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Wake behind a three-dimensional dry
transom stern. Part 2. Analysis and
modelling of incompressible highly

variable density turbulence
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We analyse the turbulence characteristics and consider the closure modelling of the
air entraining flow in the wake of three-dimensional, rectangular dry transom sterns
obtained using high-resolution implicit large eddy simulations (iLES) (Hendrickson
et al., J. Fluid Mech., vol. 875, 2019, pp. 854–883). Our focus is the incompressible
highly variable density turbulence (IHVDT) in the near surface mixed-phase region
R behind the stern. We characterize the turbulence statistics in R and determine
it to be highly anisotropic due to quasi-steady wave breaking. Using unconditioned
Reynolds decomposition for our analysis, we show that the turbulent mass flux
(TMF) is important in IHVDT for the production of turbulent kinetic energy and is
as relevant to the mean momentum equations as the Reynolds stresses. We develop a
simple, regional explicit algebraic closure model for the TMF based on a functional
relationship between the fluxes and tensor flow quantities. A priori tests of the model
show mean density gradients and buoyancy effects are the main driving parameters
for predicting the turbulent mass flux and the model is capable of capturing the
highly localized nature of the TMF in R.

Key words: wave breaking, multiphase flow

1. Introduction
Our interest is the complex, three-dimensional wake immediately aft of the dry

transom stern of a surface ship. This region contains violent breaking of the free
surface, highly mixed air–water turbulent flow, large-scale air entrainment and air
cavity breakup. We present this work in two parts. In Part 1 (Hendrickson et al.
2019), we focus on the wake surface, the structure of the underlying wake flow,
Lagrangian characteristics of the large-scale air entrainment and surface entrainment
rate and the scaling of these with Froude number and stern geometry. The objective
of Part 1 is to provide a physical understanding of the detailed flow features in the
mixed region and the characteristics of the large-scale air entrainment. Part 2 focuses
on understanding and modelling of the highly mixed, air–water turbulent near-surface
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IHVDT in the wake of a transom stern 885

region of the wake by combining the surface fluctuations, spray and entrainment
into a single mixed-phase region through an Eulerian framework. The objective of
Part 2 is to provide a statistical understanding of the mixed-phase region within the
context of incompressible highly variable density turbulence (IHVDT) and address
the necessary turbulent closure modelling.

The turbulent air entraining ship-wake problem presents a special class of variable
density turbulent flows with experimental and computational challenges. The problem
involves high void fractions (20 %–30 %) (Terrill & Fu 2008) and the ship-scale
problem spans 7–8 orders of magnitudes in flow length scales. Until recently, relatively
little was understood about the turbulent nature of this flow. Many experiments and
simulations provide insight into the mean flow and turbulent nature of real ship
wakes in the absence of entrainment (Sotiropoulos & Patel 1995; Gui, Longo &
Stern 2001; Kim, Van & Kim 2001; Olivieri et al. 2001; Shen, Zhang & Yue 2002;
Larsson, Stern & Betram 2003). Part 1 provides a detailed review of the known air
entrainment characteristics and surface features of transom wake flows. To date, a
detailed understanding of the turbulent nature of the mixed-phase region of the flow
remains elusive.

There is significant information available on miscible incompressible variable
density turbulent flows such as the buoyancy-driven Rayleigh–Taylor instability (Sharp
1984; He et al. 1999; Livescu & Ristorcelli 2007, 2008) and mixing by jets (List
1982; Dimotakis 2005). In the category of immiscible fluids, there is a substantial
literature on such topics as bubble columns (Mudde 2005) and swarms (Lance &
Bataille 1991; Bunner & Tryggvason 2002a,b). In these turbulent dispersed multiphase
flows, the driving mechanism derives from the gas flow and the bubble-induced
velocity/turbulence is non-negligible. More convective bubbly flows include hydraulic
jumps (Chachereau & Chanson 2011; Mortazavi et al. 2016), cavitating hydrofoils
and ventilated bodies (Karn et al. 2016; Kang et al. 2017; Young et al. 2017). In
Part 1, we show that the near-wake flow of the stern bears little similarity to that
of hydraulic jumps. From the perspective of shear wakes, while there is a significant
literature on cavitating bodies, there is sufficient difference in the wakes between
naturally ventilated and cavitating bodies to warrant separate investigations (Young
et al. 2017). Finally, and unfortunately, the literature on ventilated bodies focuses
mainly on the hydrodynamic forcing rather than the wake IHVDT. When we consider
the literature as a whole, there is little knowledge or guidance for the problem
considered here.

For turbulent dispersed multiphase flows, the particle Stokes number St = (τp/τk),
where τp is the particle time scale and τk the Kolmogorov time scale, is key to
determining if the surrounding fluid dictates the particle’s motion (rather than its own
momentum and energy). For St . 0.2, this assumption is fairly accurate (Balachandar
& Eaton 2010). Based on the effective viscosity, effective spherical radius found
in Part 1 as well as the scales of the physical problem, our St . O(10−3). Thus,
despite the high void fractions in the flow, our problem is a dilute dispersion with
strong convection in the carrier flow. Therefore, our analysis focuses on treating
the mixed-phase region as a spatially evolving boundary between two bulk flows
(air and water), idealized in figure 1. We define the mixed-phase region R based
on unconditioned temporal averaging of the flow field, with its boundary chosen
to encompass the predominance of the IHVDT kinematics. In this framework, the
discrete (Lagrangian) concepts of air entrainment (Part 1, § 6) and spray droplets are
not used. The analysis combines the effects of surface fluctuations, entrainment and
spray into a single mixed-phase region R, and the turbulent mass flux (TMF) ρu′i

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

50
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.506


886 K. Hendrickson and D. K.-P. Yue
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FIGURE 1. (Colour online) Idealized definition of mixed-phase region R. (a) Instantaneous
snapshot of the interface between two fluids (grey and white). (b) Mixed region
(gradient) between two bulk fluids (grey and white). In both: unconditioned temporal
mean interface; boundaries encompassing the IHVDT kinematics as defined in § 2.2
and appendix C.

captures these effects as a single quantity that influences the mass, momentum and
energy equations. Analysing IHVDT within this framework is a distinctly different
approach to that of conditional phase-weighted averaging techniques (e.g. Drew
1983; Aliod & Dopazo 1990; Brocchini & Peregrine 2001). As we will show, this
framework enables us to develop turbulence closure modelling for a single quantity
that incorporates multiple physical effects.

Using this framework, we analyse the structure of the underlying mean and
turbulent flow for the IHVDT within R in the wake behind the dry transom sterns
presented in Part 1. The objective is to characterize the turbulent statistics and explore
modelling closure to complement and support laboratory and field measurements and
to inform models used in large-scale ship predictions (Baldy 1993; Ma, Shi &
Kirby 2011a; Ma et al. 2011b). The simulations in Part 1 are for canonical transom
sterns of rectangular cross-section (beam 2B, draft D) in deep water idealized as
a partially submerged rectangular prism in a uniform and constant in time inflow
velocity U (outside the stern cross-section in the inflow plane). The parameters
that characterize this problem are the half-beam-to-draft ratio B/D and draft Froude
number Fr=U/

√
gD. We perform implicit large eddy simulations (iLES) for different

B/D ratios and dry transom values of Fr (motivated by Drazen et al. 2010).
Through analysis of the turbulent velocity u′i and density ρ ′ fluctuations, the IHVDT

Reynolds-stress tensor and anisotropy tensor, we find the IHVDT flow to be generally
anisotropic throughout the wake. The anisotropy sources within R are mainly the
quasi-steady wave breaking. We show that TMF is important in the production of
turbulent kinetic energy and is as relevant to the mean momentum equations as
the IHVDT Reynolds stresses and that it is highly localized. We develop a simple,
regional, explicit algebraic closure model for the TMF. The functional approach we
employ allows us to incorporate multiple physical effects. Our a priori tests of the
model show that mean density gradients and buoyancy effects are able to explicitly
predict the localized turbulent mass flux and its relevant effects in the mean equations.

