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An analysis of the direct initiation of gaseous detonations in a spherical geometry
is presented. The full set of constitutive equations is analysed by an asymptotic
analysis in the double limit of Mach number close to unity (small heat release) and
large thermal sensitivity. The quasi-steady curvature-induced quenching phenomenon
is first revisited in this limit. Considering a realistic decrease rate of the rarefaction
wave, the unsteady problem is reduced to a single nonlinear hyperbolic equation.
The time-dependent velocity of the lead shock is an eigenfunction of the problem
when two boundary conditions are imposed to the flow at the lead shock and at the
burnt gas side. Following (Liñan et al., C. R. Méc., vol. 340, 2012, pp. 829–844),
the boundary condition in the quasi-transonic flow of burnt gas is expressed in terms
of the curvature. Focusing our attention on successful initiation, the time-dependent
velocity of the lead shock of a detonation approaching the Chapman–Jouguet regime
is the solution of a nonlinear integral equation investigated for stable and marginally
unstable detonations. By comparison with the quasi-steady trajectories in the phase
space ‘propagation velocity versus radius’, the solution exhibits the unsteady effect
produced upon the detonation decay by the long time delay of the upstream-running
mode for transferring the rarefaction-wave-induced deceleration across the inner
detonation structure from the burnt gas to the lead shock. In addition, a new
and intriguing phenomenon concerning pulsating detonations is described. Even
if the results are not quantitatively accurate, they are qualitatively relevant for real
detonations.

Key words: detonations, detonation waves

1. Introduction
As suggested long ago by Vieille (1900), gaseous detonations are supersonic

combustion waves whose internal structure is a reactive layer following a non-reactive
shock wave. This is called the ZND structure to honour the works of Zeldovich (1940),
Von Neumann (1942) and Döring (1943). The shocked gas velocity relative to the
lead shock is of the same order of magnitude as the sound speed au and, thanks to
a large activation energy, the reaction rate t−1

r is smaller than the collision frequency

† Email address for correspondence: paul.clavin@wanadoo.fr
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897 A30-2 P. Clavin and B. Denet

1/tr � 1/tcoll. Consequently, the molecular diffusivities (viscosity and molecular
diffusion) are negligible in the reactive layer as shown by the large Reynolds number
lau/ν based on the thickness of the reactive layer l≈ autr and the viscous diffusivity
ν ≈ a2

utcoll, a2
utr/ν ≈ tr/tcoll � 1. Even when the propagation Mach number is close

to unity 0 < M − 1� 1 as is the case in the forthcoming asymptotic analysis, the
thickness of the lead shock autcoll/(M− 1) is smaller than the thickness of the reaction
layer l provided that the ratio of the reaction time to the collision time is sufficiently
large, (M − 1)tr/tcoll � 1. In such a condition, the lead shock can be considered as
an inert discontinuity even when the heat release is small 0<M− 1� 1, see Clavin
& Searby (2016).

The direct initiation of gaseous detonation refers to the formation of a self-sustained
detonation in the decay of a blast wave when a large amount of energy E is
deposited quasi-instantaneously in a small region of space (radius rE) of an unconfined
combustible gas mixture. Here, attention is limited to a spherical geometry. At the
very beginning, the density of deposited energy is larger than the density of chemical
energy available in the gas mixture E/r3

E � ρuqm, ρu and qm denoting the density
and the chemical energy per unit mass in the initial gaseous mixture. Therefore, the
initial condition is the Sedov–Taylor (Sedov 1946; Taylor 1950b) self-similar solution
of a strong blast wave in an inert gas, expressing how the propagation velocity D
decreases with the shock radius rf , D ∝ (E/ρu)

1/2/r3/2
f . A critical radius r∗ larger

than the detonation thickness, r∗� l, r∗/l ≈ 300, and a critical energy E∗ ∝ ρuqmr∗3
have been identified for a long time by numerous experiments, see Lee (1977) and
Lee (1984). For E > E∗ the self-sustained Chapman–Jouguet detonation (CJ regime
characterized by a sonic condition at the exit of the reaction zone and a minimum
propagation velocity DCJ ) is reached at a radius ≈ (E/ρuqm)

1/3 larger than r∗. For
E < E∗ a progressive decoupling of the reaction zone from the lead shock produces
the failure of initiation; the shock intensity continuously decreases and no detonation
occurs.

Pioneering numerical solutions of direct initiation were performed by Korobeinikov
(1971) assuming that the detonation wave is a discontinuity across which the planar
jump conditions are satisfied. This problem was reconsidered more recently by Liñan,
Kurdyumov & Sanchez (2012), providing us with new insights into the transition
between two self-similar solutions, namely the solution of Sedov (1946) and Taylor
(1950b) for a strong non-reactive blast wave and the solution of Zeldovich (1942)
and Taylor (1950a) for a spherical CJ detonation. Under the approximation of the
discontinuous model there is no critical energy: the overdriven detonation that is
initially generated by the blast wave relaxes systematically to a planar CJ wave at
a finite radius proportional to (E/ρuqm)

1/3 no matter the value of E. This indicates
clearly that the critical energy should be related to small modifications of the inner
structure of the detonation wave (finite thickness effect).

A first criterion was proposed by Zeldovich, Kogarko & Simonov (1956).
Considering that the time taken by the blast wave to reach the planar CJ velocity
DoCJ ≈ 2

√
qm should be larger than the reaction time tr, the order of magnitude of the

critical radius predicted by Zeldovich et al. (1956) is of the same order of magnitude
as the thickness of the planar CJ wave loCJ , r∗ ≈ loCJ . This is in contradiction with
experiments. Using a relevant value of tr, this criterion leads to a critical energy which
is smaller than the experimental data by a factor 10−5 to 10−6. A further step was
achieved forty years later by He & Clavin (1994), who considered the modification
of the inner structure generated by a small curvature of the wave amplified by the
strong thermal sensitivity of the induction length governed by an Arrhenius law with
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a large activation energy E/kBT� 1. The He & Clavin (1994) analysis of curved CJ
detonations was performed for a large Mach number M� 1 in the limit E/kBT→∞,
using a quasi-steady inner structure modelled by the crude square-wave model
(chemical energy released instantaneously after the induction delay). The analysis
leads to a nonlinear relation between the propagation velocity DCJ of a curved CJ
detonation and the curvature 1/rf . The corresponding curve DCJ/DoCJ versus rf /loCJ

presents a C-shape exhibiting a quasi-steady curvature-induced quenching; there is
no quasi-steady solution of spherical CJ wave with a radius smaller than a critical
r∗f which is larger than loCJ by a factor of a few hundreds, essentially because the
activation energy is large E/kBT � 1. The energy varying like r3

f , the order of
magnitude of the experimental critical energy is recovered.

The quasi-steady analysis is not fully satisfactory, even though the numerical
simulations of He & Clavin (1994) (one-step model) and of He (1996) (detailed
chemical scheme for the combustion of hydrogen–oxygen mixtures) are in satisfactory
agreement with the critical radius r∗f , at least concerning its order of magnitude. The
unsteady effects are important near criticality. For example, a quasi-quenching of
the detonation with a propagation velocity decreasing well below DoCJ , followed by
a sudden re-ignition, is exhibited near criticality. This illustrates that the initiation
process is different from the quasi-steady decay of an overdriven detonation. The
corresponding interplay of pressure waves and reaction rate was analysed numerically
by Lee & Higgins (1999). The importance of unsteadiness was emphasized by Ecket,
Quirk & Shepherd (2000) whose numerical simulations (for a one-step exothermal
reaction governed by an Arrhenius law) show that the unsteady terms are larger than
the geometrical terms. However, the critical radius r∗f is not much different from that
in He & Clavin (1994), it is smaller by a factor between 2 and 4. Considering the
difference of detonation model, the agreement is satisfactory since the square-wave
model used by He & Clavin (1994) overestimates the critical radius. Nevertheless the
behaviour of the dynamics near criticality cannot be reproduced by the quasi-steady
approximation. The specific effect of a small curvature was pointed out in He &
Clavin (1994) by comparing the numerical simulations in spherical geometry with
those in planar geometry. In the latter case the critical distance r∗ is still larger than
the detonation thickness but ten times smaller than the critical radius in spherical
geometry. Therefore both curvature and unsteadiness are important near criticality. A
somewhat different point of view is presented by Ecket et al. (2000), who concluded
that ‘the primary failure mechanism is found to be unsteadiness’.

The purpose of the present analytical study is to investigate the role of unsteadiness
combined with the curvature effects. There are two different unsteady effects. One
is inherent to the driving mechanism of the detonation decay, namely the rarefaction
wave in the burnt gas. The other is the intrinsic dynamics of the inner detonation
structure controlling the response to variations of the flow of burnt gas. The latter
mechanism cannot be described by the square-wave model which is well known
to introduce a singular dynamics. The full problem is too complicated for general
analytical solutions to be obtained. Not only is the dynamics of the inner structure
of the detonation a tough problem but also the rarefaction wave (the cause) depends
on the dynamics of the detonation decay (the effect). Moreover, separating the
inner structure from the inert rarefaction wave is not an easy task in a spherical
geometry. According to the Sedov–Taylor self-similar solution, the characteristic time
of evolution of the blast wave D/(dD/dt) is of order r/D, which is larger than the
transit time of a fluid particle through the detonation structure (l/D) by a factor r/l
(a large number near criticality r∗/l� 1). This does not ensure that a quasi-steady
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approximation is accurate since, according to Clavin & Williams (2002), the response
time of the inner structure is also larger than l/D. The cumulative effect of feedback
loops controlling the inner dynamics can be summarized as follows. The disturbance,
introduced at the lead shock by variation of its velocity D, propagates downstream
(in the reference frame attached to the shock) towards the burnt gas with two modes,
a downstream-running acoustic mode and an entropy wave. The resulting modification
of heat release in turn perturbs the flow and thereby affects the shock velocity after
a time delay associated with the upstream-running acoustic mode and thus depending
on the place of emission. When approaching the CJ regime, the flow near the end of
heat release becomes quasi-transonic and the delay of the upstream-running mode is
larger than those associated with the downstream-running modes, including the entropy
wave whose transit time is of order l/D. At the leading order of a multiple-time-scale
analysis, the downstream-running modes can be considered as quasi-instantaneous and
the dynamics is mainly controlled by the upstream-running mode. The key unsteady
mechanism of direct initiation when the CJ regime is approached is the time delay for
transferring the rarefaction-wave-induced deceleration to the lead shock. Because of
the transonic flow at the exit of the inner detonation structure, the delay increases and
diverges at the CJ velocity, producing a drastic unsteady effect upon the dynamics.
This difficult topic has not yet been addressed in the context of the direct initiation
process. The present work is an attempt to fill this gap by an asymptotic analysis
reducing the problem to solve a single nonlinear hyperbolic equation. Only the end
of the detonation decay during a successful initiation is analysed in detail here.
The study of the dynamics is more difficult near criticality and requires a different
theoretical approach left to future studies.

The multiple-time-scale nature of the dynamics is stressed and enlightened in the
limit of small heat release (M − 1 � 1) since the flow becomes quasi-transonic
throughout the inner structure of the detonation. Combined with the Newtonian
approximation in the reaction zone and a large activation energy, a small heat
release is a convenient limit for the analytical study of the unsteady inner structure
of detonation since the interplay of pressure waves, entropy wave and chemical
kinetics at work in real detonations is fully taken into account. Moreover, purely
technical difficulties (such as variation of the sound speed with the temperature and
compressional heating in the reaction zone) are suppressed without modifying the
order of magnitude of the result. Then, despite the difference of Mach numbers
(M close to unity while M ∈ [4, 8] in ordinary gaseous detonations), the dynamics
is relevant for real detonations, at least qualitatively, provided that the shock wave
at the leading edge of the ZND structure is still considered as an inert discontinuity
satisfying the Rankine–Hugoniot conditions, as discussed earlier. Such asymptotic
analyses have been performed in planar geometry by Clavin & Williams (2002) for
the stability analysis of slightly overdriven detonations against planar disturbances,
extended later to multidimensional disturbances in Clavin & Williams (2009). The
numerical study of weakly nonlinear regimes performed by Faria, Kasimov & Rosales
(2015) in this limit shows cellular patterns similar to those observed in ordinary
detonations.

In the present paper a similar asymptotic analysis is carried out for the direct
initiation process in a spherical geometry. The attention is focused onto the trajectories
close to the CJ velocity. The primary result is to show that the dynamics is controlled
by a single hyperbolic equation for a scalar field representative of the flow inside the
inner structure of the detonation. The problem of the dynamics of the inner structure
is closed because the deceleration of the burnt at the downstream boundary condition
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is related to the curvature of the detonation wave. This relation, which was first
obtained by Liñan et al. (2012) with the discontinuous model in the opposite limit
M� 1, is still valid for small heat release. As in the study of Clavin & Denet (2018)
concerning the decay of plane detonations when the supporting piston is suddenly
arrested, the analysis is not limited to a particular chemical kinetics scheme. The
basic inputs are the spatial distribution of heat release in the planar CJ detonation
(in steady state) and the thermal sensitivity of the detonation thickness. In order
to overcome the current technical difficulty in a spherical geometry to match the
reaction zone with the external flow through a quasi-transonic zone, the rate of heat
release is assumed to drop sharply to zero at the end of the reaction zone. For
successful initiation the instantaneous propagation velocity D(t) is the solution of an
integral equation. Marginally stable and/or unstable detonations are investigated for
a parameter controlling the thermal sensitivity of the planar dynamics smaller than
that controlling the curvature effect. Unsteadiness is highlighted in the phase space
of propagation velocity versus shock radius by comparison with the quasi-steady
trajectories. A new and intriguing phenomenon at work during pulsations of unstable
detonations is described.

The general formulation is recalled in § 2. Extending previous analyses to a
spherical geometry, the double limit of small heat release and large activation energy
is presented in § 3. The peninsula of steady spherical CJ detonations representative
of a curvature-induced quenching is revisited in § 4, extending the result of He &
Clavin (1994) to a smooth distribution of reaction rate. The inner structure of the
spherical CJ wave is presented in § 5 with a discussion concerning the sonic point.
The closure relation and the hyperbolic equation controlling the initiation process are
derived in § 6. The quasi-steady trajectories showing a transition between success and
failure of the initiation process are presented in § 7. The limitation of the quasi-steady
approximation is discussed in this section. The integral equation for D(t) is derived
in § 8. The results and the complexity of the nonlinear dynamics are discussed in
§ 9 where unsteady trajectories of ‘velocity–radius’ are presented, pointing out the
drastic effect upon the dynamics of the increase of the time delay near the CJ regime.
Also a new dynamical phenomenon is identified in this section. Conclusions and
perspectives are presented in § 10. In view of a self-contained paper, four appendices
supplement the main text. Technical calculations are developed in appendix A. The
method of solution of a hyperbolic equation with a moving boundary is presented in
appendix B. The dynamics of planar detonations is recalled in appendix C where the
cold boundary difficulty of the CJ regime is also discussed. An analytical expression
for the time delay along a straight trajectory ending abruptly on the CJ regime is
presented in appendix D for a simple model.

2. General formulation
2.1. Constitutive equations

In a spherical geometry, ∇ · u= ∂u/∂r+ 2u/r, Euler’s equations take the form

1
ρ

(
∂

∂t
+ u

∂

∂r

)
ρ +

∂u
∂r
+ 2

u
r
= 0, ρ

(
∂

∂t
+ u

∂

∂r

)
u=−

∂p
∂r
, (2.1a,b)

(
∂

∂t
+ u

∂

∂r

) [
ln T −

(γ − 1)
γ

ln p
]
=

qm

cpT
ẇ(T, Y)

tr
,

(
∂

∂t
+ u

∂

∂r

)
Y =

ẇ(T, Y)
tr

,

(2.2a,b)
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897 A30-6 P. Clavin and B. Denet

where ρ, p and u are respectively the density, the pressure and the radial velocity of
the flow in the laboratory frame and γ , qm, T , Y , tr and ẇ are respectively the ratio
of specific heat γ ≡ cp/cv = const., the chemical heat release per unit mass of mixture,
the temperature, the progress variable (Y = 0 in the initial mixture and Y = 1 in the
burned gas, 1−Y is the reduced mass fraction of the limiting component in a one-step
reaction), the reaction time at the Neuman state of the planar CJ detonation and the
non-dimensional heat-release rate. The second equation in (2.2) is a short notation for
a complex chemical kinetics of combustion, the analysis not being limited to a one-
step scheme. Assuming the ideal gas law, the pressure p and the sound speed a are

p=
γ − 1
γ

cpρT, a=
√
γ

p
ρ
. (2.3a,b)

Attention is focused on an irreversible exothermal reaction whose rate ẇ(Y, T)> 0 is
dependent on the temperature T and the progress variable Y . The pressure dependence
of the reaction rate is neglected for simplicity by comparison with the thermal
sensitivity. An alternative form of the energy equation in (2.2) is expressed in terms
of p and u by using the ideal gas law (2.3) when ρ is eliminated by using the mass
conservation (2.1),

1
γ p

(
∂

∂t
+ u

∂

∂r

)
p+

∂u
∂r
+ 2

u
r
=

qm

cpT
ẇ(T, Y)

tr
. (2.4)

Equations for the conservation of mass and momentum in (2.1) can be put into the
form of two hyperbolic equations for u and p when the equation for conservation of
momentum in (2.1) is multiplied by a/(γ p) = 1/(ρa) and added to and subtracted
from (2.4)

1
γ p

[
∂

∂t
+ (u± a)

∂

∂r

]
p±

1
a

[
∂

∂t
+ (u± a)

∂

∂r

]
u=

qm

cpT
ẇ
tr
− 2

u
r
. (2.5)

These equations relating the propagation of the disturbances of pressure p and radial
velocity u to the rate of heat release ẇ/tr and the divergence of the flow 2u/r are
the extension of the usual characteristic equations (simple waves) to reacting gases in
spherical geometry. When (2.3) is used and when the chemical kinetics ẇ(T, Y) is
known, the four equations in (2.2) and (2.5) form a closed set for p, u, T and Y .

2.2. Formulation
Considering the lead shock as a discontinuity in the flow of inert gas at initial
temperature Tu (composition frozen far from chemical equilibrium, Y = 0, ẇ(Tu, 0)
= 0), the boundary conditions in the compressed gas at the front of the lead shock
(Neumann state denoted by the subscript N) are given by the Rankine–Hugoniot
equations

pN

pu
= 1+

2γ
γ + 1

(M2
− 1),

ρN

ρu
=

1+ (M2
− 1)

1+ γ−1
γ+1(M

2 − 1)
,

uN

au
=

(
1−

ρu

ρN

)
M, (2.6a−c)

where the subscript u denotes the fresh mixture at rest and M ≡ D/au is the
propagation Mach number, D being the propagation velocity of the lead shock velocity.
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Introducing the equation for the trajectory of the shock front, r= rf (t), drf /dt=D(t),
it is convenient to use the coordinate attached to the lead shock

x≡ r− rf (t) ⇒ ∂/∂r→ ∂/∂x, ∂/∂t→ ∂/∂t−D(t)∂/∂x. (2.7a,b)

Considering an expanding spherical detonation, ṙf ≡ drf /dt > 0, u > 0, the initial
mixture and the compressed gas are located at x > 0 and x 6 0 respectively. The
boundary conditions in the Neumann state take the form

x= 0 : Y = 0, ẇ= ẇN(TN) > 0, p= pN(t), T = TN(t), u= uN(t), (2.8a−e)

where pN(t), TN(t) and uN(t) are given in terms of the instantaneous propagation
velocity D(t) in (2.6).

