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Abstract
The capabilities of teleoperated robots can be enhanced with the ability to recognise and reproduce human-like
behaviour. The proposed framework presents motion recognition for a Kinect-based NAO teleoperation. It allows
the NAO robot to recognise the human motions and act as a human motion imitator. A stable whole-body imitation is
still a challenging issue because of the difficulty in dynamic balancing of centre of mass (CoM). In this paper, a novel
adaptive balancing technique for NAO (ABTN) is proposed to control the whole body in single as well as double
supporting phases. It targets dynamic balancing of the humanoid robot by solving forward kinematics and applying
a weighted average of mass with the CoMs of individual links with respect to the previous joint frames, which
provides us with the dynamic CoM of the whole body. Our novel approach uses this dynamic CoM and calculates
joint angles using proposed pitch and roll control algorithm to keep the dynamic CoM inside the stable region.
Additionally, the NAO robot is capable of recognising human motions using the proposed 7-layer one-dimensional
convolutional neural network (1D-CNN). To solve the problem of variable length of time sequences, Zero padding
is introduced with 1D-CNN. It attains a recognition accuracy of 95% as compared to the hidden Markov model
and neural network. The experimental results demonstrate that the developed teleoperation framework is robust and
serves as potential support for the development and application of teleoperated robots.

1. Introduction
Teleoperation has become a popular and emerging trend in research and development. It arises from
the combination of various fields of research such as computer vision, communication & control, artifi-
cial intelligence, mechatronics, machine learning, deep learning. [1]. The teleoperation bridges the gap
between humans and the robots. The controlling of robotic operations from a distance is termed as tele-
operation [2]. The distance varies from billions of kilometres as in space applications to centimetres as
in micro-applications or microsurgery. It extends the human capability to the places where it is impossi-
ble to present physically, dangerous or highly threatening to human life, for example disaster scenarios,
radioactive environment, chemical industries, deep oceans, minefields. [3]. The replacement of individ-
ual with a robot that can be controlled remotely is the most desirable solution to these scenarios [1].
Recent studies reported that humanoid robots have made substantial progress in different application
of teleoperation [4, 5, 6, 7, 8, 9]. Generally, humanoid robots are designed to perform specific tasks in
teleoperation. But it is quite difficult to control the humanoid robots with the normal controllers due to
its high degree of freedom [10]. Therefore, a suitable interface is needed for controlling the robots. It
has a significant influence on effective human-robot interactions (HRI) in teleoperation. The most com-
mon interfaces that have been used in HRI are keyboard, mouse, dials, joystick, gloves, inertial sensors,
and exoskeletal systems [11]. These are mechanical contacting devices which require unnatural arm or
hand motions to accomplish tasks in teleoperation. As a consequence, the new interfaces for HRI have
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been developed to provide more comfortable ways of interacting with remote robots. Many researchers
have integrated sensors technique interfaces such as Microsoft Kinect [8, 9, 12–14]. The Kinect sen-
sor provides contactless, user-friendly, more human-centred interface for teleoperation. Moreover, it
encourages the non-experts to interact with robots. Additionally, it is easy-to-use and has advantages
of low cost [15]. The 3D Kinect camera simplifies the human-robot interaction process by capturing
different human motions to control the remote robots. It allows to develop more natural HRI systems by
identifying different motions of the human operator.

The similarities between humanoid robots and humans have increased the cooperation between
humans and robots [16]. Therefore, teleoperation research studies focus on human behaviour imitation
and recognition to establish natural communication with robots. Many researchers recently developed
imitation-based teleoperated systems that capture human motions and map them to robots [10, 17, 18,
19]. The motivation behind these systems is to integrate human motions for interacting with robots same
as human use motions for pointing to objects or while speaking. It has potential to control the robots in
complicated situations where it is too difficult to programme a robot [10]. In the last few decades, human
motion/gesture recognition is gaining a lot of attention from robotics groups. The increasing interest is
due to the affordability of depth sensors such as Kinect. It provides RGB data along with the depth
information; hence, it is called as RGB-D sensors [20]. Several researchers presented human motion
recognition in their literatures which used Kinect sensors [21, 22, 23, 24, 25]. These studies either used
depth images [26, 27, 28] or skeleton data [3, 29, 30] to classify the arbitrary motions. It serves reli-
able teleoperated systems where a robot predicts the human behaviour towards them to perform the
associated tasks.

The contribution of this work consists of three aspects:

1. A Kinect-based teleoperation for NAO robot is presented in which the robot imitates the full-body
human motions.

2. A novel Adaptive balance technique for NAO (ABTN) is proposed to balance the whole body.
3. A deep 1D-CNN is developed for the robot to recognise the human motions with a high accuracy.

