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We study the dynamics of viscous capillary rising in small corners between two curved
walls described by a function y = cxn with n ≥ 1. Using the Onsager principle, we derive
a partial differential equation that describes the time evolution of the meniscus profile. By
solving the equation both numerically and analytically, we show that the capillary rising
dynamics is quite universal. Our theory explains the surprising finding by Ponomarenko
et al. (J. Fluid Mech., vol. 666, 2011, pp. 146–154) that the time dependence of the
height not only obeys the universal power-law of t1/3, but also that the prefactor is almost
independent of n.
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1. Introduction

It is well known that when a capillary tube is brought in contact with a wetting
fluid, the fluid rises in the tube and eventually reaches the Jurin height (de Gennes,
Brochard-Wyart & Quéré 2004). A related set-up is when a cornered geometry consisting
of two intersecting plates is brought in contact with the fluid. In this case, a finger-like fluid
quickly forms at the corner, and the tip of the finger keeps rising indefinitely (since the
equilibrium position of the tip is infinitely high). The earliest study of the capillary rising
in corners can be dated back to the 18th century: Taylor conducted experiments on the fluid
rising in a small-angle corner formed by two nearly parallel plates. He identified that the
equilibrium shape of the meniscus is a hyperbola (Taylor 1710). In the paper straight after
Taylor’s, Hauksbee (1710) confirmed and quantified Taylor’s observation. Other reports
on the equilibrium meniscus can be found in works of Langbein (1990) and Finn (1999,
2002).

Even though the equilibrium theory of the meniscus in a cornered geometry is
well-established, the understanding of the dynamics was quite recent. The time evolution
of the meniscus is governed by several factors. The driving force is the capillary force
which tends to minimize the interfacial energy, and the wetting fluid tends to maximize its
coverage on the solid surfaces. The rising of the fluid is hindered by the viscous friction
and the gravity. In situations when the gravity can be ignored, the propagation of the
meniscus front obeys the classical Lucas–Washburn t1/2 scaling (Lucas 1918; Washburn
1921; Dong & Chatzis 1995; Weislogel & Lichter 1998). When gravity is considered,
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900 A29-2 J. Zhou and M. Doi

the tip of the meniscus rises with a different t1/3 scaling. This result was first derived
by Tang & Tang (1994). Higuera, Medina & Liñán (2008) developed a more complete
theory for the case of two flat plates forming a small angle. They derived a partial
differential equation for the time evolution of the meniscus shape based on the lubrication
approximation, and derived the t1/3 scaling law from this equation. Ponomarenko, Quéré &
Clanet (2011) conducted experiments of capillary rising in corners of different geometries
where walls are curved and are described by functions y = cxn with n ≥ 1. They found
that the meniscus front obeys the same t1/3 scaling as the flat wall. Corroborated with an
accompanying scale analysis, they have established that the position of the meniscus front
Zm obeys the following equation:

Zm

ac
= C

(
γ t
ηac

)1/3

. (1.1)

In (1.1), the length and time are scaled, respectively, by the capillary length ac = √
γ /ρg

and ηac/γ (γ , η, ρ are surface tension, viscosity and density of the liquid and g is
the gravitational constant) and C is a numerical factor. The experimental results of
Ponomarenko et al. (2011) were in good agreement with (1.1). Quite surprisingly, they
also found the experimental data collapse to a universal curve, having the same numerical
factor independent of n. This means that the dynamics of the meniscus rise is quite
universal, independent of the shape of the corner.

In this paper, we study the dynamics of viscous capillary rising at a general corner.
Using the Onsager principle (Onsager 1931a,b; Doi 2013), we derive a partial differential
equation that describes the time evolution of the meniscus profile, and solve it both
numerically and analytically. We show that (1) the advance of the meniscus front follows
the time-scaling of t1/3, and (2) the front factor C changes only 10 % when n changes from
1 to 5. This explains the universality found by Ponomarenko et al. (2011).

