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Abstract
This study uses the numeraire portfolio to benchmark insurance stock returns as a natural measure

for detecting abnormal insurance stock returns from catastrophic events. The assumptions

underlying the efficient markets hypothesis using a numeraire denominated returns approach hold

for catastrophic insurance events whereas other more traditional methods such as the market model

and Fama-French three factor model often fail, typically due to the accumulation of estimation

errors. We construct a portfolio of Australian insurance firms and observe the market reaction to

major insured catastrophic events. Using the numeraire denominated returns approach we observe

no particular trend in the cumulative abnormal returns of insurance securities following a

catastrophic event. Using both the traditional market model and the Fama-French three factor

model however, we observe significantly positive cumulative abnormal returns following an insured

catastrophic event. The errors inherent in the market model and three factor model for event studies

are shown to be eliminated using the numeraire denominated returns approach.
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1. Introduction

In an efficient capital market, the prices of securities observed at any time are based on the correct

evaluation of all information available at that time. According to Fama (1976), prices should

therefore fully reflect all available information in an efficient market. Given a set of assets, a profit

opportunity arises if, by trading assets from a given set, with positive probability one can purchase a

claim to a non-negative future payoff for a non-positive current price, or if one can sell a claim to a

certain zero future payoff for a positive current price. Only the absence of such profit opportunities

implies that the share market is efficient under Fama’s assertion. Asset pricing models that have

emerged from this notion of market efficiency express the idea that there is, ex ante, an equality of

risk adjusted expected rates of return among a given set of assets.
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In an extension of this idea, Long (1990) shows that a given set of assets offers no profit

opportunities, if and only if a numeraire portfolio can be formed from the set. A numeraire portfolio

here is defined to be a self-financing portfolio such that, if current and future asset prices and

dividends are denominated in units of the numeraire, the expected rate of return of every asset

within the given set of assets is always zero. That is, by simply dividing each asset by the

contemporaneous value of the numeraire portfolio, the best forecast of each asset’s numeraire

denominated rate of return is zero. The main implication of this conclusion is that it is quite general

with respect to discrete or continuous time asset trading and return distributions.

Event studies have become the predominant approach for measuring how security prices change in

response to information following an event or a set of events. Some of the most widely used diagnostics

for event studies include, inter alia the one-factor market model, the Fama-French three-factor model

and the Carhart four-factor model. The one-factor model, developed by Sharpe (1963) and used in

Brown & Warner (1985) describes the process generating returns during a prescribed event window.

Variations of the market model have been employed in a number of studies to detect anomalies in the

market efficiency assumption, and to detect other peculiar behaviours in security returns following a

specific event (Chandra & Balachandran, 1990; Boehmer et al., 1991; Bartholdy et al., 2007). The

Fama & French (1996) three-factor model uses a market index, a size index and a book-to-market

index to explain stock returns. There have been several other models that extend these approaches, the

most prominent being the characteristic-based benchmark estimate of Daniel et al. (1997) and the four-

factor model of Carhart (1997) that appends the Fama-French three-factor model with a short-run

momentum index. In this study we restrict our analysis to the performance of the market model and the

Fama-French three factor model against the numeraire-denominated returns approach (NDRA). The

results in Ahern (2009) show that there is little additional explanatory power in the multifactor models

that extend the Fama-French three-factor approach and while multifactor regression models may

alleviate the omitted variable bias of a simple market model, they may also introduce additional

estimation error, see Fama & French (1997). The primary advantage of the NDRA is that no regressors

need to be estimated which helps eliminate estimation error and there is no requirement to choose a

‘normal’ estimation period, either pre- or post-event, as there is in competing models.

The basis for inference in event studies is a test statistic, typically the ratio of the mean excess return

to its estimated standard deviation. The aim of the test is to detect the presence of statistically

significant departures from the assumption of market efficiency. However, tests of the efficient

market hypothesis (EMH) are always joint tests of market efficiency, an underlying equilibrium

model and a related market or factor model. In many studies, one possibility that is seldom

considered is that if the EMH has been rejected, it is not because the wrong market model was used.

The objective of this analysis is to offer a robust and reliable alternative to the traditional models

used for examining investor behaviour following an event under the EMH by using the growth

optimal portfolio (GOP) as the numeraire portfolio, first suggested by Kelly (1956). This approach

avoids the problems associated with bias and efficiency when using the traditional market model

and other problems such as the presence of momentum when using the Fama-French three-factor

model. A variety of tests are employed in this analysis to detect adjustments of security prices to

specific kinds of new information under these methods. We shall employ this unique methodology

to catastrophic loss events in the insurance sector.

The advantages of using a numeraire proxy to extract market adjusted returns are the same as the

advantages of using various market portfolio proxies to obtain abnormal returns. Just as market model
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proxies are used to estimate abnormal returns for individual assets, a numeraire proxy can be used for

obtaining the market adjusted returns from the numeraire denominated returns of individual assets.

Numeraire denominated returns have the same qualitative interpretation as conventional abnormal

return measures. Ignoring measurement and estimation errors, both approaches measure asset

performance relative to the average contemporaneous performance of other assets in the market. Both

statistics are constructed so that, in equilibrium, the best short-term forecast for the statistic is zero.

More broadly, under the so-called benchmark framework, numeraire denominated returns are

supermartingales, see Bühlmann & Platen (2003). The theoretical justification behind this assumption

accords with the work of Fama (1998), concerning the fair pricing of securities in an efficient market,

particularly in the short term. The main advantage of this approach is that because daily expected

returns are close to zero, a model for expected returns does not have a big effect on inferences about

abnormal returns. The main contribution of this paper is that it applies the NDRA to event study

methodology. We identify a growth optimal portfolio to act as the numeraire and then show that in a

practical setting the NDRA strongly dominates both market model and factor model approaches. The

so-called benchmark approach of Bühlmann & Platen (2003) provides a general framework for

financial market modelling which extends beyond standard risk-neutral pricing theory. It permits a

unified treatment of portfolio optimisation, derivative pricing, integrated risk management and

insurance risk modelling. Under the benchmark approach the existence of an equivalent risk-neutral

pricing measure is not required. Instead, it leads to pricing formulae with respect to the real-world

probability measure. This yields important modelling freedom which is necessary for the derivation of

realistic and parsimonious market models. In addition to the fact that market model regressions of

each asset are not necessary, an important advantage of the NDRA is that analysis may still be

conducted using firms who cannot obtain reliable market model regressions.

In order to demonstrate the applicability of this approach, we look at catastrophic events and their

influence on the returns in the insurance sector. This study utilises a short window positioned around

relatively cleanly dated events to demonstrate the tractability of the NDRA. The results obtained from

this methodology are shown to offer a more robust system for detecting abnormal returns in an efficient

market. We use catastrophic events to measure market efficiency for two reasons. First the magnitude of

the insurance losses for each of the selected events are sizeable, therefore market inefficiencies in the

form of mispricing should become apparent. Secondly the liquidity of each insurer’s unearned premium

reserve account will have a direct but unknown impact on the firm’s expected earnings which will affect

insurer stock returns after an event. Our approach also avoids the problems associated with a

contaminated estimation period discussed in Aktas et al. (2007) by using an appropriate test statistic.

This paper is organised as follows. Section 2 describes the NDRA in broad terms. Section 3 outlines

the structure of the insurance market used in this study and the nature of catastrophic insurance

events. Section 4 describes the testing methodology of both the numeraire denominated returns and

the market model approaches. Section 5 constructs the test statistics used in this analysis. Section 6

presents the results of both approaches. Section 7 discusses and tests the differences between both

approaches. Section 8 tests for a relationship between the size of catastrophic events and abnormal

returns. Section 9 offers some concluding remarks.

2. Numeraire Portfolios and the EMH

Previous event studies have almost exclusively used the market model to measure abnormal returns,

however more recent analyses have employed the Fama & French (1996) three-factor model and the
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Carhart (1997) four-factor model. The Carhart (1997) model will not be employed in this analysis

as it has been shown to offer only a modest increase in explanatory power relative to the Fama-

French three-factor model in Australia, see Schneider & Gaunt (2011). For the market model the

intercept and slope from the regression of a stock’s return on the market return, estimated outside

the event period, are used to estimate the stock’s expected returns conditional on market returns

during the event period. This will be referred to as the market model approach (MMA) throughout

this analysis. For the Fama-French three-factor model, the estimation of abnormal returns is defined

as the difference between the ex post return of the underlying asset minus the normal return defined

under the three-factor model using the size (SMB), book-to-market ratio (HML) and the risk

premium on the market portfolio as determinants of asset returns.

If however, a satisfactory numeraire proxy of the type suggested by Long (1990) can be identified

then numeraire denominated returns are a viable alternative to the above conventional measures of

abnormal returns. Our approach is conceptually similar to the benchmarking of assets in the

benchmark models of Bühlmann & Platen (2003) to empirically measure market efficiency under

the EMH.

Perhaps the most poignant feature of the numeraire portfolio is the property that zero is always

the best conditional forecast of the future numeraire denominated rate of return on an asset,

see Long (1990). This condition is consistent with cross-sectional heterogeneity and material

variation in expected dollar rates of return, so long as these are not indicative of, so called, profit

opportunities.

Numeraire denominated returns have two advantages over market model and other factor model

forecast errors as measures of abnormal returns. Because the multivariate process of numeraire

denominated returns depends only on relative gross returns, it must be stationary under a broader

range of circumstances than the multivariate process of nominal returns. For instance, over longer

time horizons, the impact of inflation on the parameter estimates for the market model may be

significant, even though relative gross returns, and therefore numeraire denominated returns, are

not affected. Numeraire denominated returns are independent of expectations and realisations of

pure price level inflation. Long (1990) shows that numeraire denominated rates of return can be a

stationary stochastic process even if the nominal rates of return are not. Indeed, if prices are

denominated in the numeraire portfolio, then the real world probability measure is a martingale

measure and no substitution of a different measure is necessary for the valuation of certain

instruments, such as contingent claims. This is an important advantage of the NDRA and a

significant contribution of this analysis.

Also, numeraire denominated returns for individual assets are computed through simple division

which therefore eliminates the requirement for market model parameters to be computed for each

security across each event being analysed. The feature of computational and interpretive simplicity

is, in fact, one of its most attractive features.

