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Stochastic league tables (SLT) have been introduced as a tool for communicating uncer-
tainty around cost-effectiveness estimates to decision makers (1;9). Coyle (7) criticizes this
approach on three specific points. We will discuss them in turn.

ESTIMATING ICER: ‘‘RATIO OF MEANS” VERSUS ‘‘MEAN RATIO”

The first comment relates to the correct approach to estimate incremental cost-effectiveness
ratio (ICER). Coyle correctly argues that the “ratio of means” approach has strong theoretical
foundations based on both constrained optimization and individual utility maximization,
whereas the “mean ratio” approach lacks this basis and may lead to incorrect estimates of
the ICER. We fully agree with Coyle in this matter. However, Coyle argues that the SLT
approach applies the “mean ratio” approach in its calculations, and that, therefore, its results
would be misleading. This is not correct.

Nonparametric bootstrapping techniques typically involve three levels of analysis. The
first level is that of a trail in which data are collected from individual patients receiving
alternative therapies. On the basis of these data, the ICER can be estimated as follows:

ICER =
∑

I=1..R CAi − CBi
∑

I=1..R EAi − EBi
(1)

where CAi and CBi and EAi and EBi are the costs and effectiveness of individual patients
following therapies A and B. A single estimate of ICER is calculated on the basis of the
“ratio of means” approach that Coyle correctly favors.

The second level of analysis is the bootstrap procedure for the sake of uncertainty
analysis. Repeated samples of cost/effects pairs are taken from the groups of patients who
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received therapy A and who receive therapy B. The bootstrap replicate of the ICER is
again calculated using formula 1. By repeating this procedure a large number of times, the
empirical sampling distribution of the ICER is obtained.

The third level of analysis involves the determination of the confidence interval on the
basis of the empirical sampling distribution. The simple percentile method can be used to
estimate the upper and lower confidence limits for the ICER by taking the 100(α/2) and the
100(1 − (α/2)) percentile values of the empirical sampling distribution of the ICER. The
mean ICER is estimated as the mean of all the individual replicated ICER and, therefore,
could indeed be labeled as a “mean ratio” approach.

The numerical example to illustrate SLT, as presented in Baltussen et al. (2), used
parametric bootstrapping rather than nonparametric bootstrapping, but the above principles
are maintained. Parametric bootstrapping makes distributional assumption concerning the
statistic in question and samples from that distribution, whereas nonparametric bootstrap-
ping samples from an empirical data set. The data as reported in our example, and where
was sampled from, represent mean costs and mean effect at the population level. Rather than
taking many samples at the individual patient level, the second level of analysis, therefore,
involves taking a single sample of mean population costs and effects for therapies A and B
to determine an ICER replicate.

The use of “mean ratios” in the third level of analysis is where Coyle’s critique seems to
focus. However, we believe that this approach is appropriate for the derivation of confidence
interval; many other authors seem to agree with this approach, as they have used the same
technique in bootstrapping procedures (3–6). The use of “mean ratios” to determine confi-
dence intervals is conceptually very different from the situation that Stinnett and Paltiel (13)
describe, in which they are concerned about the consistency and validity of the calculation
of single ICER estimates on the basis of trial data. Coyle’s critique of SLT, therefore, is not
valid.

CONFIDENCE INTERVALS AROUND THE ICER

Coyle argues that the percentile method to estimate confidence intervals may lead to am-
biguous results. As an example, he states that two replicates A and B can have the same
negative ICER but one may estimate therapy A as both cost saving and more effective and
the other may estimate therapy B as more costly but less effective. In our opinion, this
can be solved by a simple algorithm in which the negative ICER of therapy A is listed in
the top percentiles of ICERs and the negative ICER of therapy B is listed in the bottom
percentile of ICERs. In the context of generalized cost-effectiveness analysis (CEA), this
option would not even be necessary, as this approach evaluates interventions compared with
“doing nothing” and costs, by definition, are positive (10).

Furthermore, in our study, we propose a combination of parametric bootstrapping (also
called probabilistic uncertainty analysis) and nonparametric bootstrapping, as first devel-
oped by Lord and Asante (11). Coyle argues that we confuse methods of analysis: whereas
nonparametric bootstrapping is designed for economic evaluation alongside clinical trials,
parametric bootstrapping is designed for economic evaluation based on decision analysis
that includes a set of estimates at the population level. We argue that model approaches
in CEA often use data from a variety of sources and that a combination of parametric
and nonparametric bootstrapping allows the assessment of uncertainty around clinical and
population level data in the same analysis.

Coyle proposes an alternative approach by expressing the net monetary benefit of
interventions by weighing the expected health gains by a shadow price λ less the ex-
pected costs. Cost-effectiveness acceptability curves are based on this approach and inform
decision-makers, for a givenλ, the probability that an intervention is cost-effective. Recently,
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cost-acceptability effectiveness curves have been applied to a multiple intervention environ-
ment (8), which makes this approach very similar to SLT. Because λ represents the shadow
price of a budget constraint, the rank order of interventions following either the cost-
effectiveness acceptability curves or SLT approach would be the same. However, the use
of a budget constraint in our optimization procedure seems more relevant from the policy
perspective than the application of a shadow price, which, if estimated correctly, still re-
quires reference to the budget constraint. Moreover, the use of a fixed shadow price ignores
that, as new interventions are funded, other interventions have to be canceled to avoid an
ever-growing budget (12).

STOCHASTIC LEAGUE TABLES

The two “fundamental problems” of SLT as mentioned by Coyle have been debated in detail
elsewhere (1), with the conclusion that SLT do have a strong theoretical background. We
believe that multi-intervention cost-effectiveness acceptability curves as well as SLT are an
important contribution to uncertainty analysis and are an apt approach for communicating
uncertainty around cost-effectiveness estimates to policy makers.
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