The outline of this paper is as follows. Section 2 briefly details the iLES used
for the analysis, defines the IHVDT analysis framework and the mixed-phase region
and provides further analysis of the mean flow. Section 3 presents the IHVDT
characteristics in terms of the density and velocity fluctuations, turbulent kinetic
energy and IHVDT anisotropy. Section 4 quantifies the turbulent mass flux and its
relevant importance to the mean flow equations and necessity for closure. Section 5
presents the turbulent mass flux closure modelling. Section 6 discusses the overall
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IHVDT in the wake of a transom stern 887

Case Fr B/D (νe)
−1 x̂c x̂B

A 2.53 1.0 5308 1.07 2.68
B 2.53 1.25 5290 1.38 2.87
C 2.53 1.77 5064 1.63 3.06

TABLE 1. Parameters for representative cases A, B and C measured within the
interrogation domain. ν−1

e is the third-quartile value of the iLES effective viscosity (Part 1).
The time step 1t= 1.875× 10−3 and sampling rate dt= 0.01 for all cases.

impact of the findings of this paper in the context of large-scale, three-dimensional
ship wakes.

2. Simulation of canonical three-dimensional transom sterns
The data for our present analysis come from implicit large eddy simulations of the

canonical geometry studied in Part 1 (Hendrickson et al. 2019). The iLES utilizes the
conservative volume-of-fluid method (cVOF) (Weymouth & Yue 2010) and boundary
data immersion method (BDIM) (Weymouth & Yue 2011) on a Cartesian grid. The
canonical problem we consider is the flow behind a rectangular transom stern of
beam 2B and still water submergence draft D. The flow condition is a constant
uniform inflow velocity U. The draft Froude number Fr = U/

√
gD characterizes

this problem. The cases considered are at sufficiently high Fr to correspond to dry
transom conditions. Recent laboratory-scale experiments using Model 5673 geometry
with draft D = 0.305 m showed that transition to dry transom conditions occurred
between 7 and 8 kt or Fr & 2.38 (Drazen et al. 2010). Performing many iLES at
2.386Fr 6 3 and half-beam-to-draft ratios 16B/D6 2.1, we find that the results are
qualitatively quite similar. In this study we focus on three representative cases A, B
and C specified by the parameters given in table 1. Hereafter, we normalize all fluid
constitutive properties to those of water: ρ = ρ∗/ρw and µ=µ∗/µw, where ∗ denotes
respectively the dimensional density and viscosity of the fluid at a given point.

The measured effective viscosity in table 1 comes from analysis following that of
Aspden et al. (2008) and detailed in Part 1. The boundary conditions for the Cartesian
grid iLES are as follows: (i) uniform inflow velocity U on the inlet plane except
where the rectangular geometry intersects the inlet; (ii) zero-gradient extrapolations on
the lateral boundaries; (iii) symmetry planes for the top and bottom boundaries; (iv)
mass conserving exit condition far downstream; and (v) free-slip tangential velocity
boundary conditions on the body geometry. We subdivide the computational domain
into a high-resolution inner interrogation domain of constant grid volumes δΩ =∆3

that encompasses the near region behind the stern, with ∆=D/64. This is sufficient
to resolve features an order smaller than D but not the physical Hinze scale aH for
realistic laboratory-scale (and certainly full-scale) experiments (Deane & Stokes 2002;
Fu et al. 2006; Terrill & Fu 2008; Drazen et al. 2010). We note here that, for scales
greater than aH , the local turbulent kinetics and buoyancy effects dominate the free-
surface and bubbly cavity dynamics, which we resolve. We neglect effects associated
with interphase surface forces that are only relevant at sub-Hinze scale. Given the
physical scales of the stern flow we address, we do not include surface tension in
our iLES. Based on the root mean square (r.m.s.) of the velocity fluctuations and
the (resolved) size of the air cavities, we estimate the turbulent Weber number to be
We & O(103). To assess the effect of We of this magnitude, we include a result in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

50
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.506


888 K. Hendrickson and D. K.-P. Yue

(a) (b)

(c) (d)

FIGURE 2. (Colour online) Instantaneous isosurface of volume fraction f = 0.5 for case A
(a,b) and C (c,d) within the interrogation domain. Flow is from left to right (+x). (a,c)
viewed from above; (b,d) viewed from the side. Surface is rendered partially transparent.
Dark regions indicate multivalued surface, spray or entrainment.

appendix B of Part 1 using We= 1000. The effects on the entrainment we resolve are
relatively small at these scales, as expected.

Figure 2 shows the instantaneous volume fraction isosurface f = 0.5 for cases A
and C. The wake contains three distinct regions (present for all cases considered).
The first region contains a large depression behind the dry stern with ridges that
rise from the lower corner. These ridges, or converging corner waves (CCW), angle
towards the stern centreline. Depending on the value of B/D, the CCW impact on
the centreline (cases A and B) with physics similar to two impacting jets: entraining
some air and generating significant spray; or the CCW fully overturn before arriving
at the centreline (case C) entraining air in the CCW region. The rooster tail (RT)
forms after the CCW region. The length of the RT decreases with B/D and its surface
is rough with many fine-scale ligaments and spray. The RT region widens to form
the beginning of the divergent wave (DW) train behind the stern. Here, the wake
surface near the centreline becomes smoother while the edges contain fine structures
and quasi-steady breakers. In Part 1, we identify two main scalings of the wake
features. First, the wake interface geometry in the CCW region scales ballistically,
consistent with supercritical channel expansion flow (Rouse, Bhoota & Hsu 1949;
Martínez-Legazpi et al. 2013). Second, the air entrainment characteristics along the
extent of the wake scale as x̂ = x/Fr, consistent with the convective nature of the
flow. As the forthcoming analysis focuses on the turbulent nature of the IHVDT, we
scale the streamwise component as x̂. Using this scaling, we define two different
locations along the wake: the location where the converging corner waves collide (or
the end of the CCW) x̂c; and the start of the DW region defined for convenience as
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IHVDT in the wake of a transom stern 889

the location where the average wake interface crosses the plane of the half-beam x̂B
(see table 1 for details).

2.1. IHVDT analysis framework
The best analysis framework for IHVDT is not clear (see e.g. the review in Brocchini
& Peregrine 2001). When one fluid is dispersed throughout the other as is the case
for the immiscible flows studied here, conditional phase-weighted averaging is helpful
(Drew 1983; Aliod & Dopazo 1990; Brocchini & Peregrine 2001). The framework
takes heterogeneous mixed flow and replaces it with a mixture of coexisting equivalent
fluids. However, the technique tends to smooth out continuous phase fluctuations
caused by the discrete phase (Lance & Bataille 1991). To assess the nature of
IHVDT in its most basic form, we choose an unconditioned temporal averaging
with Reynolds decomposition. As such, our notation is the instantaneous velocity
field Ui(x, t)= Ui(x)+ u′i(x, t) for i= 1 . . . 3, with Ui the temporal mean value and
u′i the random centred fluctuation such that u′i = 0. The other flow quantities are
total pressure P = P + p′, density ρ = ρ + ρ ′ and viscosity µ = µ + µ′. With these
definitions, the governing equations for the mean continuity (2.1), momentum (2.2)
and kinetic energy (2.3) are

∂ρ

∂t
+
∂
(
ρUk

)
∂xk

=−
∂

∂xk

(
ρu′k
)
, (2.1)

∂ρ Ui

∂t
+
∂
(
ρ Ui Uj

)
∂xj

=
ρ

Fr2
gi −

∂P
∂xi
−
∂ρu′iu′j
∂xj

+
∂τ ij

∂xj
− Ai,

where Ai =
∂ρu′i
∂t
+

∂

∂xj

(
ρu′i Uj + ρu′j Ui

)
(2.2)

and

∂
(

1
2ρ Ui Ui

)
∂t

+
∂
[(

1
2ρ Ui Ui

)
Uj
]

∂xj
=
ρ Ui

Fr2
gi −

∂P Ui

∂xi
− AiUi

−
∂
(
ρu′iu′j Ui

)
∂xj

+ ρu′iu′j
∂Ui

∂xj
+
∂
(
τ ij Ui

)
∂xj

− τ ij
∂Ui

∂xj
. (2.3)

In the mean governing equations, τij =µ
1
2(Ui,j +Uj,i)/Re is the instantaneous viscous

stress tensor and gi =−δi3 is the gravitational force. When written in this form, the
different contributions of the turbulent mass flux (ρu′i) are explicit: (i) the source term
on the right-hand side of (2.1); (ii) the Ai term in (2.2); and (iii) the Ai Ui term in (2.3).
In addition to understanding the overall turbulence characteristics in the mixed-phase
region of the transom stern wake, we focus on investigating the relative importance of
these TMF terms for IHVDT closure modelling. For completeness, we briefly discuss
the use and implications of mass-weighted (or Favre) averaging in appendix C.

