparison

The dynamics model of vibration propulsion motion is quantitatively evaluated by comparing its numer-
ical simulation with the experimental results. Table 1 shows the model parameters in simulation, where
the frictional coefficients were experimentally identified by the slip-slope method based on a dynamic
motion analysis.

Regarding a macroscale evaluation, the robot locomotion velocity is discussed. Figure 8 shows the
comparison result of the locomotion velocity in the X-axis direction , where the centrifugal force
condition is FM = 0.219 (N). The result confirms that the simulation-based relationship between the
microgravity and locomotion velocity agrees with the experimental relationship. Quantitatively, the
simulation results are close to the experimental values.

Further to the comparison of the macroscale robot motion, microscale behaviors of the elastic body
are elaborated. As an analysis on the microscale behavior in the crawling motion, this paper takes up the
case of g = 1.25 × 10−3 (G), because the crawling motion was dominantly observed under this gravity
condition. Figure 9 shows the comparative time histories of the tip and root positions and angle change
of elastic body. From Fig. 9(a), the elastic body performs the stick-slip motion in the simulation and
the experiment. Likewise, because the motion profiles of the root show good agreement, the model can
adequately simulate the elastic body motion. Considering the resulting time histories of the deformation
angle, �φ, shown in Fig. 9(c), the simulation can also represent the experimental behaviors.
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Figure 9. Comparison results of time histories of the front elastic body in vibration propulsion mode
under g = 1.25 × 10−3 (G): (a) position in the X-axis, (b) position in the Y-axis, and (c) deformation
angle.
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Figure 10. Comparative time histories of tip position of the elastic body in the Y-axis under
g = 7.5 × 10−4 (G).

The microscale behaviors of the elastic body in the micro-hopping motion are now analyzed. The
tip position of the elastic body in the Y -axis direction is focused, where the gravity of 7.5 × 10−4 G is
discussed. Figure 10 shows the comparative time histories of the tip position. From this result, microscale
hopping states are confirmed via both simulation and experiment. The height of the micro-hop in the
simulation is inconsistent with the experiment in an exact sense, but it reflects a similar scale and a
maximum micro-hop height of approximately 2 mm in both cases. Thus, the developed model can also
simulate a micro-hopping motion on a scale similar to the experiment.

Consequently, the comparison results confirm that the dynamics model developed in this paper is
validated for the vibration propulsion in microgravity.

4. Rotational hopping

4.1. Motion characteristics

Regarding mobility characteristics of rotational hopping mode, hop velocity and hop angle are analyzed.
The hop velocity is defined as hopping velocity of the robot CoM when it loses contact with the ground.
The hop velocity in the X- and Y -axes is vhx and vhy, respectively. The hop angle, θh, is also defined
as θh = tan−1 (vhy/vhx). Essentially, the hopping trajectory is dependent on these two parameters, owing
to no disturbance. The hop parameters are also affected by microgravity conditions in a precise sense,
because of the change of the CoM height above ground based on a balance between the gravitational force
and the deformation of the elastic body. However, the height change is negligibly small in microgravity
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Figure 11. Time histories of motor rotational frequency for different reaction torque conditions.

conditions, and the hopping characteristics can be evaluated without gravity effects. Therefore, in this
paper, we focus on a typical gravity condition.

4.2. Experimental analysis

4.2.1. Conditions
In the following experiments, the eccentric distance was set to re = 1.0 × 10−3 (m). The moment of iner-
tia of the rotating part involving the eccentric weight was 2.51 × 10−4 kgm2. Furthermore, the frame rate
of the recording camera was set to 120 fps for visual observation of the impulsive contact phenomena.

The angular velocity of the motor was controlled based on a proportional-integral-derivative (PID)
controller with a control cycle of 100 Hz. Hence, the motor reaction torque was also controlled by the
velocity control, so that TMd was constant. Considering specifications of the embedded motor, ωMd was
set to 25 Hz. The experimental conditions are summarized below.