2. Capillary rising in a corner

We consider the capillary rising in a corner formed by two surfaces as shown in figure 1.
We take the coordinate system with z-axis along the intersection of the surfaces and x-axis
bisecting the surfaces. The two surfaces forming the corner are described by a function
y = ±E(x)/2. The meniscus is described by the profile in the x–z plane, given by the
function x = G(z, t). The bottom of the meniscus is located at z = 0 and is in contact with
the fluid reservoir. The tip of the meniscus is denoted by z = Zm.

2.1. Onsager principle
To derive the time-evolution equation for the meniscus profile G(z, t), we use the
Onsager principle, the variational principle proposed by Onsager (1931a,b) for general
irreversible processes. In the present context, this principle can be regarded as a variational
formulation of Stokesian hydrodynamics for problems that have moving boundaries.
In Stokesian hydrodynamics, the velocity field is determined by the minimum energy
dissipation principle if the velocity at the boundary is known. The Onsager principle here
can be viewed as an extension of this principle to determine the motion of the boundary.

Our objective is to determine the time evolution of G(z, t). For this purpose, we
construct a functional called Rayleighian, which is a functional of Ġ(z, t), the time
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FIGURE 1. Schematic of the capillary rising in a power-law corner.

derivative of G(z, t). The Rayleighian R[Ġ(z, t)] is a sum of two terms

R[Ġ(z, t)] = Ḟ[Ġ(z, t)] + Φ[Ġ(z, t)], (2.1)

both being a functional of Ġ(z, t). The first term Ḟ[Ġ(z, t)] represents the change rate
of the free energy when the boundary is moving at rate Ġ(z, t). The dissipation function
Φ[Ġ(z, t)] represents half of the energy dissipation rate (or the entropy production rate)
taking place in the system when the boundary is changing at rate Ġ(z, t). The Onsager
principle states that Ġ(z, t) is obtained by minimizing the functional R[Ġ(z; t)].

In the following calculation, we do not consider Ġ(z, t) explicitly. Rather, we take the
volume flux Q(z, t) of fluid flowing across the plane at z as an independent variable and
express the Rayleighian as a functional of Q(z, t). Here Ġ(z, t) and Q(z, t) are related to
each other by the conservation equation. Let A(G) be the area of the region {(x, y) | 0 <

x < G, |y| < E(x)/2}, i.e.

A(G) =
∫ G

0
E(x) dx . (2.2)

Then the conservation equation for the fluid volume is written as

∂A
∂t

= A′Ġ = −∂Q
∂z

, (2.3)

where the prime denotes the derivative with respect to G, A′ = ∂A/∂G.
In the following we shall first calculate Ḟ and Φ expressed as a functional of Q(z, t) and

determine the flux Q(z, t) by minimizing the Rayleighian. The time evolution equation for
G(z, t) is given by the conservation equation (2.3).

2.2. Free energy
The free energy of the system is given by

F[G(z, t)] =
∫ Zm

0
(ρgA(G(z, t))z − 2 L(G(z, t))γ cos θ) dz. (2.4)
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The first term is the gravitational energy and the second term is the interfacial energy. In
(2.4), L(G) is the contour length of the curve y = E(x)/2 for 0 < x < G,

L(G) =
∫ G

0

√
1 + 1

4

(
dE
dx

)2

dx, (2.5)

where θ is the equilibrium contact angle of the fluid on the solid surfaces. We focus on
the fluid that wets the surface, i.e. the contact angle θ is close to zero. In writing the free
energy in the form of (2.4), we have neglected the surface energy of the free surface.
In general, this contribution is of the order of E(G)γ . When the two surfaces are close to
each other and for the fully wetting fluid, we have L(G) ∼ G � E(G), thus the free surface
contribution can be ignored.