The benchmarking approach of Bühlmann & Platen (2003) used in this study as the NDRA permits

a unified treatment of insurance risk modelling. This theory aligns the actuarial approach with the

risk-neutral pricing approach and the existence of an equivalent risk-neutral pricing measure is not

required. This leads to pricing formulae with respect to the real-world probability measure which

yields important modelling freedom necessary for the derivation of other realistic and parsimonious

market models.
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The obvious disadvantage in observing market adjusted returns obtained using numeraire

denominated returns is finding an appropriate GOP proxy. However, as shown in Bühlmann &

Platen (2003), a good proxy for the GOP is available which will be exploited.

3. Catastrophic Losses in the Insurance Industry

Several extreme catastrophes recording losses greater than US$20 billion have caused several

insurance firm bankruptcies in the US. Although not of the same magnitude, large losses (several in

excess of US$1 billion) have been recorded in Australia. Very little research has been dedicated to

examining the market’s reaction to such events.

Only three studies have examined the impact of large losses and other significant events on insurers’

stock values using the market model. Sprecher & Pertl (1983) and Davidson et al. (1987) find that

large losses due to natural disasters and airline crashes are rapidly incorporated into stock prices

with significant negative returns, however Shelor et al. (1992) find that property-liability insurer

stock values tended to increase after an isolated catastrophic loss event. Over the long-term

however, no specific evidence has been produced to examine the market’s reaction to insurance

stocks which face large insurance losses. Previous studies measuring the reaction to security returns

have focused on only a single event, however, to obtain an unbiased measure of efficiency to avoid

factors particular to that event, a number of independent events is used in this analysis. This study

will show that using the NDRA of Long (1990) and Bühlmann & Platen (2003) large insurance

losses are efficiently incorporated into stock prices.

3.1 Insurance coverage of catastrophic losses

The reason why catastrophic events were chosen for the event study are twofold. Firstly

catastrophic events may in fact be of some benefit to property casualty insurers. The hypothesis that

an increased demand for insurance following a significant event driven by consumer awareness is

supported in Kunreuther et al. (1978) who found that consumer demand for flood insurance

increased following a flood event. Secondly when a catastrophe is significantly large the entire

insurance sector may experience a net loss, however the smaller firms and firms who have a

geographically concentrated customer base are limited by statutory accounting requirements in the

amount they can deploy from surplus accounts to pay claims. Smaller and geographically

concentrated insurers are usually more negatively affected than the larger insurers. Furthermore

statutory accounting requirements, which are designed to ensure sufficient reserves to cover policies,

mandate the maintenance of an unearned premium reserve account to limit the amount of surplus

assets an insurer can deploy to settle claims. The amount is then reduced through a credit to

earnings as the policy period progresses to expiry, however to balance the unearned premium

reserves account an insurer must transfer funds from other accounts, usually from surplus reserves.

Importantly these reserves cannot be used to settle claims and so when an insurer expects a large

number of claims from a catastrophic event, the insurer suffers potential liquidity shortfalls which

may result in the insurer entering the reinsurance market to obtain capital. Reinsuring increases

liquidity by freeing up surplus reserves from the unearned premium reserve account and the insurer

receives a ceding commission from the reinsurer that rebates the insurer for costs to issue the policy.

The ceding commission increases surplus reserves immediately, but a financially distressed insurer

may be forced to accept a lower ceding commission from reinsurers which may not sufficiently

recover surplus accounts, which in turn affects solvency. Catastrophic events therefore tend to affect

the traded stock of insurers in a relatively more complex way than for non-insurers. Large losses
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may result in a fall in an insurer’s net worth, however the incident itself may present an insurer with

profit opportunities, particularly the larger and more liquid insurers who may exploit a temporary

liquidity crisis to achieve greater than expected returns.

3.2 A portfolio of catastrophic losses

The need to observe multiple events over a period of time is highlighted by the shortcomings evident

in the single event study conducted by Shelor et al. (1992). The returns around a single event may be

susceptible to contamination by major economic events independent of, but occurring

simultaneously with, a catastrophe causing large insurance losses. The Shelor et al. (1992) study

concerning the 1989 Loma Prieta Fault earthquake failed to include sufficient compensation for the

impact of the lowering of official US interest rates soon after the event, in retaliation to a large stock

market drop two days after the earthquake. Since many of the assets held by insurance companies

are typically highly concentrated in interest rate sensitive instruments relative to the market, an

unanticipated fall in official rates may considerably affect insurance stock returns. Failure to

reconcile the difficulties in differentiating correlation from causation in Shelor et al. (1992), poses

problems in using a single event to determine market reaction to catastrophic events. To combat

this, we shall examine the insurance security returns for the Australian insurance sector for a

number of catastrophic events over a 28-year period.

To obtain a robust measure of abnormal returns across an entire sector, it is necessary to observe a

market that has a relatively high insurance coverage level which is also subject to catastrophic events

that are insurable. In order to capture the effects of catastrophic events on insurance stock returns, we

also require a market that is characteristically small yet mature. The Australian insurance industry is a

relatively good choice since large insurance coverage rates are observed, while only a small number of

publicly listed insurers cover the majority of insurable risks. This market is relatively small in

comparison to the insurance sector in the US, Japanese and European markets, which makes it easier to

eliminate some of the more common measurement errors including loss biases due to firm size and the

concentration of insured exposures to some companies based on geographical location. These

measurement errors are largely avoided in Australia given that insurance firms are of a similar size and

also have roughly an equal share of the market. The majority of events (apart from the very large loss

events) do not trigger contract reinsurance claims which means that the losses absorbed by the

Australian insurers should be almost immediately reflected in the stock price during the event window.

Larger losses may also translate into stock price changes as discussed in section 3.1.

A catastrophe in insurance terms has a number of competing definitions. In order to encompass all

existing meanings of the notion of a catastrophe to insurers and the subsequent reported losses to

market participants, some quite liberal limits were chosen. The catastrophic events in this analysis

were chosen according to two criteria. Firstly, the size of the total insured loss to the insurance

industry must exceed US$5 million while the total damage estimate from the event itself must

exceed US$100 million. This enables us to filter out large but uninsured loss events that may bias

the results. Loss estimates refer to all losses (including uninsured infrastructure, remediation by

governments and so on) as well as some degree of underinsurance in the market.

Secondly, the event must be devoid of information leakage. This relates specifically to events not

being able to be anticipated by the market, thus enabling the occurrence of the event to send new

and relevant information to the market. Aktas et al. (2007) extend the Markov switching regression

framework developed by Hamilton (1989) to address contamination in the estimation window by
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proposing a two-state version of the classical market model as a return-generating process. Their

results highlight the importance of explicitly controlling for unrelated events occurring during the

estimation window, especially in the presence of event-induced volatility. To address the potential

existence of bias from other events we employ the two-state market model (TSMM) test in addition

to two relatively standard but powerful test statistics.

3.3 Avoiding information leakage

To obtain a cleanly dated event for each catastrophe, the event date varies depending on the nature of

the actual event. For storms, earthquakes, landslides, explosions, tornados and flash floods, the event

date t 5 0 is the actual date of the event as first reported in news announcements in Reuters, Bloomberg

and the wider financial news media. Typically, no prior warning is possible for these events and

therefore the problem of information leakage to the market is avoided. The event date is therefore the

actual date in which the event occurred and was reported in the appropriate news channel as having

occurred. For an extended event, for instance a two- to three-day severe storm or flood, the event date

is set to the first day when significant damage is apparent, and expectations of significant damage is

reported in the media. For bushfires and cyclones however, anticipated losses which may represent

information leakage, can occur up to several days prior to the actual event. By the time a cyclone

reaches the coastal region, or a bushfire becomes uncontrollable, the information surrounding the

impending event may be old news to the market. For both of these types of events, we carefully set the

event date in such a way that the information concerning the event has not been widely disseminated.

For consistency we set the event date two days prior to the instant that the majority of damage occurs.

This may be somewhat of an arbitrary correction but it will help capture the true market reaction

where information leakage is possible.

Avoiding the problem of information leakage is important when the reaction of the market to an event

is observed only on the event day, constituting a one-day event window. Assuming it takes the market

longer to assimilate all information surrounding an event, particularly a large loss insurance event

with extensive damage to a widespread area, a longer event window is required. We will utilise a 50

day trading window, 25 days of which precedes each event tA {225,y,21}, one day to represent the

event date t 5 0, and the remaining 24 days superseding each event tA {1,y,24}. Using this trading

window will also help avoid the problem of estimating the exact event date for events, such as

cyclones and bushfires, which do not have the characteristics of inflicting damage, and therefore

conveying information to market participants, at any particular instant.

Using the above criteria for the Australian insurance industry from January 1983 to February 2011,

we observe 68 individual events that can be classified as a catastrophe in terms of insurable

loss. Both the insured losses and total losses for each event were converted to 2011 Australian

dollars (AUD) using the published yearly rate of inflation issued by the Reserve Bank of Australia

(RBA).

The market proxy used to represent the benchmark in this analysis is the All Ordinaries Index

(AORD), which comprises 99.3 percent of the total market capitalisation of the Australian market,

and can therefore be said to be representative of the whole market. As shown in Platen (2002), any

broadly diversified portfolio can be shown to approximate the GOP. The AORD is a good candidate

for the numeraire portfolio of the Australian market and will be used to benchmark returns. The

AORD from January 1983 to February 2011 is shown in Figure 1. The spike observed in late-1987

is the equity market boom prior to the crash on Black Monday in October 1987.
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4. Testing Methodology

Brenner (1979) showed that if tests based on different market models result in different conclusions

about market efficiency, then a correctly specified model is of vital importance. However if the

conclusions about market efficiency are insensitive to the different market models used, then a robust

theory of efficient market exists. Since the correct market model is unknown, we cannot separate truly

inefficient market behaviour from an observed indication of inefficiency due to biases. One may

assume the market to be efficient and choose the model that coincides with it to be the correct one.

Alternatively, one may assume that a particular market model is true and test the efficiency of the

market using this model. We lean towards the former approach in the initial part of this analysis, due

to the increasing degree of evidence supporting the EMH, see Fama (1998).