We average each case over a quasi-steady time period of t = UT/D = 40 with a
sampling rate of dt = 0.01, or 4000 samples. We estimate the statistical error in the
mean velocity, density, r.m.s. velocity and density fluctuations, turbulent mass flux ρu′i
and Reynolds stresses ρu′iu′j, using standard deviations of the entire sample time and
multiple sub-time blocks of the simulation, to obtain 95 % confidence in these mean
quantities (Friedberg & Cameron 1970; Morales, Nuevo & Rull 1990). The maximum
statistical error for all quantities considered is ±5.3 %.
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FIGURE 3. (Colour online) Transverse cuts of (a) ρ for case C and (b) conditioned
transverse area SR for case A; case B; and case C along the wake.

2.2. Definition of the mixed-phase region R and conditioning averaged quantities
We define the mixed-phase region R to be the variable density region where the
average density satisfies 1ρ 6 ρ 6 1 − 1ρ, where the boundary width 1ρ is an
unknown parameter. We choose the value of 1ρ such that R: (i) contains much of
the relevant quantities such as turbulent kinetic energy and turbulent mass flux; (ii) is
well behaved; and (iii) does not contain noise generated by individual entrainment or
spray events (caused by the 1000:1 water-to-air density ratio). Note that when defined
in this manner and combined with the unconditioned time average, R includes surface
fluctuations as well as entrained air and spray (see figure 1).

As the higher density water motion can have a significant influence on ρu′i, we
perform a careful statistical analysis to determine 1ρ. The full analysis in appendix A
shows that 1ρ = 0.05 allows for comparable contributions around the mean interface.
Appendix A also contains the definitions of the conditional moments and conditioned
averages for the flow. Unless specified, quantities plotted in the forthcoming sections
are depth-conditioned averages (A 2) at a location (x, y) or area-conditioned (A 3) at
a location x.

2.3. Mean flow properties within the mixed-phase region in the wake
Figure 3(a) shows transverse (y–z plane) cuts of ρ and R in the wake at successive
streamwise x locations. The pockets of entrained air are visible at the locations of
quasi-steady wave breaking in the converging-corner-wave and diverging-wave regions.
The surface fluctuations and spray areas above the mean interface ρ = 0.5 are also
evident. Generally, at each wake location the z extent of R is directly related to the
breaking and spray formation. When associated only with surface fluctuations, the z
extent of R is small. Figure 3(b) shows SR (see (A 3) for notation) along the wake
for all three cases. Cases A and B are very similar and case C contains the largest
mixed-phase region. The scaling of the mixed-phase region along the wake with Fr
is consistent with the convective nature of the flow at these ship speeds.

Figure 4 shows the conditioned mean velocity for all three cases at two x̂ locations
(transverse cuts) and along the wake (streamwise). In the rooster-tail region x̂ < x̂B
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FIGURE 4. (Colour online) Values of 〈Ui
R
〉z and 〈Ui

R
〉yz for case A; case B;

and case C. (a,d,g) transverse cut x̂ = 1.5; (b,e,h) transverse cut x̂ = 4.0; and
(c, f,i) along the wake.

(figure 4a,d,g), the velocity profiles collapse with beam scaling, consistent with
the ballistic behaviour identified in Part 1. The wake deficit magnitude U − U1 is
proportional to B. The magnitudes of the transverse and vertical velocities exhibit
no distinct scaling with geometry at this location. We note here that there exists
some asymmetry with y in the mean velocity profiles (most notably case A e.g.
figure 4h) and r.m.s. fluctuations in figure 5, which we hypothesize are a function of
a buffer domain boundary rather than physical phenomenon or a function of statistical
convergence.

In the diverging-wave region x̂ > x̂B (figure 4b,e,h), the wake deficit magnitude
peaks on the outer boundaries of R, decreases and then increases again on the
centreline y/B= 0. This is in direct contrast with the general transverse spreading of
the wake deficit observed in bluff-body wakes (Pope 2000) due to the presence of the
breaking waves on the outer boundaries of R. When we consider the aggregate plot
along the wake (see figure 4c, f,i), we see that the streamwise and transverse velocities
show no significant dependence on geometry. However, the vertical velocity shows
an inverse relationship with B, in particular near x̂ = 1. This is due to the presence
of the converging corner waves as identified in Part 1. This location represents
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FIGURE 5. (Colour online) Root mean square velocity and density fluctuations.
(a) Transverse cut at x̂= 1.5; (b) transverse cut at x̂= 4.0; (c) along the wake. urms

1 ;
urms

2 ; urms
3 ; andE ρrms. Vertical represents from left to right x̂c and x̂B,

respectively. Data are case A.

(for cases A and B) where the converging jets collide on the centreline, generating a
large vertical velocity. For case C, the converging corner waves break near x̂ ≈ 0.5.
Thus, the converging jets are weaker at x̂≈ 1 generating a decreased vertical velocity.

3. Turbulence characteristics within the mixed-phase region

The three geometries in this study do have physical differences in the mean interface
characteristics (see §§ 2.3 and 4 of Part 1). However, with the definition of R and
the use of the conditioning outlined in § 2.2, the three cases have many similarities
in terms of their turbulent statistics. The following section discusses the turbulent
characteristics in R for case A. We include the other cases only when it warrants
identifying significant differences or similarities.

3.1. Root mean square fluctuations

Figure 5 plots transverse cuts of the r.m.s. velocity urms
i =

√
u′2i and r.m.s. density

fluctuations ρrms. Generally, the transverse cuts across the rooster tail (figure 5a)
contain a near-homogeneous behaviour within |y/B|6 1 for velocity components and
peak at the centreline for the density components. Transversely across the diverging
wave (figure 5b), the fluctuations have peaks at |y/B| ∼ 3 (caused by the quasi-steady
breaking waves) that frame a near-homogeneous behaviour within |y/B| < 2. Along
the wake (see figure 5c), all of the fluctuations peak near x̂ = 1. The rooster-tail
region 1 < x̂ < x̂B shows near constant density fluctuations with a decrease in the
velocity fluctuations. In the diverging-wave region x̂ > x̂B both density and velocity
fluctuations increase due to the presence of breaking waves. There exists a subtle
difference in the magnitudes of the velocity fluctuations (both transversely and along
the entire wake) implying a degree of anisotropy.

3.2. IHVDT anisotropy

Figure 6 shows the IHVDT Reynolds stress σij = ρu′iu′j and the anisotropy tensor
components bij = aij/2k = σij/2k − 1/3δij along the wake (here aij = σij − 2/3kδij; k =
1/2ρu′iu′i). The diagonal components of the Reynolds stresses are negative and peak
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FIGURE 6. (Colour online) Reynolds-stress tensor σij = ρu′iu′j and anisotropy tensor bij
along the wake. (a) Diagonal components σii: σ11; σ22; and σ33.
(b) Off-diagonal components σij i6=j: σ12; σ13; and σ23. (c) Diagonal
components bii: b11; b22; and b33. (b) Off-diagonal components
bij i6=j: b12; b13; and b23. Vertical represents from left to right x̂c
and x̂B, respectively. Data are case A.

near x̂c. The magnitude decreases in the rooster tail and then increases again in the
diverging-breaking-wave region x̂ > x̂B. The diagonal components of the anisotropy
tensor (see figure 6c) show that only the transverse and vertical components of the
velocity fluctuations contribute to the turbulent kinetic energy (TKE) immediately
off of the stern (b22 > 0 and b33 > 0 at x̂ & 0). The streamwise component quickly
becomes dominant 0.25 < x̂ < x̂c and the energy is in both the streamwise and
transverse directions near x̂c. The transverse and vertical components exchange relative
importance in the rooster tail (b11 > b33 ∼ 0 and b22 < 0). This reverses itself further
downstream in the diverging-wave region (b11> b22∼ 0 and b33< 0). The off-diagonal
terms of the Reynolds-stress tensor (figure 6b) are an order of magnitude smaller
than their diagonal counterparts. Figure 6(d) shows b13 to be the most significant
anisotropy tensor term along the entire wake.