The change rate of the free energy is

Ḟ =
∫ Zm

0

(
ρgA′z − 2 L′γ cos θ

)
Ġ dz =

∫ Zm

0

(
ρg − 2

∂(L′/A′)
∂z

γ cos θ

)
Q dz , (2.6)

where we have used the conservation equation (2.3) and integration by parts.
The equilibrium profile of the meniscus is determined by setting the integrand in (2.6)

to be zero:
∂(L′/A′)

∂z
= ρg

2γ cos θ
. (2.7)

2.3. Dissipation function
The dissipation function is calculated by the lubrication approximation. In this
approximation, the pressure p is assumed to be constant in x–y plane (i.e. p depends on z
only), and the velocity has the z component vz only. This requires the characteristic length
scales in the x- and y-directions are much smaller than that in the z-direction (see § 4.4 for
more detailed discussion). The velocity vz is determined by the Stokes equation

η

(
∂2

∂x2
+ ∂2

∂y2

)
vz = −∂p

∂z
− ρg, (2.8)

with the boundary condition vz = 0 at the boundary y = ±E(x)/2. The equation can be
solved analytically by utilizing the fact that the length scale in the y-direction, E(x), is
much smaller than the length scale in the x-direction, G(z). Hence the flow profile is
essentially parabolic, and vz can be written as

vz(x, y, z, t) = 3
2

v̄z(x, z, t)

[
1 −

(
2y

E(x)

)2
]

, (2.9)

where v̄z(x, z, t) is the y-averaged velocity. In channel flow, v̄z(x, z, t) is proportional to
E2(x), and therefore it can be written as

v̄z(x, z, t) = C(z, t)E2(x). (2.10)

The flux is an area integration of the local velocity

Q(z) =
∫ G(z)

0
E(x)v̄z(x, z, t) dx =

∫ G(z)

0
E3(x)C(z, t) dx = B(G)C(z, t), (2.11)
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where the function B(G) is given by

B(G) =
∫ G

0
E3(x) dx . (2.12)

The velocity is then given by (2.10) and (2.11)

v̄z(x, z, t) = Q(z)
B

E2(x). (2.13)

The dissipation function is

Φ = 1
2

∫ Zm

0

∫ G(z)

0

12η

E(x)
v̄2

z (x, z, t) dz dx = 1
2

∫ Zm

0

12η

B
Q2(z) dz. (2.14)

2.4. Time evolution equation
Given the change rate of the free energy (2.6) and the dissipation function (2.14), the
Rayleighian is obtained as

R = Ḟ + Φ =
∫ Zm

0

(
ρg − 2

∂(L′/A′)
∂z

γ cos θ

)
Q dz + 1

2

∫ Zm

0

12η

B
Q2 dz. (2.15)

The time evolution equation is derived from the Onsager variational principle, δR/δQ =
0,

Q = B
12η

(
−ρg + 2γ cos θ

∂(L′/A′)
∂z

)
. (2.16)

Combined with the conservation equation (2.3), we obtain the time evolution of the
meniscus

∂G
∂t

= 1
A′

∂

∂z

[
B

12η

(
ρg − 2γ cos θ

∂(L′/A′)
∂z

)]
. (2.17)

3. Power-law corner

We consider a general corner formed by two surfaces which are a power n of x :

E(x) = cxn, n ≥ 1. (3.1)

Note here the parameter c has a dimension of [LENGTH]−n+1. To derive the time evolution
equation, we need the following:

B(G) = c3

3n + 1
G3n+1, (3.2)

A′(G) = cGn, (3.3)

∂(L′/A′)
∂z

� − n

cGn+1

∂G
∂z

. (3.4)

We have kept only the terms of lowest order in G.
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The flux (2.16) becomes

Q = c3

12η(3n + 1)
G3n+1

(
−ρg − 2nγ cos θ

c
1

Gn+1

∂G
∂z

)
. (3.5)

The time evolution equation (2.17) becomes

∂G
∂t

= c2

12η(3n + 1)Gn

∂

∂z

[
G3n+1

(
ρg + 2nγ cos θ

c
1

Gn+1

∂G
∂z

)]
. (3.6)

Scaling the length and the time with the following constants:

Hc =
(

2nγ cos θ

cρg

)1/(n+1)

, tc = 12η

c2ρgH2n−1
c

, (3.7a,b)

we convert the equation into a dimensionless form

∂G̃
∂ t̃

= 1

(3n + 1)G̃n

∂

∂ z̃

[
G̃3n+1

(
1 + 1

G̃n+1

∂G̃
∂ z̃

)]
(3.8)

= G̃2n ∂G̃
∂ z̃

+ 2n

3n + 1
G̃n−1

(
∂G̃
∂ z̃

)2

+ 1
3n + 1

G̃n ∂2G̃
∂ z̃2

, (3.9)

where the tildes denote the corresponding dimensionless variables. This is the
generalization of the equation which Higuera et al. (2008) derived for the capillary rising
in the corner made of flat planes.