A rear boundary condition in the burned gas is required to solve the detonation
dynamics M(t). When the length scale of the external flow uext(r, t) in the burnt gas
is larger than the detonation thickness, lext� autr, 1/lext ≡ |(1/uext)∂uext/∂r|r=rf (t), and
when attention is focused on weakly curved detonations, rf /aN tr � 1, the solution
can be decomposed into two parts: the inner structure of the detonation wave and
the external flow of burnt gas, uext(r, t). Generally speaking, matching the end of the
inner structure and the burnt-gas flow is a delicate issue, especially near the CJ regime,
since the flow is transonic in the matching layer. The difficulty is overcome here by a
detonation structure in which the distance between the end of the exothermal reaction
and the lead shock is bounded. Introducing the non-dimensional coordinate ξ attached
to the moving front of the lead shock,

ξ ≡
r− rf (t)

autr
, (2.9)

and denoting by ξb < 0 the end of the inner structure where the external flow is
prescribed, the rear boundary condition takes the form

|ξb| =O(1), ξ = ξb(τ ) < 0 : u= ub(t), ub(t)= uext(rf (t), t), (2.10a,b)

the flow field of burnt gas uext(r, t) being the solution to the external problem. It
has been known for a long time that the sonic point inside the inner structure of a
curved Chapman–Jouguet detonation in steady state is located at a point of incomplete
reaction where the rate of heat release is balanced by the divergence of the flow, see
Wood & Kirkwood (1954) and § 5 below. The sonic locus is a saddle point through
which the steady solution satisfying the boundary condition at the Neumann state
should go (determining the CJ velocity). More details and references can be found
in Fickett & Davis (1979), Short & Bdzil (2003) and Stewart & Kasimov (2005). For
a weak curvature, the distance between the sonic point and the end of the heat release
is small if the thermal sensitivity of the detonation thickness is large, see § 5.1. This
is the case in the analysis of a weakly curved detonation in steady state by Yao &
Stewart (1995) in the limit of a large activation energy of a one-step reaction governed
by an Arrhenius law. In the present unsteady study, the instantaneous external flow is
prescribed near the end of the exothermal reaction,

ξ = ξb(τ ) : ẇ(Y, T)≈ 0, ξb < ξ 6 0 : ẇ(Y, T) > 0, (2.11a,b)

anticipating that the precise definition of ξb(τ ) introduces a negligible correction to the
time-dependent velocity D(t) of the lead shock when the thermal sensitivity is large.
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3. Governing equations in the limit of small heat release
Direct initiation of detonation is studied here by an asymptotic analysis in the

double limit of small heat release ε2
≡ qm/cpTu � 1 and large thermal sensitivity,

using the Newtonian approximation (ratio of specific heats γ ≡ cp/cv > 1 close to
unity),

ε ≡
√

qm/cpTu ≈ (MoCJ − 1)� 1, (γ − 1)/ε� 1, (3.1a,b)

where MoCJ ≡ DoCJ/au ≈ 1 +
√

qm/cpTu is the Mach number of the planar CJ wave
in steady state propagating at the velocity DoCJ . For a small difference of specific
heats such as (3.1), the compressional heating is negligible in the reaction zone by
comparison with the chemical heat release. This is indeed an accurate approximation
in real detonations. The limit of small heat release provides us with a systematic way
to take full advantage of the two time scales of the dynamics.

3.1. Two-time-scale analysis of the transonic flow
Considering a radius of the lead shock rf larger than the detonation thickness,

autr

rf
= εκ, (3.2)

where κ is a non-dimensional parameter for the curvature of the detonation wave, the
simplification in the limit ε → 0 is similar to that in plane geometry. The flow is
transonic throughout the inner structure of the detonation so that the problem is one of
two time scales; the inner structure evolves slowly, on a time scale larger by a factor
1/ε than the transit time of a fluid particle. Moreover, the variation of the sound speed
can be neglected ab/au = 1+ O(ε2). The modification of the sound speed across the
inner structure of real detonations introduces small quantitative differences but no new
qualitative effects.

For a propagation velocity close the CJ velocity of the planar detonation we
introduce the same dimensionless quantities of order unity in the limit (3.1) as in
Clavin & Denet (2018), µ(ξ, τ ), π(ξ , τ ) and α̇τ (τ ) for respectively the flow velocity
in the laboratory frame, the pressure and the instantaneous propagation velocity of
the lead shock D(t)= drf /dt,

u−DoCJ

au
≡−1+ εµ(ξ, τ ),

D−DoCJ

au
≡ ε α̇τ (τ ),

1
γ

ln
(

p
pu

)
≡ επ(ξ , τ ). (3.3a−c)

Focusing attention onto the inner structure of the detonations, ξ = O(1), the non-
dimensional curvature term rf /r is, according to (2.9) and (3.2), almost constant and
equal to unity across the inner structure of the detonation

rf

r
=

1
1+ εκξ

= 1+O(ε) ⇒
1
r
=

1
rf

[1+O(ε)] . (3.4)

When the terms smaller than ε2 are neglected, equations (2.5), written in the reference
frame attached to the lead shock (2.7), take the following non-dimensional form

ε

[
tr
∂

∂t
+ [−2+ ε(µ− α̇τ )]

∂

∂ξ

]
(π−µ)= ε2ẇ− 2ε2(1+µ)κ, (3.5)

ε

[
tr
∂

∂t
+ ε(µ− α̇τ )

∂

∂ξ

]
(π+µ)= ε2ẇ− 2ε2(1+µ)κ, (3.6)
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which are obtained from (2.5) and (2.7) by using (3.1)–(3.3) written in the form

u
au
= ε(1+µ),

(u−D)
au

= ε(µ− α̇τ )− 1,
u
r
= ε2κ(1+µ)

rf

r
. (3.7a−c)

Notice the difference of notation from Clavin & Williams (2002) who used the
notation µ for the flow velocity relative to the lead shock (D− u)/au. The boundary
conditions at the Neumann state (2.6) yield

ξ = 0 : µ=µN(τ )= (1+ 2α̇τ )+O(ε), π=πN(τ )= 2(1+ α̇τ )+O(ε). (3.8a,b)

The two-time-scale nature of the dynamics in the limit (3.1) is seen from (3.5) and
(3.6). The velocity of the simple wave (3.5), issued from the lead shock (ξ = 0) and
propagating toward the exit of the reaction zone (in the negative ξ direction) is larger
(by a factor 1/ε) than the velocity of the simple wave (3.6), issued from the reaction
zone and propagating in the opposite direction for sending the signal back to the lead
shock. Therefore, to leading order in the limit (3.1), the propagation mechanism in
(3.5) is considered as instantaneous compared to the simple wave (3.6) which thus
controls the dynamics of the inner structure. The resulting dynamics of the inner
structure is slow at the scale of the transit time tr and the reduced time scale of order
unity is

τ ≡ ε
t
tr
,

∂

∂t
=
ε

tr

∂

∂τ
. (3.9a,b)

The leading order of (3.5), ∂(π − µ)/∂ξ = 0, shows that, according to (3.8), the
quantity π − µ is constant, (π − µ) ≈ 1. Expressed in terms of the reduced time
(3.9) the leading order of (3.6) in the limit (3.1) takes the form of a single nonlinear
equation for the non-dimensional flow velocity µ(ξ, τ ) satisfying the boundary
conditions (2.10) and (3.8)

∂µ

∂τ
+ [µ− α̇τ (τ )]

∂µ

∂ξ
=

ẇ(T, Y)
2
− (1+µ)κ(τ), (3.10)

ξ = 0 : µ= 1+ 2α̇τ (τ ), ξ = ξb(τ ) : µ=µb(τ ), (3.11a,b)

where, skipping the matching difficulty mentioned in § 2.2, the function µb(τ ) is given
by the external solution, except for the CJ regime for which the dynamics of the inner
structure is decoupled from the flow of burnt gas by the sonic condition,

CJ wave: ξ = ξb(τ ) : µ= α̇τ (τ ) (3.12a,b)

(α̇τ = 0 in the planar CJ wave, κ = 0). If the flow of shocked gas is kept subsonic
relative to the lead shock, as is the case in the steady state, the term in brackets on the
left-hand side of (3.10) is positive everywhere across the inner structure and represents
the absolute value of the propagation velocity of the upstream-running mode (simple
wave) propagating in the shocked gas toward the lead shock

ξb < ξ 6 0 : (µ− α̇τ )= [au − (D− u)] /εau > 0, (3.13)

where the second relation in (3.7) has been used. The condition (µ− α̇τ ) > 0 means
that the flow is subsonic (relatively to the lead shock) everywhere in the inner
structure.
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897 A30-10 P. Clavin and B. Denet

3.2. Unsteady distribution of the heat-release rate
The compressional heating, which is a key mechanism across the (inert) lead shock
for the dynamics of a detonation wave, is negligible in the compressed gas and the
instantaneous distribution of heat-release rate ẇ(T, Y)=ω(ξ, α̇τ (τ )) can be expressed
in terms of the shock velocity α̇τ (τ ). This is because the system of equations (2.2)
for the entropy wave forms a closed set for T(ξ , τ ) and Y(ξ , τ ) in the Newtonian
limit (3.1). Moreover, according to the two-time-scale nature of the dynamics (3.9),
the unsteady terms are negligible in (2.2) so that, the solutions T(ξ , τ ) and Y(ξ , τ )
are the same as in the steady states, T(ξ , TN), Y(ξ , TN), but with TN replaced by the
instantaneous value TN(τ ), which is expressed in terms of the unsteady shock velocity
α̇τ (τ ) by (2.3) and (2.6),

(M2
− 1)� 1 :

TN

Tu
≈ 1+ 2

γ − 1
γ + 1

(M2
− 1),

δTN(τ )

Tu
≈ 4

(γ − 1)
γ + 1

δM. (3.14a,b)

Introducing the activation energy E controlling the variation of the induction length
with the Neumann temperature δl/l= (E/kbTN)δTN/TN ,

δl
l
=−b α̇τ where b≡

4
γ + 1

(γ − 1)ε
E

kBTu
, (3.15)

and assuming for simplicity that the thermal sensitivity of the induction length is
dominant, the shape of ω(ξ, α̇τ (τ )), the solution of (2.2) in the limit (3.1) corresponds
simply to a rescaling of the length scale by the time-dependent induction length,

ω(ξ, bα̇τ )= ebα̇τωoCJ (ξ ebα̇τ ),

∫ 0

−∞

ω(ξ, bα̇τ ) dξ = 1, (3.16a,b)

where ωoCJ (ξ) is the steady distribution of the planar CJ detonation,
∫ 0
−∞
ωoCJ (ξ) dξ =1.

The scaling law (3.16) was shown to be satisfactory for H2–O2 detonations, see Clavin
& He (1996). Since the curvature is not involved explicitly in (2.2), the expression for
ω(ξ, α̇τ (τ )) is the same as in the planar geometry considered previously. Equations
(3.10)–(3.11) and (3.16) are the extension of the detonation model of Clavin &
Williams (2002) to a spherical geometry (κ 6= 0). In order to overcome the technical
difficulty for matching the inner structure with the external flow, a bounded reaction
zone of the CJ wave is assumed,

ξ 6−1 : ωoCJ = 0 and ξ =−1 : dωoCJ/dξ |ξ+1=0+ = hω > 0, hω =O(1).
(3.17a,b)

The length scales of the inner structure and of the external flow (rarefaction
wave) being clearly separated, the approximation (3.17) does not produce relevant
modifications since the heat release in the tail of the distribution of heat release is
negligible. Equation (3.17) will be used in the following, except in § 4.2, where the
square-wave model is revisited.

The instantaneous distribution of heat release (3.16) depends on the time through
ebα̇τ (τ ) and on the space through ξebα̇τ (τ ) so that the instantaneous thickness of the inner
structure follows the same Arrhenius law as the induction length, ξb= e−bα̇τ ξboCJ . The
reference time scale tr in (2.2)–(2.9) being the reaction time at the Neumann state of
the planar CJ solution in steady state, ξboCJ =−1, the instantaneous position (relative
to the shock) of the exit of the inner structure zone is ξ =−e−bα̇τ (τ )

ξboCJ =−1 ⇒ ξb(τ )≈−e−bα̇τ (τ ). (3.18)
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The instantaneous distribution of reaction rate (3.16) has a bell-shaped form similar
to that of ωoCJ (ξ)

ξ = ξb(τ )≈−e−bα̇τ (τ ) : ω(ξ, α̇τ )≈ 0, e−bα̇τ (τ ) < ξ 6 0 : ω(ξ, α̇τ ) > 0, (3.19a,b)

with a maximum of order unity at ξ = ξm, ξm ∈ [−e−bα̇τ (τ ), 0] such that the reduced
distance |ξm+ e−bα̇τ (τ )|< 1 is not small (lim1/b→0 |ξm− ξb| 6= 0) as is typically the case
in real detonations. This difference from the one-step reaction model in the limit of
large activation energy (leading to the square-wave model lim1/b→0 |ξm − ξb| = 0) is
essential for a well-posed problem of detonation dynamics.

4. Peninsula of quasi-steady CJ waves in spherical geometry
A preliminary step before studying the dynamics in the phase space of velocity–

radius D − rf consists in determining the nonlinear relation between the propagation
velocity DCJ of spherical CJ detonation and the radius of the lead shock rf , DCJ (κ)
assuming a steady-state approximation. This was performed by He & Clavin (1994)
for large heat release and for a highly thermal-sensitive square-wave model and also
by Yao & Stewart (1995) for a one-step reaction rate in the limit of large activation
energy. The analysis of the curvature-induced quenching is presented below in the
limit of small heat release.

4.1. Steady-state approximation of curved CJ detonations
Usually, the steady-state approximation is accurate if the characteristic time of
evolution of the propagation velocity is larger than the response time of the inner
detonation structure, which is possible for stable detonations. Even though the
condition is satisfied, the steady-state approximation is problematic for spherical
CJ waves because the unsteady correction is of the same order of magnitude as the
curvature effect, as shown below, see (4.19) and the discussion in § 7.3. Nevertheless,
the steady-state approximation is worth considering in a first step since it sheds light
on the initiation process. The steady-state approximation of the inner structure in the
limit (3.1) corresponds to the solution of (3.10) when the unsteady term ∂µ/∂t is
neglected. Denoting the reduced flow and the propagation velocity of the curved CJ
detonation in steady state by µ

CJ
(ξ) and α̇τCJ respectively, equation (3.10) yields[

µ
CJ
(ξ)− α̇τCJ

] dµ
CJ

dξ
=

1
2

ebα̇τCJωoCJ (ξebα̇τCJ )− [1+µ
CJ
(ξ)]κ, (4.1)

ξ = 0 : µ
CJ
= 1+ 2α̇τCJ . (4.2)

As recalled in § 2.2, the reaction rate of CJ waves is not exactly zero at the sonic
point,

ξ = ξ sCJ
: µ

CJ
= α̇τCJ ⇒ ebα̇τCJωoCJ (ξebα̇τCJ )= 2[1+µ

CJ
(ξ sCJ

)]κ 6= 0. (4.3)

According to (3.17), the end of the reaction zone corresponds to ξ =−e−b α̇τCJ so that
ξ sCJ

>−e−b α̇τCJ . When the reduced curvature κ is small, the reaction rate at the sonic
point is also small, of order κ according to (4.3). The difference between ξ sCJ

and
−e−b α̇τCJ introduces a negligible correction in the limit κ� 1, and the sonic condition
can be considered to hold at the end of the reaction

ξ ≈−e−b α̇τCJ : µ
CJ
= α̇τCJ (κ)≡

[DCJ (κ)−DoCJ ]

εau
, (4.4)
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897 A30-12 P. Clavin and B. Denet

see § 5.1 for a detailed proof. Integration of (4.1) from ξ =−e−b α̇τCJ to ξ = 0, using
the normalization condition (3.16), then yields

(1+ α̇τCJ )
2
= 1− 2κ

∫ 0

−e−b α̇τCJ

(1+µ
CJ
) dξ, (4.5)

showing that the reduced CJ velocity α̇τCJ is as small as κ , α̇τCJ ∝ κ . When the
thermal sensitivity is large, b� 1, the inner structure of the detonation is a strongly
nonlinear function of the detonation velocity. As a result, the nonlinear expression
for the propagation velocity in term of the curvature α̇τCJ (κ) involves a turning point
in the phase space of ‘velocity–radius’, as shown now.

4.2. Curvature-induced quenching predicted by the square-wave model
The square-wave model (which is well known to generate a singular dynamics)
is useful for enlightening the quasi-steady mechanisms that are associated with a
high thermal sensitivity. This model helps us to understand the physical origin of
the C-shaped form of the curve α̇τCJ (κ). The square-wave approximation of the inner
structure consists in a uniform profile µ(ξ, τ ), equal to its value at the Neumann state
in (4.1), µ

CJ
(0, τ ) = 1 + 2α̇τCJ . Equation (4.5) then takes the form of the nonlinear

equation (4.7) for α̇τCJ∫ 0

−e−b α̇τCJ

[
1+µ

CJ
(ξ)
]

dξ =
[
1+µ

CJ
(0)
]

e−b α̇τCJ = 2(1+ α̇τCJ )e
−b α̇τCJ , (4.6)

(1+ α̇τCJ )
2
= 1− 4κ (1+ α̇τCJ )e

−b α̇τCJ . (4.7)

For expanding spherical detonations (κ > 0) the branch of physical solutions α̇τCJ (κ)

of (4.7) corresponds to values of α̇τCJ in the range α̇τCJ ∈ [−1, 0] for κ ∈ [0, +∞],
limκ→∞ α̇τCJ =−1, limκ→0 α̇τCJ = 0. The detonation velocity of curved CJ detonations
is smaller than the velocity of the planar CJ detonation,

κ > 0 : α̇τCJ < 0 ⇒ DCJ (κ) <DoCJ , κ = 0 : α̇τCJ = 0 ⇒ DCJ =DoCJ . (4.8a,b)

For a thermal sensitivity that is sufficiently small, the function κ(α̇τCJ )=−(α̇τCJ/4)(2+
α̇τCJ )e

bα̇τCJ /(1+ α̇τCJ ) in (4.7) is decreasing monotonically from infinity to zero when
α̇τCJ increases from −1 to 0, dκ/dα̇τCJ < 0 so that the detonation velocity decreases
monotonically when the curvature increases from 0 to +∞ (radius decreases from
∞ to 0). The situation is different for a thermal sensitivity that is sufficiently large;
the function κ(α̇τCJ ) presents two local extrema in the range α̇τCJ ∈ [−1, 0] so that the
curve α̇τCJ (κ) has an S-shaped form. This is already the case for b= 3.2. For a large
thermal sensitivity b� 1 the situation is the same as in He & Clavin (1994), see
figure 1 below. The graph ‘propagation velocity of the spherical CJ detonation versus
the curvature’ DCJ (κ) presents a turning point at a critical radius r= r∗ corresponding
to a small curvature κ∗ = O(1/b). The difference (DoCJ − DCJ )/(εDoCJ ) > 0 is small,
of order 1/b, in the upper branch of solutions (the one going to DoCJ at large
radius, see figure 1) while it is of order unity in the third branch of solutions
(not represented in figure 1) which is non-physical because it corresponds to a too
small Neumann temperature. In other words, there is no physical solution for r < r∗.
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FIGURE 1. Phase space ‘detonation velocity versus radius’ (y–x) in the non-dimensional
form y≡ b α̇τ = (b/ε)(D−DoCJ )/au, x≡ 1/(2bκ). The equation of the CJ peninsula y

CJ
(x)

is (4.12) and the quasi-steady trajectories y(x) are given in (7.1). The trajectories y1(x)
and y2(x) represent respectively success of detonation initiation and failure.