A measure of the flow isotropy from the invariants of the anisotropy tensor
(I = bii; II = bijbji; III = bijbjkbki) is the two-dimensionality or anisotropy parameter
J = 1–9(1/2II–III), where J = 0 is highly anisotropic and J = 1 is isotropic
(Jovanovic 2004). In the rooster tail (figure 7a), the flow is moderately isotropic on the
wake centreline, reaching a value of 0.6–0.8. However, it is highly anisotropic at
|y/B| ≈ 1 with a secondary peak value of 0.4 for y/B > 1. In the diverging-wave
region (figure 7b), the area of moderately isotropic behaviour widens with the wake
width. However, the area of increased anisotropy (while not as strong) still persists
at |y/B| ∼ 1 and |y/B| ∼ 4. Figure 7(c) shows the aggregate anisotropy parameter
plotted along the wake for all three cases. The flow generally changes from highly
anisotropic to moderately isotropic downstream with a general collapse of all cases
in the far wake to a similar value of J ≈ 0.6. The flow never achieves fully isotropic
behaviour within O(10)D behind the stern.
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FIGURE 7. (Colour online) Anisotropy parameter J . (a) Case A transverse cut x̂= 1.5;
(b) case A transverse cut x̂= 4.0; and (c) along the wake for case A; case B;
and case C.

The method of componentality contours (Emory & Iaccarino 2014) provides a
technique of visualizing the anisotropy of complex flows similar to the anisotropy
invariant map (Lumley & Newman 1977) and barycentric map (Banerjee et al.
2007) based on the invariants and their eigenvalues λi. The componentality contours
construct a colour map from the barycentric coordinates

xB =C1c +
1
2 C3c, yB =C3c; with C1c = λ1 − λ2 and C3c = 3λ3 + 1, (3.1a,b)

where λi is defined such that λ1 > λ2 > λ3. Note here that the Euclidean domain
mapping chosen by Banerjee et al. (2007) simplifies such that C2c = 2(λ2 − λ3) is
not necessary for these definitions. The colour map translates Cn, n= (1c, 2c, 3c) to
RGB (red green blue) colour components for visualization

[R G B]T =C1c[1 0 0]T +C2c[0 1 0]T +C3c[0 0 1]T (3.2)

(for further colour map details see Emory & Iaccarino 2014). Overlaying the colour
map onto flows of geometric complexity provides a powerful tool for identifying local
regions of anisotropy.

Figures 8 and 9 show the componentality contours in the wake of the stern. As
shown in the legend in figure 9(a), red represents 1-component turbulence x1C, green 2-
component turbulence x2C and blue 3-component turbulence x3C. Outside of the mixed-
phase region (see figure 9), the mainly 1-component bulk water turbulence becomes
2-component and isotropic in the diverging-wave region. The spreading wake of the
geometry in the bulk air turbulence is also visible. Within the mixed-phase region, the
converging corner waves inject 1-component turbulent flow into the rooster-tail region
(see figures 8 and 9b). The rooster-tail centreline at x̂c (figure 9b) as well as the scars
formed by the breaking waves in the diverging-wave region (figure 9c) are sources of
2-component turbulence in R. Also shown in figure 9(c), is that the wave breaking
draws 1-component bulk water turbulence up into R.

3.3. Turbulent kinetic energy

Figure 10(a) shows the mean turbulent kinetic energy k= 1
2ρu′iu′i along the wake for

all three cases. The initial peak of the TKE occurs at x̂∼ 1, as expected. For case C,
there are two peaks in the CCW, the first at x̂∼ 0.5 and then at x̂c. This is due to the
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(a) (b)

(c) (d)

FIGURE 8. Componentality contours on ρ isosurfaces. (a) ρ = 0.95; (b) ρ = 0.75;
(c) ρ = 0.25; (d) ρ = 0.05. Data are case A. See figure 9(a) for legend.

x2C

x3C

x1C

(a) (b) (c)

FIGURE 9. Componentality contours at transverse locations. Data are case A. (a) Legend;
(b) x̂ = 1.4; (c) x̂ = 3.9. In each image, upper white line is ρ = 0.05, lower white line
ρ = 0.95.

fact that the converging corner waves break prior to the collision point for this case.
The TKE decreases in the rooster tail and then increases again in the diverging-wave
region. Cases B and C have an additional local peak at x̂∼ 2.75.

The mean turbulent kinetic energy obeys the exact transport equation in variable
density flows (Chassaing et al. 2002)

∂k
∂t
+
∂(kUj)

∂xj
= −

∂
(

1
2ρu′iu′iu′j

)
∂xj

− ρu′iu′j
∂Ui

∂xj︸ ︷︷ ︸
a

+
ρu′i
Fr2

gi︸ ︷︷ ︸
b

−
∂p′u′i
∂xi
+ p′

∂u′i
∂xi
+
∂τ ′iju′i
∂xj
− τ ′ij

∂u′i
∂xj
− ρu′i

(
∂Ui

∂t
+Uj

∂Ui

∂xj

)
︸ ︷︷ ︸

c

. (3.3)
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FIGURE 10. (Colour online) (a) Mean turbulent kinetic energy k along the wake for
case A; case B; and case C. (b) Steady-state terms of (3.3) for case A

term a; dissipation; convection; all transport terms; term b;
term c. Vertical represents from left to right x̂c and x̂B, respectively.

Equation (3.3) does not include the effect of surface tension which is not included in
the iLES. Dodd & Ferrante (2016) established that the power of surface tension can
act either as a source or sink of TKE, and that for turbulent We< 5, the change of
the surface energy on the droplet due to droplet oscillation and coalescence can be
significant and any increase in TKE energy is irreversibly lost to viscous dissipation.
Thus, bubbles with small turbulent Weber number will impact turbulent dissipation of
the carrier fluid and should be incorporated in any explicit sub-grid-scale turbulence
model. However, as the smallest bubbles we resolve have We several orders of
magnitude greater than this critical value, the TKE analyses presented here do not
account for such effects.

Figure 10(b) shows the terms of (3.3) for case A. To determine a best estimate
of the turbulent dissipation for this iLES, we calculate τ ′ij∂u′i/∂xj and scale it by
ν−1

e value from table 1. We apply the same scaling to the viscous transport term
∂τ ′iju′i/∂xj. The production by mean shear and turbulent dissipation peaks near x̂c. The
transport terms are also significant in the converging-corner-wave region, as expected.
Further downstream, the production by mean shear and turbulent dissipation are the
dominant terms. However, the convection and transport terms continue to make small
contributions in this region.

The terms directly associated with the variable density turbulent flows are terms
b and c – as they explicitly involve the turbulent mass flux ρu′i. We define the
production of IHVDT turbulence P as the sum of that due to traditional production
by the mean velocity gradients (term a) and the TMF terms b and c of (3.3). Thus,

P = ρ u′iu′j
∂Ui

∂xj
+ ρ ′u′iu′j

∂Ui

∂xj
− ρu′i

(
∂Ui

∂t
+Uj

∂Ui

∂xj

)
+
ρu′i
Fr2

gi. (3.4)

The first two terms arise from decomposing the density into its mean and average
components in term a of (3.3).
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FIGURE 11. (Colour online) Value of P and its sub-components Pi, i = 1 . . . 4 for (a)
case A and (b) case C. P; P1; P2; P3; and P4. Vertical

represents x̂c and x̂B from left to right, respectively.