• g: 1.25 × 10−3 G
• FMd : 14.31 N
• TMd : 0.0526, 0.0789, 0.105, 0.132 Nm

For each condition, the experiments were conducted five times and the average value was evaluated.

4.2.2. Results and discussion
Figure 11 plots the time histories of the motor rotational frequency for exerting different TMd . In this
graph, the point of the starting hop is also depicted. This confirms that an approximately constant motor
torque was applied to the testbed until hopping in each condition.

Figure 12 shows a result example of the experimental motion snapshots of rotational hopping under
TMd = 0.132 (Nm). The motion overview shown in Fig. 12(a) confirms that the testbed can demonstrate
rotational hopping motion by controlling the motor rotation. Figure 12(b) shows the close-up view of the
square edge at the collision of the ground surface. After the testbed is a static state and starts the motor
rotation at t = 0 (s), the whole testbed rotates in response to the motor acceleration as the tip of elastic
body slips backward. Then, the square edge collides against the ground surface at t = 0.28 (s). Owing to
the rigid body collision, the edge immediately hops without slip on the surface. Thus, the testbed attitude
during the collision can be deemed constant. This confirms the feasibility of the rotational hopping in
microgravity by utilizing the reaction torque.

Figure 13 depicts the hop velocity and hop angle results with an error bar against the reaction torque.
From Fig. 13(a), the resulting hop velocity is linearly correlated with the reaction torque. Furthermore,
Fig. 13(b) shows that the hop angle is approximately constant of 77.3◦.
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(a)

(b)

Figure 12. Experimental motion snapshots of rotational hopping under g = 1.25 × 10−3 (G) and
TMd = 0.132 (Nm): (a) motion overview; (b) close-up view at collision.
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Figure 13. Experimental results of hopping characteristics under g = 1.25 × 10−3 (G) and several
reaction torque conditions: (a) hop velocity; (b) hop angle.

The effects of reaction torque on the hop velocity are now discussed. In the rotational hopping mode,
the testbed hops via impulsive rigid collision with the ground surface. Thus, the hop velocity increases
with increasing collision impulse. The impulsive force depends on the angular momentum of the testbed
just before colliding. Thus, the hop velocity is ultimately proportional to the reaction torque, because
the angular velocity of the testbed is given by an integral of the motor acceleration (i.e., the reaction
torque). That is, the hop velocity can be actively controlled by changing the reaction torque.
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Furthermore, the effects of reaction torque on the hop angle are discussed. Whereas the hop velocity
depends on the amplitude of the impulsive force, the hop angle is determined by the direction of the force.
Here, a contact angle is defined as the testbed attitude during collision. Geometrically, it is defined as an
angle between the ground surface and the line connecting the testbed CoM and the colliding edge. For
a rigid collision, the contact angle change can be deeded as constant. In the experiments, the resulting
contact angle was within 55◦ ∼ 56◦ regardless of the reaction torque. Therefore, the testbed performed
the constant hop angle because the direction of the force was nearly unchanged.

4.3. Modeling

This section elaborates the modeling of rotational hopping to clarify the hopping mechanism by
comparing the experimental results.

4.3.1. Equation of motion
Rotational hopping can be achieved, wherein the robot square edge collides with the ground surface.
Given that the XY position of this edge is defined as (xe, ye) in �I and the reaction force Fg(Fgx, Fgy)
acting on the robot CoM, the following equations of motion of the robot CoM are introduced:

Mẍ =
N∑

i=1

Ffi + FMx + Fgx, (20)

Mÿ =
N∑

i=1

Ni + FMy − Mg + Fgy, (21)

I θ̈ =
N∑

i=1

{
Ni(pix − x) − Ffi(piy − y)

}
+ vM × FM

− TM − Fgx(ye − y) + Fgy(xe − x), (22)

where these equations are applied during contact (i.e., ye < 0).