The equilibrium profile of the meniscus is then given by

1 + 1

G̃n+1

∂G̃
∂ z̃

= 0 ⇒ G̃ = (nz̃)−1/n. (3.10)

Note that the equilibrium profile is unbounded at the edge (z̃ → ∞ as G̃ → 0).
The time evolution equation (3.9) admits a self-similar solution of the form

G̃(z̃, t̃) = F(χ)t̃α, χ = z̃t̃β, (3.11)

where α and β are parameters to be determined. Using the above expressions, we rewrite
(3.9) as

(βχF′ + αF) t̃α−1 = F2nF′ t̃(2n+1)α+β +
(

2n

3n + 1
Fn−1(F′)2 + 1

3n + 1
FnF′′

)
t̃(n+1)α+2β.

(3.12)
The above equation becomes time-independent if

α − 1 = (2n + 1)α + β = (n + 1)α + 2β, (3.13)

which leads to

α = − 1
3n

, β = −1
3
. (3.14a,b)
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Equation (3.12) then becomes an ordinary differential equation:

F2nF′ + 2n

3n + 1
Fn−1(F′)2 + 1

3n + 1
FnF′′ + 1

3

(
χF′ + 1

n
F
)

= 0. (3.15)

The meniscus profile should converge to the equilibrium form (nz̃)−1/n in the limit t̃ →
∞. This leads to the first boundary condition:

χ → 0, F(χ) → (nχ)−1/n. (3.16)

The second boundary condition is that the profile F(χ) approaches zero at a certain
value χ = χ0. Assuming F(χ) behaves like (χ0 − χ)γ as χ → χ0−, each term in (3.15)
behaves like

F2nF′ ∼ (χ0 − χ)(2n+1)γ−1, (3.17)

Fn−1(F′)2 ∼ (χ0 − χ)(n+1)γ−2, (3.18)

FnF′′ ∼ (χ0 − χ)(n+1)γ−2, (3.19)

χF′ ∼ χ0(χ0 − χ)γ−1, (3.20)

F ∼ (χ0 − χ)γ . (3.21)

Anticipating γ ≤ 1, the dominating terms are Fn−1(F′)2, FnF′′ and χF. Upon ignoring
other terms, (3.15) becomes

2n

3n + 1
Fn−1(F′)2 + 1

3n + 1
FnF′′ + 1

3
χ0F′ = 0. (3.22)

The solution to the above equation leads to the second boundary condition

χ → χ0, F(χ) →
[

n(3n + 1)

3(3n − 1)
χ0(χ0 − χ)

]1/n

. (3.23)

Once the solution of (3.15) with the two boundary conditions (3.16) and (3.23) is obtained,
we get the asymptotic solution of the tip position

Z̃m = χ0 t̃1/3. (3.24)

We can rewrite the above equation using the capillary length ac = √
γ /ρg as the length

scale and ηac/γ as the time scale (Ponomarenko et al. 2011). This leads to

Zm

ac
= χ0

(
n2 cos2 θ

3

)1/3 (
γ t
ηac

)1/3

. (3.25)

This result confirms the t1/3 scaling proposed by Ponomarenko et al. (2011). Our theory
also gives a prediction of the front factor

C = χ0

(
n2 cos2 θ

3

)1/3

, (3.26)

which is in general dependent on the power of the corner (here χ0 is a function of n) and
the contact angle θ . One interesting observation is that the c parameter from (3.1) does not
appear in (3.25), thus the detail of the corner does not affect the tip dynamics.