Figure 11 shows the total production of TKE and its sub-components along the
wake for case A and C, respectively. For case A, production due to mean shear and
mean density P1 is responsible for most of the TKE production in the converging
corner waves. The production from mean shear with variable density P2 and gravity
effects P4 provides the rest of the production in this region, and P3 actually decreases
the total TKE production moderately. For the case where the waves break within the
converging-corner-wave region (case C), the gravity effects are as important (if not
more) than the production by mean shear P1 +P2. For both case A and case C, the
local peak of TKE at x̂ ∼ 2.75 corresponds to a peak in the TMF specific term P3
and the mean shear term P1.

4. Turbulent mass flux effects in IHVDT
We establish a physical interpretation of the Eulerian concept of TMF with the

Lagrangian concepts of spray and entrainment. This is accomplished by considering
the sign of the TMF. For example, choose a point on the wake deficit profile of
figure 4. A positive velocity fluctuation represents a particle ‘moving outward’ and
negative represents it ‘moving inward’ on the wake deficit profile. Additionally, a
positive density fluctuation infers a passing droplet and negative infers a passing air
bubble. If we consider for a moment TMF only due to bubbles: ρu′i > 0 represents an
air bubble moving outward on the wake deficit profile – or entrainment and ρu′i < 0
represents the bubble moving into the profile – or detrainment. In the context of spray:
ρu′i > 0 implies spray formation and ρu′i < 0 implies drops moving into the wake
deficit profile.

Connecting this to the stern wake, figure 12 shows the TMF along the wake
for each component. In the streamwise direction (figure 12a), cases A and B have
consistent profiles, with case C containing significantly more positive TMF in the
converging-corner-wave region, which is expected for this geometry. The transverse
TMF (figure 12b) peaks in both the RT and DW regions for all three cases. For the
vertical TMF (figure 12c), there are positive peaks in the CCW region due to spray
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FIGURE 12. (Colour online) Turbulent mass flux along the wake for all three cases.
(a) ρu′1; (b) ρu′2; (c) ρu′3. For all case A; case B; and case C.
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FIGURE 13. (Colour online) Transverse cut of TMF for case A (a) x̂= 1.5 and (b)
x̂= 4.0. For all ρu′1; ρu′2; ρu′3; and -grey area is extent of R.

and in the DW due to both spray and entrainment. From (2.1), the divergence of ρu′i
is a source term for the mean mass conservation equation. In Part 1 (see figure 8),
we plot the change in ρ along an average streamline in the wake and discuss the
TMF source term within this context for cases A and C.

To refine this concept further, figure 13 shows the transverse cut of TMF and the
extent of R at two locations in the wake for case A. When viewed in this manner,
we can see the contributions of the different physical mechanisms to the TMF. For
example, the surface fluctuations contribute to the TMF at the outer boundaries of
the mixed region as well as the centreline of the wake (e.g. the positive peaks of ρu′1
at |y/B|∼ 1 in figure 13(a) and |y/B|< 3 in figure 13(b)). The entrainment contributes
at the location of the quasi-steady breaking waves (e.g. the positive peaks of all three
components at |y/B| ∼ 3 in figure 13b).

The Eulerian construct of TMF provides a mechanism to incorporate the combined
effects of entrainment, spray and surface fluctuations into a single quantity (e.g.
figure 1). In § 3.3, we established its relevance to the production of TKE. As an
example of its influence to the mean flow equations, figure 14 compares the forcing
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FIGURE 14. (Colour online) Comparison of forcing from Reynolds stresses and TMF in
the mean momentum equation. (a) x component; (b) y component; and (c) z component.
From (2.2): ∂/∂xj(ρu′iu′j) and Ai. Vertical represents x̂c and x̂B from left
to right, respectively. Data are case A.

from the Reynolds stresses in the mean momentum equations with that of the TMF
forcing Ai of (2.2). For all three mean momentum components, the TMF forcing is
of the same magnitude as that of the Reynolds-stress forcing and either contributes
or is in direct opposition to this term. For example, in the streamwise direction
(figure 14a), the TMF is in direct opposition to and greater in magnitude than the
Reynolds-stress forcing. In the transverse direction (figure 14b), the TMF generally
adds to the Reynolds-stress forcing throughout the wake and is the greater of the
two contributions to the mean momentum in the diverging-wave region. Figure 14(c)
shows that the vertical component of the TMF to be a factor of two greater than the
Reynolds-stress forcing in the CCW region.

The results of §§ 3 and 4 show that: (i) the IHVDT in the mixed-phase region R is
anisotropic; (ii) the location of the anisotropy in R qualitatively correlates with highly
localized TMF; and (iii) TMF makes a contribution to the production of TKE and is of
comparable magnitude to that of the Reynolds-stress forcing in the mean momentum
equations. These three findings have immediate implications for IHVDT modelling.
There are many workshops dedicated to assessing numerical ship hydrodynamics and
effective closure schemes for single phase flows (Ratcliffe 1998; Larsson, Stern &
Visonneau 2013) as well as a body of work addressing closure schemes for wake
flows with anisotropic behaviour starting with Sotiropoulos & Patel (1995). Therefore,
we focus on closure for TMF for IHVDT with the understanding that this is a useful
avenue towards modelling multiple physical mechanisms through a single quantity that
plays a role in all of the governing equations.

5. Development of TMF closure models

Turbulent scalar fluxes appear within the following different physical contexts: (i)
incompressible, variable density mixing flows; (ii) incompressible thermal flows; (iii)
passive scalars and (iv) compressible flows at low and high Mach numbers. The
modelling of turbulent scalar fluxes remains an active area of research. Algebraic
scalar-flux modelling, or first-order methods, connect the scalar fluxes to mean flow
quantities (via a linear or nonlinear scheme that incorporates physical mechanisms)
(Daly & Harlow 1970; Sarkar & Lakshmanan 1991; Wei, Zhang & Zhou 2004;
Younis, Speziale & Clark 2005). Transport models of the scalar fluxes (and variances)
predict the flux from an idealized form of the exact scalar flux budget (Launder 1975;
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Taulbee & VanOsdol 1991; Yoshizawa et al. 1997; Duranti & Pittaluga 2000). The
goal of both types of closure paradigms is to predict the influence of the turbulent
scalar fluxes on the mean (velocity and scalar) flow. Employing transport models
introduces the computational cost of additional transport equations (generally three
for the scalar flux vector and one for the scalar variance). These equations have
terms that require closure (which are also an active area of research). Despite this
cost and the additional modelling effort, the transport model paradigm has successfully
predicted a range of physical turbulent variable density/scalar problems. As yet, none
of the existing TMF closure models – within either paradigm – address IHVDT. As a
first step, we begin with the simpler algebraic model framework. The localized nature
of the TMF within the wake structure implies that, if successful, an explicit TMF
closure model would be computationally expedient over TMF transport equations. The
forthcoming results will determine the general validity of the underlying assumptions
and the usefulness of the resulting model.

We construct an explicit algebraic relation for ρu′i based on a functional method
(Younis et al. 2005). We assume that the density is a passive scalar due to the high
density ratio and convective nature of the flow and form a functional relationship
derived with guidance from the exact form of the TMF transport equations. To retain
the explicit nature of the model, we assume that the length and time scales are that of
the turbulent motions. After performing the linear expansion and further simplification
(details in appendix B), the final form is

−ρu′i =C1
k2

ε

∂ρ

∂xi
+C2

k
ε

u′iu′j
∂ρ

∂xj
+C3

k3

ε2

∂Ui

∂xj

∂ρ

∂xj
+C4

k2

ε2

(
u′iu′k

∂Uj

∂xk
+ u′ju′k

∂Ui

∂xk

)
×
∂ρ

∂xj
+C5

k
ε
ρgi +C6

ρ

ε
u′iu′jgj +C7

k2

ε2
ρ
∂Ui

∂xj
gj +C8ρ

k
ε2

(
u′iu′k

∂Uj

∂xk
+ u′ju′k

∂Ui

∂xk

)
gj.