Focusing our attention on radii of the same order of magnitude as the critical radius,

1/b� 1 : κ =O(1/b), |α̇τCJ | =O(1/b) ⇒ e−b α̇τCJ =O(1), (4.9a,b)

the terms smaller than 1/b can be neglected in (4.7),

1/b� 1 : −α̇τCJ = 2κe−b α̇τCJ > 0. (4.10)

In the limit b� 1 the quantities of order unity for the propagation velocity and the
radius in the upper branch of detonations are respectively,

y
CJ
≡ b α̇τCJ =

b
ε

(
DCJ −DoCJ

au

)
,

1
x
≡ 2 b κ = 2

b
ε

(
loCJ

rf

)
> 0, (4.11a,b)

where loCJ = autr denotes the thickness of the planar CJ detonation, tr being the
reaction time at the Neumann state (reference time) and, according to (3.15),
b/ε = 2(γ − 1)E/kBTu. The propagation velocity of a quasi-steady spherical CJ
wave y

CJ
(x) in term of its radius x is, according to (4.10), the solution to

1/b� 1 : −y
CJ

ey
CJ = 1/x ⇔ y

CJ
+

1
x

e−y
CJ = 0, (4.12)

dy
CJ

dx
=

e−y
CJ

x2

1
1+ y

CJ

. (4.13)

Because the terms of order ε have been neglected in (4.1), equations (4.10) and (4.12)
are valid in the limit of small heat release (ε� 1) for intermediate values of 1/b,

ε� 1/b� 1. (4.14)
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The solution (4.12), y
CJ
(x), is plotted in blue in figure 1, where the arrows indicate

the direction of propagation (y
CJ
>−1 : dy

CJ
/dx> 0; y

CJ
<−1 : dy

CJ
/dx< 0). The critical

value r∗f is larger than the detonation thickness of the planar CJ wave, r∗f � loCJ ,

y∗
CJ
=−1, x∗ = e, r∗f /loCJ = 2 e b/ε� 1, (DoCJ −D∗)/au = ε/b� 1, (4.15a−d)

corresponding effectively to the orders of magnitude anticipated in (4.9),

b� 1 : κ∗ = (2 e)−1/b, α̇
∗

τCJ
=−1/b. (4.16a,b)

Close to the critical radius, the CJ velocity y
CJ

varies as the square root of the radius x

0< (x− e)/e� 1 : y
CJ
≈−1+

√
2
√
(x− e)/e. (4.17)

According to (4.12), the two branches of solutions 0 > y
CJ+
(x) > y

CJ−
(x) for x > x∗

(rf > r∗f ) merge at the critical radius rf = r∗f ; x = x∗: y
CJ+
= y

CJ−
= y∗ = −1. Both

branches correspond to detonation velocities smaller than the velocity of the planar CJ
wave, y

CJ±
< 0, D<DoCJ . According to (4.13), the upper (lower) branch of solutions

y
CJ+
(x)>−1, (y

CJ−
(x)<−1,) is an increasing (decreasing) function of x, limx→∞ y

CJ+
=

0 (limx→∞ y
CJ−
=−∞), see figure 1. The solution DCJ (rf ) corresponding to y

CJ+
is an

increasing function of the radius from D∗ at rf = r∗f up to the velocity of the planar CJ
detonation for infinitely large radius, limrf /loCJ→∞

DCJ =DoCJ . This branch of solutions
is shown in § 7 to play the role of an attractor for the quasi-steady trajectories when
the initiation process is successful. The physical mechanism of the curvature-induced
quenching is clearly identified from (4.7) to be the thermal sensitivity, responsible
for the nonlinear variation of the detonation thickness with the propagation velocity
through the Neumann temperature and the Rankine–Hugoniot conditions.

In the opposite limit of a large propagation Mach number M � 1 used in He &
Clavin (1994), the expression of the Rankine–Hugoniot condition

(γ − 1)M2
� 1 :

δTN

TN
≈ 2

δM
M

(4.18)

differs quantitatively from (3.14). However, the same phenomenology is described in
the limit of small heat release (3.1) which will helpful in the following to provide
us with a qualitative description of the unsteady effects in the initiation process. The
dynamics of a stable detonation on the upper branch of the CJ peninsula is effectively
slow, except very close to the turning point. Unfortunately, according to (4.11), (4.13)
and drf /dt=DCJ , the unsteady term is of the same order of magnitude as the curvature
term, 1/b,

dy
CJ

dτ
=

1
2 b

e−y
CJ

x2

1
1+ y

CJ

. (4.19)

4.3. Critical conditions for a smooth distribution of the reaction rate in the
limit (4.14)

To leading order in the limit b� 1, the results (4.12)–(4.13) obtained with the square-
wave model are still valid for a smooth distribution of the reaction rate provided the
factor 2 in the expression (4.11) of 1/x is replaced by λ ∈ [1, 2] where

b� 1 : 1/x= λ b κ, λ≡ 1+
∫ 0

−1
µoCJ (ξ) dξ, x∗= e ⇒ r∗f /loCJ = λ e b/ε, (4.20a−c)
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µoCJ (ξ) being the planar CJ solution obtained from (4.1) for κ = 0 and α̇τ = 0

µoCJ (ξ)=

√∫ ξ

−1
ωoCJ (ξ

′) dξ ′,
∫ 0

−1
ωoCJ (ξ

′) dξ ′ = 1, 0<µoCJ (ξ) < 1, 1< λ< 2.

(4.21a,b)
The proof is as follows. Consider a spherical CJ wave in the limit 1/b� 1, y

CJ
≡

bα̇τCJ = O(1), κ = O(1/b), µbCJ
= α̇τCJ = O(1/b). Neglecting terms smaller than 1/b

in (4.1), the function µ
CJ
(ξ) in the brackets on the right-hand side can be replaced

by the steady solution for κ = 0 but with bα̇τCJ 6= 0. This is the zeroth-order solution
µoCJ

of the curved CJ wave µ
CJ
(ξ) which can be expressed in terms of the velocity

distribution of the planar CJ solution µoCJ (ξ) in the form µoCJ
(ξ) = µoCJ (ξey

CJ ), as
shown by (4.1), (4.2) and (4.4) in which the terms of order 1/b are neglected

µoCJ

dµoCJ

dξ
=

1
2

ey
CJωoCJ (ξ ey

CJ ), ξ = 0 : µoCJ
= 1, ξ =−e−y

CJ : µoCJ
= 0,

(4.22a−c)

µ2
oCJ
(ξ)=

∫ ξ

−e−yCJ

ey
CJωoCJ (ξ

′ ey
CJ ) dξ ′, µoCJ

(ξ)=µoCJ (ξey
CJ ), (4.23a,b)

where µoCJ (ξ) is the planar solution (4.21). Equation (4.23) means that the leading
order of the distribution µ

CJ
(ξ) in the limit b � 1 is obtained from the planar CJ

solution by rescaling the length with the thickness of the spherical CJ detonation. At
the leading order in the limit b� 1, integration of µ

CJ
(ξ) yields∫ 0

−e−yCJ

µ
CJ

dξ ≈ e−y
CJ

∫ 0

−1
µoCJ (z) dz= e−y

CJ (λ− 1). (4.24)

Introducing (4.24) into (4.5) leads to (4.12) with the definition (4.20) of x, x=1/(bλκ).
The function µoCJ (ξ) > 0 varying monotonically from 0 at the exit of the reaction
zone of the planar CJ detonation (ξobCJ =−1) to 1 at the Neumann state (ξ = 0), 0<∫ 0
−1 µoCJ (ξ

′) dξ ′< 1, the parameter λ is in between 1 and 2, 1< λ< 2. By comparison
with (4.15), the critical radius for a smooth distribution in (4.20) is smaller than for
the square-wave model by a factor λ/2< 1.

5. Quasi-steady inner structure of spherical detonations

Assuming that the inner structure of spherical detonations is in quasi-steady state
during the decay is instructive, even though it will be shown that this approximation
is not accurate. Consider first the CJ regime.

5.1. Curved CJ detonation in steady state. Sonic point
Using the notation (4.20), equation (4.1) takes the form

2
[
µ

CJ
(ξ , y

CJ
)− y

CJ
/b
] dµ

CJ

dξ
= ey

CJωoCJ (ξey
CJ )−

1
b

[
1+µoCJ (ξey

CJ )
] 2
λx
, (5.1)
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where the y
CJ

- dependence of the velocity distribution has been written explicitly in
µ

CJ
(ξ , y

CJ
). Integration of (5.1) from the Neumann state (4.2) yields[
µ

CJ
(ξ , y

CJ
)−

y
CJ

b

]2

=

(
1+

y
CJ

b

)2

−

∫ 0

ξeyCJ

ωoCJ (ξ
′) dξ ′

+

[
−ξey

CJ +

∫ 0

ξeyCJ

µoCJ (ξ
′) dξ ′

]
2
b

e−y
CJ

λ x
, (5.2)

which takes the following form when using (3.16), (4.20) and (4.21),
∫ 0
−1 ωoCJ (ξ

′) dξ ′

= 1, λ≡ 1+
∫ 0
−1 µoCJ (ξ

′) dξ ′ and µoCJ (ξ)=
∫ ξ
−1 ωoCJ (ξ

′) dξ ′,[
µ

CJ
(ξ , y

CJ
)−

y
CJ

b

]2

−
y2

CJ

b2
=µ2

oCJ
(ξey

CJ )

+
2
b

{[
y

CJ
+

e−y
CJ

x

]
−

e−y
CJ

λ x

[
(ey

CJ ξ + 1)+
∫ ξeyCJ

−1
µoCJ (ξ

′) dξ ′
]}

. (5.3)

In the limit (4.14), equation (5.3) shows that the difference µ
CJ
(ξ , y

CJ
) − µoCJ (ξey

CJ )

is smaller than unity. Neglecting terms of order 1/b2, equations (4.12) with (4.20) are
recovered from (5.3) if the sonic condition

(
µ

CJ
− y

CJ
/b
)
= 0 is assumed to hold at the

end of the heat release, ξ
CJ

ey
CJ =−1 where ξ =−1 is the reduced position of the exit

of the reaction zone in the planar CJ wave, ωoCJ (−1)= 0; ξ 6−e−y
CJ :ωoCJ (ξey

CJ )= 0
and µoCJ (ξey

CJ )= 0, see (4.21). In fact, the sonic condition holds inside the detonation
thickness just before the end of the exothermal reaction. Denoting by ξ sCJ

its position,

ξ = ξ sCJ
:
(
µ

CJ
− y

CJ
/b
)
= 0, (5.4)

a first relation linking y
CJ

and ξ sCJ
is given by (5.2)–(5.3)

µ2
oCJ
(ξ sCJ

ey
CJ )+

2
b

[
y

CJ
+

e−y
CJ

λ x

∫ 0

ξ sCJ
eyCJ

[1+µoCJ (ξ
′)] dξ ′

]
+

y2
CJ

b2
= 0. (5.5)

The second relation necessary to determine y
CJ

and ξ sCJ
is obtained from (5.1) if the

derivative dµ
CJ
(ξ , y

CJ
)/dξ |ξ=−1 is bounded

ey
CJωoCJ (ξ sCJ

ey
CJ )=

1
b

[
1+µoCJ (ξ sCJ

ey
CJ )
] 2
λx
⇒ ωoCJ (ξ sCJ

ey
CJ )=O(1/b) (5.6)

showing that the reaction is not completed at the sonic point ωoCJ (ξ sCJ
ey

CJ ) > 0,
ξ sCJ

>−e−y
CJ , the reaction rate being, however, small, of order 1/b. Subtracting (5.5)

from (5.3) yields

ξ > ξ sCJ
>−e−y

CJ :

[
µ

CJ
(ξ , y

CJ
)−

y
CJ

b

]2

=

∫ ξeyCJ

ξ sCJ
eyCJ

ωoCJ (ξ
′) dξ ′ −

1
b

[
(ξ − ξ sCJ

)ey
CJ +

∫ ξeyCJ

ξ sCJ
eyCJ

µoCJ (ξ
′) dξ ′

]
2e−y

CJ

λx
, (5.7)
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so that the right-hand side should be positive

∫ ξeyCJ

ξ sCJ
eyCJ

ωoCJ (ξ
′) dξ ′ >

1
b

[
(ξ − ξ sCJ

)ey
CJ +

∫ ξeyCJ

ξ sCJ
eyCJ

µoCJ (ξ
′) dξ ′

]
2e−y

CJ

λx
. (5.8)

The inequality is automatically satisfied in the range 0< (ξ − ξ sCJ
)=O(1) for b� 1

and |y
CJ
| = O(1) because the functions ωoCJ (ξ) and µoCJ (ξ) are of order unity and

positive for ξ >−1. Both sides of (5.8) are increasing functions of ξ from 0 at ξ = ξ sCJ
.

The case 0< (ξ − ξ sCJ
)� 1 is easily investigated within the model (3.17) which will

be used from now on. According to (3.17), the distribution of the reaction rate in the
planar CJ wave is linear close to ξ = −1, 0 < ξ + 1� 1 : ωoCJ ≈ hω(ξ + 1), hω > 0
and, according to (4.21), the slope of the velocity profile in the plane CJ wave is also
positive and of order unity at the end of the reaction zone

ξ 6−1 : µoCJ = 0 but dµoCJ/dξ |ξ+1=0+ = hµ > 0, (5.9)

0< (ξ + 1)� 1 : µoCJ (ξ)≈ hµ(ξ + 1), hµ > 0, hµ ≡
√

hω/2=O(1). (5.10a,b)

Then, according to (5.6), 0 < (ξ sCJ
+ e−y

CJ ) = O(1/b), the sonic condition can be
safely applied at the exit of the reaction zone ξ =−e−y

CJ . The first term of a Taylor
expansion around ξ = ξ sCJ

is the same on both sides of (5.8), and the second-order
term satisfies the inequality (5.8) in the limit b � 1 when the second derivative
d2ωoCJ/dξ

2
|ξ+1= 0+ is of order unity (smaller than b). A Taylor expansion of (5.3)

around the sonic point using (5.5)–(5.6) then yields

0 6 (ξ − ξ sCJ
)� 1 : µ

CJ
(ξ , y

CJ
)−

y
CJ

b
≈ hµ ey

CJ (ξ − ξ sCJ
)
[
1+O (1/b)

]
(5.11)

ξ < ξ sCJ
: µ

CJ
(ξ , y

CJ
)− y

CJ
/b= 0, (5.12)

and, more generally, one has

x > e : µ
CJ
(ξ , y

CJ
(x))=µoCJ (ξey

CJ
(x))
[
1+O (1/b)

]
, (5.13)

valid everywhere inside the inner structure of the detonations on the upper branch of
the CJ peninsula, even near the turning point x= e where, to leading order, y

CJ
≈−1.

The correction to (4.12)–(4.13) is then shown to be negligible

y
CJ
+

1
x

e−y
CJ =O(y2

CJ
/b),

dy
CJ

dx
=

e−y
CJ

x2

1
1+ y

CJ

[
1+O(1/b)

] . (5.14a,b)

5.2. Weakly overdriven regimes of spherical detonation
Consider now spherical detonations in a weakly overdriven regime. For a small
curvature (4.9), to leading order in the limit (4.14), the term µ on the right-hand of
(3.10) can be replaced by µoCJ (ξebα̇τ ). Denoting the steady-state approximation by an
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overbar, the equation for µ(ξ) when the unsteady term is neglected in (3.10) reads

[µ(ξ)− α̇τ ]
dµ
dξ
=

1
2

ebα̇τωoCJ (ξ ebα̇τ )− [1+µoCJ (ξebα̇τ )]κ, ξ = 0 : µ= 1+ 2α̇τ

(5.15a,b)
and the boundary condition at the exit of the inner structure, ξ = ξb, of a slightly
overdriven detonation takes the form

ξ = ξb : µ≈µb, 0< (µb − α̇τ )� 1. (5.16a,b)

If the boundary condition µ = µb is taken at the end of the reaction ξ = −e−bα̇τ ,
equation (5.15) would lead to a negative slope at the end of the inner structure,
(µb− α̇τ ) dµ/dξ ≈−κ < 0. This is not satisfactory for the problem of direct initiation
since the flow in the rarefaction wave is an increasing function of the radius and the
reaction is exothermic. In fact the unsteady term cannot be neglected in the matching
region between the inner structure and the inert rarefaction flow (external flow). In
this intermediate zone, the flow is quasi-uniform at the scale of the thickness of the
inner structure and all the terms of (3.10) are small, of the order of magnitude of
the reduced curvature 1/κ =O(1/b) at most, in particular, the reaction rate,

ebα̇τωoCJ (ξb ebα̇τ )=O(1/b), (5.17)

the term involving the flow gradient is even smaller

[µ− α̇τ ] dµ/dξ = o(1/b). (5.18)

In that respect, the situation is similar to the CJ case, the place where the external
condition (5.16) µ=µb is applied inside the inner structure is fairly close to the end
of the reaction

b� 1 : ξb =−e−bα̇τ [1+O(1/b)]. (5.19)

and the difference from −e−bα̇τ will not influence the leading order of the propagation
velocity and the calculation for a given flow velocity of burnt gas µb proceeds as
in § 5.1. Focusing our attention on propagation velocities and radii close to their
critical values, D∗ and r∗f introduced in §§ 4.2–4.3, it is convenient to introduce the
dimensionless variables y and x of order unity, similar to (4.11),

y≡ bα̇τ =
b
ε

(
D−DoCJ

au

)
=O(1),

1
x
≡ λbκ =O(1), (5.20a,b)

the parameters ε� 1, b� 1 and λ ∈ [1, 2] being defined in (3.1), (3.15) and (4.20)
respectively. Integration of (5.15) from the Neumann state at ξ = 0 leads to an
expression similar to (5.3)[

µ(ξ)−
y
b

]2

=
y2

b2
+µ2

oCJ
(ξey)

+
2
b

{[
y+

e−y

x

]
−

e−y

λ x

[
(eyξ + 1)+

∫ ξey

−1
µoCJ (ξ

′) dξ ′
]}
. (5.21)
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The boundary condition in the burnt gas (5.16) using (5.19) and µoCJ (ξbey)=O(1/b),
leads to the relation between y and µb

bµ2
b/2− yµb = y+ e−y/x+O(1/b),

µb =O(1/
√

b) : bµ2
b/2= y+ e−y/x+O(1/

√
b), (5.22)

where the last term on the right-hand side of (5.21) gives a negligible contribution, of
order 1/b. The ordering µb(τ )=O(1/

√
b) corresponds to a propagation velocity and a

radius of the same order of magnitude as at the turning point, y=O(1) and x=O(1).
For slightly overdriven detonations in a planar geometry κ= 0, equations (5.21)–(5.22)
reduce to (C 5)–(C 8) in appendix C and the classical square root relation is recovered
between the flow velocity in the burnt gas (overdrive factor) and the departure of the
detonation velocity from its CJ value, κ = 0, 0< α̇τ � 1 ⇒ µb ≈

√
2α̇τ . According

to (5.21), the ξ -variation of µ(ξ) is through the grouping ξey like in µoCJ (ξey). The
difference µ(ξ) − µoCJ (ξebα̇τ ) is of order 1/

√
b near the end of the reaction where

µoCJ (ξey) is of order 1/
√

b while the difference is smaller, of order 1/b, elsewhere
inside the inner structure of the detonation. The quasi-steady trajectories (5.22) are
analysed in § 7.1.