The Central Limit Theorem guarantees that if the excess returns in the cross-section of securities are

independent and identically distributed drawings from finite variance distributions, the distribution

of the sample mean excess return converges to normality as the number of securities included in the

drawings increases, see Beard et al. (1984). There is some evidence of the distribution of cross

sectional Australian insurance stock excess returns converging to the normal, and as such the use of

a number of security returns across a number of events is methodologically prudent. Indeed, of

concern here is that the assumptions underlying the Central Limit Theorem are not violated while

testing market efficiency.

We use the return of the AORD to represent the value-weighted market index return Rm(t) at time t,

since it is our proxy for the market. If Covð ~RmðtÞ; ~�iðtÞÞ ¼ 0 during the period under consideration,

then ~bi will be an unbiased estimate of bi, regardless of the true underlying model. We let t represent

the time passage before and after the event and let i, i 5 1,y,N be the number of securities

represented for each event. We do not distinguish between types of events. The value for N is

therefore the number of securities i multiplied by the number of events. Not all securities were

publicly listed for every event, and one has been listed only since 1998. In total, 225 sets of security

prices are used in this analysis.

Our data consists of the security returns of several Australian insurance firms over 68 individual

catastrophic events, which are listed at Appendix 9. The five main Australian insurance firms

constitute 98.7 percent of the total property-liability insurance policies written in Australia, which is a

particularly high level of concentration for a small number of firms. We expect large dependencies in
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Figure 1. Australian all ordinaries index Jan 1983 to Feb 2011.
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security prices across insurance firms and must therefore make statistical adjustments for this in our

analysis. When there is positive cross-sectional dependence, failure to make an adjustment results in a

systematic underestimation of the variance of the mean excess return, implying too many rejections of

the null hypothesis, both when it is true and when abnormal performance is present, see Brown &

Warner (1985). Table 1 gives the correlation coefficients for the security returns of the five largest

insurance firms in Australia and the AORD. Some degree of positive correlation appears across most

firms. As one would expect, there are also time dependent variations in the correlation between each

security and the market proxy across each event. This is, of course, likely to induce errors in the

market model parameter estimates. The market model goes some way in correcting for this however,

by re-estimating the parameters for each security and for each event.

4.1 Excess return measures using numeraire denominated returns

The numeraire denominated returns approach (NDRA) can be formulated to retrieve evidence of

abnormal returns in an efficient market. A numeraire portfolio N is defined as a self-financing

portfolio with always positive value such that, for each asset j and each time t, 0r trT,

Pj;t

VN;t
¼ Et

Pj;tþ1 þDj;tþ1

VN;tþ1

� �
; ð1Þ

with probability one, where Pj,t is the ex-dividend price of asset j, Dj,t is the dividend per unit of

asset j, VN,t represents the value of a self-financing market portfolio and Et{ � } denotes the expected

value conditional on all information available at time t.

If a numeraire portfolio exists, and if

P̂j;t ¼
Pj;t

Vj;t
; D̂j;t ¼

Dj;t

Vj;t
;

and

1þ R̂j;tþ1 ¼
P̂j;tþ1 þ D̂j;tþ1

P̂j;t

¼
1þ Rj;tþ1

1þ RN;tþ1
;

then the numeraire’s definition and the law of iterated expectations imply

P̂j;t ¼ EtfP̂t;jþ1 þ D̂j;tþ1g ¼ Et

XT

t�tþ1

D̂j;t þ P̂j;T

( )
;

Table 1. Correlation coefficients for the security returns of the five largest insurance firms in Australia and

the All Ordinaries Index (AORD) for the period Jan 1983 to Feb 2011.

Firm 1 Firm 2 Firm 3 Firm 4 Firm 5 AORD

Firm 1 1

Firm 2 0.3883 1

Firm 3 0.3123 0.3216 1

Firm 4 0.1294 0.1699 0.2131 1

Firm 5 0.3451 0.2083 0.2665 0.1953 1

AORD 0.7381 0.4359 0.4185 0.2487 0.3898 1
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and

EtfR̂j;tþ1g ¼ 0

with probability one for all j and t. In other words, when prices and dividends are denominated

in units of a numeraire portfolio, asset prices equal the undiscounted sum of expected future

payoffs.

The numeraire denominated rate of return R̂iðtÞ on security i for the period [t21, t] is

R̂iðtÞ ¼
1þ RiðtÞ

1þ RGOPðtÞ
�1; ð2Þ

where Ri(t) is the nominal rate of return on security i for the period tA {225,y,24}, and RGOP(t) is

the contemporaneous nominal rate of return on the numeraire portfolio or AORD, which is also the

GOP. The values for RGOP(t) are essentially equivalent to the values for Rm(t) used in the market

model approach. However, we distinguish between the two for notational convenience since the

same index is used in different contexts.

Equation (2) can be expressed as

lnð1þ R̂iðtÞÞ ¼ lnð1þ RiðtÞÞ�a�b lnð1þ RGOPðtÞÞ ð3Þ

and by setting a5 0 and b5 1 we obtain

lnð1þ R̂iðtÞÞ ¼ lnð1þ RiðtÞÞ� lnð1þ RGOPðtÞÞ ð4Þ

which is known as the ‘‘zero-one market model’’ based on log returns, see Brenner (1979). We use

this specification as the alternative to the traditional market model, however we will refer to this

method as the NDRA for consistency.

As shown in Long (1990), the expected value of the one step ahead numeraire denominated rate of

return of a fair price process satisfies the equation

Et½1þ R̂iðt þ 1Þ� ¼ Et
1þ Riðt þ 1Þ

1þ RGOPðt þ 1Þ

� �
¼ 1; ð5Þ

for tA {0, 1, 2,y}. An asset’s numeraire denominated gross return, defined as one plus its rate of

return, for a given period is calculated as its nominal gross return divided by the numeraire’s

nominal gross return. Thus, numeraire denominated returns are nominal returns adjusted to reflect

the contemporaneous return on the market, as measured by the nominal return on the numeraire

portfolio. The numeraire denominated return on itself is zero by construction. In this sense,

numeraire denominated returns measure asset specific returns in the same context as market model

residuals.

Therefore, numeraire denominated returns are natural measures of abnormal returns. If there are no

profit opportunities or more broadly, no arbitrage, the best forecast of future numeraire

denominated returns is therefore zero. In this sense we will show that numeraire denominated

returns measure asset specific returns in the same sense as market model residuals.
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The securities observed over all catastrophic events are combined into an equally weighted portfolio

R̂pðtÞ, which has a return

R̂pðtÞ ¼
1

N

XN
i¼1

R̂iðtÞ; ð6Þ

where N is the number of securities multiplied by the number of events. This creates a portfolio of

225 securities, representing a time series of all publicly listed stocks over the 50 day event period for

68 catastrophic events. We use an equally weighted portfolio because on and immediately after the

event date there is unreliable information concerning the actual level of insurable loss exposure to

each insurer, therefore an equally weighted portfolio serves as an average loss for the whole sector.

The market share of each insurer is roughly equal and we therefore assume the insurable loss for

each insurer, averaged over a portfolio of 68 events, will also be roughly equal. We shall also form

an inverse variance portfolio R̂s�1

p ðtÞ by

R̂s�1

p ðtÞ ¼
XN
i¼1

wiR̂iðtÞ; ð7Þ

where wi represents the weight applied to each GOP denominated security return, the calculation of

which will be discussed in section 5.2.

The notion of an abnormal return, from the market model approach, is misleading in the context of

numeraire denominated returns, since the short-term expected numeraire denominated return is

zero by construction, see (5). However, any nonzero return observed under the NDRA will be

viewed as an abnormal return for the purposes of consistency in this study.

The cumulative abnormal return (CAR) for an equally weighted portfolio dCARðtÞ is calculated as

dCARðtÞ ¼
X24

t¼�25

R̂pðtÞ; ð8Þ

and the CAR for the inverse variance weighted index dCARs�1
ðtÞ is

dCARs�1

ðtÞ ¼
X24

t¼�25

R̂s�1

p ðtÞ; ð9Þ

for tA {225,y,24}. These measures are useful for observing trends in abnormal returns during the

event period. The use of CARs instead of other measures such as the currently popular buy and hold

abnormal returns (BHARs) is because the BHAR measure can give false impressions of the speed of

price adjustment to an event, see Fama (1998). The relative computational and interpretive

simplicity of the NDRA is clearly its most attractive feature.

4.2 Excess return measures using factor models

Assuming capital market efficiency in the context of Fama (1976), security prices will adjust rapidly

to new information in an unbiased manner. Capital market efficiency can be represented by the fair

game model,

Etf½Piðt þ DÞ�EtðPiðt þ DÞjAtÞ�jAtg ¼ 0; ð10Þ
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where Pi(t 1 D) is the price of security i at time t 1 D, At is the information set at time t and Et is the

conditional expectations operator at time t. The difference between the expected price and the

actual price at t 1 D based on the information set At is expected to be zero, assuming market

equilibrium conditions prevail.

In order to gain a more relevant view of market efficiency for this empirical study, the use of rates of

return rather than prices in the above model is preferred. Equation (10) can be restated as Etf½Riðt þ

DÞ�EtðRiðt þ DÞjAtÞ�jAtg ¼ 0 where Ri(t 1 D) is the return of security i at t 1 D.

The advantage of this method is that it is able to abstract the effects of the unique event from that of

general market conditions. The disadvantage is that errors in the expected returns during the event

period may be significant if the covariance between the security of interest and the market proxy is

diminutive and insignificant. The market model first cited by Sharpe (1963), introduced a

relationship between Ri(t) and Rm(t) implied by bivariate normality, and is represented by

Ri(t) 5 ai 1 biRm(t) 1 ei(t) where Ri(t) is the return on security i at time t, Rm(t) is the return on the

value-weighted market index at time t, ai is the intercept of security i, bi is the beta of security i

equivalent to Cov(Ri, Rm)/Var(Rm), and ei(t) is the disturbance term. The disturbance term ei(t) has

mean zero and is independent of Rm(t) so that Eð~�iðtÞjRmðtÞÞ ¼ Eð~�iðtÞÞ ¼ 0 and s2ð ~RiðtÞjRmðtÞÞ ¼

s2ð~�iðtÞjRmðtÞÞ ¼ s2ð~�iðtÞÞ ¼ s2ð~�iÞ and covð~�iðtÞ; ~RmðtÞÞ ¼ 0 for tA {2150,y,24}.