(5.1)

Here, Cn, n = 1, . . . , 8 can be scalars or vectors. In this general form, the even-
numbered coefficients are the anisotropic form of their odd-numbered counterparts.
The majority of explicit algebraic turbulent (passive) scalar flux models in the
literature are a subset of this general model (Younis et al. 2005): C1,2 represent
the fundamental gradient transport hypothesis (GTH) model (Daly & Harlow 1970;
Sarkar & Lakshmanan 1991); C3,4 include products of the gradients of the scalar
and mean velocity (Dakos & Gibson 1987). In particular, C4 incorporates the rate of
production of the Reynolds stresses. Terms C5–8 are the buoyancy equivalent of the
density gradient terms. Knowing that the underlying turbulence is anisotropic where
TMF exists, we will simplify the model and focus on finding coefficients for only
the even-numbered terms in (5.1).

5.1. Model coefficients
Retaining the even-numbered terms of (5.1) creates a general 4 term model for a
vector quantity, implying a minimum 12 potential values (assuming a global value will
be adequate along the entire wake). Determining the model coefficients is a two-part
process. The first part identifies the most relevant terms in the model by calculating a
conditioned correlation coefficient at a wake location x between the model term (in the
absence of Cn) and a subset of the iLES data within R. The second part determines
the coefficients using a linear-least squares fit between the relevant model terms and
the iLES data.
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With the available data, we select the subset of the iLES data to be case A and
case B, leaving case C for a priori testing in § 5.2. Note that the estimate for ε is
the same as that in § 3.3. Analysis of the conditioned correlation coefficients along
the wake yields that a regional model focusing on the near wake and far wake has
the best potential for success. For the near-wake region (defined here as including
the converging-corner-wave and rooster-tail regions, x̂< x̂B), the mean density gradient
terms of the model (GTH) best correlate with the iLES data, namely C2 for the y- and
z-component and C4 for the x-component. Thus, we propose the near-wake explicit
algebraic turbulent mass flux model (NW) as

ρu′1 =C4
k2

ε2

(
u′iu′k

∂Uj

∂xk
+ u′ju′k

∂Ui

∂xk

)
∂ρ

∂xj
,

ρu′2 =C2
k
ε

u′iu′j
∂ρ

∂xj
,

ρu′3 =C2
k
ε

u′iu′j
∂ρ

∂xj
.


(5.2)

All terms in this explicit model take the form: forcing × turbulent diffusivity. For this
NW model, the forcing is the mean density gradient. The turbulent diffusivity for the
streamwise component is the rate of production of stresses ∼ u′iu′k(∂Ui/∂xk) and for
the transverse and vertical components the diffusivity is the actual stresses.

For the far-wake region (defined here as x̂ > x̂B), both the mean density gradients
(C2 and C4) and buoyancy terms (C6 and C8) correlate well and the proposed far-wake
model (FW) is

ρu′1 =C1
4

k2

ε2

(
u′iu′k

∂Uj

∂xk
+ u′ju′k

∂Ui

∂xk

)
∂ρ

∂xj
+C6

ρ

ε
u′iu′jgj

+C1
8ρ

k
ε2

(
u′iu′k

∂Uj

∂xk
+ u′ju′k

∂Ui

∂xk

)
gj,

ρu′2 =C2
2

k
ε

u′iu′j
∂ρ

∂xj
+C2

4
k2

ε2

(
u′iu′k

∂Uj

∂xk
+ u′ju′k

∂Ui

∂xk

)
∂ρ

∂xj
,

ρu′3 =C3
2

k
ε

u′iu′j
∂ρ

∂xj
+C3

8ρ
k
ε2

(
u′iu′k

∂Uj

∂xk
+ u′ju′k

∂Ui

∂xk

)
gj.


(5.3)

The forcing in the FW model still involves mean density gradients and then adds
buoyancy effects to the streamwise and vertical components. The turbulent diffusivities
of the streamwise component buoyancy effects are the Reynolds stresses and their
rate of production. The vertical component turbulent diffusivity is only the rate of
production of the stresses. For the transverse component, the FW model only depends
on the mean density gradient forcing with turbulent diffusivity coming from both the
stresses and their rate of production.

We determine the model coefficients for (5.2) and (5.3) using a linear-least squares
fit at each x̂ where all terms for that model correlate using the subset data cases A
and B. We define the transition between the models based on x̂B in table 1. We
note here that this transition location is currently a value obtained from pre-existing
simulation data and determining an appropriate scaling estimate of this location is
ongoing work. However, knowing the scaling of the salient features in the wake with
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Near wake (NW) C2 = 7.0× 10−3 C4 =−2.3× 10−4

Far wake (FW) C1
4 =−9.5× 10−5 C6 =−0.45× 10−1Fr2 C1

8 = 1.5× 10−3Fr2

C2
2 = 1.0× 10−2 C2

4 =−2.0× 10−4

C3
2 = 2.3× 10−3 C3

8 = 6.5× 10−4Fr2

TABLE 2. Corresponding model coefficients fit from the subset iLES data for (5.2)
and (5.3).

x̂ C σN x̂ C σN x̂ C σN x̂ C σN

ρu′1 1.5 −0.16 20.2 2.0 0.33 0.83 3.0 0.52 0.75 4.0 0.85 0.84
ρu′2 — 0.40 0.58 — 0.76 0.66 — 0.16 1.80 — 0.60 0.76
ρu′3 — 0.74 0.63 — 0.82 0.92 — 0.74 0.64 — 0.58 0.45

TABLE 3. Conditioned correlation coefficient C and conditioned normalized standard
deviation σN = σMODEL/σiLES for the transverse x̂ locations in figures 15–18.

only the ship geometry and speed obtained in Part 1 and the convective nature of
the flow established in §§ 3–4 suggests an estimate of this transition location to be
O(2.5–3)Fr behind the stern. Table 2 shows the resulting model coefficients.

5.2. Model performance
To assess the feasibility of the model to explicitly predict the TMF from resolved
quantities, we perform a priori tests of the NW and FW model. Specifically, we use
the iLES data of case C and model coefficients of table 2 to compute the model terms
in (5.2) and (5.3). For notation purposes, we will name this the ‘MODEL’.

Figures 15 and 16 show the MODEL prediction of the TMF to the actual iLES data
TMF at two transverse locations. The highly localized nature of the TMF is evident in
all three components (see figure 15a,c,e). In general, MODEL does not predict some
of the streamwise TMF at the core of the rooster tail (located (y/B, z)≈ (±0.5, 0.4)
in figure 15) and all three components near the quasi-steady wave breaking in the
FW (located (y/B, z) ≈ (±1.5, −0.2) in figure 16). This aside, the explicit model
predicts the localization and magnitude extremely well at both wake locations. Table 3
contains the conditioned correlation coefficient C and conditioned normalized standard
deviation σN for the transverse locations in figures 15 and 16. In particular, the model
captures the transverse and vertical TMF associated with the surface fluctuations and
spray areas in the near-wake region and the streamwise TMF in the far-wake region
remarkably well.

Figure 17 shows a comparison between the depth-integrated MODEL prediction
of TMF and the actual iLES data TMF at another NW transverse location. MODEL
predicts TMF magnitude and transverse shape at this location extremely well. It
also captures the peaks of the TMF for the streamwise and vertical components.
However, it consistently under predicts the streamwise component near the centreline
and the general magnitude of the transverse component. Figure 18 shows the same
comparison between the depth-integrated MODEL prediction and iLES data of the
FW region. MODEL predicts the average behaviour of the TMF and the peaks at
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FIGURE 15. (Colour online) Transverse cuts at x̂= 2.0 for TMF of (a,c,e) iLES data and
(b,d, f ) MODEL prediction. (a,b) ρu′1; (c,d) ρu′2; (e, f ) ρu′3. Correlation coefficients and
normalized standard deviations in table 3.

the outer edges of the wake |y/B| ∼ 1.5 at this x̂. However, it fails to capture the
strong peaks of transverse and vertical TMF associated with the scars caused by the
breaking waves as observed in figure 16. The correlation coefficients and standard
deviations for figures 17 and 18 in table 3 show an overall good performance of the
explicit model at these locations.