6. Hyperbolic equation for the decay of spherical detonations
Using the discontinuous model and starting with the Sedov–Taylor (Sedov 1946;

Taylor 1950b) self-similar solution of a strong blast wave in a cylindrical and/or
spherical geometry, the numerical simulations of direct initiation of a detonation
propagating with a Mach number M substantially larger than unity M� 1 show that
the CJ velocity is reached at finite time and finite radius with a transition analysed by
Liñan et al. (2012). In order to describe the unsteady effects near the CJ regime, the
limit of small heat release will be considered for the response of the inner detonation
structure to the decrease rate of the quasi-uniform external flow at the end of the
reaction zone. At the leading order in the limit (4.14), the small gradient of this
external flow is assumed to have a negligible effect upon the inner structure.

6.1. Flow of burnt gas near the detonation. Closure relation
In the analysis of Liñan et al. (2012) (discontinuous model and M� 1), near the CJ
regime, the quasi-transonic flow (relative to the detonation front) is described by a
Burgers-like equation. The same equation is derived in the limit (3.1), 0<M− 1� 1
from (3.10) for the flow of burnt gas close to the end of the reaction zone

ξ 6 ξb, |ξ | =O(1) : ∂µ/∂τ + (µ− α̇τ )∂µ/∂ξ =−κ(τ) [1+µ] , (6.1)

leading to the Burgers-like equation obtained by Liñan et al. (2012)

α̇τ <µ< 1 : ∂µ/∂τ +µ∂µ/∂ξ =−κ. (6.2)

The curvature on the right-hand is quasi-constant when the radius gets close to the CJ
condition. Going back to the dimensional form by using (3.2), (3.4), (3.7) and (3.9),
equation (6.1) takes the more explicit form

u(x, t), x= r− rf (t) :
∂u
∂t
+ [a− (D− u)]

∂u
∂x
=−

a
r

u, (6.3)
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describing the propagation of the upstream-running mode in the rarefaction flow near
the detonation where this flow is quasi-transonic, a�a− (D−u)>0. In the laboratory
frame, the flow behind an expending detonation (drf /dt>0, ξ 6 ξb<0) decreases when
the distance from the detonation front increases; the flow is an increasing function of
the radius, ∂u/∂r> 0. The burnt-gas flow of the rarefaction wave varies in space on
a length scale lext ≡ [(1/u)∂u/∂r]−1 typically of the order of magnitude of the radius
of the lead shock rf . When the radius is larger than the detonation thickness, rf � l,
the length scale of the external flow is larger than the detonation thickness lext � l.
According to the quasi-transonic flow of burnt gas when approaching the CJ regime,
06 a− (D− u)� a, the second term on the left-hand side of (6.1) and (6.3) (the one
involving the derivative with respect to space) is smaller than the right-hand side and
can be neglected. Therefore, near the end of the reaction zone, the instantaneous flow
ub(t) or µb(τ ) is simply a function of the flow curvature

dµb

dτ
=−κ(τ)[1+µb],

1
ub

dub

dt
=−

a
rf
, µb(τ )= [1+µbi]e−

∫ τ
0 κ(τ

′) dτ ′
− 1, (6.4a−c)

where the subscript i denotes the initial condition at τ = 0. Introducing the reduced
radius of the shock front (4.20), x = 1/(λ b κ), and the definition (3.3) of α̇τ , the
relations D≡ drf /dt, d/dτ = (tr/ε) d/dt and loCJ ≡ autr, lead to

dx
dτ
=

1
λb

[1+ ε(1+ α̇τ )]≈
1
λb
, x(τ )− xi ≈

τ

bλ
, µb(τ )≈µbi − ln(x/xi), (6.5a−c)

where the last relation is obtained from the first relation in (6.4) for µb� 1.
According to Liñan et al. (2012), the scale separation insuring the validity of

(6.4)–(6.5) breaks down abruptly as soon as the CJ regime is reached. Moreover, this
occurs at a finite radius. Therefore the transition to the Chapman–Jouguet regime
is abrupt, producing quasi-instantaneously a jump of flow gradient (not of the flow
velocity) inside the rarefaction wave. The key point is that the velocity D(τ ) of an
overdriven detonation whose inner structure is in steady state cannot decrease below
the CJ velocity DoCJ so that the strong deceleration of the detonation (dD/dτ < 0)
which is induced by the rarefaction wave is stopped suddenly (dD/dτ ≈ 0) when
D(t) reaches DoCJ . Then, the velocity gradient of the external flow at the detonation
front jumps to infinity and remains infinite subsequently. Just after the transition, the
unsteady term ∂µ/∂τ in (6.1)–(6.2) drops off and, in contrast to (6.4), the curvature
term κ is now balanced by the nonlinear term leading to the well-known singularity
of the flow gradient in the Taylor–Zeldovich self-similar solution behind the front
of a spherical CJ detonation considered as a discontinuity, (µ − α̇τ )∂µ/∂ξ = −κ ,
⇒ (µ− α̇τ )|ξ=0− =−

√
−2 κ ξ , see Zeldovich (1942), Taylor (1950a) and Zeldovich &

Kompaneets (1960). The singular disturbance (jump of the velocity gradient) which is
generated instantaneously at the sonic point moves away from the detonation front in
the form of a weak discontinuity, see Liñan et al. (2012). As noticed first by Taylor
(1950a), the compatibility of a discontinuous model and an infinite slope of the
burnt-gas velocity at the detonation front is questionable. This point will be clarified
when the response of the inner detonation structure is taken into account making the
transition softer.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

35
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.359


Spherical detonations 897 A30-21

6.2. Formulation in the double limit ‘small heat release and large activation energy’
Solving the characteristic equation (3.10) (upstream-running mode) for the flow field
µ(ξ, τ ) satisfying the two boundary conditions (3.11), the detonation velocity α̇τ (τ )
appears as an eigenfunction of the problem. Using (3.16), (3.18) and the notation
(4.20) x≡ 1/(λ b κ), equations (3.10)–(3.11) take the form

∂µ

∂τ
+ [µ− α̇τ (τ )]

∂µ

∂ξ
=

1
2

ebα̇τωoCJ (ξ ebα̇τ )−
1
b
(1+µ)

1
λ x(τ )

, (6.6)

ξ = 0 : µ= 1+ 2α̇τ (τ ), ξ = ξb(τ ) : µ=µb(τ ), (6.7a,b)

where µb(τ ) is the flow of the rarefaction wave at the detonation wave. For the same
reason as in § 5.2, to leading order in the limit of large activation energy (4.14), the
external flow µb(τ ) is imposed on the detonation wave at the end of the reaction
rate, ξb(τ )≈−e−bα̇(τ ). According to (6.5), µb(τ ) is a decreasing function (dµb/dτ < 0,
dα̇τ/dτ < 0) down to the CJ regime µb= α̇τ which is reached at x= xiCJ and τ = τiCJ

τiCJ = b (xiCJ − xi)λ, ln(xiCJ/xi)=µbi − α̇τ (τiCJ ), (6.8a,b)

and the sonic condition keeps on verified afterwards τ > τiCJ ,

τ < τiCJ : µb(τ )=µbi − ln(x/xi) where x(τ )− xi ≈ τ/(bλ) (6.9)
τ > τiCJ : µb(τ )= α̇τ (τ ). (6.10)

Focusing our attention on propagation velocities and radii of the same order of
magnitude as their critical values D∗ and r∗f , |α̇τ | = O(1/b) and κ = O(1/b), it
is convenient to introduce the phase space of ‘velocity–radius’ y–x involving the
dimensionless variables (5.20) of order unity. Anticipating that the flow of burnt
gas is then of the same order of magnitude as in the slightly overdriven regimes
(5.22), µb =O(1/

√
b), α̇τ �µb, equation (6.8) yields ln(xiCJ/xi)≈µbi =O(1/

√
b) ⇒

(xiCJ − xi)/xi ≈µbi =O(1/
√

b),

µbi =O(1/
√

b) ⇒ τiCJ ≈ (bµbi)λxi =O(
√

b), (6.11)

and the boundary condition at the exit of the inner structure ξb ≈−e−y reduces to

0 6 τ < τiCJ : µb ≈µbi(1− τ/τiCJ ), τ > τiCJ : µb ≈ 0. (6.12a,b)

The first equation in (6.12) is obtained from (6.9) for τ of the same order of
magnitude as τiCJ , τ = O(

√
b) and the second equation holds since the order of

magnitude of |α̇τ | =O(1/b) is smaller than µb=O(1/
√

b) leading to the acceleration
of the flow of burnt gas, in agreement with (6.4) dµb/dτ = O(1/b). Introducing the
radius xiCJ ≡ x(τiCJ ) at which the CJ condition is reached and the functions of order
unity mb(τ ) and/or mb(x) (x being a linear function of τ ),

mb ≡
√

b/2µb =O(1), mbi ≡
√

b/2µbi =O(1), (xiCJ − xi)/xi ≈
√

2/b mbi
(6.13a−c)

equations (6.12) take the form

x< xiCJ : mb(x)=mbi −
√

b/2 ln(x/xi)⇔ τ < τiCJ : mb(τ )/mbi ≈ 1− τ/τiCJ , (6.14)
x> xiCJ : mb(x)= 0 ⇔ τ > τiCJ : mb(τ )= 0. (6.15)
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To leading order in the double limit (4.14), equations (6.6)–(6.7), written in the
notations (5.20), take the form

∂µ

∂τ
+

(
µ−

y
b

) ∂µ
∂ξ
=

1
2

ey(τ )ωoCJ (ξ ey(τ ))−
1
b
(1+µ)

1
λ x(τ )

, (6.16)

ξ = 0 : µ= 1+ 2y(τ )/b, ξ =−e−y(τ )
: µ=

√
2/b mb(τ ), (6.17a,b)

where mb(τ )=O(1) is given in (6.14)–(6.15). Except for a negligible slope of order
1/b in the induction layer, the flow field µ(ξ, τ ) is an increasing function of ξ , so
that no singularity of the wave breaking type is produced by the nonlinear term on the
left-hand side of (6.16). The trajectories approaching the CJ regime are parametrized
by an initial condition τ =0 : x= xi and mb=mbi where xi and mbi are non-dimensional
parameters of order unity. If the trajectory is in quasi-steady state at the initial state
(τ = 0), then, according to (5.22), the initial velocity yi is expressed in terms of mbi
and xi

yi + e−yi/xi =m2
bi +O(1/

√
b). (6.18)

There is, however, no reason for this condition to be verified by unsteady
trajectories.

A first rough comment on the initiation criterion can be made right now. If
the initial condition is such that the radius xiCJ is smaller than the critical radius,
xiCJ < x∗ (x∗ = e, see (4.20)), then the peninsula of the quasi-steady CJ waves in
§ 4 cannot be reached and no success of initiation is expected; see the quasi-steady
trajectories in figure 1 discussed in the next section. However, this criterion of
failure assumes implicitly that the critical radius is not strongly modified by unsteady
effects. This remains to be proven by future studies. In the following, our attention
is focused on the unsteady effects for xiCJ larger than x∗. In this case, the dynamical
problem reduces to an integral equation presented in § 8 for the propagation velocity
y(τ ). Before analysing the fully unsteady solution, it is worth discussing briefly the
detonation decay in the quasi-steady-state approximation.

7. Quasi-steady trajectories
In this section the trajectories y(x) in the phase space of ‘velocity–radius’ are

analysed in the double limit (4.14) when the unsteady term is neglected in (6.16), the
term µ(ξ, τ ) in the last term on the right-hand side (curvature term) being replaced by
the zeroth-order solution µoCJ (ξey(x)). This leads us to solve (5.15) with the boundary
condition ξ = −e−y(x)

: µ =
√

2/b mb and mb(x) given in (6.14). According to (5.22)
the result is

y(x)+
e−y(x)

x
=m2

b(x),
√

y(x)+ e−y(x)/x=mbi −
√

b/2 ln(x/xi). (7.1a,b)

Usually, the quasi-steady approximation is accurate for stable detonations whose
characteristic time of evolution is larger than the response time of the inner structure.
According to (6.11)–(6.12), the driving mechanism of the rarefaction wave evolves
effectively on a time scale larger than the response time of the inner structure of
a stable detonation, ∂/∂τ = O(1) since (1/µb) dµb/dτ = O(1/

√
b). Unfortunately,

such a slow forcing term µb(τ ) introduces unsteady effects that are not smaller
than the geometrical effect responsible of the S-shaped curve y

CJ
(x). Therefore, as

discussed in more detail in § 7.3, despite the separation of time scales between the
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fast response of the inner structure and the slow dynamics of the burnt gas, the
quasi-steady approximation is not accurate when the CJ condition is approached.
However, the ‘quasi-steady trajectories’ are worth investigating first for two reasons;
first, to enlighten the effect of the curvature of the detonation front by comparison
with the work of Liñan et al. (2012) in which the curvature is ignored and, second,
to exhibit the role of unsteadiness by comparison with the results when the unsteady
term is included.

7.1. Quasi-steady trajectory for failure of the initiation process

Two examples of C-shaped curves y(x),
√

y(x)+ e−y(x)/x = mb, corresponding to a
constant value mb, are plotted in figure 1 for mb = 0.71 and mb = 1, in comparison
with the CJ solution y

CJ
(x), mb = 0 : y

CJ
+ x−1e−y

CJ = 0. Inside the CJ peninsula, y+
x−1e−y < 0 (dashed domain) there is no solution. The turning point of the iso-m lines
y = y(x) is located at the intersection with the curve y = − ln x plotted in red in
figure 1, dy/dx|m2

=cost. = e−y/[x(x− e−y)]. Consider first a trajectory (7.1) which does
not intersect the upper branch of the CJ peninsula y

CJ
(x), xiCJ < x∗= e. The derivative

dy/dx becomes infinite at the intersection point with the curve y=− ln x, x= e−y< x∗,
y > y∗ = −1, dy/dx|x=e−y = ∞, where the derivative changes of sign, see (A 5) in
appendix A, dy/dx< 0 for x> e−y and dy/dx> 0 for x< e−y. The situation is different
at the critical point, x= e, y=−1 where the derivative is discontinuous, dy/dx|y+1=0+ 6=

dy/dx|y+1=0− , see (A 8). In any case, such singularities of the derivative dy/dx indicate
that the quasi-steady approximation cannot be valid when approaching the curve y=
− ln x. The part of the trajectory y(x) below the curve y=− ln x (y<− ln x, x< e−y,
dashed part of y2(x) in figure 1) is not meaningful and cannot be the extension of
the trajectory because, according to (6.5), the radius should increase with the time,
dx/dτ > 0. Even though the quasi-steady-state approximation is no longer valid near
the curve y=− ln x, the quasi-steady trajectories suggest a curvature-induced failure
mechanism.

7.2. Quasi-steady trajectories for a successful initiation process
Consider now a quasi-steady trajectory y(x) intersecting the upper branch of the CJ
peninsula y

CJ
(x), y

CJ
+ e−y

CJ /x = 0(mb = 0), at a radius xCJ > e not too close to the
critical radius, y(xCJ ) >−1, see y1(x) in figure 1. A sharp transition occurs at x= xCJ ,
reminiscent of the transition described by Liñan et al. (2012) and the cases x < xCJ

and x> xCJ have to be analysed separately. After expressing xCJ in term of the initial
condition x= xi, y= yi, mb =mbi > 0, equation (7.1) takes the form

x 6 xCJ :

√
y(x)+

1
x

e−y(x) =

√
b
2

ln
(xCJ

x

)
, (7.2)

in agreement with (6.14), showing that the trajectory y(x) is tangent to the upper CJ
branch yCJ (x) from above in the form[

y(x)− y
CJ
(x)
]
=

b/2
x2

CJ

[
1+ y

CJ
(xCJ )

](xCJ − x)2, (7.3)

valid for a vicinity of xCJ defined by the inequality 0< (x− xCJ )�
[
1+ y

CJ
(xCJ )

]
xCJ ,

see (A 9)–(A 18). In that respect, the quasi-steady decay towards the upper branch of
the CJ peninsula is similar to the decay towards the planar CJ velocity studied by
Liñan et al. (2012) with the discontinuous model (no curvature effect). However, the
convergence radius of (7.3) decreases to zero at the turning point (xCJ = e, yCJ + 1= 0)
stressing the critical nature of this point.
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7.3. Limitation of the steady-state approximation

Integration of (6.16) across the inner structure when µ is replaced by µoCJ (ξeby) in the
curvature term, gives that the unsteady term introduces an additional term into (7.1)[

y(τ )+
e−y(τ )

x(τ )

]
≈m2

b(τ )+ b
∫ 0

−e−y(τ )
(∂µ/∂τ) dξ . (7.4)

The validity of the quasi-steady assumption requires that the integral term on the right-
hand side of (7.4) is smaller than 1/b. This cannot be true for unstable detonations,
∂µ/∂τ = O(1), and attention is limited here on stable waves. In the spirit of the
multiple-time-scale approximation, neglecting the fast relaxation of the inner structure
toward its quasi-steady state, the unsteady term (∂µ/∂τ) can be evaluated by using
the zeroth order of the solution of (5.21) in the limit b� 1, µ0(ξ , y)=µoCJ (ξey),

∂µ0(ξ , y(τ ))/∂τ = (dy/dτ)ξey dµoCJ (ξ
′)/dξ ′|ξ ′=ξ ey, (7.5)

where dy(τ )/dτ is obtained from (7.1) using (6.5), dx/dτ = 1/(λb),(
1−

e−y

x

)
dy
dτ
=−

1
√

b

√
2 mb

λ x
+

1
b

e−y

λ x2 ⇒ y 6= − ln x :
dy
dτ
=O(1/

√
b). (7.6)

This shows that the unsteady term (∂µ/∂τ) is of order 1/
√

b, larger than the curvature
terms on the right-hand sides of (5.15) and (6.6). Then, the integral term in (7.4),
evaluated from (7.5) by an integral by parts,∫ 0

−e−bα̇τ

(∂µ0/∂τ) dξ =−(λ− 1)
dy
dτ

e−y, (7.7)

is of order 1/
√

b, and cannot be neglected in (7.4). Near the curve y = − ln x the
situation is even worth since the derivative dy/dτ diverges.

To summarize, despite the separation of time scales, the steady-state assumption is
not self-consistent near to the critical radius in the limit (4.14) since the unsteady
effects are stronger than the geometrical effects. Concerning the evolution of a stable
detonation on the upper branch of the CJ peninsula, the dynamics (4.19) is slow,
(1/DCJ ) dDCJ/dτ = O(ε/b2) but the unsteady term in (6.16) is of the same order of
magnitude as the curvature term, ∂µCJ/∂τ =O(1/b).