As stated, time zero t 5 0 is the date of the event. The abnormal returns are examined from 125 days

prior to the event t 5 2150, to 24 days after the event t 5 24. The first pass regression estimates the

parameters of the market model using t 5 2150 days to t 5 226 days, and we call this period the

estimation period. This regression provides estimates for ai and bi, which are denoted as ai and bi,

respectively, for each security i over each of the 68 events. These parameter estimates are applied to

the actual market return Rm(t) for days t 5 225,y,0,y,24, to obtain the normal returns ~RiðtÞ for

security i over each of the 68 events. The estimated normal returns are compared to the actual

returns for each of the i securities for days t 5 225,y,0,y,24. This subset of time is referred to as

the event period. The difference between the normal returns and the actual returns for security i at

time t is called an abnormal return, ARi(t), and is determined by

ARiðtÞ ¼ RiðtÞ�ðai þ biRmðtÞÞ; ð11Þ

where Ri(t) represents the actual return on security i at time t, and ai 1 biRm(t) is the expected return

for each of the 68 events.

The average abnormal return, or more accurately the portfolio excess return, is computed by

summing the ARi(t) across all i, i 5 1,y,N firms for each day both before and after the catastrophic

event, and dividing by N.

ARpðtÞ ¼
1

N

XN
i¼1

ARiðtÞ: ð12Þ

The cumulative abnormal return (CAR) is defined as

CARðtÞ ¼
X24

t¼�25

ARpðtÞ: ð13Þ

The Fama & French (1993) three-factor model is constructed similarly. The ex-post Fama-French

model is given as RiðtÞ ¼ âi þ b̂iRmðtÞ þ ŝiSMBðtÞ þ ĥiHMLðtÞ þ �iðtÞ for i 5 1,y,N where Rm(t) is
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the value-weighted index, SMB (Small Minus Big) is a mimicking portfolio to capture risk related to

size and HML (High Minus Low) is a mimicking portfolio to capture risk associated with book-to-

market characteristics. The coefficient estimates âi, b̂i, ŝi and ĥi are regression coefficients and ei is

the error term. The coefficient estimates are obtained using OLS regression on estimation period

returns. We used a daily time series of the Fama-French factors (HML, SMB and market excess

return) for Australia from proprietary research conducted at Griffith Business School which was

cross-checked for accuracy against monthly results obtained in O’Brien et al. (2009). The factors

obtained from the two independent studies are largely aligned with some minor exceptions. When a

difference was observed, both sets of factors were used to examine abnormal and cumulative

abnormal returns for a particular event. In all cases, where differences between the Fama-French

factors were observed no conflict was detected between the significance of either abnormal returns

or cumulative abnormal returns. Abnormal returns and cumulative abnormal returns are estimated

for each security over the 68 event windows as per equations (12) and (13).

4.3 Estimation errors

In practice, both numeraire denominated returns and the more conventional market model

estimates for abnormal returns are subject to estimation errors. For numeraire denominated returns,

estimation errors emerge from the construction of the proxy for the GOP. When obtaining estimates

of abnormal returns using the market model and Fama-French model however, the errors arise from

the use of a proxy for the market portfolio upon which model parameters are obtained. The actual

estimation of each specific model parameter for each asset across each event is subject to errors of

varying magnitudes.

The correlation between individual securities and the market proxy heavily influences the accuracy

of both the market model and the Fama-French model and therefore, due to the time dependent

variability in the significance of the correlations, it can be said that the market model approach loses

a great degree of reliability in obtaining expected returns.

Table 2 illustrates the average coefficient of determination statistic �R
2

for each firm over the

estimation period tA {2150,y,226} for each model approach. It is clear from this table that there

are significant biases in the regressions. For example, the R2 value for Firm 1 indicates that, on

average, only about 52 percent of the sample variance of the stock’s return can be attributed to the

estimated market model relationship between ~RiðtÞ and ~RmðtÞ.

4.4 Event-induced variance

In general, event study tests are reasonably powerful, see Brown & Warner (1985), but there are

potential testing problems created by event induced increases in the variances of returns, particularly

Table 2. Average coefficient of determination R2 values of market model (MMA) and Fama-French three-

factor model (FF3F) for the five firms used for regressions with the All Ordinaries Index.

Firm 1 Firm 2 Firm 3 Firm 4 Firm 5

MMA �R
2 0.5199 0.2221 0.4143 0.0506 0.1887

FF3F �R
2 0.5817 0.3719 0.4283 0.23016 0.2154
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when using the market model approach. If the variance is underestimated, the test statistic may lead

to an incorrect rejection of the null hypothesis of zero abnormal returns. To remedy this problem,

estimation period residual variance is ignored and the cross sectional variance over the event period

itself forms the test statistic. We will also employ an extension of this method that weights the

abnormal returns in inverse proportion to their variance for the market model approach, the Fama-

French three factor model and the NDRA.

Some studies note that the cross sectional standard deviation in the event period increases by up to

four times the standard deviation observed during the estimation period, see Boehmer et al. (1991).

The increase in standard deviation from event-induced variance observed in Australian insurance

stock returns for 1983 to 2011 rises by up to 55 percent for some stocks, although many experience

insignificant changes. This amount is, however, enough to invoke an incorrect rejection of the null

hypothesis. The potential for event induced variance to contaminate the true returns will be rectified

using two of the alternative testing methods explained below.

5. Test Statistics

The basis for inference in traditional event studies is the use of a test statistic. The first test is simple

and is easily constructed, however, it lacks the ability to deal with event induced variance and

abnormal return dependencies among security returns under the market model approach. The

second test is relatively powerful in that it can better account for event induced variance and more

importantly, cross sectional dependencies.

5.1 Non-dependent adjustment method

Brown & Warner (1985) use a non-dependent adjustment method which assumes that security

residuals are uncorrelated and that event-induced variance is insignificant. This method is not

appropriate if the securities’ residuals are cross-sectionally correlated, which can occur due to event

date clustering. We will employ a crude dependence adjustment procedure to correct this problem.

By using a time series of average excess returns (portfolio excess returns), the test statistic takes into

account cross-sectional dependence in the security specific excess returns. The crude dependent

adjustment test statistic is

ARpðtÞ

ŜðARpÞ
; ð14Þ

where ARp(t) is given in (12) and

ŜðARpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

125

X�26

t¼�150

ðARpðtÞ�ARÞ
2

vuut ; ð15Þ

where

AR ¼
1

125

X�26

t¼�150

ARpðtÞ: ð16Þ

If the ARp(t) are independently and identically Gaussian distributed, the test statistic is Student-t

distributed under the null hypothesis of event period excess returns equating to zero. The test

statistic however, ignores any time-series dependence in excess returns. The observed mean excess
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returns in this study are typically Gaussian, which is consistent with earlier findings, see Brown &

Warner (1985).

5.2 Modified weighted least squares

Two different approaches to account for cross-sectional dependencies are the generalised and non-

generalised least squares tests. The generalised least squares test uses the covariance in weighting the

mean excess returns, while in contrast, the non-generalised test disregards the correlations among

abnormal returns when assigning portfolio weights. This approach is preferred to the generalised least

squares approach if there are strong dependencies among contemporaneous returns. As already noted,

there is some dependence among insurance security returns due to the high degree of industry

concentration. There are, however, problems associated with incorporating covariance effects into a

multifactor market model, the main one being that inferences about market efficiency can be sensitive

to the assumed model for expected returns, see Fama & French (1996).

A measure of cumulative abnormal returns used by Shelor et al. (1992) is the modified weighted

least squares method, initially suggested by Chandra & Balachandran (1990). This approach

weights the abnormal returns in inverse proportion to their variance. Shelor et al. (1992) assert that

if no systematic relationship is assumed between the mean and variance of abnormal returns, then

this test appears to be the most accurate. Chandra & Balachandran (1990) claim that generalised

least squares tests are inappropriate for event studies because these tests are highly sensitive to errors

in specifying the abnormal return model, and also because we do not know enough about how

securities should react to information to specify the correct model for an event.

If the adjusted abnormal returns are assumed to be independent, then the modified weighted least

squares portfolio is simply the minimum variance portfolio. In the presence of the correlation

between abnormal returns, Chandra & Balachandran (1990) find that this method is still proficient

in observing the true excess abnormal returns.

We construct a portfolio of abnormal returns with weights

wi ¼
ðsi;tÞ

�2PN
i¼1

ðsi;tÞ
�2

ð17Þ

where

si;t ¼ si 1þ
1

Ti
þ
ðRe

MðtÞ�RMÞ
2

PTi

t¼1

ðRMðtÞ�RMÞ
2

26664
37775; ð18Þ

and where Ti is the number of days in security is estimation period, Re
MðtÞ is the market return on

day t during the event period, RM is the average market return during the estimation period and

RM(t) is the market return on day t. From this, a portfolio of abnormal returns for all securities

across all events is constructed as

ARpðtÞ ¼
X100

Nt¼1

wiARiðtÞ: ð19Þ
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The modified weighted least squares regression model produces heteroscedastic and slightly skewed

excess returns that approximate the normal. The modified weighted least squares cumulative

abnormal returns are therefore computed as

CARp ¼
XT

t¼0

ARpðtÞ: ð20Þ

Assuming that the abnormal returns are independent and identically distributed, as well as

Gaussian, the standard error of ARp(t) is

sp ¼
1PN

i¼1

ðsi;tÞ
�2

; ð21Þ

and the z-statistic for the modified weighted least squares cumulative abnormal returns is

zpðtÞ ¼ CARp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðsi;tÞ
�2

Ti þ 1

vuuut
: ð22Þ

The standardised cumulative abnormal returns for firm i during event e is

SCARi ¼
1

1þ T

� �XT

t¼0

ARiðtÞ

sp
: ð23Þ

The standardised cumulative abnormal return is assumed to be normally distributed with mean 0

and variance 1. A quasi-z statistic can be obtained if we sum the SCARi across all firms and divide

by the square root of the number of firms, since the portfolio is also assumed to be normally

distributed with mean 0 and variance 1.