Figure 19 shows the model predictions along the wake in aggregate with the
conditioned correlation coefficient C. Overall, MODEL predicts the TMF qualitatively
and quantitatively well with a few exceptions. The first is the under-prediction of
transverse and vertical TMF in the CCW region. This is due to the presence of
the fully overturning waves in case C, showing that GTH term in (5.2) fit using
datasets without overturning is not sufficient. The second is the under-prediction of
the streamwise TMF in the rooster-tail region 2 . x̂ . 3. This is also due to the poor
prediction near the centreline in figure 15(a). In a few regions with poor performance
(namely ρu′1 and ρu′2 for x̂ > x̂B and ρu′3 for x̂ < x̂B) the conditioned correlation
coefficient is high, implying that improving model coefficient in this region will
improve the overall performance.

At this point, one may suggest further refinement of the model by dividing it into
additional streamwise regions or using additional iLES datasets to improve the form
and estimate of the model coefficients. The main objective of the present modelling
process is to show whether or not it is feasible to explicitly predict the TMF in
the wake from resolved/known quantities. Overall, our model shows that two main
physical effects are directly responsible for much of the TMF in the wake: density
gradients and buoyancy effects. With further refinement, explicit algebraic models
should have a high potential for success in this type of scalar flux modelling.
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FIGURE 16. (Colour online) Transverse cuts at x̂= 4.0 for TMF of (a,c,e) iLES data and
(b,d, f ) MODEL prediction. (a,b) ρu′1; (c,d) ρu′2; (e, f ) ρu′3. Correlation coefficients and
normalized standard deviations in table 3.
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FIGURE 17. Transverse cuts at x̂= 1.5 for depth-integrated 〈ρu′i
R
〉z: iLES;E NW

model prediction. (a) ρu′1; (b) ρu′2; (c) ρu′3. Every eighth point shown for clarity.
Correlation coefficients and normalized standard deviations in table 3.

6. Summary
We present analysis and modelling of the incompressible highly variable density

turbulence of the three-dimensional air entraining flow in the wake of a canonical
surface ship for a dry draft-based Froude number Fr = 2.53 and a range of
half-beam-to-draft ratios 1 6 B/D 6 1.77. The high-resolution iLES presented in
Part 1 (Hendrickson et al. 2019) employ state-of-the-art simulation methods cVOF
(Weymouth & Yue 2010) and BDIM (Weymouth & Yue 2011) for robust and
accurate prediction of the large-scale flow field and air entrainment for this complex
three-dimensional flow. Starting with these datasets, we perform a detailed analysis
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FIGURE 18. Transverse cuts at x̂ = 3.0 for depth-integrated 〈ρu′i
R
〉z: iLES;

E MODEL prediction. (a) ρu′1; (b) ρu′2; (c) ρu′3. Every eighth point shown for clarity.
Correlation coefficients and normalized standard deviations in table 3.
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FIGURE 19. Comparison of MODEL predictions of area-integrated 〈ρu′i
R
〉yz along

the wake. Lower plot: —— iLES; E NW Model; × FW Model; and upper plot:
—— conditioned correlation coefficient C. (a) ρu′1; (b) ρu′2; (c) ρu′3. Every sixteenth point
shown for clarity. represents x̂c and x̂B from left to right, respectively.

of the turbulent flow field using an unconditioned Reynolds averaging framework and
develop an explicit algebraic closure model for the resulting turbulent mass flux. For
the unconditioned average framework, we define the mixed-phase region R based on
the average density. This enables us to focus solely on the IHVDT region. We define
the boundary of the mixed-phase region using statistics of the variable density such
that it contains most of the relevant quantities without noise generated by individual
entrainment or spray events.

The analyses provide new insight into the behaviour of the mixed-phase region.
In particular, in the diverging-wave region, the mixed-phase region is relatively thin
(vertically) along the wake centreline and thickens at the edges of the wake where
wave breaking occurs. Through the converging-corner-wave and rooster-tail regions,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

50
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.506


906 K. Hendrickson and D. K.-P. Yue

the mixed-phase region extent (and all of the subsequent kinetics, dynamics and
turbulence in R) scales transversely with the beam. The mean flow in R is initially
similar to other wake flows with a (wake deficit) peak on the wake centreline.
However, unlike typical wake flows where the wake deficit spreads and decreases
in magnitude at downstream locations, the stern wake also contains peaks at the
transverse edges due to the presence of quasi-steady wave breaking. The draft-based
Froude number scales quantities along the wake, consistent with the convective nature
of the flow.

Detailed analysis of the turbulence statistics, IHVDT Reynolds stresses and
anisotropy tensor shows that the highly anisotropic flow expansion off of the stern
regularizes to a moderately anisotropic flow. The energy resides in the transverse and
vertical components in the converging-corner-wave region, as should be expected. In
the rooster-tail region, the streamwise and vertical components contain the energy,
which then returns to the streamwise and transverse components in the diverging-wave
region. The flow never achieves a truly isotropic nature within the first O(10D) of
the stern. Visualization using the componentality contours reveal that the converging
corner waves inject 1-component turbulence into the rooster-tail region. The centreline
of the rooster tail and the breaking waves in the diverging-wave region introduce
2-component turbulence into the mixed-phase region. Additionally, the wave breaking
in the diverging-wave region draws 1-component turbulence from the bulk water
region. Thus, quasi-steady wave breaking regions and air entrainment will always
introduce anisotropy to the flow.

The converging-corner-wave region contains the peak turbulent kinetic energy. For
the geometries where the converging corner waves collide before fully breaking (the
two narrowest geometries), this peak location is the collision point x̂c. For the widest
geometry, the TKE actually peaks twice: once at the location where the converging
waves break x̂ < x̂c and then at x̂c. The TKE generally decreases in the rooster tail
and then increases in the diverging-wave region. Inspection of the TKE budget shows
strong turbulent dissipation with little production in the rooster-tail region, causing
the decrease in TKE. Quasi-steady wave breaking causes the increase in TKE in the
diverging-wave region. The mean density shear production term produces most of the
IHVDT. However, additional contributions come from the gravity-based turbulent mass
flux and the variable density shear production. In fact, for the widest geometry, the
production by TMF is stronger than that of mean shear for a significant portion of
the wake.

Analysis of the turbulent mass flux in the near wake of the stern shows that it is
highly localized, peaking in the converging-corner-wave region. It is always significant
at the transverse edges of the diverging-wave-region. We show the contributions of
TMF to the mean momentum equations are of the same magnitude as that of the
IHVDT Reynolds stresses, sometimes in direct opposition to them. Thus, their effect
on the mean equations must be accounted for in turbulence closure modelling.

Finally, we investigate the feasibility of constructing a turbulent mass flux closure
model in the absence of any dispersed phase model. We construct an anisotropic
explicit algebraic turbulent mass flux closure model based on a functional derived
from the exact TMF governing equation to predict its effect on the mean flow
governing and turbulent kinetic energy equations. The resulting main driving forces for
the model are mean density gradients and buoyancy effects. The a priori performance
of the developed model shows that these two main physical effects are responsible
for most of the TMF in the wake and that a simple explicit model should be capable
of predicting the localized nature of the TMF.
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Appendix A. Determing 1ρ

Figure 20 shows the probability density function (PDF) of ρ and its associated
cumulative sum distribution with 1ρ = 0.01. The PDF f (ρ) is extremely skewed
(see figure 20a), typical of flows with large density ratios (Livescu & Ristorcelli
2008). The cumulative sum density function (CDF) (figure 20b) contains a near-linear
behaviour for 0.056ρ60.95, implying an even distribution in this range. Figure 20(c)
shows a contour of the PDF along the wake. For all three cases, the PDF is
asymmetric, which is strongest nearest the stern. As x̂ → x̂B, the PDF asymmetry
decreases but never achieves a central peak typical of mixing in Boussinesq-type
flows.