8. Unsteadiness of the inner structure for successful initiation

Consider trajectories for which xiCJ is larger than x∗, xi > x∗/(1 +
√

2/b mbi), so
that a successful initiation is expected. When approaching the CJ regime, we will
now show that the solution of the hyperbolic problem (6.16)–(6.17) for the flow field
µ(ξ, τ ) leads to an integral equation for the propagation velocity y(τ ).

8.1. Splitting
Introducing the decomposition

µ(ξ, τ )=µ0(ξ , τ )+µ1(ξ , τ ) (8.1)
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into (6.16)–(6.17) yields the following nonlinear equation for µ1(ξ , τ ), the field
µ0(ξ , τ ) being assumed to be known,

∂µ1

∂τ
+
∂

∂ξ

[
µ0µ1 +

µ2
1

2

]
−

y(τ )
b
∂µ1

∂ξ
+

1
b
µ1

λx
=H(ξ , τ )+W(ξ , τ ), (8.2)

where H(ξ , τ )≡−
∂µ0(ξ , τ )

∂τ
−

1
b

1
λ x(τ )

−
1
b
µ0(ξ , τ )

λ x(τ )
(8.3)

and W(ξ , τ )≡
1
2

[
ey(τ )ωoCJ (ξ ey(τ ))

]
−

[
µ0(ξ , τ )−

y(τ )
b

]
∂µ0(ξ , τ )

∂ξ
, (8.4)

with the boundary conditions (6.17) in the form

ξ = 0 : µ1 = 1+ 2
y(τ )

b
−µ0(0, τ ), ξ =−e−y(τ )

: µ1 =µb(τ )−µ0(−e−y(τ ), τ ).

(8.5a,b)

Our attention being focused on the decay of detonations whose radius is above
criticality x(τ ) > x∗, the choice of the first term µ0 in (8.1) is the steady solution
of the upper branch of the CJ peninsula µ

CJ
(ξ , y

CJ
(x)), namely the solution (5.3) in

which y
CJ
(x) is a function of the time through (6.5), x(τ )= xi + τ/bλ,

µ0(ξ , τ )=µCJ
(ξ , y

CJ
(x)), µ(ξ, τ )=µ

CJ
(ξ , y

CJ
(x))+µ1(ξ , τ ), (8.6a,b)

where, according to (4.12)–(4.13), (5.13) and (6.5),

µ
CJ
(ξ , y

CJ
(x))=µoCJ (ξey

CJ
(x))

[
1+O

(
1
b

)]
,

dy
CJ

dτ
=

1
b

e−y
CJ

λ x2

1
1+ y

CJ

, (8.7a,b)

and µoCJ (ξ) is the planar CJ solution (4.21). Sufficiently above the critical radius, the
derivative of µ

CJ
(ξ , y

CJ
(x)) with respect to time is small, of order 1/b,

∂ µ
CJ
(ξ , y

CJ
(x))

∂τ
=
∂ µoCJ (ξey

CJ
(x))

∂τ

[
1+O(1/b)

]
≈

1
λ b

dy
CJ

dx
ey

CJ ξµ′oCJ
(ξ ey

CJ ), (8.8)

where µ′oCJ
(ξ) denotes dµoCJ (ξ)/dξ . Expressing the last term in (8.4)

−

[
µ0 −

y
b

] ∂µ0

∂ξ
=−

[
µ

CJ
−

y
CJ

b

]
∂µ

CJ

∂ξ
+
(y− y

CJ
)

b
∂µ

CJ

∂ξ

by using (5.1) and (8.7), the two last terms on the right-hand side of (8.3) are
eliminated and the terms H(ξ , τ ) and W(ξ , τ ) are replaced by h(ξ , τ ) and w(ξ , τ )

h(ξ , τ )≡−b
∂ µoCJ (ξey

CJ
(x))

∂τ
=−

1
λ

dy
CJ

dx
ey

CJ ξµ′oCJ
(ξ ey

CJ )=−
1
λx2

ξµ′oCJ
(ξ ey

CJ )

1+ y
CJ

(8.9)

w(ξ , y, y
CJ
)≡

b
2

[
eyωoCJ (ξ ey)− ey

CJωoCJ (ξ ey
CJ )
]
+ ey

CJµ′oCJ
(ξ ey

CJ ) (y− y
CJ
), (8.10)

so that equations (8.2)–(8.4) take the form

∂µ1

∂τ
+
∂

∂ξ

[
µ

CJ
(ξ , y

CJ
)µ1 +

µ2
1

2

]
−

y(τ )
b
∂µ1

∂ξ
+

1
b
µ1

λx
=

1
b

[
h(ξ , τ )+w(ξ , y, y

CJ
)
]

(8.11)
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in which y and y
CJ

are functions of τ . Notice the divergence of h(ξ , τ ) at the turning
point y

CJ
=−1 coming from (8.7). The eigenfunction y(τ ) is determined by the two

boundary conditions (8.5), written when (4.2) is used µ
CJ
(0, y

CJ
)= 1+ 2y

CJ
/b

ξ = 0 : µ1 = 2[y(τ )− y
CJ
(x(τ ))]/b; ξ =−e−y(τ )

: µ1 =µb(τ )−µoCJ (−e(yCJ
−y)),

(8.12a,b)
where, using (8.7), the term of order 1/b has been omitted on the right-hand side of
the last equation in (8.12), the function µb(τ )=O(1/

√
b) being given in (6.11)–(6.12).

The expression for the boundary condition at the exit of the reaction zone in (8.12)
changes form depending on whether y> y

CJ
or y< y

CJ
since µoCJ (ξ) > 0 for ξ >−1

and µoCJ (ξ)= 0 for ξ <−1. Above the CJ peninsula, y(τ ) > y
CJ
(x(τ )), −e(yCJ

−y)>−1,
according to (5.10), the function µoCJ (−e(yCJ

−y)) is positive and of order unity when
hµ=O(1), so that the value of |µ1| is of order unity at the exit of the reaction zone.
Therefore, sufficiently far above the CJ peninsula, y(τ ) > y

CJ
(x(τ )), the velocity field

µ(ξ, τ ) corresponds to the leading order of the velocity distribution of the quasi-steady
solution (5.21) µ(ξ, y) in which y is replaced by y(τ ), µ≈µoCJ (ξey), see § A.2.

8.2. Integral equation
The decomposition (8.1) with (8.6) is suitable if the term µ1 is smaller than µoCJ

µ1(ξ , τ ) < µoCJ (ξey
CJ ), (8.13)

which is expected to be the case in the vicinity of the CJ peninsula, 0< y(τ )− y
CJ
�1,

so that, µoCJ (−e(yCJ
−y)) being small, the boundary conditions (8.12) are small,

0< (y(τ )− y
CJ
)� 1 ⇒ µoCJ (−e(yCJ

−y))� 1. (8.14)

Neglecting the terms of order µ1/b on the left-hand side, equation (8.11) yields

∂µ1

∂τ
+
∂

∂ξ

[
µoCJ (ξey

CJ )µ1 +
µ2

1

2

]
=

1
b

[h(ξ)+w(ξ , τ )] (8.15)

the functions h(ξ) and w(ξ , y(τ )) being given respectively in (8.9) and (8.10). When
the planar CJ detonation is stable or weakly unstable, the right-hand side of (8.15) is
small. We will come back to this point later. Moreover, according to (8.7) and (8.9),
dy

CJ
(x)/dτ = O(1/b), ∂µoCJ (ξey

CJ )/∂τ = O(1/b), the time variation of µoCJ (ξey
CJ ) is

negligible on the left-hand side of (8.15). In the steady-state solution, the nonlinear
term µ1∂µ1/∂ξ is essential, especially at the end of the reaction zone near the CJ
regime, even when µ1 is small. Then, according to (8.15), it is worth introducing the
function

Z(ξ , τ )≡ b
[
µoCJ (ξey

CJ )µ1 +µ
2
1/2
]
. (8.16)

Assuming that the terms µ1∂µoCJ (ξey
CJ )/∂τ =O(µ1/b) and µ1∂µ1/∂τ are negligible,

∂Z(ξ , τ )/∂τ ≈ bµoCJ (ξey
CJ )∂µ1/∂τ , (8.17)

equation (8.15) multiplied by bµoCJ (ξey
CJ ) takes the form[

∂

∂τ
+µoCJ (ξey

CJ )
∂

∂ξ

]
Z(ξ , τ )=µoCJ (ξey

CJ )[h(ξ)+w(ξ , y(τ ))], (8.18)
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with the boundary conditions (8.12)

ξ = 0 : Z = ZN(y(τ ))= 2(y(τ )− y
CJ
) (8.19)

ξ =−e−y(τ )
: Z = Zb(τ )≡

b
2
[µ2

b(τ )−µ
2
oCJ
(−e−[y(τ )−y

CJ
])], (8.20)

where the term bµ2
b(τ ) in Zb(τ ) is defined in (6.12), bµ2

b(τ )= O(1). Notice that the
second term in Zb(τ ) is also of order unity if (y

CJ
− y(τ ))=O(1/

√
b). Introducing the

change of variable ξ < 0→ ζ < 0 and the time lag |ζb(τ )|, ζb(τ ) < 0

ζ (ξ)≡−

∫ 0

ξ

dξ ′

µoCJ (ξ
′ey

CJ )
< 0, ζb(τ )≡ ζ (−e−y(τ ))=−

∫ 0

−e−y(τ )

dξ ′

µoCJ (ξ
′ey

CJ )
(8.21a,b)

and neglecting the time variation of µoCJ (ξey
CJ ), equations (8.18)–(8.20) yield[

∂

∂τ
+
∂

∂ζ

]
Z̃(ζ , τ )= F̃(ζ , τ ), F̃≡µoCJ (ξ(ζ )e

y
CJ )
[
h(ξ(ζ ))+w(ξ(ζ ), y(τ ))

]
(8.22a,b)

ζ = 0 : Z̃ = ZN(y(τ )), ζ = ζb(τ ) : Z̃ = Zb(τ ), (8.23a,b)

where Z̃(ζ , τ )≡ Z(ξ(ζ ), τ ) and ξ(ζ ) is an inverse function of ζ (ξ), which is well
defined since µoCJ (ξey

CJ ) is an increasing function of ξ . Using the development
recalled in appendix B the solution of (8.22)–(8.23) takes the form

Z̃(ζ , τ )=
∫ ζ

ζb(τb)

F̃(ζ ′, τ − ζ + ζ ′) dζ ′ + Zb(τ − ζ + ζb(τb)), (8.24)

where τb is a function of (ζ − τ) which is obtained by the intersection of the
characteristic curve going through (ζ , τ ) and the curve ζ = ζb(τ ), so that τb is the
solution to the equation

ζb(τb)− τb = ζ − τ , (8.25)

see figure 7 in appendix B. The boundary condition at the Neumann state ζ = 0 yields

ZN(y(τ ))=
∫ 0

ζb(τb)

F̃(ζ ′, τ + ζ ′) dζ ′ + Zb(τ + ζb(τb)), where ζb(τb)≡ ζ (−e−y(τb)).

(8.26)
Using the change of variable (8.21) dζ = dξ/µoCJ (ξey

CJ ), the solution of (8.26) takes
the form of an integral equation for y(τ )

2(y(τ )− y
CJ
)=

∫ 0

−e−y(τb)

[
h(ξ)+w(ξ , y(τ + ζ (ξ))

]
dξ + Zb(τ + ζb(τb)), (8.27)

where, according to (8.25),

ζ = 0 : τb = τ + ζb(τb) < τ, (8.28)

see figure 7 in appendix B, so that τb and ζb(τb) are both function of the time τ .

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

35
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.359


897 A30-28 P. Clavin and B. Denet

The time delay at time τ , zb(τ )≡−ζb(τb) > 0, τb = τ − zb < τ , is the solution of a
nonlinear equation obtained from (8.21)

zb(τ )≡−ζb(τb)=−ζ (−e−y(τb)), zb =

∫ 0

−e−y(τ−zb)

dξ ′

µoCJ (ξ
′ey

CJ )
> 0 (8.29a,b)

zb = e−y
CJ

∫ 0

−e−[y(τ−zb)−yCJ ]
dξ

µoCJ (ξ)
, (8.30a,b)

showing that zb(τ ) is a function of the time through the time-dependent velocity of
the lead shock y(τ ). Equation (8.30) is discussed in the next sections §§ 9.1–9.3.
Introducing τb = τ − zb into (8.27) yields a nonlinear integral equation for the shock
velocity y(τ ) in the form

2(y(τ )− y
CJ
)=

∫ 0

−e−y(τ−zb(τ ))
[h(ξ)+w(ξ , y(τ + ζ (ξ))]dξ + Zb(τ − zb(τ )), (8.31)

illustrating the complexity of the dynamics, since, according to (8.28), the time delay
zb(τ ) in the lower bound of the integral −e−y(τ−zb(τ )) and in the last term on the right-
hand side depends on the solution y(τ ). Equation (8.31) takes a more convenient when
the terms Zb(τ − zb) and the integral involving w(ξ , y) is rewritten by using equation
(4.21) for the planar CJ solution dµ2

oCJ
(ξ)/dξ =ωoCJ , µ

2
oCJ
(0)= 1

−
b
2

∫ 0

−e−y(τ−zb)
ey

CJωoCJ (e
y

CJ ξ) dξ =−
b
2
+

b
2
µ2

oCJ
(−e−[y(τ−zb)−y

CJ
]), (8.32)

so that the last term on the right-hand side of (8.32) balances the second term of
Zb(τ − zb) in the expression (8.20) of Zb(τ ). Introducing three functionals of y(τ )

G1 ≡

∫ 0

−e−y(τ−zb(τ ))
[ey(τ+ζ (ξ))ωoCJ (ξ ey(τ+ζ (ξ)))] dξ − 1, (8.33)

G2 ≡

∫ 0

−e−y(τ−zb(τ ))
ey

CJµ′oCJ
(ξ ey

CJ ) [y(τ + ζ (ξ))− y
CJ
] dξ, (8.34)

Ih ≡

∫ 0

−e−y(τ−zb(τ ))
h(ξ) dξ, where h(ξ) is defined in (8.9), (8.35)

the integral equation (8.31) for y(τ ) takes the form

2(y(τ )− y
CJ
)=

b
2

G1 +G2 + Ih +m2
b(τ − zb), (8.36)

where zb(τ )=O(1) is a functional of y(τ ) given in (8.30) and the function mb(τ )=
O(1) is defined in (6.14)–(6.15),

τ < τiCJ : mb(τ )/mbi = 1− τ/τiCJ , τ > τiCJ : mb(τ )= 0. (8.37a,b)

According to (6.11), the time τiCJ =
√

2b λ xi mbi at which the CJ condition is reached
can be expressed in terms of the initial condition (τ = 0: x = xi, mb = mbi), so that
dmb/dτ =−1/(

√
2b λ xi) is small, of order 1/

√
b. The time delay zb has to be kept in

the forcing term m2
b(τ − zb) since zb(τ ) becomes large near the CJ regime, yielding a

correction which is not so small, typically of order ln b/
√

b, see (C 30) in appendix.
The CJ velocity y

CJ
(x) of the quasi-steady spherical detonation in (8.33)–(8.36) is a

function of the radius. The trajectories in the phase space y–x are obtained from the
solution of (8.36)–(8.37) by using (6.5), x= xi + τ/(bλ).
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9. Discussion of the results
9.1. Physical insights

The nonlinear coupling of the physical mechanisms controlling the dynamics (8.36)
can be summarized as follows. According to the Arrhenius law and the two fast
downstream-propagating modes, the thickness of the inner structure |ξb(τ )| = e−y

varies quasi-instantaneously with the shock velocity y, ξb = −e−y < 0 denoting the
position (relative to the shock) of the downstream boundary on the burnt-gas side.
The time τb = τ − zb at which the upstream-running mode leaves the downstream
boundary to reach the lead shock at time τ depends on the transit time zb(τ ) of the
upstream-running mode to travel across the detonation thickness from ξ = ξb(τb) < 0
to ξ = 0, explaining that the triggering term m2

b(τ − zb) in (8.36) is shifted by the time
delay zb. The complexity of the dynamics comes from the variation of the time delay
zb(τ ) which depends on the position of the downstream boundary at an earlier time
shifted itself by zb(τ ), ξb(τ − zb)=−e−y(τ−zb). Therefore, under the approximation of
a frozen field µoCJ (ξey

CJ ), zb is the solution of the nonlinear equation (8.30). Notice
right now that equation (8.30) is meaningful if and only if y(τ − zb) > y

CJ
since

µoCJ (ξ) is zero for ξ 6−1. We will come back to this point in § 9.3 after discussing
another important point concerning causality.

The integral equation (8.36) for y(τ ) involves the past ranging from τb = τ − zb(τ )
to τ in order to integrate the cumulative effects on the lead shock velocity produced
by the modification of the reaction rate at different distances from the shock |ξ |.
These modifications at ξ , that are generated quasi-instantaneously at time τ by the
variation of the shock velocity y(τ ), produce a retarded effect on the shock velocity
at a time delayed by the transit time (8.21) −ζ (ξ) > 0 of the upstream-running
mode travelling from ξ to 0. According to (8.18), the transit time is computed under
the approximation of a frozen flow µoCJ (ξey

CJ ). The memory effects in the integral
equation (8.36) are represented by the term (b/2)G1+G2 which governs the stability
of the planar detonation recalled in § 9.4. The dependence on the past is not only
through the integration in the expressions (8.33) and (8.34) of G1 and G2 but also
through the delay zb(τ ) in the lower bound of the integrals. The complexity of the
dynamics is illustrated by (8.30), showing how zb(τ ) is depending on the solution
y(τ ).

9.2. Causality
When the detonation velocity y(τ ) evolves under a time-dependent flow of burnt
gas at ξ = ξb(τ ), which is represented by the forcing term m2

b(τ − zb(τ )) on the
right-hand side of (8.36), the time-dependent delay zb(τ ) should satisfy a causal link
between m2

b(τ − zb(τ )) (the cause) and y(τ ) (the consequence). Consider a prescribed
unsteady forcing term, namely, a known function mb(τ ) (dmb/dτ 6= 0). The retarded
responses y(τ1) and y(τ2) at two consecutive times (τ1 <τ2) correspond to the forcing
term at time τb(τ1)= τ1 − zb(τ1) and τb(τ2)= τ1 − zb(τ2) respectively. Causality then
requires that the inequality τb(τ1) < τb(τ2) should hold if τ1 < τ2. Otherwise the latest
response y(τ2) would be produced by the earliest forcing m2

b(τb(τ2)). This means that
the function τb(τ ) ≡ τ − zb(τ ) should be an increasing function of time dτb/dτ > 0
so that the derivative of the delay should be bounded, dzb/dτ 6 1. Since, according
to (8.30),

dzb

dτ
=A(τ − zb)

[
1−

dzb

dτ

]
⇒

dzb

dτ
=

1
[1+ 1/A(τ − zb)]

, (9.1)
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where A(τ )≡−
dy(τ )

dτ
e−[y(τ )−y

CJ
]

µoCJ (−e−[y(τ )−y
CJ
])
, (9.2)

the causal relation dzb(τ )/dτ 6 1 is satisfied if A>−1

dy/dτ 6 e[y(τ )−y
CJ
]µoCJ (−e−[y(τ )−y

CJ
]). (9.3)

This is always the case if the shock velocity decreases monotonicallyy(τ ) > y
CJ

,
dy(τ )/dτ < 0. In this case, the nonlinear equation (8.30) has a single solution for
zb(τ ). For a reactive blast wave impinging on the CJ peninsula with a moderately
small deceleration of the same order of magnitude as in the quasi-steady decay (7.6)
|dy/dτ | = O(1/

√
b), the delay zb becomes moderately large when the CJ velocity is

reached, zb = O(
√

b) see appendix D. Moreover, the causal relation (9.3) is verified
when the shock velocity increases ẏτ > 0 if and only if the acceleration is not too
large.