4.3.2. Contact force
Figure 14 illustrates the contact dynamics model during rigid collision. Assuming a virtual spring-
dashpot system in the normal Y -axis direction, the normal contact force, Fgy, to the ground can be given
as follows:

Fgy = −kyye − dyẏe, (23)

where ky and dy are the stiffness and the damping coefficient of the ground in the normal direction,
respectively.

Likewise, a linear spring-dashpot-slider system is introduced to simulate the contact force in the
tangential X-axis direction as shown in Fig. 14. The tangential contact force, Fgx, can be represented as
follows:

Fgx =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−kx�xe − dxẋe for |kx�xe+dx ẋe|
μesFgy

< 1, (24a)

μedFgy for |kx�xe+dx ẋe|
μesFgy

≥ 1 ∧ ẋe ≤ 0, (24b)

−μedFgy for |kx�xe+dx ẋe|
μesFgy

≥ 1 ∧ ẋe > 0, (24c)

where kx is the tangential stiffness of the ground, dx is the tangential damping coefficient of the ground,
μes is the static friction coefficient, μed is the kinetic friction coefficient, and�xe = xe − xc. Here, when
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Table 2. Simulation parameters used in contact dynamics model for rotational hopping.

Symbol (unit) Value Symbol (unit) Value

ky (N/m) 10,000 kx (N/m) 5000

dy (Ns/m) 150 dx (Ns/m) 0.5

μes (-) 0.7 μed (-) 0.3

Figure 14. Contact dynamics model for robot in rotational hopping mode.

Fgy < 0, Fgy and Fgx are given as zero. In the following simulation, we also use the elastic body model
described in the previous section.

4.3.3. Determination of simulation parameters
In the following simulation, the parameters shown in Table 1 are commonly used. This section provides a
method for determining the ground parameters: stiffness, damping coefficient, and frictional coefficients.
These ground parameters used in the simulation are shown in Table 2.

Normal ground parameter. The stiffness, ky, in the normal direction, was determined in order for the
ground to be rigid enough for a time-step for calculation. Based on the balance between an energy loss
of the dashpot and an energy loss expressed by a coefficient of restitution, the damping coefficient, dy,
can be given as follows:

dy =
∣∣ln Rey

∣∣ d0y√
π2 + ( ln Rey)2

, (25)

where Rey ( ≥ 0) is the coefficient of restitution in the normal direction to the ground and d0y ( = 2
√

Mky)
is the damping constant. To determine Rey, free-fall and bounding motions of the air-floating testbed in
planar microgravity were experimentally analyzed based on camera images. The frame rate of the camera
was set to 960 fps. From experimental analyses, Rey = 0.296 was obtained. Substituting it into Eq. (25),
dy is calculated for simulation.

Tangential ground parameter. In this paper, a typical case of rigid body collision problem of kx/ky = 0.5
is assumed. dy was determined such that the hop velocity in the simulation was consistent with its
experimental value.

Frictional coefficient. The frictional coefficients between the square edge and the ground surface were
experimentally measured by the slip-slope method of a dynamic motion analysis like the vibration
propulsion experiments.
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Figure 15. Comparison results of hopping characteristics under g = 1.25 × 10−3 several torque
conditions: (a) hop velocity; (b) hop angle.

4.4. Comparison

The dynamics model of rotational hopping motion was quantitatively evaluated by comparing its
numerical simulation with experimental results.

First, the simulation results verified that the developed model can simulate a rotational hopping
motion similar to the experimental motion. Figure 15 depicts the comparison of the hopping charac-
teristics by the simulation and experiment. The simulation results in Fig. 15(a) confirm that the hop
velocity calculated by the developed model is linearly correlated with the reaction torque, like the exper-
imental plots. Compared to the experimental results, the relative error of simulation was quantitatively
an average of 16%. The hop angle results are shown in Fig. 15(b). Regarding the experiment, the hop
angle remains about the same with each reaction torque. The relative error of simulation and experi-
ment was 3.1% at maximum. Thus, the developed model is validated for the rotational hopping motion
in microgravity.