Table 4 contains the details of the mean density probability. We find that P(ρ <
0.05) ≈ 0.3 and P(ρ > 0.95) ≈ 0.1 for all three cases, confirming the asymmetry.
The P(ρ < 0.5) (table 4: column 2 + column 3) is always larger than P(ρ > 0.5)
(table 4: column 4 + column 5). Thus, the spray and ligament region seen in figure 2
contributes more to the extent of R than the air entrainment. A choice of 1ρ = 0.05
allows comparable contributions from both areas (table 4: column 2 ≈ column 3).

With the choice of 1ρ, we define conditional moments of any general time-average
variable f (x) within R to be

f
R
≡ f |R= f ∀ ρ(x) ∈ [1ρ, 1−1ρ]. (A 1)

The depth-conditioned average of f (x) at a location (x, y) in the wake is

〈f
R
〉z(x, y)≡

1
ZR

∫
z
f
R
(z; x, y) dz, (A 2)

where ZR
=
∫

z dzR is the vertical length of R. The area-conditioned average of the
general time-averaged variable f at a location x in the wake is

〈f
R
〉yz(x)≡

1
SR

∫
yz

f
R
(y, z; x) dSR, (A 3)

where SR
=
∫

yz dSR is the area of R (transverse cut). For ease of notation, we imply
and drop the superscripts R, 〈·〉z and 〈·〉yz when appropriate.

Appendix B. TMF closure model development
We begin constructing the explicit algebraic relation based on the functional method

of Younis et al. (2005). Assuming that the density is a passive scalar due to the high
density ratio and convective nature of the flow, we write the following functional
relationship for ρu′i:

−ρu′i = fi

(
ρu′iu′j, Sij,W ij, ρ,i, ε, ρ, gi, ρ ′2, P,i

)
. (B 1)

Here Sij and W ij are respectively the mean strain and vorticity tensors and ε is the
turbulent dissipation. This functional form is the equivalent to Younis et al. (2005)
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FIGURE 20. (a) Probability density function f (ρ) and (b) cumulative sum distribution in
the entire domain for all three cases: case A; case B; case C; and
· · · · · · ρ= (0.05, 0.95). (c) f (ρ; x̂) for (top) case A; (middle) case B; and (bottom) case C.
Data are 1ρ = 0.01.

with the passive scalar Θ replaced with ρ. For simplicity and explicitness, we
will no longer consider terms proportional to ρ ′2 and P,i. The method of forming
the functional model expands each term with a dimensional coefficient α that is a
function of (k, ε, ρ) and all invariants (I, II, III), and then simplifies the function
using rational assumptions and knowledge of the target flow. For this model, we
assume: (i) the anisotropies and turbulent time scales are sufficiently small to permit
multi-linear expansion, and (ii) the rotational and irrotational strain rates balance
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Case P(ρ < 0.05) P(0.05 6 ρ < 0.5) P(0.5<ρ 6 0.95) P(ρ > 0.95) P(0.05 6 ρ 6 0.95)

A 0.328 0.291 0.270 0.108 0.564
B 0.301 0.312 0.274 0.108 0.590
C 0.297 0.310 0.286 0.103 0.600

TABLE 4. Probability P details for the domain from f (ρ) in figure 20(a). Note ρ = 0.5
defines the interface location.

equally (Younis et al. 2005). The reduced functional form is

−ρu′i = α1ρ,i + α2sijρ,j + α3Sijρ,j + α9(sikSkj + sjkSki)ρ,j

+α11gi + α12sijgj + α13Sijgj + α19(sikSkj + sjkSki)gj, (B 2)

where we define sij = u′iu′j for brevity of notation and retain the αi numbering of
(Younis et al. 2005). The choice of sij to be the single fluid, constant density Reynolds
stresses removes the variable density Reynolds stresses from the right-hand side of
the model. The αi are dimensional constants expressed as αi= fi(k, ε, ρ, I, II, III). As
with u′iu′j, we also use the single fluid, constant density invariants. Terms associated
with αi, i 6 10 contain a dependence on the density gradient as a driving force – a
gradient transport hypothesis model, and terms i> 11 contain a dependence on gravity
as the driving force – a buoyancy model. As the functional (B 1) derives from the
exact transport equation, the only additional forcing models feasible to incorporate are
the density variance and mean pressure gradient terms that are dropped to retain the
explicit nature of the model.

We determine the remaining αi utilizing the length l= k3/2/ε and time scale τd =

k/ε of the turbulent motions. The assumption of the turbulent time scale over the
scalar transport time scale τs =

1
2ρ
′2/ερ retains the explicit nature of the model and

is consistent with the turbulent length scale. The final form of (B 2) is (5.1).

Appendix C. Favre-averaged IHVDT
The mass-weighted (Favre) average turbulence analysis framework (Favre 1969)

defines averages that incorporate the TMF into the mean transport equations such that
there are no additional terms proportional to ρu′i in the governing equations. The main
difference between the Favre-averaged and Reynolds-averaged analysis frameworks
for variable density flows is how they account for the density fluctuations. The two
methods are algebraically equivalent such that

U(x, t)=U(x)+ u′(x, t)= Û(x)+ u′′(x, t), (C 1)

where the Favre-average velocity is Ûi = ρUi/ρ and the Favre fluctuations are u′′.
Unlike their Reynolds counterpart, Favre fluctuations are not centred: u′′=−ρu′i/ρ 6= 0.

The mean velocities between the two frameworks do not represent the same
physical kinematics. To see this, we write the Favre-average momentum in terms of
the Reynolds-averaged momentum

ρUi ≡ ρÛi = ρUi + ρ ′u′i = ρUi + ρu′i,

or Ûi =Ui +
ρu′i
ρ
→Ui − u′′i .

 (C 2)

Thus, the average Favre velocity fluctuation u′′i (or density-weighted TMF) represents
the difference between the two frameworks, and the TMF represents the difference
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FIGURE 21. (Colour online) Tensor r ij along the wake. (a) Diagonal components
r ii: r 11; r 22; and r 33. (b) Off-diagonal components r ij i6=j: r 12;

r 13; and r 23: Vertical represents x̂c and x̂B from left to right, respectively.
Data are case B. Vertical axis same as figure 6(a,b) for comparison.

between the Favre-averaged momentum (per unit mass) and Reynolds-averaged
momentum (per unit volume).

We can express the difference between the unresolved IHVDT Reynolds stress
tensors in the two frameworks in terms of u′′i =−ai, namely

ρu′′i u′′j = ρu′iu′j − ρaiaj. (C 3)

Figure 21 shows the residual tensor r ij = −ρaiaj in (C 3), which represents the
difference between the two unresolved Reynolds-stress tensors. When compared with
figure 6(a,b), the residual tensor diagonal components are an order of magnitude
smaller than the Reynolds-stress tensor ρu′iu′j. The peak of the residual tensor occurs
near x̂c and x̂B (the converging-corner-wave and diverging-wave locations). The
off-diagonal components of the residual tensor are of the same order of magnitude
as their Reynolds-stress counterparts.

The magnitude of the residual tensor is relevant when choosing to simulate in the
Favre-averaged framework while utilizing closure schemes developed in conventional
constant density Reynolds-averaged framework. This is an attractive option as there
exists a strong base of literature for these closure schemes and the governing equations
of the Favre-averaged variable density flows are visually similar to that of constant
density Reynolds-averaged flows. Shih, Lumley & Janicka (1987) and subsequent
authors explored this technique for mixing thin shear layers with some success.
Based on figure 21, it is not entirely clear if this is applicable for IHVDT. On the
one hand, the diagonal components of the residual tensor are an order of magnitude
smaller than the Reynolds-stress tensor, which implies a possibility that simulation
in a Favre-average framework with traditional closure modelling may be feasible.
However, the off-diagonal components of the residual tensor are most relevant and
the same order of magnitude as their Reynolds-stress counterparts in the regions
with wave breaking. When we consider that the wave breaking introduces regions of
anisotropy, using this simulation approach would be problematic.
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