5.3 Two-state market model

To deal with possible bias due to contamination of returns during the event window we compare the

modified weighted least squares test with the two state market model (TSMM) test of Aktas et al.

(2007) which relies on the Markov switching regression framework of Hamilton (1989). This test

assumes that the return generating process can be adequately modelled by a two-state process in

which one regime has normal variance and the other high variance. The market model parameters

are assumed to be the same in the two regimes such that

RiðtÞ ¼ ai þ biRmðtÞ þ giDiðtÞ þ �i;SðtÞ ð24Þ

where �i;SðtÞ!
d

Nð0; s2
i;SÞ and S is a state variable assuming a value of 1 for the low variance state

and 2 for the high variance state, as per Aktas et al. (2007). The gi coefficient is the estimated

event-day abnormal return and the standard error of gi is used to standardise the abnormal return.

The standardised abnormal return is ŜðARiÞ ¼ ĝi=SEðgiÞ where SE(gi) is the standard error

of the coefficient gi. The test statistic from Aktas et al. (2007) based on a maximum likelihood

approach is estimated for each event window. The TSMM test statistic has been shown to

dominate other standard tests during contaminated event windows. The results are discussed in

section 6.2.
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6 Results

6.1 Numeraire denominated returns approach

The expected return of daily numeraire denominated returns over a short window is theoretically

zero. Under the NDRA we should therefore observe zero or statistically insignificant returns over

the event period, using the AORD as the GOP proxy or numeraire. Figure 2 shows the numeraire

denominated returns R̂pðtÞ for an equally weighted portfolio. Tests for significance are similar to

those used for the market model approach. After the event day t 5 0, we observe what appears to be

a marked increase in the variability of returns that persists for about 7 days, however, all ARs were

not significant. For the equally weighted portfolio in Figure 3, we recorded no significant CARs

throughout the period and we can observe no significant trend. So, while the variability of returns

increases, no significant trend in either direction is actually detected.

The same weighting technique applied to the market model ARs in section 5.2, when used for the

numeraire denominated returns, eliminates the apparent variability observed in Figure 2. The new

portfolio, defined here as an inverse variance weighted portfolio of numeraire denominated returns,

was constructed with the returns shown in Figure 4. This portfolio eliminates event induced

variance from the observed returns, see section 5. The graphical variability after the event day t 5 0

is absent and insignificant ARs and CARs are observed over the event period. No particular trend is

observed either, as shown by the CAR in Figure 5. In fact, the variability of benchmarked returns

has been reduced by a factor of 10 using the inverse variance weighted portfolio. The tables have

not been provided for brevity; no individual abnormal return was statistically significant for

either portfolio.

6.2 Market and Fama-French models

Under the market model approach, catastrophic insurance events appear to have a positive impact

on insurance firm value. Statistically significant positive abnormal returns were detected at various

days after the event. The cumulative abnormal returns were also statistically significant and positive

after some delay, using the two testing methods that eliminate event induced variance and cross

sectional dependencies, outlined in section 5. Though statistically significant, no attempt is made in

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

-25 -20 -15 -10 -5 0 5 10 15 20 25

A
bn

or
m

al
 R

et
ur

ns

Day

Figure 2. Numeraire denominated returns R̂pðtÞ for an equally weighted portfolio.

Catastrophes and Insurance Stocks – A Benchmarking Approach for Measuring Efficiency

119

https://doi.org/10.1017/S1748499511000340 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499511000340


this analysis to determine if these results are economically significant. The absence of transaction

costs and other market frictions in observing the positive reaction is therefore assumed.

Table 3 illustrates the AR and CAR over the event period using the non-dependent adjustment

method. This table indicates that on the event day, t 5 0, no immediate significant reaction occurs.

However, after a four day delay significant negative returns are evident for the ARs. The CARs are

significantly negative, 7 days following an event, and significantly positive CARs are observed

18–21 days following the event day. This test does not incorporate allowances for cross-sectional

dependencies or event-induced variance and so the results cannot be classified as being statistically

reliable. For all tables in this section, * and y denote significance at the 0.05 and 0.10 levels

respectively.
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Figure 3. Numeraire denominated cumulative abnormal returns dCARt for an equally weighted
portfolio.
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Figure 4. Numeraire denominated abnormal returns R̂s�1

p ðtÞ for an inverse variance weighted
portfolio.
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The modified weighted least squares approach compensates for strong dependencies across

securities and is therefore the preferred method. Table 4 illustrates the results from the modified

least squares method. There are significantly positive returns on the event day t 5 0, and also at

t 5 6,7,8,9,15 and 19 after the event day. In addition, there are significantly positive cumulative

abnormal returns around the event date and from t 5 15 to t 5 24.

Noting the event day at t 5 0, Figure 6 illustrates the cumulative abnormal returns using both the

simple non-dependent adjustment method and the modified least squares method for the market

model approach.

After a delay of 12 days, the CAR for the insurance sector relative to the market appears to show

significant positive returns under the modified weighted least squares method. Similar AR and CAR

profiles are observed when using the Fama-French three-factor model (FF3F) approach, although

the errors are much reduced. These results are broadly aligned with those obtained in Shelor et al.

(1992). They attribute the positive increase in their study to anticipated increases in the demand for

insurance dominating the expected rapid depletion of surplus accounts and perceived losses to

insurance firms. The statistically significant results using the traditional market model approach and

the FF3F model are, however, caused by biases in the regression and are not always reliable, as

illustrated in section 4.

Table 5 illustrates the AR and CAR results over the event window using the FF3F model and the

modified weighted least squares test statistic approach. Similar to the market model results in Table

4 positive ARs are observed around the event date and for several days after the event. Positive

CARs are observed from t 5 3 to t 5 24.

In contrast to the NDRA results of no significant returns, both the MMA and FF3F models show

positive ARs and CARs around the event date and for several days after the event.

If we examine a single catastrophic event instead of a portfolio of events we obtain similar results.

We consider the severe flood event on 30 November 2010 in Queensland which resulted in insured
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Figure 5. Numeraire denominated cumulative abnormal returns dCARs�1
ðtÞ for an inverse variance

weighted portfolio.
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Table 3. Market model AR and CAR using the non-dependent adjustment method.

Day (t) ARp(t) t-stat CARp(t) t-stat

225 20.0017 20.9085 20.0017 20.3926

224 20.0001 20.0348 20.0018 20.4076

223 0.0044 2.3466* 0.0027 0.6064

222 0.0037 1.9842* 0.0064 1.4638

221 20.0010 20.5127 0.0054 1.2422

220 20.0010 20.5165 0.0045 1.0191

219 0.0001 0.0753 0.0046 1.0516

218 0.0005 0.2601 0.0051 1.1640

217 20.0004 20.2183 0.0047 1.0697

216 0.0013 0.7008 0.0060 1.3725

215 0.0016 0.8482 0.0076 1.7390y

214 0.0004 0.2091 0.0080 1.8294y

213 0.0019 0.9835 0.0099 2.2543*

212 0.0022 1.1553 0.0120 2.7536*

211 0.0001 0.0617 0.0122 2.7802*

210 20.0037 21.9561* 0.0085 1.9350*

29 20.0003 20.1697 0.0081 1.8616y

28 20.0018 20.9569 0.0063 1.4481

27 0.0009 0.4654 0.0072 1.6492

26 0.0002 0.0894 0.0074 1.6879

25 20.0001 20.0460 0.0073 1.6680

24 20.0004 20.2174 0.0069 1.5741

23 0.0001 0.0297 0.0069 1.5869

22 0.0000 0.0065 0.0070 1.5897

21 20.0006 20.3025 0.0064 1.4590

0 0.0003 0.1443 0.0067 1.5213

1 20.0022 21.1495 0.0045 1.0246

2 0.0014 0.7191 0.0058 1.3354

3 20.0006 20.3316 0.0052 1.1921

4 0.0075 3.9897* 20.0023 20.5319

5 20.0027 21.4141 20.0050 21.1430

6 0.0042 2.2353* 20.0008 20.1770

7 0.0060 3.1734* 20.0068 21.5483

8 0.0059 3.1260* 20.0009 20.1975

9 0.0012 0.6100 0.0003 0.0661

10 0.0007 0.3479 0.0009 0.2164

11 20.0006 20.3308 0.0003 0.0734

12 20.0007 20.3813 20.0004 20.0913

13 0.0011 0.5957 0.0007 0.1661

14 20.0002 20.1123 0.0005 0.1176

15 0.0038 2.0040* 0.0043 0.9835

16 0.0014 0.7411 0.0057 1.3037

17 0.0005 0.2781 0.0062 1.4239

18 0.0024 1.2537 0.0086 1.9656*

19 0.0050 2.6226* 0.0135 3.0989*

20 20.0020 21.0793 0.0115 2.6325*

21 20.0016 20.8335 0.0099 2.2724*

22 20.0014 20.7316 0.0086 1.9562*

23 20.0016 20.8652 0.0069 1.5823

24 20.0019 21.0254 0.0050 1.1392
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Table 4. Market model AR and CAR using the modified weighted least squares method.