5. Synthetic analysis

Based on the above results, we discuss a synthetic correlation between the inertial forces (i.e., centrifu-
gal force and reaction torque) and the resulting bimodal mobility performance involving the locomotion
mode in microgravity. In the initial step, the bimodal mobility is experimentally examined by changing
inertial forces. Then, the synthetic bimodal mobility is analyzed in more detail based on the numerical
simulation, and the experimental and simulation results are compared. The inertial forces have implica-
tions for the locomotion velocity and mode. Thus, the synthetic correlation is analyzed with the resulting
velocity.

5.1. Experimental condition

The experiments were conducted using the common experimental apparatus shown in the previous
sections, where the eccentric distance condition was set to re = 1.0 × 10−3 (m). Moreover, the motor
rotation was also controlled based on FMd and TMd . The experimental conditions are summarized as
follows:

• g: 1.25 × 10−3 G
• FMd : 0.37, 1.47, 3.30, 5.86, 9.16 N
• TMd : 0.00158, 0.00316, 0.00632, 0.0126, 0.0253 Nm.

For each condition, the experiments were conducted three times, and the average value was evaluated.
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Figure 16. Time-history examples of motor rotational frequency for changing inertial force conditions.

Figure 16 plots example results of the time history of the motor rotational frequency in the exper-
iment. Throughout, the motor rotation was adequately controlled to produce each desired inertial
force.

5.2. Simulation condition

More precise and in-depth analyses of the synthetic bimodal mobility are now discussed by simula-
tion. Moreover, the simulation analysis helps clarify the transition boundary of the locomotion mode.
Furthermore, it yields better understanding of the synthetic correlation of the inertial forces and the resul-
tant locomotion velocity. The common model parameters were set as shown in the previous sections.
The simulation conditions are summarized as shown below.

• g: 1.25 × 10−3 G
• FMd : 0, 0.5, 1, · · · , 9, 9.5, 10 N
• TMd : 0, 1.5, 3, · · · , 27, 28.5, 30 mNm

5.3. Results and discussion

Figure 17 shows the experimental and simulation results of the synthetic correlation map of the loco-
motion mode and the robot CoM velocity in the X-axis direction under g = 1.25 × 10−3 (G). Here, the
locomotion velocity was defined as a steady-state value of the robot moving at a steady velocity. In the
rotation hopping mode, whereas the robot has the hop velocity in the Y -axis direction, the synthetic anal-
ysis focuses on the horizontal velocity parallel to the ground surface to investigate fundamental surface
mobility.

5.3.1. Experimental analysis
The experimental result is shown in Fig. 17(a). As seen in the distribution of the resulting locomotion
mode, a vibration propulsion mode was generated in the range of relatively smaller inertial forces. In
the generation area of the vibration propulsion mode, the crawling motion was shifted to the micro-
hopping motion while increasing the centrifugal force. The micro-hopping motion was observed under
FMd = 5.86, 9.16 (N), because a larger centrifugal force brings a larger attitude change. This result
also exhibits the feasibility of switching between the crawling and micro-hopping motion of the motor
control.
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Figure 17. Synthetic correlation map of locomotion mode and velocity against inertial forces under
g = 1.25 × 10−3 (G): (a) experiment; (b) simulation.

The locomotion velocity in each mode is discussed. The vibration propulsion mode assumes a wide
range of values from the minimum to maximum locomotion velocities on the correlation map. In this
mode, the velocity is evaluated under constant motor rotation. That is, the reaction torque is not affected.
From the results, the robot can easily control the locomotion velocity in the vibration propulsion mode
via the centrifugal force. Conversely, the locomotion velocity (i.e., the hop velocity in the X-axis) via the
rotational hopping is affected by both the centrifugal force and reaction torque, because a larger centrifu-
gal force (i.e., a larger motor rotational velocity) provides a larger angular momentum of the robot in the
end, even when the reaction torque is constant. Thus, the locomotion velocity of the rotational hopping
mode increases with the increase of inertial forces. However, in some cases, the locomotion velocity
makes no difference under different centrifugal forces, because the robot collides with the ground and
hops before the motor rotational velocity reaches the desired value,ωMd . Therefore, in the rotational hop-
ping mode, the effects of centrifugal force on locomotion velocity have a certain limit under a constant
reaction torque condition.