The remaining paper is arranged as follows: A comprehensive literature study on teleoperation and
convolution neural network-based human motion recognition is presented in Section 2. The detailed
description of the proposed framework is given in Section 3. The experimental results and comparison
with the state-of-the-art methods are examined in Section 4. And, Section 5 concludes the paper and
discusses the future work.

2. Related work
The previous studies related to gesture recognition and imitation of human motions in order to control
the robots are presented in this section. Vongchumyen et al. [7] presented a teleoperation of a humanoid
robot that uses the depth sensor of the Kinect to capture the human motions. The joint positions are
considered as vector to find out the joint angles. It controls the servo motors of the robot using Restful
API. The developed system is able to control only the upper body of the robot. Zhang et al. [31] proposed
an algorithm for NAO robot to mimic the human whole-body motions. It uses eight kinematic chains to
map human motions to the robot for imitating the actions. Stable motions are achieved by constraining
the CoM. Chen et al. [8] performed the imitation of whole-body human motions for NAO. It introduces
new computing methods for joint angles to control the robot. After analysing the differences in the joint
angles, a gain factor is defined for mapping of joint angles during the control process. It also slows
down the changing rate of joint angles to stabilise the robot motions. Alquisiris et al. [1] developed a
system to control the NAO robot through gestural interpretation. The Kinect sensor is used to capture
the user’s movements. The joint angles are obtained using linear regression methods and achieve whole-
body imitation of human motions. But in this system, if the motions are not smoother enough, then the
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Figure 1. Overview of the proposed framework.

robot abruptly falls. The balance control of the lower body is necessary for the robot performing various
tasks in teleoperation. The problem of maintaining whole-body balance is quite critical. But in previous
studies, fewer methods are introduced for balance control. Either the changing rate of joint angles is
slowed down or smoother motions are taken. Here, we proposed a novel ABTN method to solve this
problem. This method determines the dynamic centre of mass (CoM) and computes the joint angles
of the ankle from knee and hip joints to avoid falling off the robot while performing any whole-body
motions.

Several gesture recognition approaches such as hidden Markov model (HMM) [29], support vector
machine (SVM) [32], extreme learning machines (ELM) [16], artificial neural network (ANN) [33],
convolutional neural network (CNN) [34], dynamic time wrapping [32] have been applied to recognise
the postures in teleoperation. In the last couple of years, literature has proved that one dimensional CNN
is the most effective approach for human motion recognition [35, 36, 37, 30]. Hu and Xu [37] proposed
CNN for skeleton-based human action recognition. It uses two convolutional layers in the architecture
for learning the spatio-temporal features. Data augmentation and segment pooling are implemented for
long sequences recognition. Li et al. [36] employed CNN framework for human action detection and
classification. The skeleton coordinates are fed directly to a 7-layer CNN model. It achieves 89.3accu-
racy for the NTU RGB+D dataset. Kiranyaz et al. [38] reported that 1D-CNN has low computational
complexity and is easier to train than 2D or 3D CNNs. It makes the real-time and low-cost hardware
implementation feasible because of its simple and compact architecture. Despite having several advan-
tages, there are very few literatures on 1D-CNN focusing on skeletal motion recognition, which remains
this field unexplored. Therefore, one-dimensional convolutional neural network (1DCNN) is proposed
to identify the human motions using skeletal data and the model performance is compared with the
state-of-the-art methods to achieve remarkable results.

3. Proposed framework
In the proposed system framework, a motion capturing device that is Kinect v2 is used to capture the
human motions. The 3D skeleton positions of motions are obtained from the motion capturing device.
The captured motion information has some breakpoints in the times series. Therefore, human skeleton
positions are interpolated using cubic spline interpolation. It samples the data uniformly and provides a
smoother joint motion. The interpolated human joint positions are used to extract the joint angles as a fea-
ture for this experimental study. An analytical method presented by Zhang et al. [39] is used for mapping
the human motions to the humanoid robot NAO. The extracted joint angles are filtered using Savitzky-
Golay filter of 5th order with a window size of 13. It smoothens the joint motions by removing noise
present in the data. The filtered joint angles are given to the CNN module, which identifies the human
motions to be performed by the robot. The framework employs a whole-body control mechanism so that
the humanoid robot does not fall while performing the imitation of recognised motion. The overview
of the proposed framework is presented in Fig. 1. The proposed 1D-CNN architecture along with the
whole-body control mechanism for the humanoid robot is described in detailed in below subsections.
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3.1 Centre of Mass (CoM)
The estimation of the CoM is vitally important for whole-body balance when a slight change in the CoM
may lead to catastrophic effects. For calculating the CoM of humanoid robot NAO, we have used forward
kinematics to traverse through the kinematic chain and then multiply the local CoM with respect to the
link. The weighted average of all the CoMs will provide the CoM of the whole body.