9.3. An intriguing phenomenon: the jump of time delay
In unsteady regimes, the solution of (8.36) can describe a velocity of the lead shock
y(τ ) decreasing below the CJ velocity (intermittently and for a short period of time).
Oscillation of the detonation velocity at the CJ regime or when approaching the
CJ regime requires particular attention. The understanding of unstable detonations
is somewhat difficult since y(τ ) oscillates around y

CJ
while the integral in (8.30)

diverges for y(τ − zb) < y
CJ

. For an oscillatory shock velocity around its CJ value,
the nonlinear equation (8.30) is meaningful at any time τ , indeed, with a discrete set
of roots zb(τ ), none of which involve a shock velocity corresponding to a forbidden
band y(τ − zb)< y

CJ
. Keeping in mind the response of the shock velocity to variations

in the burnt gas, causality implies that the time delay zb(τ ) is properly defined as
the smallest root. The latter is a continuous function of time except for a periodic
discontinuity of the first order (jump). More precisely, the delay zb(τ ) increases when
y(τ − zb) approaches 0 from above and decreases suddenly by a jump to a smaller
value corresponding to a larger shock velocity y(τ − zb). The problem is more easily
understood by the geometrical construction in figure 2. Consider a simplified example
µoCJ (ξ)= ξ + 1 of the model (5.9)–(5.10) and the case y

CJ
= 0 (planar geometry) for

simplicity, equation (8.30) then takes the form written for |y| � 1

y(τ − zb) > 0 : zb =− ln y(τ − zb), y(τ − zb) < 0 : no solution. (9.4a,b)

Consider, for example, a harmonic pulsation of period τp, y(τ )= ym cos(2π τ/τp) with
ym<1. At any time τ , equation (8.30) zb=− ln[ym cos(2π (τ − zb)/τp)] has a countable
(infinite) set of roots zb(τ ) which is bounded from below, none of the roots being
smaller than − ln ym > 0. As shown in figure 2, the smallest root, namely the time
delay, jumps at a critical time denoted τ in the figure from a value z−b well above the
absolute minimum − ln ym to z+b slightly larger than − ln ym, z−b > z+b . In other words, a
new lower bound z+b smaller than z−b appears suddenly at τ when the time increases.
For times before τ , the smallest root (in green in figure 2) increases continuously up
to z−b while, for times after τ , the new smallest root z+b begins to decrease for a while,
crosses the minimum − ln ym and then increases continuously again (in blue), reaching
z−b followed by the same jump as before, and so on. The same scenario is observed for
an oscillation of y(τ ) around a positive mean value y> 0 see the numerical solution of
(8.30) in figure 3. The function zb(τ ) corresponding to the case investigated in figure 2
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FIGURE 2. Sketch of the geometrical construction of the time delay zb(τ ) for an
oscillatory shock velocity y(τ ) = ym cos(2π τ/τp) around the planar CJ regime y

CJ
= 0.

The function y(τ − zb) is plotted on top of the figure. The delay zb at time τ is defined
as the smallest roots of (8.30). For a given time τ the roots are represented on a plane
(zb, z) by the intersection of the straight line z = zb and the array of periodic curves
z= f (τ − zb) corresponding to the periodic function f (τ − zb)≡

∫ 0
−e−y(τ−zb) dξ/µoCJ (ξ) defined

in the zb-bands corresponding to y(τ − zb) > 0. The graph at the bottom of the figure
is plotted with τ − zb on the horizontal axis and z on the vertical axis. The forbidden
bands are the shaded parts of the horizontal axis. The picture is drawn for the model
(9.4) f (τ − zb) = − ln[ym cos(2π (τ − zb)/τp)]. The red straight line corresponds to a
critical time τ at which the smallest root, namely the time delay zb(τ ), jumps from z−b
to z+b , z−b > z+b . This straight line z = zb in red intersects the horizontal axis (z = 0) at
the point τ − zb = τ (zb = z = 0) which is chosen to be the position of the vertical
z-axis (and y-axis for the figure on top). The values z−b and z+b are associated with the
intersection points represented by the red dots on the array of curves at the bottom of the
figure. The corresponding values of the shock velocity y(τ − z−b ), y(τ − z+b ) and y(τ ) are
represented by the red dots on the harmonic function on top of the figure. According to
the picture, y(τ )< 0< y(τ − z−b )< y(τ − z+b ), the detonation thickness, namely the distance
between the lead shock and the end of the reaction zone, l(τ ) ≡ e−y(τ )

≈ 1 − y(τ ) > 0
(approximated for ym< 1), taken at the retarded time at which the upstream-running mode
leaves the burnt gas to reach the lead shock at the time τ , is larger just before the
jump than after, the detonation thickness at the transition time τ being the largest one,
l(τ − z+b ) < l(τ − z−b ) < l(τ ). The time delay before and after the transition corresponds to
the dots in green and blue respectively.
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3.23.13.02.92.8

0

-0.5

-1.0

-1.5

-2.0

FIGURE 3. Numerical solution of (8.30) for y
CJ
= 0 and y(τ )= 0.2+ 0.1 cos 3 τ plotted on

top and for the reaction rate ωoCJ (ξ) used in Clavin & Denet (2018). The function −zb(τ ),
zb(τ ) > 0 being the smallest root of (8.30), is plotted in red. The time on the horizontal
axis has been rescaled. The jump of zb is slightly smaller than unity and the maximum
of zb(τ ) is approximately 1.8.

has a shape similar to the red curve in figure 3. Causality is satisfied when the delay
zb increases during the deceleration range dy/dτ < 0 since the calculation of dzb/dτ
leads to (9.1) with A=−y−1dy/dτ > 0. During the short laps of time (after the jump)
during which zb is decreasing smoothly after the jump down to the minimum − ln ym>

0, the causality condition dzb/dτ <1 is also verified since the acceleration dy/dτ >0 is
small. It is worth noticing that the jumps of zb(τ ) not only avoid the forbidden bands
when they exist (y(τ − zb) < 0) but also eliminate the eventual non-causal variation
of zb(τ ) which would result from a sufficiently large acceleration of the lead shock
dy(τ − zb)/dτ > 0. The jump of the time delay zb(τ ) corresponds to two different
values of the detonation thicknesses at two different moments in the past e−y(τ−z+b ) and
e−y(τ−z−b ) while the detonation thickness e−y(τ ) is a continuous function of time if the
propagation velocity y(τ ) is continuous. Moreover the time delay zb increases but its
jump becomes negligible when the amplitude of oscillation of y(τ ) becomes small
− ln ym� τp, since, according to the geometrical construction, the order of magnitude
of the time delay zb and of its jump 1zb is − ln ym and τp respectively, zb=O(− ln ym),
1zb =O(τp), 1zb ≈ 3τp/4 in figure 2, limym→0 1zp/zb = 0.

9.4. Intrinsic dynamics of the inner structure and detonation decay
The quasi-steady-state approximation of (8.36) is obtained when the time delays
ζ (ξ) and zb of the upstream-running mode are neglected, G1 = 0 and G2 = y − y

CJ
.

Neglecting also the unsteady term Ih coming from (7.7), the quasi-steady solution
yqs(τ )− y

CJ
≈m2

b(τ ), yields a trajectory tangent to the upper branch of the peninsula
of the steady spherical solution y

CJ
(x) described in § 7.2.

The time delays ζ (ξ) in G1 and G2 control the intrinsic dynamics of the inner
structure of the detonation wave. When y

CJ
(x) in (b/2)G1 + G2 is replaced by

the unperturbed planar solution yo corresponding to a constant flow of burnt gas
mb= const. > 0 and when the unsteady curvature term Ih is neglected, equation (8.36)
describes the dynamics of a slightly overdriven detonation in a planar geometry.
Following the same method as in the text, the corresponding equation is obtained
whatever b from the constitutive equations in § 2 (written in a planar geometry) in
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the limit of small heat release (3.1). The total time delay |zb| (from the exit of the
inner structure to the lead shock) is defined in a way similar to (8.30)

zb = e−yo

∫ 0

−e−[y(τ−zb)−yo]

dξ
µo(ξ)

, (9.5)

where µo(ξ) is the flow (C 5) inside the inner structure of an overdriven detonation
satisfying the condition in the burnt gas ξ 6 −e−yo : µo =

√
2/b mb. The steady-state

solution is yo = m2
b > 0 and there is no divergence of the delay zb. For unstable

detonations against longitudinal disturbances, equation (9.5) becomes multivalued
introducing jumps of zb(τ ) if the acceleration dy/dτ > 0 becomes sufficiently large
during an oscillatory period of the propagation velocity y(τ ), see figures 2 and 3.

Stability for a constant flow of burnt gas, mb= const.>0, is analysed with the linear
version of (b/2)G1+G2 around yo. This leads to the integral equation (C 24) obtained
by Clavin & Williams (2002) and recalled in § C.2. The disturbance of the lower
bound of the integrals (8.33)–(8.34) yields a nonlinear contribution which is neglected
in the linear approximation so that −e−y(τ−zb) is replaced by −e−yo , which in turn can
be replaced by −∞ in (C 24) because the linear version (C 22) of the integrant is
zero for ξ 6−e−yo : go(ξ)= 0; see the text below (C 20) in § C.2. Notice also that the
linear integral equation thus written is valid for a CJ wave with a reaction rate ωoCJ (ξ)

decreasing smoothly to zero in the burnt gas, free from the assumption (3.17). Usually,
the threshold of instability against longitudinal disturbances corresponds to a critical
value bc of b which is not large. For example, bc ≈ 1.27 for a CJ wave sustained by
the same reaction rate as in Clavin & Denet (2018).

The above simplification of the lower bound of the integrals in G1 and G2 can also
be used for the nonlinear dynamics of a weakly unstable detonation wave because
the pulsations with small amplitude are mainly governed by the deformation of the
distribution of heat release at a distance from the lead shock significantly shorter than
the detonation thickness. This is a good approximation when the variations of the
distance of the maximum of heat release from the lead shock produce modifications
of the integral that are much larger than the variations near the end of the reaction
where the reaction rate is very small. Putting −∞ in the lower bound of the integrals
(8.33) and (8.34) (as in the linear analysis) leads to equations (C 25)–(C 26) that
describe the intrinsic dynamics of weakly unstable detonations. In the unstable
domain, the corresponding solution y(τ ) becomes chaotic when b is increased beyond
the instability threshold. Pushing the lower bound of the integrals in G1 and G2 to
−∞, which is a good approximation for the intrinsic dynamics of weakly unstable
detonation, is no longer relevant for strongly unstable detonations nor for the unsteady
response of the detonation wave to modifications of the flow in the burnt gas. The
total time delay zb(τ ) from the exit of the inner structure to the lead shock is
a key mechanism in the rarefaction-wave-driven detonation decay. Not only is zb

non-negligible in the forcing term m2
b(τ − zb) when zb is not sufficiently smaller than

the time scale of the external flow but, also, the lower bound −e−y(τ−zb(τ )) should be
kept in the integrals (8.33)–(8.35), as shown by the comparison of the solutions of
(8.36)–(8.37) with and without the lower bound replaced by −∞, see figure 4.

9.5. Extension to marginally stable or unstable CJ regimes
For usual reaction rates, the double limit (4.14) ε� 1 and b� 1 (small heat release
and large activation energy) corresponds to unstable detonations b > bc since bc
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5
x

y

0.5

0

-0.5

ı = 0.8 weakly non linear
ı = 0.8 unsteady trajectory
Spherical CJ wave
Quasi-steady trajectory

FIGURE 4. Decay in a spherical geometry of a stable detonation. The trajectory
corresponding to the solution of (9.6) with (8.37) is plotted in red for β = 0.8 with the
reaction rate used in Clavin & Denet (2018), βc≈ 1.27, and for xiCJ = 5.1 (xi= 2.8, µbi=

0.6), the trajectory being computed by using dx/dτ = 0.08 (bλ = 12). The quasi-steady
trajectory is plotted in blue and the trajectory of the weakly nonlinear version of (9.6) is
plotted in black. In green is the peninsula of the quasi-steady CJ detonation.

is not a large number for a typical reaction rate ωoCJ (ξ). CJ detonations of usual
gaseous mixtures are effectively unstable against longitudinal perturbations. However,
the decay of a spherical detonation to a marginally stable (or unstable) CJ regime
is instructive in many ways, for example by comparison with the existing direct
numerical simulations and also with the steady-state approximation, including the
discontinuous model used by Liñan et al. (2012). In addition, the erratic dynamics
of strongly unstable detonations is avoided with marginally stable and unstable
detonations. Working near the CJ regime, the asymptotic analysis in the limit (4.14)
introduces the same non-dimensional parameter of thermal sensitivity b for the
quasi-steady curvature-induced quenching and for the intrinsic dynamics of the
inner structure controlling the stability (and the response) of the detonation wave.
For real detonations with a propagation Mach number sufficiently large (typically√

qm/cpTu ≈ 2 and M2
CJ
≈ 16), the two parameters are different even though the

same physical mechanism, namely the thermal sensitivity of the reaction rate, is
at the root of the two phenomena. In fact, the only parameter b left in (8.36) is
the one controlling the dynamics of the inner structure discussed in § 9.4. Then,
equation (8.36) can be formally extended to the decay toward a marginally stable or
unstable CJ wave by considering values of the parameter b in front of G1 close to
its marginal value bc at the instability threshold, keeping the expression (4.12) with
(4.20) for y

CJ
(x). Since typically bc is not a large number while equations (4.12) and

(4.20) are valid when corrections of order 1/b are neglected, the extended expression
(8.36) is not relevant near the critical radius x∗ of curvature-induced quenching.
Anyway, this region where the term Ih is large was already outside the validity
domain of (8.36). Equation (8.36) thus modified yields relevant results away from the
curvature quenching, namely, for a radius sufficiently large compared with x∗ in the
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intermediate range of CJ velocity where the curvature effect is non-negligible but not
strong enough for quenching −1< y

CJ
< 0. It is then convenient to re-write equation

(8.36) by using a notation for the parameter of thermal sensitivity controlling the
inner dynamics different from that involved in the curvature-induced quenching

2(y(τ )− y
CJ
)=

β

2
G1 +G2 + Ih +m2

b(τ − zb), (9.6)

where the functionals zb, G1, G2, Ih are given in (8.30), (8.33)–(8.35) respectively
and the function mb(τ ) is defined in (8.37). The critical value of the parameter β
at the instability threshold is called βc in the following. The trajectory in the phase
space (x–y) is obtained from the solution y(τ ) of (9.6) by using the linear relation
between x and τ in (6.11). For β close to βc, equation (9.6) constitutes a model
for successful initiation of spherical detonations that are stable or marginally unstable
against radial disturbances. The strongly unstable detonations in the asymptotic limit
(4.14) are recovered for values of β sufficiently larger than βc. A weakly nonlinear
version of (9.6) is obtained when the lower bound of the integral in G1, G2 and
Ih is replaced by −∞, as discussed in § 9.4. This is an accurate approximation only
at the very end of the decay of a stable or marginally unstable CJ detonation when
y(τ ) becomes very small. Comparison of the full solution of (9.6) with the solution of
the weakly nonlinear version helps to clarify the importance of the different physical
phenomena at work during the detonation decay.

9.6. Numerical solutions of the integral equation. Unsteadiness
A difficulty in the numerical analysis of integral equations comes from the fact that
the past of the solution should be known. A relevant numerical solution is obtained if
the memory effect of the initial condition is forgotten after a time lag that is relatively
short. In the parameter space (x–y), initialization of the trajectories that are solution
of (9.6) requires us to proceed by iteration. For a given initial condition, xi > x∗ and
mbi corresponding to a function mb(τ ), namely, for a given τiCJ in (8.37), the initial
value yi ≡ y(xi) is part of the solution. The difficulty is overcome more easily for a
stable detonation β <βc by using an iterative procedure. If the initial value of y is too
far from y(xi), the numerical solution y(x) of (9.6) shows large oscillations, decreasing
quickly to a quiet trajectory. The relevance of the solution is checked by extrapolating
the quiet trajectory in the past for x < xi and re-starting the numerical simulation.
An example of the trajectory decaying to the upper branch of the CJ peninsula is
presented in figure 4 where the solution of (9.6) with (8.37) is plotted in red for β =
0.8 with the reaction rate used in Clavin & Denet (2018), βc≈ 1.27, and for xiCJ = 5.1
(xi = 2.8, µbi = 0.6), the trajectory being computed for dx/dτ = 0.08 (bλ = 12). For
comparison, the quasi-steady trajectory in blue in figure 4, obtained by neglecting the
delays ζ (ξ) and zb in (9.6), is effectively tangent to the CJ peninsula at x= xiCJ , as
predicted in § 7.2. The comparison of the two trajectories enlightens us to the effect
of unsteadiness produced by the time delays. Two main pieces of information are
extracted from this comparison. First, in contrast to the quasi-steady approximation,
the transition to the CJ regime is not abrupt; a relatively long tail of the velocity decay
is observed. However, the trajectory is quite close to the CJ peninsula as soon as the
radius is sufficiently large, for example at x≈ 10, while the difference from the planar
CJ velocity is still non-negligible. This illustrates to what extent the quasi-steady
CJ peninsula is an attractor of the trajectories. Second, far from the CJ peninsula in
the early part of the decay, that is for y(x) larger than y

CJ
(x), the trajectory is never
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5 10
x

y

15

0.2

0

-0.2

-0.4

ı = 1.3 unsteady trajectory
Spherical CJ wave

FIGURE 5. Decay in a spherical geometry of a marginally unstable detonation. The
pulsating solution of (9.6) with (8.37) is plotted in red for the same condition as in
figure 4, except for β = 1.3, just above the instability threshold βc ≈ 1.27.

quasi-steady. The cause of this spectacular manifestation of unsteadiness is clearly
shown by the comparison with the solution of the weakly nonlinear version of (9.6),
namely, when the lower bound of the integrals in G1, G2 and Ih are replaced by −∞.
The corresponding trajectory is plotted in black in figure 4, showing a quasi-steady
behaviour far away from the CJ peninsula, in contrast to the previous solution. This
points out the drastic unsteady effect which is produced upon the detonation decay by
the time delay from the exit of the inner structure to the lead shock resulting from
the upstream-running mode.

Similar results illustrating unsteadiness during the decay of stable detonations are
obtained when the curvature effect on the inner structure is neglected, namely the
solutions of (9.6) for y

CJ
= 0 and Ih = 0.