5.3.2. Simulation analysis and comparison
The simulation result is shown in Fig. 17(b), where the vibration propulsion is generated within the
heavy black lines and color-coding corresponds to the amplitude of the locomotion velocity in the
X-axis direction. The simulation result provides a clear boundary between the locomotion modes and
confirms a continuous velocity change in each. In the case where the reaction torque is not more
than 5 mNm, the vibration propulsion is generated regardless of the centrifugal force. Moreover,
the locomotion velocity of the vibration propulsion mode is clearly proportional to the centrifugal
force. By contrast, in the rotational hopping, the variation of the locomotion velocity is small as with
experiments.

Cross-comparison of the experimental and simulation results confirms that the simulation has a good
agreement in the qualitative correlation between the inertial forces and the resulting bimodal mobility
performance. Additionally, there are minor quantitative differences in both modes, but the differences
are within the range of error of the experimental results, shown in the previous sections. Therefore, the
developed model is enough to simulate the bimodal mobility in the microgravity. As in other micrograv-
ity conditions, this correlation greatly resembles qualitative results, and the simulation provides close
agreement with the experimental results.

Throughout the experiment and simulation, the vibration propulsion mode brings a relatively
larger locomotion velocity. Furthermore, toward practical applications, the combination of vibration
propulsion and rotational hopping is expected to enhance the surface mobility in microgravity. In
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particular, control of the inertial forces enables the robot to achieve vibration propulsion by lifting
the front elastic body like a motorcycle wheelie motion, which improves obstacle negotiation and
avoidance.

6. Conclusion

This paper presented bimodal mobility, vibration propulsion, and rotational hopping, actuated by inertial
forces with surface elastic bodies for an exploration robot under microgravity, based on experimental and
theoretical analyses. The proposed bimodal mobility was achieved by controlling the centrifugal force
and reaction torque of a single eccentric motor, where the rotational hopping is the primary locomo-
tion mode and the vibration propulsion is the secondary one. We experimentally examined the mobility
performance of the bimodal mobility system, demonstrating that the bimodal mobility can be selec-
tively generated by the motor control. Moreover, in-depth observation clarified the microscale motion
behaviors of the elastic body. Consequently, we established the presence of micro-hopping and crawling
motions in the vibration propulsion mode. From the theoretical analysis, the elastic body was modeled
for vibration propulsion based on the principle of minimum potential energy. The result showed that the
model can simulate microscale motion and gravity effects in experiments. Furthermore, the rotational
hopping in the experiments was reasonably simulated based on a rigid collision model. Then, a synthetic
correlation between the inertial forces and the resulting bimodal mobility was discussed. The correlation
was analyzed through both the experiment and the simulation, and the bimodal mobility mechanism in
microgravity was clarified more systematically. As a key result, we verified that the bimodal mobility
can be controlled by the inertial forces. In particular, the vibration propulsion was generated by smaller
inertial forces and its locomotion velocity was controllable by those forces, whereas the resulting hop
velocity and angle of the rotational hopping fall within a relatively small deviation. In summary, the
results confirm that the proposed bimodal mobility is feasible in microgravity, and the developed model
explains the diverse motion in the experiments.

Future work will extend the bimodal mobility system to more terrain-agnostic mobility systems with
spatial motion control. In particular, the hopping mobility is practical to the various terrain and exten-
sible for the spatial motion by the three-axis configuration of the actuators. We have also extended the
fundamental concept of the bimodal mobility to a novel torque-based bimodal mobility system with
surface elastic bodies [29]. This system can selectively perform hopping and tumbling motion. We will
address path planning and motion control with energy efficiency of such a novel mobility system for
practical application.
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