Day (t) ARp(t) t-stat CARp(t) t-stat

225 20.0013 20.7476 20.0013 20.4650

224 0.0002 0.1309 20.0010 20.3836

223 0.0042 2.4882* 0.0031 1.1640

222 0.0016 0.9667 0.0048 1.7652y

221 20.0025 21.5007 0.0023 0.8319

220 0.0001 0.0710 0.0024 0.8760

219 0.0012 0.7149 0.0036 1.3207

218 0.0004 0.2442 0.0040 1.4726

217 20.0006 20.3788 0.0033 1.2370

216 0.0018 1.0664 0.0051 1.9002*

215 0.0021 1.2415 0.0072 2.6724*

214 20.0008 20.4741 0.0064 2.3775*

213 0.0006 0.3766 0.0071 2.6117*

212 0.0017 0.9887 0.0087 3.2267*

211 0.0002 0.1112 0.0089 3.2958*

210 20.0022 21.2822 0.0068 2.4983*

29 0.0009 0.5235 0.0076 2.8239*

28 20.0025 21.4865 0.0051 1.8994y

27 20.0004 20.2243 0.0048 1.7599y

26 0.0009 0.5142 0.0056 2.0797*

25 20.0023 21.3938 0.0033 1.2128

24 20.0024 21.4238 0.0009 0.3273

23 0.0006 0.3730 0.0015 0.5593

22 0.0016 0.9384 0.0031 1.1429

21 0.0002 0.1014 0.0033 1.2060

0 0.0018 2.1003* 0.0051 1.8670y

1 0.0011 0.6929 0.0062 2.2841*

2 20.0004 20.2711 0.0057 2.1209*

3 20.0013 20.7951 0.0044 1.6423

4 20.0013 20.8119 0.0031 1.1536

5 20.0011 20.6842 0.0020 0.7418

6 0.0029 1.7754y 0.0049 1.8104y

7 0.0015 1.9416* 0.0034 1.2436

8 0.0013 2.7922* 0.0047 1.7205

9 0.0004 2.2251* 0.0043 1.5850

10 0.0011 0.6643 0.0054 1.9849*

11 20.0005 20.2763 0.0049 1.8186y

12 0.0005 0.2994 0.0054 1.9988*

13 20.0017 21.0448 0.0037 1.3699

14 20.0009 20.5791 0.0028 1.0213

15 0.0032 1.9549* 0.0060 2.1980*

16 0.0014 0.8871 0.0074 2.7319*

17 20.0008 20.5111 0.0066 2.4243*

18 0.0020 1.2106 0.0085 3.1530*

19 0.0040 2.4399* 0.0125 4.6216*

20 20.0016 20.9958 0.0109 4.0222*

21 20.0006 20.3933 0.0103 3.7855*

22 20.0005 20.3099 0.0097 3.5990*

23 20.0012 20.7331 0.0086 3.1577*

24 20.0003 20.1798 0.0083 3.0495*
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losses of US$3.4 billion. The event window was not affected by event-induced variance as defined by

Hamilton (1989) and was free from contamination under the TSMM from equation (24) (Aktas et al.

2007). The results of the abnormal and cumulative abnormal returns for the market model, FF3F and

NDRA for this single event are given in Tables 6 to 8. The event window has been abbreviated to

t 5 210,y,10. Significant positive returns using the modified weighted least squares method are

observed for the MMA and FF3F model while no abnormal returns were detected for the NDRA.

Finally to control for potential contamination of the portfolio of event windows the TSMM statistic

of Aktas et al. (2007) is used as a comparison with both the simple non-dependent adjustment

method and the modified least squares method. The TSMM test statistic results weakly dominate

the non-dependent adjustment test and the modified least squares test. However, in our analysis the

degree of dominance was significantly less than the levels identified in Aktas et al. (2007). The

number and timing of statistically significant AR and CAR results during each event window did

not change, which suggests that on a portfolio basis the event windows were largely free from

contamination. TSMM test results can be obtained from the author upon request.

7. Testing the Differences Between Models

These results demonstrate that statistically significant abnormal returns are observed for

catastrophic insurance events using the market model and Fama-French approach. However,

when using the NDRA the errors induced from parameter estimation under the market model

disappear and the true abnormal returns are observed, with reference to a numeraire. The numeraire

used here is the growth optimal portfolio (GOP). We now consider if the results obtained under the

NDRA are robust for use in testing market efficiency.

It is clear that the abnormal returns obtained under both the MMA and the FF3F model violate the

results produced in the benchmark theory of Long (1990) and Bühlmann & Platen (2003). This

suggests that the market model and Fama-French three factor model provide an inefficient

representation of expected returns. The abnormal returns, or, more formally, the supermartingale
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Figure 6. Modified weighted least squares (solid line) and non-dependent adjustment (dashed line)
cumulative abnormal returns for all catastrophic events.
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Table 5. Fama-French three factor model (FF3F) AR and CAR using the modified weighted least squares method.

Day (t) ARp(t) t-stat CARp(t) t-stat

225 0.0264 0.8979 0.8008 1.6293

224 0.0001 0.0035 0.8009 1.6295

223 0.0123 0.4170 0.8132 1.6545

222 0.0319 1.0823 0.8450 1.7193y

221 0.0239 0.8123 0.8689 1.7679y

220 0.0186 0.6320 0.8875 1.8058y

219 0.0199 0.6769 0.9074 1.8463y

218 0.0569 1.9323* 0.9643 1.9621*

217 0.0234 0.7944 0.9877 1.0096

216 0.0237 0.8060 1.0114 1.0579

215 0.0019 0.0634 1.0133 1.0617

214 0.0155 0.5262 1.0288 1.0932

213 20.0153 20.5200 1.0135 1.0621

212 0.0297 1.0078 1.0431 1.1224

211 0.0575 1.9523* 1.1006 1.2394

210 0.0143 0.4871 1.1150 1.2685

29 0.0250 0.8496 1.1400 1.3194

28 0.0231 0.7849 1.1631 1.3664

27 0.0230 0.7828 1.1861 1.4133

26 0.0414 1.4077 1.2275 1.4976

25 0.0652 2.2163* 1.2928 2.6303*

24 0.0166 0.5631 1.3094 2.6641*

23 0.0388 1.3190 1.3482 1.7431

22 0.0313 1.0621 1.3794 2.8067*

21 0.0198 0.6729 1.3992 2.8470*

0 0.0023 2.0794* 1.3969 1.8422y

1 20.0170 20.5776 1.3799 1.8076y

2 0.0916 3.1120* 1.2883 1.6212

3 20.0436 21.4804 1.2447 1.5326

4 0.0868 2.9495* 1.3316 2.7092*

5 0.0665 2.2600* 1.3981 2.8446*

6 0.0253 0.8600 1.4234 2.8961*

7 20.0132 20.4480 1.4102 2.8692*

8 0.0377 1.2813 1.4479 2.9460*

9 0.0527 1.7888y 1.5006 3.0531*

10 0.0421 1.4290 1.5426 3.1387*

11 0.0695 2.3603* 1.4732 2.9973*

12 20.0356 21.2109 1.4375 2.9248*

13 20.0071 20.2423 1.4304 2.9103*

14 20.0065 20.2199 1.4239 2.8971*

15 0.0427 1.4500 1.4666 2.9840*

16 20.0103 20.3502 1.4563 2.9630*

17 20.0343 21.1637 1.4220 2.8933*

18 0.0465 1.5791 1.4685 2.9879*

19 0.0620 2.1055* 1.5305 3.1140*

20 0.0433 1.4711 1.5738 3.2021*

21 0.0611 2.0748* 1.6349 3.3263*

22 0.0195 0.6628 1.6544 3.3660*

23 20.0305 21.0374 1.6238 3.3039*

24 0.0375 1.2740 1.6613 3.3802*
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Table 6. Market model AR and CAR using the modified weighted least squares method

for a single flood event 30 November 2010.

Day (t) ARp(t) t-stat CARp(t) t-stat

210 0.0023 1.0428 0.0093 0.2634

29 20.0005 20.2314 0.0098 0.3889

28 20.0022 20.9864 0.0120 0.9237

27 20.0002 20.1070 0.0123 0.9817

26 0.0002 0.0752 0.0121 0.9409

25 0.0016 0.7242 0.0105 0.5483

24 0.0003 0.1153 0.0102 0.4857

23 0.0006 0.2750 0.0096 0.3366

22 20.0038 21.7142y 0.0134 1.2660

21 20.0025 21.1263 0.0160 3.8767

0 0.0015 2.5798* 0.0145 3.1210*

1 0.0009 2.3571* 0.0135 2.9221*

2 0.0001 2.0383* 0.0134 2.9008*

3 20.0015 20.5755 0.0149 3.2212*

4 0.0050 1.9522* 0.0099 2.1344*

5 20.0008 20.3110 0.0107 2.3075*

6 20.0033 21.2647 0.0140 3.0116*

7 0.0030 2.1553* 0.0110 2.3684*

8 0.0019 1.7439y 0.0091 1.9543*

9 0.0024 1.9353y 0.0066 21.4333

10 0.0024 1.9449* 0.0042 20.9073

Table 7. Fama-French three factor model (FF3F) AR and CAR using the modified

weighted least squares method for a single flood event 30 November 2010.

Day (t) ARp(t) t-stat CARp(t) t-stat

210 0.0286 0.9223 1.0174 0.8323

29 0.0223 0.2745 1.0396 1.8942y

28 0.0165 1.6827 1.0561 2.9400*

27 0.0253 0.5861 1.0814 1.0105

26 0.0214 0.1833 1.1028 1.0700

25 0.0324 1.3082 1.1351 1.1601

24 0.0246 2.5135* 1.1597 2.2285*

23 0.0249 2.5464* 1.1846 3.2979*

22 0.0131 1.3378 1.1977 1.3343

21 0.0110 1.1292 1.2088 1.3651

0 0.0298 2.6569* 0.2386 1.1894

1 0.0258 2.3041* 0.2644 1.3182

2 0.0279 2.4865* 0.2923 1.4573

3 0.0171 1.5253 0.3094 1.5425

4 0.0435 0.8808 0.3529 1.7595y

5 0.0191 1.7061 0.3721 1.8549y

6 0.0080 0.7115 0.3800 1.8947y

7 0.0381 3.3963* 0.4181 2.0845*

8 0.0311 2.7770* 0.4493 2.2398*

9 0.0265 1.3617 0.4757 1.3718

10 0.0319 2.8463* 0.5077 2.5310*
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property of benchmarked returns is, however, maintained using the NDRA. Benchmarked returns

therefore provide a more comprehensive view of expected returns for testing market efficiency. We

now examine each approach with reference to the EMH.

Fama (1998) concluded that identifying the presence of long-term anomalies in ARs in a data set is

sensitive to the methodology used. We can extend this assertion here since we have shown that in

the short-term, detecting anomalies in observed ARs is also sensitive to the methodology. ARs tend

to become marginal or, as shown here, even disappear when exposed to different models for

expected returns or when different statistical approaches are used to measure them. It can be said

that the incorrect specification of the market model for a number of securities, whose covariance

with the market proxy is limited, contaminates the test for efficiency, and is thus a ‘‘bad’’ model

problem, see Fama (1998). The ‘‘bad’’ model problem grows as the return horizon increases, such

that spurious ARs eventually become statistically reliable in CARs. This is due to the fact that while

the mean of the CAR increases by the number of days included in the event period at the rate t, the

standard error of the CAR increases at the rate of
ffiffi
t
p

.