In the following, we shall study the numerical solutions for special cases of n = 1 and
2, which will be called linear corner and quadratic corner, respectively.
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4. Examples and discussion

4.1. Linear corner
As a first example, we study the classical case of a corner formed by two flat planes. For
this case, the E(x) function is given by

E(x) = ax, a � 1. (4.1)

The dimensionless form of the time evolution equation (3.9) is

∂G̃
∂ t̃

= 1

4G̃

∂

∂ z̃

[
G̃4

(
1 + 1

G̃2

∂G̃
∂ z̃

)]
= G̃2 ∂G̃

∂ z̃
+ 1

2

(
∂G̃
∂ z̃

)2

+ 1
4

G̃
∂2G̃
∂ z̃2

. (4.2)

This is consistent with Higuera et al. (2008) and our previous work (Yu et al. 2019).
The equilibrium profile is given by

1 + 1

G̃2

∂G̃
∂ z̃

= 0 ⇒ G̃ = 1
z̃
. (4.3)

The time evolution equation (4.2) can be solved numerically (see appendix A for
details). The meniscus profiles at different times are shown in figure 2(a). The tip position
as a function of time is shown in figure 2(b), which follows a t̃1/3 scaling.

The self-similar solution has the form

G̃(z̃, t̃) = F(χ)t̃−1/3, χ = z̃t̃−1/3. (4.4)

The self-similar solution satisfies (3.15) with n = 1,

F2F′ + 1
2
(F′)2 + 1

4
FF′′ + 1

3
(χF)′ = 0, (4.5)

and the following boundary conditions:

χ → 0, F(χ) → 1/χ, (4.6)

χ → χ0, F(χ) → 2
3
χ0(χ0 − χ). (4.7)

The numerical result of the self-similar solution is shown in figure 2(c), which gives

χ0 � 1.8098. (4.8)

In figure 2(d), we also compare the prediction of (3.25) to experimental data reported in
Higuera et al. (2008) and Ponomarenko et al. (2011), and good agreement is found at late
times.
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 Z
m
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c

t/(ηac/γ)

Eq. (3.25)

FIGURE 2. Linear corner: (a) meniscus shape at different times (t̃ = 200, 400, 600, 800, 1000
from bottom to top). The solutions are obtained by solving the time evolution equation (4.2).
(b) The position of the tip as a function of time. (c) Self-similar solution of (4.5). Also shown are
the meniscus shapes at different times (shown as symbols) and boundary conditions (red, (4.6);
green, (4.7)). (d) Comparison with experiments. Here the tip position is scaled by the capillary
length ac and the time by ηac/γ . Symbols: �, data from Higuera et al. (2008) (a = 2 tan 0.75◦ �
0.026 and silicon oil V460); �, data from Ponomarenko et al. (2011) (a = 2 tan 2.5◦ � 0.087 and
silicon oil V20); ♦, data from Ponomarenko et al. (2011) (a = 2 tan 6.5◦ � 0.228 and silicon
oil V20).

4.2. Quadratic corner
We next examine the corner formed by two surfaces which are quadratic functions:

E(x) = bx2. (4.9)

Note here the parameter b has a dimension of [LENGTH]−1. The dimensionless form of
the time evolution equations is

∂G̃
∂ t̃

= 1

7G̃2

∂

∂ z̃

[
G̃7

(
1 + 1

G̃3

∂G̃
∂ z̃

)]
= G̃4 ∂G̃

∂ z̃
+ 4

7
G̃

(
∂G̃
∂ z̃

)2

+ 1
7

G̃2 ∂2G̃
∂ z̃2

. (4.10)

The equilibrium profile is given by

1 + 1

G̃3

∂G̃
∂ z̃

= 0 ⇒ G̃ = (2z̃)−1/2. (4.11)

The time evolution of the profile is shown in figure 3(a). Near the tip, the shape of the
meniscus for the quadratic corner is convex away from the corner edge, which is different
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Eq. (3.25)

χ

FIGURE 3. Quadratic corner: (a) meniscus shape at different times (t̃ = 1000, 2000, 3000,
4000, 50 000 from bottom to top). The solution are obtained by solving the time evolution
equation (4.10). (b) The position of the tip as a function of time. (c) Self-similar solution of
(4.13). Also shown are the meniscus shapes at different times (shown as symbols) and boundary
conditions (red, (4.14); green, (4.15)). (d) Comparison with experiments from Ponomarenko et al.
(2011). Here the tip position is scaled by the capillary length ac and the time by ηac/γ . The
corner is given by b = 15 mm−1. Symbols: �, silicon oil V10; �, silicon oil V20; +, silicon oil
V170; �, silicon oil V1000.

to that for the linear corner. The tip position as a function of time is shown in figure 3(b),
which also follows a t̃1/3 scaling.