The instantaneous trajectories of marginally unstable detonations characterized by
a small amplitude of pulsation are obtained in a similar way. The result is plotted
in figure 5 for the same conditions as in figure 4, except for β = 1.3, slightly large
than βc= 1.27. The frequency of pulsation is that predicted by the stability analysis at
bifurcation, ωc = 4.5. The mean trajectory, averaged over a time window larger than
the period of pulsation, is quite similar to the trajectory of the stable detonation shown
by the red curve in figure 4 for β = 0.8.

Numerical solution of (9.6) is much more difficult for strongly unstable detonations.
The solution becomes quickly chaotic above the instability threshold. Then it is
practically impossible to guess a reasonably accurate past of the solution which is
required to initiate a relevant calculation of the trajectory. Moreover, the relative
jumps of the time delay 1zb/zb become sufficiently large to pollute the numerical
solution of the trajectory from the beginning. This could also be the case in direct
numerical simulation of the decay of strongly unstable detonations. Much work
remains to be done on this topic. An illustration of the problem is shown in figure 6
for β = 2 when part of the difficulty is removed by using the weakly nonlinear
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9876
x

y

54

0.5

0

-0.5

ı = 0.8 unsteady trajectory
ı = 2 unsteady trajectory
Spherical CJ wave

FIGURE 6. Decay in a spherical geometry of a strongly unstable detonation. The pulsating
solution of the weakly nonlinear version of (9.6) with (8.37) is plotted in red for the same
condition as in figure 4, except for β = 2, above the instability threshold βc ≈ 1.27.

version of (9.6). The initial trajectory is effectively chaotic but becomes regular some
time later. Unfortunately, this is no more the case when the lower bound −e−y(τ−zb)

is kept in the integrals G1, G2 and Ih in (9.6).

10. Conclusion and perspective
The theoretical analysis presented in this paper brought to light unsteadiness of the

detonation decay during a successful direct initiation of a stable or weakly unstable
detonation. The unsteady mechanism is clearly identified on the example of figure 4
as being the time delay zb of the upstream-running mode (relative to the lead shock)
for propagating the rarefaction-wave-induced deceleration from the exit of the inner
structure to the lead shock.

No definitive conclusion can be formulated for strongly unstable detonations. An
intriguing new phenomenon associated with jumps of zb during an oscillatory pulsation
of the shock velocity is identified. This phenomenon, which is related to causality,
has no noticeable effect on the dynamics of the lead shock for stable or marginally
unstable detonations near the instability threshold against longitudinal disturbances.
However, it could play an important role for strongly unstable detonations. Much work
remains to be done on this topic, including further direct numerical simulations.

The role of unsteadiness near criticality is an open question at the present stage
of the analysis. Future works have to be devoted to answering the key question: to
what extent does unsteadiness modify the quasi-steady curvature-induced quenching?
According to the existing direct numerical simulations, the order of magnitude of
the critical radius is not modified from its quasi-steady value r∗. If this is the
case, why and how? In order to describe the dynamics of stable and marginally
unstable detonations near the critical condition of initiation, the analysis has to be
extended in two directions. First, an analytical study of the rarefaction flow has to be
performed with the objective of developing a matching procedure with the internal
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structure. This work is in process in the limit of small heat release, showing that
the rarefaction wave has the same properties as in the opposite limit of large Mach
number. These results will be published soon. Second, the parameters controlling the
thermal sensibility of the curvature effect and of the intrinsic dynamics of the inner
structure should be identified separately right from the beginning. Such a parameter
differentiation, which has been done here on the integral equation for successful
initiation (radius larger than r∗), cannot be made on the hyperbolic equation obtained
in the double limit of small heat release and large activation energy. The basic idea
for future analytical works is to keep the dynamics of the inner structure controlled
by the upstream-running mode even for a heat release which is not small. These
semi-phenomenological results could be quantitatively accurate for real detonations
near the CJ regime because the response of their inner structure to disturbances of
the burnt-gas flow is one of two time scales.

Acknowledgements
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Appendix A. Technical details
A.1. Calculation in § 7

Denoting by (xo, yo) the coordinates of the intersection of the steady-state trajectory
with the curve y=− ln x, equation (7.1) yields√

y(x)+ e−y(x)/x−
√

yo + e−yo/xo =−
√

b/2 ln(x/xo). (A 1)

Expanding the first term on the left-hand side around (xo, yo) yields

y+
e−y

x
= yo + (y− yo)+

e−yo

xo

×

[
1−

(x− xo)

xo
+ · · ·

] [
1− (y− yo)+

1
2
(y− yo)

2
+ · · ·

]
. (A 2)

Using the relation e−yo/xo = 1 the linear terms (y − yo) cancel and anticipating that
the term (x− xo)(y− yo) is smaller than (y− yo)

2 one gets

y+
e−y

x
= yo +

e−yo

xo
+

[
−
(x− xo)

xo
+

1
2
(y− yo)

2
+ · · ·

]
. (A 3)

Equation (A 1) then yields

yo 6= −1, yo + 1> 0 :
(y− yo)

2/2− (x− xo)/xo

2
√

yo + 1
≈−

√
b/2

(x− xo)

xo
, (A 4)

2(yo + 1)
√

b/2 � 1 ⇒
(x− xo)

xo
≈−

(y− yo)
2

4
√

b/2
√

yo + 1
, (A 5)

describing a turning point of the trajectory at (xo, yo), as shown figure 1.
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The expansion (A 3) is no longer valid at the critical point. For xo = e, yo + 1= 0,√
yo + e−yo/xo = 0, equation (A 1)√

y+
e−y

x
=

[
(e− x)

e
−
(e− x)

e
(y+ 1)+

1
2
(y+ 1)2 + · · ·

]1/2

≈
√

b/2
(e− x)

e
, (A 6)

(e− x)
e
−
(e− x)

e
(y+ 1)+

1
2
(y+ 1)2 + · · · ≈

b
2

[
(e− x)

e

]2

, (A 7)

showing that there is a small neighbourhood of the critical point for x< e, (e− x)/e=
O(1/
√

b), (y+ 1)2 ≈ b[(e− x)/e]2 in which the trajectory y(x) is linear with a large
slope

b� 1, (e− x)/e=O(1/
√

b) : lim
(x−e)→0−

|y+ 1| =
√

b(e− x)/e,
[

dy
dx

]y+1=0+

y+1=0−
=−

2
√

b
e
.

(A 8)
Consider now a quasi-steady trajectory intersecting the upper branch of the CJ

peninsula. According to (7.1) and mbi =
√

yi + e−yi/xi and√
y(x)+ e−y(x)/x−

√
yi + e−yi/xi =−

√
b/2 ln(x/xi), (A 9)

y
CJ
(xCJ )+ e−y

CJ
(xCJ )/xCJ = 0 ⇒ −

√
yi + e−yi/xi =−

√
b/2 ln(xCJ/xi). (A 10)

This leads to (7.2), which can be written for (xCJ − x)/xCJ � 1 in the form√
y(x)+ e−y(x)/x=

√
b/2(xCJ − x)/xCJ . (A 11)

According to the equation of the CJ peninsula, y
CJ
(x)+ e−y

CJ
(x)/x= 0, equation (A 11)

can be written in the form√
y(x)− y

CJ
(x)+ e−y(x)/x− e−y

CJ
(x)/x=

√
b/2(xCJ − x)/xCJ , (A 12)

y(x)− y
CJ
(x)+ e−y(x)/x− e−y

CJ
(x)/x= b/2(xCJ − x)2/x2

CJ
. (A 13)

Expanding e−y(x) around e−y
CJ
(x) yields

y− y
CJ
+

e−y
CJ
(x)

x
[1+ (y

CJ
− y)] −

e−y
CJ
(x)

x
= b/2

(xCJ − x)2

x2
CJ

, (A 14)

y(x)− y
CJ
(x)+

e−y
CJ
(x)

x

[
y

CJ
(x)− y(x)

]
= b/2

(xCJ − x)2

x2
CJ

, (A 15)

which can also be written, using again e−y
CJ
(x)/x=−y

CJ
(x),

y(x)− y
CJ
(x)− yCJ (x)

[
y

CJ
(x)− y(x)

]
= b/2

(xCJ − x)2

x2
CJ

, (A 16)

[
y(x)− y

CJ
(x)
] [

1+ y
CJ
(x)
]
= b/2

(xCJ − x)2

x2
CJ

. (A 17)

For an intersection point sufficiently far from the critical point xCJ > e, 1+ yCJ (xCJ )> 0,
the derivative dy

CJ
/dx is finite, y

CJ
(x)≈ y

CJ
(xCJ )+ (x− xCJ ) dy

CJ
/dx|xCJ

and (A 17) leads
to (7.3) valid for

0< (x− xCJ )�−y
CJ
(xCJ )[dy

CJ
/dx|xCJ

]
−1
=
[
1+ y

CJ
(xCJ )

]
xCJ . (A 18)
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A.2. Calculation in § 8.1

Sufficiently above the CJ peninsula such that µoCJ (−e(yCJ
−y))=O(1), the zeroth order

of the steady version of (8.11)–(8.12) takes the form

∂

∂ξ

[
µoCJ (ξey

CJ )µ1,0 +
µ2

1,0

2

]
=

1
2

[
eyωoCJ (ξ ey)− ey

CJωoCJ (ξ ey
CJ )
]
, (A 19)

ξ = 0 : µ1,0 = 0; ξ =−e−y
: µ1,0 =−µoCJ (−e(yCJ

−y)), (A 20a,b)

and the solution is

0< (y− y
CJ
)=O(1) ⇒ µ1,0(ξ , τ )=µoCJ (ξey(τ ))−µoCJ (ξ ey

CJ
(x)), (A 21)

as it is verified by introducing (A 21) into the left-hand side of (A 19) and by
performing a spatial integration from ξ =−e−y where µ1,0 =−µoCJ (−e−(y−y

CJ
)) since

µoCJ (ξey)= 0

µoCJ (ξey
CJ )µ1,0 +

µ2
1,0

2
+
µ2

oCJ
(−e−(y−y

CJ
))

2

=
1
2

[∫ ξ

−e−y
eyωoCJ (ξ

′ ey) dξ ′ −
∫ ξ

−e−y
ey

CJωoCJ (ξ
′ ey

CJ ) dξ ′
]
, (A 22)

which takes the form [µ1,0 + µoCJ (ξ ey
CJ )]2 = µ2

oCJ
(ξ ey) since the first integral

on the right-hand side of (A 22) corresponds to µ2
oCJ
(ξey)/2 and the second

integral, decomposes into −(1/2)
∫
−e−yCJ

−e−y −(1/2)
∫ ξ
−e−yCJ

, gives µ2
oCJ
(−e−(y−y

CJ
))/2 −

µ2
oCJ
(ξey

CJ )/2, so that (A 21) is recovered. Equation (A 21) corresponds simply to the
leading order of the velocity distribution of the quasi-steady solution (5.21) µ(ξ, y)
in which y is replaced by y(τ ), µ≈µoCJ (ξey).

Appendix B. Useful example of hyperbolic problems

Consider the following hyperbolic problem for the field z(ζ , τ )

0 > ζ > ζb :
∂z
∂τ
+
∂z
∂ζ
= f (ζ , τ ) > 0, ζ = ζ b : z(ζ b, τ )= zb(τ ) > 0, (B 1a,b)

where ζ b is a fixed coordinate, the source term f (ζ , τ ) > 0 and zb(τ ) > 0 being given
functions. The general solution z(ζ , τ ) is obtained by the method of characteristics,
dζ (τ ′)/dτ ′ = 1, ζ (τ ′)= ζ − τ + τ ′

∀τb z(ζ , τ )=
∫ τ

τb

f (ζ − τ + τ ′, τ ′) dτ ′ + z(ζ − τ + τb, τb). (B 2)

Choosing for τb the time at which the characteristic curve goes through the position
ζ b, ∀τ ′ : ζ (τ ′)− τ ′= ζ b− τb, ζ (τ )= ζ , ζ − τ = ζ b− τb, the solution of (B 1) takes the
form

z(ζ , τ )=
∫ τ

τb

f (ζ − τ + τ ′, τ ′) dτ ′ + z(ζ b, τ − ζ + ζ b), (B 3)
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z(ζ , τ )=
∫ τ

τb

f (ζ − τ + τ ′, τ ′) dτ ′ + zb(τ − ζ + ζ b), (B 4)

z(ζ , τ )=
∫ τ

τb

f (ζ − τ + τ ′, τ ′) dτ ′ + zb(τb). (B 5)

A change of variable of integration τ ′→ ζ ′ = ζ − τ + τ ′ leads to a self-explanatory
form by eliminating the time τb (in the lower bound of the integral) in favour of ζ b,

z(ζ , τ )=
∫ ζ

ζ−τ+τb=ζ b

f (ζ ′, τ + ζ ′ − ζ ) dζ ′ + zb(τ − ζ + ζ b). (B 6)

Taking ζ = 0 leads to the self-explanatory form,

ζ = 0, ζ b < 0 : z(0, τ )=
∫ 0

ζ b

f (ζ ′, τ + ζ ′) dζ ′ + zb(τ − |ζ b|), (B 7)

where τ + ζ b = τb since ζ = 0, so that zb(τ − |ζ b|)= zb(τb), the function zb(τ ) in the
boundary condition (B 1) being given.

Consider now the case of a moving boundary. If ζ b in (B 1) is replaced by a known
function of the time ζb(τ ),

ζ = ζb(τ ) : z(ζb(τ ), τ )= zb(τ ) > 0, (B 8)

the solution is still given by (B 2) in which τb is a function of τ − ζ obtained from
the intersection of the curve ζ ′= ζb(τ

′) and the characteristic curve going through the
point (ζ , τ ) in the phase space ζ ′= τ ′+ (ζ − τ) so that τb is the root of the equation

ζb(τb)− τb = ζ − τ ⇒ τb(τ − ζ ), (B 9)

showing that τb and thus ζb(τb) are functions of τ − ζ , see figure 7. Then the solution
is obtained from (B 2) and/or (B 4) in which ζ b is replaced by ζb(τb),

z(ζ , τ )=
∫ τ

τb

f (ζ − τ + τ ′, τ ′) dτ ′ + zb(τ − ζ + ζb(τb)) (B 10)

z(ζ , τ )=
∫ ζ

ζb(τb)

f (ζ ′, ζ ′ + τ − ζ ) dζ ′ + zb(τb), (B 11)

where the relations zb(τ − ζ + ζb(τb))= z(ζb(τb), τ − ξ + ζb(τb)) and τ − ζ + ζb(τb)= τb

have been used.
If the right-hand side of the first equation (B 1) depends on τ through an unknown

function y(τ ), f (ζ , τ )=F(ζ , y(τ ))> 0, an integral equation for y(τ ) is obtained when
an additional boundary condition is imposed on z(ζ , τ ), for example at ζ =0, z(0, τ )=
zN(y(τ )) where zN(y) is a given function,

zN(y(τ ))=
∫ 0

ζb(τb)

F(ζ ′, y(τ + ζ ′)) dζ ′ + zb(τb), τb = τ + ζb(τb) < τ, (B 12a,b)

where the expression of τb is valid for ζ = 0.
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Ωb(†b)

|Ωb(†b)|

Curve Ω� = Ωb(†�)
Ω = 0

†b

†

Ω Ω�

Ω� - †� = Ω - †

†�

Characteristic curve

FIGURE 7. Determination of τb from the intersection of the characteristic curve in blue
going through the point (ζ , τ )ζ ′ − τ ′ = ζ − τ with the curve ζ ′ = ζb(τ

′) in red.

Appendix C. Dynamics of planar detonations for small heat release
The dynamics of planar detonations is briefly revisited here in the small heat

limit (4.14). The corresponding stability analysis against planar disturbances was
first performed by Clavin & Williams (2002) for a smooth distribution of reaction
rate. Here, attention is focused on the model (3.17)–(5.10) with (3.16) for which the
reaction rate drops sharply to zero at the end of the reaction zone. Including the
response to fluctuations of the flow of burnt gas, the flow field µ(ξ, τ ) is described
by (3.10)–(3.11) with κ = 0, yielding with the notation y/b≡ α̇τ

ξb 6 ξ 6 0 :
∂µ

∂τ
+

(
µ−

y
b

) ∂µ
∂ξ
=

1
2
ω(ξ, y(τ )), ω(ξ, y)= eyωoCJ (ξey)> 0, (C 1a,b)

ξ = 0 : µ= 1+ 2y(τ )/b, ξ = ξb =−e−y(τ )
: µ=µb(τ ), 0< y/b 6µb� 1,

(C 2a,b)
where the reduced velocity at the exit of the reaction zone µb(τ ) is a given function
of the time and ωoCJ (ξ)> 0,

∫ 0
−1 ωoCJ (ξ) dξ = 1, denotes the reduced distribution of the

rate of heat release in the planar CJ wave (µb = 0 and y= 0) in steady state.

C.1. Planar overdriven detonations in steady state
Planar overdriven detonations in steady state, y = yo, µ = µo(ξ , yo), ∂yo/∂τ = 0,
∂µo/∂τ = 0, µb=µob= const., µob− yo/b> 0 (subsonic condition), are solutions to(

µo −
yo

b

)
dµo

dξ
=

1
2

eyoωoCJ (ξ eyo) (C 3)

ξ = 0 : µo = 1+ 2yo/b, ξ =−e−yo : µo =µob. (C 4a,b)

Introducing the velocity profile of the CJ wave µoCJ (ξ)=

√∫ ξ
−1 ωoCJ (ξ

′) dξ ′ and using

the relation
∫ 0
ξ

eyωoCJ (ξ
′ey) dξ ′=

∫ 0
ξey ωoCJ (ξ

′′) dξ ′′, integration of (C 3) from the exit of
the reaction zone yields

µo(ξ)− yo/b =
√
(µob − yo/b)2 +µ2

oCJ
(ξeyo). (C 5)
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For overdriven detonations (µob − yo/b) > 0, the model (5.9)–(5.10) leads to the
following behaviour of the distribution µo(ξ) at the end of the reaction zone
0< (ξ + e−yo)� 1 of

ξ <−e−yo : µo(ξ)=µob, dµo/dξ = 0 (C 6)

(µob − yo/b) > 0, 0< ξeyo + 1� 1 : µo(ξ)−µob ≈
a2/2

(µob − yo/b)
(ξeyo + 1)2,(C 7)

showing the existence of a thin layer at the end of the reaction zone of thickness
√
µob if the detonation is weakly overdriven 0<µob− yo/b� 1. In the limit µob→ 0+,

the derivative dµo/dξ degenerates into the singularity (5.9)–(5.10) of dµoCJ (ξ)/dξ at
ξ =−1 for the planar CJ wave. The propagation velocity yo is obtained and expressed
in terms of the flow velocity at the exit of the reaction zone µob by the boundary
condition at the Neumann state, 1+ yo/b=

√
(µob − yo/b)2 + 1

yo = (1+µob)
−1bµ2

ob/2, yo/b� 1⇒ yo ≈ bµ2
ob/2=O(1), (C 8a,b)

the last relation in (C 8) corresponding to a weakly overdriven regime at the leading
order in the limit (4.14), yo =O(1)⇔ 0<µob =O(1/

√
b).