The anomalies observed under the market model and Fama-French model have clearly disappeared

under the NDRA. Given the evidence in favour of the EMH it remains for us to strengthen our argument

in testing the dependence of the conclusions with reference to the EMH on the particular model used.

Like all asset pricing models, the market model and other factor models provide an incomplete

description of expected returns. While the shortcomings of this approach are well known, it is useful

to compare the results obtained under this approach with the results obtained under the NDRA.

Table 8. Numeraire denominated returns approach (NDRA) AR and CAR using the

modified weighted least squares method.

Day (t) ARp(t) t-stat CARp(t) t-stat

210 20.0015 20.6522 0.0144 0.8665

29 0.0003 0.1128 0.0146 0.8743

28 0.0017 0.7452 0.0163 0.9238

27 20.0004 20.1675 0.0159 0.9129

26 0.0003 0.1278 0.0162 0.9212

25 20.0021 20.9207 0.0141 0.8595

24 20.0003 20.1491 0.0138 0.8490

23 20.0005 20.2059 0.0133 0.8344

22 0.0027 1.1798 0.0160 0.9150

21 0.0028 1.2145 0.0188 0.9910

0 20.0016 20.5991 0.0172 0.9486

1 20.0007 20.2681 0.0165 0.9289

2 20.0009 20.3606 0.0156 0.9019

3 0.0014 0.5435 0.0170 0.9424

4 20.0049 21.8528 0.0121 0.7959

5 0.0009 0.3449 0.0130 0.8251

6 0.0035 1.3324 0.0165 0.9295

7 20.0035 21.3187 0.0131 0.8262

8 20.0019 20.7276 0.0111 0.7633

9 20.0011 20.4188 0.0100 0.7246

10 20.0022 20.8193 0.0079 0.6422
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If we can show that the results underlying each model are significantly different in a statistical sense,

then we can say with some confidence that one model must offer a better representation of the true

abnormal returns than the other. In this section, we shall use some parametric tests to investigate the

differences between the two sample distributions. Specifically, we shall test the differences in the

basic statistics that characterise the distribution of residuals obtained under both approaches.

The construction of each approach outlined in section 4 implicitly assumes that

Eð~ZzÞ ¼ 0; ð25Þ

where Zz is the residual from model z, zA {a, b}. Here a refers to the market model approach and b

to the NDRA. If both approaches yield similar results, then the pairwise comparison test of the form

Eð~Za�~ZbÞ ¼ 0; a 6¼ b; ð26Þ

will hold, where ~Za is the residual obtained from the market model approach and ~Zb is the residual

obtained from the NDRA.

An interesting question is now posed concerning the results obtained from each model. We know

from the empirical tests in section 6 that both models yield different results. Testing for the ‘‘correct’’

model is however, dependent on the underlying assumptions for the efficient markets hypothesis

(EMH). If catastrophic events convey new information to the market, then we are directly testing

different conclusions about market efficiency. If catastrophic events do not convey new information

to the market, then we are only testing differences between models. If one strongly believes that

markets are efficient, then the conclusion would be that the true model is the one that fails to reject

the EMH at a given confidence level. If we therefore assume the null hypothesis of the EMH, and

indeed much of the literature supports the EMH, then the model which supports the null of

equation (25) is the ‘‘correct’’ model. If, however, we find that the null hypothesis assumes that all

models fail to reject the EMH, therefore, if validated, we say the evidence for the EMH is not

conditional on the underlying model and the null hypothesis of equation (26) should hold. Given the

recent evidence in the capital markets which fail to reject the EMH, with reference to the null

hypothesis implicit in equation (25), it is clear that, from these assumptions, the NDRA is the more

appropriate or ‘‘correct’’ model. The market model approach has been shown to be subject to

significant calibration errors, and it is also limited by the stability of the correlation between

individual securities and the market proxy. The Fama-French three factor model suffers from the

above limitations but has been shown to be a significantly more efficient model than the market

model. The use of the NDRA however offers a natural measure of abnormal returns with respect to

the market itself. When compared with the factor models, this is a powerful argument in favour of

the NDRA. We now need to test the differences between models to show that the market model

approach is inaccurate and is, therefore the ‘‘incorrect’’ model in this example.

The numeraire denominated returns for both the equally weighted portfolio and the inverse

variance weighted portfolio are Gaussian, as shown in figures 7 and 8. The Jarque-Bera statistics are

2.6133 and 0.2257 for the equally weighted and inverse variance weighted portfolio residuals,

respectively, which, as expected under the EMH, suggests the residuals generated under the NDRA

are normally distributed. In fact, the inverse variance weighted portfolio of residuals exhibit

statistics for its distribution that are almost indistinguishable from the normal.
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For the market model, both the standardised cross sectional portfolio and the modified weighted

least squares portfolio of returns are also Gaussian with Jarque-Bera statistics of 3.9535 and

1.5372, respectively. Figures 9 and 10 illustrate the distribution of residuals compared with the

normal distribution.

Assuming therefore that the residuals for both models are drawn from a normal distribution,

we can conduct tests on the differences between the MMA and NDRA models. Firstly, we obtain
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Figure 7. Histogram of numeraire denominated residuals for an equally weighted portfolio and the
normal distribution.
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Figure 8. Histogram of numeraire denominated residuals for an inverse variance portfolio and the
normal distribution.
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a t-statistic for the mean difference between the two residuals, which is actually a test on the

differences between means. This is computed as

tðDÞ ¼
ð~Zat�~ZbtÞ

ffiffiffi
n
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~s2ðZatÞ þ ~s2ðZbtÞ�2c~ovðZat; ZbtÞ

q ; ð27Þ

for tA {225,y,24}, where ~Za is the residual obtained from the market model approach, ~Zb is the

residual obtained from the NDRA and n is the number of residuals in the set, see Brenner (1979).
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Figure 9. Histogram of market model residuals for the standardised cross sectional portfolio and
the normal distribution.
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Figure 10. Histogram of market model residuals for a modified weighted least squares portfolio
and a normal distribution.
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Next, we estimate the correlation between the two sets of residuals via

~rðZa; ZbÞ ¼
c~ovðZat; ZbtÞ

~sðZatÞ ~sðZbtÞ
; ð28Þ

for tA {225,y,24}.

Finally, we calculate the Pitman statistic, which tests whether two dependent variances belong to the

same population, as

PðZa; ZbÞ ¼
~s2ðZatÞ� ~s

2ðZbtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ ~s2ðZatÞ þ ~s2ðZbtÞ�

2
�4 ~rðZat; ZbtÞ ~s

2ðZatÞ ~s
2ðZbtÞ

q ; ð29Þ

for tA {225,y,24}, see Snedecor & Cochran (1967). Table 9 presents the absolute averages of the

above three statistics over the event window. The value for j�tðDÞj is significant at the 5 percent level,

which indicates a significant difference between the mean residuals of each model. The Pitman

statistic j �PðZa; ZbÞj is close to 1 since there is minimal correlation between the residuals of each

model. From these tests, we can conclude that both approaches yield statistically significant

different results and therefore the different approaches cannot simultaneously support the EMH.

The, so called, robustness hypothesis for testing the EMH under different approaches in this

example therefore fails. This is clearly a result of the inaccuracies in estimating step ahead returns

using the market model and Fama-French approach. Assuming the EMH holds, as research evidence

suggests, then it is clear that the NDRA provides a better description of expected returns over the

short term. The various ‘‘bad’’ model problems that arise under the market model and Fama-French

approach generate inaccurate expected returns in relation to the movement of the market proxy.

Similar results to the market model approach were reached using the above analysis for the Fama-

French model. ‘‘Bad’’ model problems are unavoidable, however, their effect can be vastly reduced

through the use of a numeraire portfolio and the benchmark technique.

8. Catastrophe Size and Market Reaction

Before concluding, one obvious question that needs to be addressed concerns the relation between

the size of the catastrophe and the subsequent reaction implicit in ex post security returns by the

market. It is generally assumed by most investors and other market participants that larger

catastrophes will have a greater impact on security prices than smaller events, see Shelor et al.

(1992). If the market model is in fact the ‘‘correct’’ model, then one would expect a relationship

between the size of the loss and the reaction by the market to exist. Therefore, a simple regression

was conducted where the insured loss, total loss and the insured to total loss ratio were regressed

against the abnormal returns and cumulative abnormal returns, obtained using the market model

Table 9. Test statistics for the differences between both the market model (MMA) and

the Fama French model (FF3F) with the numeraire denominated returns approach.

j�tðDÞj j �rðZa; ZbÞj j �PðZa; ZbÞj

MMA a2b 0.7161 0.0355 0.9998

FF3F a2b 0.7229 0.0417 0.9783
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and Fama-French approach, at three points in time after each event – the event day t 5 0, at t 5 8

and at t 5 24. Day t 5 8 was chosen because this point represents the minimum observed CAR and

day t 5 24 was chosen since this point represents the maximum observed CAR for the market model

methodology outlined in section 5.

The null hypothesis H0 we seek to reject is that the abnormal returns and cumulative

abnormal returns on days tA {0, 8, 24} are not dependent on the size of the insured loss, the size

of the total loss, and the size of the ratio of insured loss to total loss. Thus we will be testing the

regressions

ARj;t ¼ g0 þ g1ILj;t þ g2TLj;t þ g3ðIL=TLÞj;t þ �
1
j;t; ð30Þ

for tA {0, 8, 24}, and

CARj;t ¼ d0 þ d1ILj;t þ d2TLj;t þ d3ðIL=TLÞj;t þ �
2
j;t; ð31Þ

for tA {8, 24}, where ILj,t represents insured loss for event j, TLj,t represents total loss for event j

and (IL/TL)j,t represents the ratio of insured loss to total loss for event j. The first null hypothesis we

are attempting to reject is that the level of insured losses ILj,t have no impact on the ARj,t or CARj,t

at tA {0, 8, 24} for event j, such that

H1
0 : g1 ¼ 0; d1 ¼ 0: ð32Þ

The second null hypothesis we are attempting to reject is that the level of total losses TLj,t have no

impact on the ARj,t or CARj,t at tA {0, 8, 24}, such that

H2
0 : g2 ¼ 0; d2 ¼ 0: ð33Þ

Thirdly, we will attempt to reject the null hypothesis of the disparity between insured losses against

total losses (IL/TL)j,t having no impact on the ARj,t or CARj,t at tA {0, 8, 24}, such that

H3
0 : g3 ¼ 0; d3 ¼ 0: ð34Þ

From table 10 we fail to reject the null hypotheses H1
0, H2

0 and H3
0 for days tA {0, 8, 24} for all

events j since these results are not significantly different from zero. The lack of significance in the

Table 10. Regression of losses against ARt and CARt for t 5 0, 8, 24 for the market model (MMA).