The time evolution equation (4.10) admits a self-similar solution of the form

G(z, t) = F(χ)t−1/6, χ = zt−1/3. (4.12)

The solution satisfies the equation

F4F′ + 4
7

F(F′)2 + 1
7

F2F′′ + 1
3

(
χF′ + 1

2
F
)

= 0. (4.13)

The boundary conditions are

χ → 0, F(χ) → (2χ)−1/2, (4.14)

χ → χ0, F(χ) →
[

14
15

χ0(χ0 − χ)

]1/2

. (4.15)

The self-similar solution is shown in figure 3(c), which gives

χ0 � 1.0646. (4.16)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

53
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.531


Universality of capillary rising in corners 900 A29-11

n χ0 C = χ0(n2/3)1/3

1 1.8098 1.255
2 1.0646 1.172
3 0.7882 1.137
4 0.6395 1.117
5 0.6175 1.252

TABLE 1. Values of χ0 and C = χ0(n2/3)1/3 for power-law corners up to n = 5.

In figure 3(d), we compare the prediction (3.25) to experimental data reported in
Ponomarenko et al. (2011), and again good agreement is found at late times.

4.3. Power-law corners
Power-law corners with n > 2 show similar results as the quadratic corner. In table 1, we
list numerical values of χ0 for power-law corners up to n = 5.

Ponomarenko et al. (2011) suggested that the evolution of the meniscus front for
different corners would collapse if one scales the height with the capillary length ac and
the time with ηac/γ . In our formulation, this corresponds to the front factor C of (3.26)
being independent of n. This is a strong prediction. In table 1, we also list the front factor
C for fully wetting liquid (θ = 0). One interesting observation is that even the values of χ0
are different, but the front factors are similar with a numerical value around 1.2. Thus our
numerical results support the proposition of Ponomarenko et al. (2011). Figure 4 shows the
numerical results for linear, quadratic and cubic corners, together with the experimental
results from Higuera et al. (2008) and Ponomarenko et al. (2011).

4.4. Discussion
Here we discuss the limitation of our model and various assumptions used in our
calculation. From the equilibrium profile (3.10), one sees that the meniscus is unbounded
at the edge. This is not always the case (the circular tube is a typical counterexample)
and depends on the corner geometry and the wettability of the fluid. If the height of the
equilibrium meniscus is finite, then our theory does not apply. For linear corners, the
unbounded condition is given by Concus & Finn (1969), α + θ < π/2, where α is the
open angle of the corner and θ is the equilibrium contact angle. Since we consider the
wetting fluid with an equilibrium contact angle θ close to zero, the above condition is
satisfied for the linear corner with a small open angle. For power-law corners, the open
angle is zero as x̃ → 0 , so the condition is again satisfied.

Our analysis focused on to the long-time dynamics of the meniscus. The early stage of
the capillary rising is complicated and various factors come into play. At early times when
the meniscus height is less than the capillary length ac, the effect of the gravity can be
neglected. Quéré (1997) had shown the initial rising follows a t1 scaling when the inertial
effect is important. Another complication arises during the onset of the meniscus. When
the corner first touches the liquid, the assumption of an equilibrium contact angle is not
fulfilled and it takes approximately 102–103 ηac/γ to establish the equilibrium contact
angle (Clanet & Quéré 2002). In our study, the inertial effect is neglected and we are
working in the viscous-dominating region where the Reynolds number is close to zero.
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1/3

FIGURE 4. Comparison of numerical calculation and experimental results for different corners.
Here the tip position is scaled by the capillary length ac and the x-axis is the scaled time
to the power of 1/3, [γ t/(ηac)]1/3. Experimental data are from Higuera et al. (2008) and
Ponomarenko et al. (2011). (i) Linear corners (E = ax): �, a = 2 tan 0.75◦ � 0.026 and silicon
oil V460; �, a = 2 tan 2.5◦ � 0.087 and silicon oil V20; ♦, a = 2 tan 6.5◦ � 0.228 and silicon
oil V20. (ii) Quadratic corner (E = bx2): ×, b = 15 mm−1 and silicon oil V20. (iii) Cubic corner
(E = cx3): �, c = 18 cm−2 and silicon oil V20.