C.2. Planar dynamics of overdriven detonations
Subtracting (C 3) from (C 1) takes the form, when using the notation y(τ )= yo+ δy(τ ),
µ(ξ, τ )=µo(ξ)+ δµ(ξ, τ ),

∂δµ

∂τ
+
∂

∂ξ

[(
µo −

yo

b

)
δµ+

1
2
δµ2

]
=

1
2
1ω(ξ, y)+

dµo

dξ
δy
b
+
δy
b
∂δµ

∂ξ
, (C 9)

where 1ω(ξ, y)≡
[
eyωoCJ (ξey)− eyoωoCJ (ξ eyo)

]
. (C 10)

The fluctuation of the propagation velocity δy(τ ) is obtained by solving (C 9) with the
boundary conditions (C 2) and (C 4). For a uniform velocity fluctuating in the burnt
gas µb(τ ) = µob + δµb(τ ) where µob = µ(−e−yo), the condition at the exit of the
reaction zone µ(−e−y) = µb(τ ) yields µo(−e−y) + δµ(−e−y, τ ) = µb(τ ), so that the
boundary conditions (C 4) takes the form

δµ(0, τ )= 2 δy(τ )/b, δµ(−e−y(τ ), τ )= δµb(τ )− [µo(−e−y(τ ))−µo(−e−yo)]. (C 11)

According to (C 6)–(C 7), the expression in the brackets in (C 11) depends on
the sign of δy ≡ y(τ ) − yo since µo(−e−y(τ )) = µo(−e−yo) for δy 6 0 so that
δµ(−e−y(τ ), τ ) = δµb(τ ) while the expression in the brackets in (C 11) is different
from zero if δy > 0 and is continuous and equal to zero at δy = 0 (y(τ ) = yo).
According to (3.17), a similar behaviour characterizes the reaction term (C 10),
ξeyo 6−1 :1ω= eyωoCJ (ξey)> 0 in the intermediate range −e−y<ξ <−e−yo for δy< 0.
The expression for 1ω(ξ, y) is different for δy > 0 in the range −e−yo < ξ < −e−y

where 1ω=−eyoωoCJ (ξ eyo) < 0 but 1ω(ξ, y)≡ 0 ∀ξ when δy= 0.
In the linear approximation y(τ )= yo+ δy(τ ) with |δy|/yo� 1, according to (C 11),

the boundary condition at the end of the reaction zone reduces to

δµ(−e−y, τ )= δµ(−e−yo, τ )= δµb(τ ), (C 12)
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since, according to (C 7), dµo/dξ |(ξ+e−yo )=0+ = dµo/dξ |(ξ+e−yo )=0− = 0, so that the
brackets in (C 11) introduce a quadratic term. Moreover, the amplitude of the
fluctuation of the position of the end of the reaction is limited to the thin layer
mentioned below (C 7). Consider the transit time

∫ 0
ξ

dξ ′/[µo(ξ
′)− yo/b] of the

upward-running acoustic mode for propagating disturbances from a point ξ < 0 to the
lead shock ξ = 0. For overdriven detonations, focusing attention on µo(ξ) > 0 larger
than 1/b, see (C 8), and neglecting correction of order 1/b, the transit time can be
written as the absolute value of a new coordinate system ζ o(ξ),

ζ o(ξ)≡−

∫ 0

ξ

dξ ′/µo(ξ
′)6 0, ζ ob ≡ ζ o(−e−yo)=−

∫ 0

−e−yo

dξ ′/µo(ξ
′) < 0. (C 13a,b)

The distribution µo(ξ) being a positive function increasing monotonically with ξ

inside the inner structure ξ ∈ [−e−yo, 0], the relation between ξ and ζ o is bijective
and the inverse function ξ(ζ o) is well defined. The transit time from the end of the
reaction zone to the lead shock is |ζ ob| and one has ζ ob 6 ζ o(ξ)6 0 for −e−yo 6 ξ 6 0
while

ξ 6−e−yo : ζ o(ξ)= ζ ob + (ξeyo + 1)e−yo/µob, (C 14)

since eyoωoCJ (ξ eyo)= 0 and µo(ξ)=µob.
When the term −(yo/b)∂δµ/δξ is neglected in front of µo ∂δµ/δξ , linearization of

(C 9) and (C 11) after multiplication by µo(ξ) yields, according to (C 12),

∂(µo δµ)

∂τ
+
∂(µo δµ)

∂ζ o

= f (ξ , y), f (ξ , y)≡µo(ξ)

[
1
2
1ω(ξ, y)+

1
b

dµo

dξ
δy
]

(C 15a,b)

ξ = 0 : δµ= 2 δy(τ )/b, ξ =−e−y(τ )
: δµ= δµb(τ ), (C 16a,b)

where ξ in f (ξ , y) is a function of ζ o, ξ(ζ o) obtained by inversion of (C 13). Using
the relation dζ o(ξ)= dξ/µo(ξ), the instantaneous propagation velocity δy(τ ) obtained
from (C 15)–(C 16) is, according to (B 12), the solution to the following integral
equation,

2µo(0)δy(τ ) =
∫ 0

−e−y(τb)

[
b
2
1ω(ξ, y(τ + ζ o(ξ)))+

dµo

dξ
δy(τ + ζ o(ξ))

]
dξ

+ bµobδµb(τ + ζ o(−e−y(τb))), (C 17)

where τb = τ + ζ o(−e−y(τb)). In the linear approximation

y(τb)≈ yo + δy(τ + ζ ob)≈ y(τ + ζ ob), (C 18)

−e−y(τb) ≈−e−y(τ+ζ ob) ≈−e−yo[1− δy(τ + ζ ob)], (C 19)

where ζob ≡ ζ o(−e−yo), the function δµb(τ + ζ o(−e−y(τb))) in the last term on the
right-hand side of (C 17) can be replaced by δµb(τ + ζ ob) and the lower bound of
the integral can be replaced by −e−y(τ+ζ ob). Consider first the case δy(τ + ζ ob) < 0,
y(τ + ζ ob) < yo, −e−y(τ+ζ ob) <−e−yo . Starting the ξ -integration from the lower bound,
there is a small ξ -range adjacent to ξ =−e−yo of thickness e−yo |δy(τ + ζ ob)|,

− e−y(τ+ζ ob) < ξ <−e−yo, (C 20)
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where the unperturbed reaction rate eyoωoCJ (ξ eyo) is identically zero so that, according
to (C 10), 1ω(ξ, y(τ + ζ o))= ey(τ+ζ o(ξ))ωoCJ (ξ ey(τ+ζ o(ξ))). According to (3.17), this term
1ω is linear in ξ in the small range (C 20), 1ω≈ c ey(τ+ζ ob)[ξ ey(τ+ζ ob)+ 1] so that the
integral

∫
−e−yo

−e−y(τb) 1ω(ξ, y(τ + ζ o)) dξ yields a quadratic term ∝ |δy(τ + ζ ob)|
2 which is

thus negligible in the linear analysis. A similar conclusion holds for δy(τ + ζ ob) > 0
since 1ω= eyoωoCJ (ξ eyo)≈ c eyo[ξ eyo + 1] in the small ξ -range −e−yo <ξ <−e−y(τ+ζ ob).
Therefore, the lower bound of the integral in (C 17) can be taken to be equal to −e−yo .
The linear version of equation (C 17) then takes the form,

2µo(0)δy(τ ) =
∫ 0

−e−yo

go(ξ)δy(τ + ζ o(ξ)) dξ + bµobδµb(τ + ζ ob), (C 21)

where go(ξ) ≡
b
2
∂

∂y
[eyωoCJ (e

yξ)]y=yo
+

dµo(ξ)

dξ
(C 22)

=
b
2

eyo[ωoCJ (ξ eyo)+ ξ eyoω′oCJ
(ξ eyo)] +

dµo(ξ)

dξ
, (C 23)

where ω′oCJ
(ξ)≡ dωoCJ (ξ)/dξ . The lower bound of the integral −e−yo in (C 21) can be

set equal to −∞ since go(ξ) = 0 for ξ 6 −e−yo and
∫ 0
−∞

go(ξ) dξ = µo(0) − µob ∀b
yielding

∫ 0
−∞

go(ξ) dξ ≈µo(0) ∀b for a weakly overdriven regime (µob�1). The linear
stability of weakly overdriven detonations sustained by a distribution of reaction rate
satisfying (3.17) is obtained from (C 21) for δµb= 0. This leads to the same equation
as that derived by Clavin & Williams (2002) near the CJ regime for a distribution of
reaction rate ωoCJ (ξ) and its derivative dωoCJ (ξ)/dξ decreasing continuously to zero at
the end of the reaction limξ→−∞ ωoCJ (ξ)= 0,

2µo(0)δy(τ )=
∫ 0

−∞

go(ξ)δy(τ + ζ o(ξ)) dξ,
∫ 0

−∞

go(ξ) dξ =µo(0) ∀b. (C 24a,b)

Detonations are unstable to planar disturbances when b is sufficiently large. For
typical reaction rates, the threshold of instability corresponds to b of order unity,
see appendix B of Clavin & Denet (2018) where a slightly different notation
has been used µ(ξ)g(ξ) → g(ζ ). Near the instability threshold, assuming that the
dominant nonlinear mechanisms stabilizing the instability are the chemical kinetics,
the nonlinear pulsation of weakly unstable detonations is the solution to a nonlinear
equation extending (C 24) when go(ξ)δy is replaced by its nonlinear version Wo(ξ , y),

2µo(0)δy(τ )=
∫ 0

−∞

Wo(ξ , y(τ + ζ o(ξ))) dξ, (C 25)

Wo(ξ , y)≡
b
2

[
eyωoCJ (ξey)− eyoωoCJ (ξ eyo)

]
+

dµo(ξ)

dξ
(y− yo). (C 26)

A similar equation was derived previously in the opposite limit of strongly overdriven
detonations with a large Mach number, see Clavin & He (1996).

C.3. CJ regime. The hot boundary difficulty
The hot boundary difficulty is associated with the sonic condition at the end of the
reaction of a CJ wave, ξ =−1 :µoCJ

(ξ)= 0, yoCJ
= 0 so that the transit time from the
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end of the reaction of the upwards-running acoustic mode diverges. This divergence is
weak for the model (3.17)–(5.10) as shown now. Consider a weakly overdriven regime,
m2

ob≡ bµ2
ob/2=O(1), for which the small parameter 1/

√
b characterizes the proximity

of the CJ regime,

µob=O(1/
√

b), yo≈m2
ob=O(1), µo(ξ , yo)≈

√
2 m2

ob/b+µ2
oCJ
(ξem2

ob), (C 27a−c)

the explicit dependence on the detonation velocity yo being now incorporated into
the expression of the velocity distribution µo(ξ , yo). Inside the inner structure of the
detonation for ξem2

ob + 1 not close to zero, namely for µo(ξ , yo)≈ µoCJ (ξem2
ob) > 0 of

order unity, the time delay |ζ o(ξ)| is also of order unity. It increases and becomes as
large as ln

√
b in a thin layer near the end of the reaction zone (ξem2

ob + 1)=O(1/
√

b)
and diverges logarithmically when approaching the CJ regime (limit mob→ 0). This
is checked by considering a point ξm outside the thin layer so that the integral

∫ ξm

0

in (C 13) is finite (of order unity) and by computing
∫ ξ
ξm

for ξ inside the thin layer,

µoCJ (ξem2
ob)≈ a (ξem2

ob + 1)=O(1/
√

b)

−

∫ ξm

ξ

dξ ′

µo(ξ
′)
=−

√
b/2

e−m2
ob

mob

∫ ξmem2
ob

ξem2
ob

dξ ′′√
1+ b(ξ ′′ + 1)2a2/(2 m2

ob)

. (C 28)

A change of variable Y ′′ =
√

b (ξ ′′ + 1)a/(
√

2 mb) leads to

−

∫ ξm

ξ

dξ ′

µo(ξ
′)
=−

e−m2
ob

a

∫ Y(ξm)

Y

dY ′′
√

1+ Y ′′2
=−

e−m2
ob

a
ln
(

Y ′′ +
√

1+ Y ′′2
) ∣∣∣Ym

Y
,

where Y ≡
√

b (ξem2
ob + 1)a/(

√
2 mob), Y(ξ)=O(1) inside the thin layer and Y(ξm)� 1

of order
√

b outside. Moreover, using the limit lim√
b (ξem2

ob+1)→0+
Y = 0 ∀mob, the time

delay |ζ o(ξ)| at the end of the reaction zone behaves like

−
e−m2

ob

a
ln

[√
2 b

mob

(
ξmem2

ob + 1
)]
, where ξmem2

ob + 1=O(1), (C 29)

showing an order of magnitude equal to ln(
√

b) inside the thin layer and a logarithmic
divergence when approaching the CJ regime (mob→ 0+),

lim
mob→0

|ζ o(ξ)|
√

b (ξ+1)=0+ ∝ ln(
√

b/mob). (C 30)

Thanks to the rapid decease of the reaction rate at the end of the reaction zone,
equations (C 24) and (C 26) still work for the CJ regime despite the divergence of
the transit time.

Appendix D. Time lag along a straight trajectory
Considering a trajectory with a detonation velocity decreasing toward the CJ

velocity, dy/dτ < 0, an analytical expression of the time lag zb can be obtained
by using the piecewise-linear model for µoCJ (ξ) in figure 8 where hµ > 1 (typically
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-1 0

1

µoCJ

≈

-1 + hµ
-1

h µ
(≈

 +
 1)

FIGURE 8. Model of constant reaction rate during a finite time after the induction delay.

hµ≈ 1.5− 2). To obtain zb(τ ) from (8.30), two cases have to be considered depending
on the sign of −e−[y(τ−zb)−y

CJ
]
+ 1− h−1

µ :
(i) Consider first conditions for which y(τ − zb) is not too far from the CJ regime,

so that that the difference y(τ − zb)− y
CJ

is such that,

− 1<−e−[y(τ−zb)−y
CJ
] <−1+ h−1

µ ⇒ y(τ − zb)− y
CJ
< ln[hµ/(hµ − 1)], (D 1)

−e−[y(τ−zb)−y
CJ
] <−1+ h−1

µ , where ln[hµ/(hµ − 1)] ≈ 0.7 for hµ ≈ 2. This implies that
y(τ )− y

CJ
is also not too large

y(τ ) < y(τ − zb) ⇒ y(τ )− y
CJ
< ln[hµ/(hµ − 1)]. (D 2)

Then, according to (8.30), one gets the following equation for the delay zb in the form

(hµey
CJ )zb = a− ln

(
1− e−[y(τ−zb)−y

CJ
]
)
, a≡ (hµ − 1)− ln hµ > 0, a≈ 0.3. (D 3a,b)

Consider a decreasing velocity larger than the CJ velocity, dy(τ )/dτ < 0 and y(τ )−
y

CJ
> 0, equation (D 3) has a single and finite root zb > 0 since the right-hand side is

an increasing function of zb from (hµ − 1)− ln hµ < 0 at zb =∞(y(τ + ζb)=∞) to a
smaller value at ζb = 0. For consistency the solution should satisfy (D 1).

For the sake of simplicity, consider a straight trajectory approaching the CJ regime
from above (constant deceleration of the blast wave A> 0)

y(τ )= y
CJ
+ A(τCJ − τ), A> 0, (τCJ − τ) > 0 (D 4)

y(τ − zb)− y
CJ
= [y(τ )− y

CJ
] + Azb (D 5)

(hµey
CJ )zb = a− ln

(
1− e−[y(τ )−y

CJ
]−Azb

)
, (D 6)

where the parameter A > 0 is the non-dimensional deceleration, τCJ is the time at
which the trajectory intersects the CJ peninsula (τ < τCJ) and the parameter a > 0
is given in (D 3). Introducing X = y(τ − zb) − y

CJ
> 0 and the parameter B > 0

characterizing the reduced velocity y(τ ) at time τ ,

X = [y(τ )− y
CJ
] + Azb > 0, B= [y(τ )− y

CJ
] + Aa/(hµey

CJ )> 0, (D 7a,b)
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B Xo 1 X

ln[hµ/(hµ - 1)]

-ln(1 - e-X)

(hµe-yCJ/A)(X -B)

lnhµ

2

1

FIGURE 9. Graphic solution of equation (D 8) for hµ ≈ 2. The dot line denotes the
limit of the straight line whose intersection with the curve − ln(1− e−X) determines the
solution Xo.

equation (D 6) for zb at time τ takes the form

hµey
CJ

A
[X − B] =− ln

(
1− e−X

)
. (D 8)

For consistency with (D 1), the root Xo of (D 8) should be smaller than ln[hµ/(hµ −
1)] ≈ 0.7, so that the parameter B should be sufficiently small B < 0.7 since B <
Xo < ln[hµ/(hµ− 1)], see figure 9. These conditions on Xo imply that the slope of the
straight line in figure 9, hµey

CJ /A is larger than ln hµ/[ln(hµ/(hµ − 1))− B] yielding
a maximum value Am of the deceleration A

A 6 Am,
Am

ey
CJ

(hµ − 1)
hµ

= ln
(

hµ
hµ − 1

)
− (y(τ )− y

CJ
) (D 9)

corresponding to a maximum Xm of Xo, Xm = ln[hµ/(hµ − 1)], Amzb + (y(τ )− y
CJ
)=

ln[hµ/(hµ− 1)] and to a delay zb= (hµ − 1)/hµeyCJ . For a deceleration of order unity,
A = O(1), the solution of (D 8) and the time delay zb(τ ) are of order unity and the
latter varies weakly when approaching the CJ regime [y(τ )− y

CJ
]� 1.

Consider now a small deceleration of the blast wave A� 1. The limit of a small
slope of the trajectory A→ 0+, Xo → B, requires some attention. If one considers
the limit A→ 0+ for a fixed and non-zero value of y(τ )− y

CJ
= A(τ − τCJ) 6= 0, the

parameter B in (D 7) remains non-zero B→ y(τ ) − y
CJ
6= 0, and the limit Xo → B

shows that the delay still goes to a value of order unity zb→ a/hµeyCJ . To summarize,
at a finite distance from the CJ regime at time τ , the time delay zb is still of order
unity. The limit of a small deceleration A→ 0+ is different when the propagation
velocity y(τ ) reaches the CJ velocity at finite time τ = τCJ : y(τ )= y

CJ
, X = Azb and

B= Aa/(hµey
CJ ), limA→0+ B= 0. Then, equation (D 8) yields

τ = τCJ A→ 0+ : hµey
CJ X =−A ln

(
1− e−X

)
→ 0+, (D 10)
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showing that the delay zb diverges weakly when the slope of the trajectory decreases
to zero, zb = X/A→∞, zb ≈ ln A−1 in a way reminiscent of (C 30).

(ii) Consider now the case opposite to (D 1)

− 1+ h−1
µ <−e−[y(τ−zb)−y

CJ
]
⇒ ln[hµ/(hµ − 1)]< y(τ − zb)− y

CJ
. (D 11)

Equation (8.30) then yields zb = e−y(τ−zb). Using (D 4) and X = Azb this gives

XeX
= Ae−A(τCJ−τ). (D 12)

For a decreasing trajectory A > 0 with y(τ ) > yCJ , the delay zb(τ ) at time τ < τCJ
increases with the time to a maximum value XmeXm =A (when reaching the CJ velocity,
τ = τCJ) and decreases quickly to zero in the past, zb ≈ e−A(τCJ−τ) for A(τCJ − τ)� 1.

For an increasing trajectory, dy/dτ > 0, A< 0, equation (D 12) has no root or the
solution for zb multivalued. This is in agreement with the fact that, according to § 9.2,
causality is not satisfied.
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