Variable g0; d0 g1; d1 g2; d2 g3; d3 R2

AR0 0.0022 22.3 3 1026 1.92 3 1026 20.0129 0.0383

(0.3754) (20.1259) (0.2938) (20.7324)

AR8 20.0015 21.04 3 1026 1.4 3 1026 0.0082 0.0232

(20.3355) (20.0799) (0.2176) (0.6334)

CAR8 0.0125 6.59 3 1026 22.7 3 1026 20.0246 0.0135

(0.8587) (0.1510) (20.1692) (20.5687)

AR24 0.0003 26.3 3 1028 21.6 3 1027 0.0008 0.0066

(0.2781) (20.0209) (20.1425) (0.2715)

CAR24 0.0076 21.2 3 1026 24.1 3 1026 0.0192 0.0064

(0.3023) (20.0164) (20.1489) (0.2569)
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statistics implies that there is no real relationship between abnormal returns observed in insurance

securities using the market model and the Fama-French model, and the readily observable factors

that surround identifiable catastrophic insurance events. The regression statistics are presented in

tables 10 and 11. The t-statistics are in parentheses.

A regression was also conducted using market adjusted returns under the NDRA corresponding to

the same hypotheses, which obtained similar results, as per table 12.

This strengthens the argument in favour of failing to reject the EMH, and it also confirms that

the NDRA for event studies, where securities are somewhat dependent and are subject to event

induced variance, is a more efficient alternative than the traditional market model or factor

model approach.

9. Conclusion

We have shown that using the NDRA offers a natural measure of abnormal returns. This method is

more powerful than the traditional market model and the Fama-French three factor model. We have

shown how this can be applied to test the EMH in the Australian insurance sector. The NDRA for

Table 11. Regression of losses against ARt and CARt for t 5 0, 8, 24 for the Fama-French three factor

model (FF3F).

Variable g0; d0 g1; d1 g2; d2 g3; d3 R2

AR0 0.0102 22.6 3 1026 0.89 3 1026 20.0379 0.0413

(0.6724) (20.2299) (0.7888) (21.0324)

AR8 20.0215 20.94 3 1026 1.14 3 1026 0.0192 0.0152

(20.7725) (20.5957) (0.2006) (0.5499)

CAR8 0.0225 2.76 3 1026 21.7 3 1027 20.0116 0.0135

(0.9987) (0.1190) (20.1002) (20.5187)

AR24 0.0103 23.3 3 1026 21.2 3 1027 0.0198 0.0116

(0.2781) (20.0209) (20.1425) (0.2715)

CAR24 0.0176 21.1 3 1026 23.4 3 1026 0.0772 0.0064

(0.3121) (20.0174) (20.1991) (0.3389)

Table 12. Regression of losses against ARt and CARt for t 5 0, 8, 24 for the numeraire denominated returns

approach (NDRA).

Variable g0; d0 g1; d1 g2; d2 g3; d3 R2

AR0 0.2002 21.5 3 1026 1.79 3 1026 20.1377 0.0113

(0.9714) (21.2999) (0.9818) (21.2327)

AR8 20.0200 21.04 3 1027 1.99 3 1026 0.2292 0.0242

(20.7815) (21.5127) (0.4829) (0.6295)

CAR8 0.1262 0.16 3 1025 21.2 3 1026 20.0016 0.0295

(0.4517) (0.7291) (21.1012) (21.0187)

AR24 0.0271 22.2 3 1025 21.2 3 1027 0.0198 0.0116

(0.9182) (20.0219) (20.3820) (1.0023)

CAR24 0.02816 23.8 3 1026 21.7 3 1027 0.0712 0.0160

(0.3291) (20.5176) (20.6661) (0.3818)
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testing the EMH, given the proposition that expected proxy-denominated stock returns are zero, can

be applied to test a variety of anomalies in both the short- and long-term. This yields results consistent

with the findings in this paper, thus strengthening the EMH assumption in capital markets.

Furthermore, the use of the NDRA avoids the step-ahead estimation errors implicit in using the

market model approach and estimation errors due to, among other things, the presence of momentum

when using the Fama-French three factor model. The NDRA is flexible, simple and robust and can be

applied to many other areas of finance to test for inefficiencies, so long as a representative numeraire or

GOP is available.
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Appendix: Catastrophic Events – Australia 1983–2011

Table 13 outlines all catastrophic events that qualify for analysis in this study. The conditions set

were estimated insurance losses greater than $5 million, total loss greater than $100 million and a

minimum degree of information leakage. The dates given are the actual dates where it became

apparent that substantial loss was likely. In the case of cyclones, floods and bushfires, this can be

several days prior to the actual incident. For example, the predicted paths of cyclones once they

move in close proximity to coastal Queensland and Western Australia are reasonably well

understood and therefore the event date was set two days prior to the cyclone making landfall. This

data was obtained from the EMA Disaster Events Tracking System through Emergency

Management Australia, Canberra (2011).

Table 13. Catastrophic events with losses greater than $100 million – Australia 1983–2011.

Event Location Date Dead

Insured Loss

($ million)

Total Loss

($ million)

Bushfire Victoria 16 Feb 1983 75 324 960

Flood Sydney 12 Nov 1984 – 132 550

Bushfire Victoria 14 Jan 1985 5 5.5 100

Severe storm Brisbane 18 Jan 1985 1 299 420

Cyclone ‘Winifred’ Cairns 1 Feb 1986 3 65 300

Flood Sydney 5 Aug 1986 6 53 270

Severe storm Sydney 3 Oct 1986 – 161 255

Flood Sydney 24 Apr 1988 – 36 230

Cyclone ‘Aivu’ North QLD 4 Apr 1989 1 35 175

Earthquake Newcastle 28 Dec 1989 13 1124 4500

Cyclone ‘Nancy’ QLD/NSW 3 Feb 1990 6 2 230

Severe storm Sydney 18 Mar 1990 – 384 560

Flood North NSW 21 Apr 1990 7 38 410

Cyclone ‘Joy’ North QLD 23 Dec 1990 6 62 385

Severe storm Sydney 21 Jan 1991 1 226 670

Flood Victoria 16 Dec 1991 – 24 105

Severe storm Sydney 12 Feb 1992 – 118 220

Flood Victoria 3 Oct 1993 1 12 400

Bushfire NSW 29 Dec 1993 4 58 175
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Table 13 (Continued)

Event Location Date Dead

Insured Loss

($ million)

Total Loss

($ million)

Tornado Mandurah, WA 23 May 1994 2 37 115

Severe storm Victoria/NSW 25 May 1994 – 37 135

Earthquake Hunter Valley 6 Aug 1994 – 36 140

Cyclone ‘Bobby’ Onslow, WA 23 Feb 1995 7 11 100

Severe storm Brisbane 5 Nov 1995 1 40 110

Flood QLD/NSW 1 May 1996 5 31 240

Severe storm North NSW 29 Sep 1996 – 104 300

Flood Coffs Harbour 15 Nov 1996 1 20 120

Severe storm Hunter Valley 11 Dec 1996 1 50 150

Landslide Thredbo 30 Jul 1997 18 11 100

Severe storm Sydney 19 Dec 1997 1 40 100

Flood North QLD 10 Jan 1998 2 69 210

Flood Katherine, NT 26 Jan 1998 3 70 200

Flood Wollongong, NSW 17 Aug 1998 1 50 130

Gas explosion Longford, Vic 25 Sep 1998 2 150 1300

Severe storm Brisbane 16 Dec 1998 – 76 115

Cyclone ‘Vance’ Onslow, WA 22 Mar 1999 – 35 120

Severe storm Sydney 14 Apr 1999 1 1700 2300

Severe storm Sydney 24 Oct 1999 1 35 100

Flood North NSW 6 Mar 2001 1 25 300

Severe storm Brisbane 9 Mar 2001 – 37 110

Severe storm Hunter Valley 18 Nov 2001 3 40 120

Severe storm Sydney 3 Dec 2001 2 30 130

Bushfire NSW 21 Dec 2001 – 80 210

Severe storm North NSW 16 Jan 2002 – 10 25

Severe storm Sydney 16 Feb 2002 – 10 40

Bushfire Sydney 9 Oct 2002 – 36 86

Bushfire Victoria 8 Jan 2003 – 12 18

Bushfire Canberra 18 Jan 2003 4 350 450

Flood South Australia 27 Jun 2003 – 20 25

Severe storm Melbourne 2 Dec 2003 – 100 180

Severe storm Brisbane 24 Jan 2004 1 29 100

Severe storm QLD/NSW 1 Feb 2005 3 217 400

Severe storm WA 16 May 2005 – 53 100

Severe storm Brisbane 19 May 2005 – 18 30

Flood North NSW 29 Jun 2005 – 54 100

Severe storm North NSW 30 Jun 2005 1 25 40

Severe storm Brisbane 12 Oct 2005 – 61 100

Cyclone North QLD 20 Mar 2006 – 540 800

Severe storm NSW/QLD 8 Jun 2007 9 1600 2500

Flood North QLD 15 Feb 2008 1 410 600

Gas explosion Dampier WA 3 Jun 2008 – 230 250

Severe storm Brisbane 16 Nov 2008 1 309 500

Flood North NSW 20 May 2009 1 48 100

Severe storm Melbourne 6 Mar 2010 – 1044 1500

Severe storm Perth 22 Mar 2010 – 1053 1500

Flood Queensland 30 Nov 2010 35 3400 5000

Cyclone Queensland 2 Feb 2011 1 967 1800

Flood Victoria 4 Feb 2011 – 299 500
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