When the inertial effect is neglected, the balance of capillary and viscous forces at early
times leads to the classical Lucas–Washburn t1/2 scaling. For linear corners, Higuera et al.
(2008) had showed that the height of the meniscus at distance x̃ away from the edge evolves
like H̃(x̃) ∼ x̃1/2 t̃1/2. For power-law corners, one can show that H̃(x̃) ∼ x̃ n/2 t̃1/2. The
equilibrium height profile is H̃e(x̃) ∼ x̃−n , which can be obtained by inverting equation
(3.10). Equating these two heights leads to a characteristic time for the meniscus at x̃ to
reach its equilibrium height, t̃e ∼ x̃−3n . Thus, the meniscus with larger x̃ equilibrates faster.
In this study, we focus on the asymptotic dynamics when the meniscus far from the edge
is nearly at equilibrium while close to the edge the meniscus is still rising.

In writing the Rayleighian in terms of (2.15), we have made two assumptions regarding
the shape of the meniscus. In the free energy part, we have neglected the energy
contribution from the free surface. This corresponds to corners with small openings,
E(G) � L(G) ∼ G, i.e. the separation between two planes is much smaller than the
distance to the edge. For linear corners, this requires that a � 1 in (4.1). For power-law
corners, this condition leads to cGn−1 � 1 and becomes progressively better satisfied
when the tip is approached, G → 1.

In the dissipation function we have used the lubrication approximation and assume the
flow is one-dimensional. This requires that the slenderness parameter, the ratio between
the length scale in the x-direction to that in the z-direction (Weislogel & Lichter 1998;
Weislogel 2001; Weislogel, Baker & Jenson 2011), is small. For the meniscus at position
x̃ , it takes approximately t̃e ∼ x̃−3n to reach equilibrium. At this time, the tip position is at
Z̃m ∼ t̃1/3

e ∼ x̃−n . The slenderness parameter ∼ x̃/Z̃m ∼ x̃ n+1, which is small when x̃ < 1
and becomes smaller when the rise proceeds.
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5. Conclusion

We have studied the capillary rising of wetting fluid in small interior corners. For the
general power-law corners with small opening angle, we used the Onsager variational
principle to derive a time evolution equation for the meniscus profile. The time evolution
equation has a self-similar solution, and we have showed that the advance of the meniscus
front follows a universal t1/3 law. The universality of the t1/3 scaling was previously
demonstrated in experiments (Ponomarenko et al. 2011). Here we have shown that the t1/3

scaling is indeed satisfied for general power-law corners. Furthermore, we have computed
explicitly the prefactor, which only depends on the power n and the equilibrium contact
angle θ .
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Appendix A. Numerical solution to (3.9)

The time evolution equation of the meniscus profile is given by (3.9). For n = 1 and
n = 2, this equation takes the form of (4.2) and (4.10), respectively. These partial
differential equations can be solved numerically using Matlab.

The range of z̃ is [0.1:20]. The lower boundary condition is given by the equilibrium
profile

G̃(z̃ = 0.1) = (n × 0.1)−1/n, (A 1)

and we assume the part of the meniscus far away from the edge (z̃ < 0.1) has already
reached the equilibrium. The upper boundary is chosen to be large enough so the tip
position does not exceed the upper boundary at the end of calculation. In this study, we
used

G̃(z̃ = 20) = 0. (A 2)

The initial condition is a straight line connecting the lower boundary and the meniscus
tip Z̃m0, where Z̃m0 is the initial tip position and takes a small value. Different choices of
Z̃m0 do not affect the long-time dynamics. The results shown in figures 2 and 3 are obtained
by setting Z̃m0 = 1.0.
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