Affine Transformations: Affine transformation is a linear mapping method that transforms vectors
from one coordinate space to another preserving dimensional ratios. An affine transformation matrix is
a (n+ 1) ∗ (n+ 1) matrix where n is the number of dimensions [40]. Here, we have used translation and
rotation affine transformation.

Translation Matrix: The translation matrix moves vectors by a fixed distance in a specific direction.
Here dx, dy, and dz define the distance of translation along the x, y, and z-axis, respectively.

A(dx, dy, dz)=

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

Rotation Matrix: The rotation matrix rotates vectors by a fixed angle about a specific direction. Here,
Rx, Ry, and Rz are rotation matrices that rotate the vectors about the x, y, and z-axis, respectively, by an
angle θ .

Rx =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 cos (θx) − sin (θx) 0

0 sin (θx) cos (θx) 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

Ry =

⎛
⎜⎜⎜⎜⎜⎝

cos (θy) 0 sin (θy) 0

0 1 0 0

− sin (θy) 0 cos (θy) 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

Rz =

⎛
⎜⎜⎜⎜⎜⎝

cos (θz) − sin (θz) 0 0

sin (θz) cos (θz) 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

Denavit and Hartenberg Parameters: The Denavit and Hartenberg (DH) transformation is used to
define the motion of actuators connected by rigid links of a kinematic chain. Firstly, the Z-axis is defined
along the axis of rotation/translation of the parent joint. The DH parameters are derived from common
normal between consecutive Z-axes.

d – depth along the previous joint’s z-axis
θ – angle about the previous z-axis to align its x with the new origin
a – distance along the rotated x-axis
α – rotates about the new x-axis to put z in its desired orientation.

T(a, α, d, θ )=

⎛
⎜⎜⎜⎜⎜⎝

cos (θ ) − sin (θ ) 0 a

sin (θ ) cos (α) cos (θ ) cos (α) − sin (α) −d sin (α)

sin (θ ) cos (α) cos (θ ) sin (α) cos (α) d cos (α)

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

Whole-body CoM: The whole-body CoM is the weighted average of the individual joint CoM matrices.
The CoM of individual kinematic chain C(I ,N) is calculated as the cross product of affine matrices of
joints and translation matrices of CoM with the mass of individual links.
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TotalCoM= 1/M ∗ [TorsoCoM + HeadCoM + LArmCoM + RArmCoM + LLegCoM +
RLegCoM]

C(I, N)=
N∑

i=I

mi

1000
J(I, i) ∗ A(xi, yi, zi) (1)

where M= M is the mass of the robot= 5.305350006 Kg
mi = mass of ith link
Ji = affine transform matrix of ith joint with respect to torso frame (dimensions are in mm, thus divided
by 1000)
A(x, y, z) = translation matrix for CoM position with respect to the preceding joint
I = initial row of Tables I and II
N = final row of Tables I and II

J(i, n)=
n∏

j=1

A(dxj, dyj, dzj) ∗ T(aj, αj, dj, θj) (2)

where A(dx, dy, dz) = translation matrix of joint offsets for specific kinematic chain
T(a, α, d, θ ) = DH transformation matrix for joints

The steps to calculate the whole-body CoM can be summarised as given below:

1. To calculate CoM of individual kinematic chain, we are considering corresponding initial to
final rows of Table I, that is translation and DH parameters for different joints and Table II, that
is masses and CoM parameters.

2. We then take the cross product of the Affine Matrix from Forward Kinematics in equation (2)
and Translation Matrix of the CoM of individual links from Table II in equation (1).

3. Next, the Forward Kinematics in equation (2) of the respective kinematic chain is the cross prod-
uct of the Translation Matrix of Joint Offsets [41] and DH Matrix of the Joint angles taken from
Table I.

For example, for calculating torso CoM we are using C(1, 1) in equation (1) by considering row 1
from both Tables I and II simultaneously where we multiply mass and COM of torso from Table II and
determine kinematic chain of torso using DH parameters from Table I. Similarly, we have calculated
HeadCoM = C(2, 3) by considering rows 2 to 3 from both Tables I and II. Likewise for RightArmCoM
= C(4, 8), LeftArmCoM = C(9, 13), RightLegCoM = C(14, 19), LeftLegCoM = C(20, 25).

3.2 Whole-body control
This module enables whole-body control using the proposed adaptive balancing technique for NAO
(ABTN). This technique involves a novel mechanism for pitch and roll control inspired by the work pre-
sented in ref. [8]. Here, the joint angles of the ankle are computed from knee pitch and hip pitch to make
the robot stand upright. The aim of this approach is to keep the dynamic CoM just calculated above inside
the base area of its foot while performing whole-body motion. This is also robust for complex motions
like one-leg stand where the total base area reduces to only one foot. It detects if the robot is about to
perform one-leg stand and controls the ankle roll to balance the robot. This approach is experimented
using Webots simulation software, ROS environment, and the Naoqi package. The computation proce-
dure of joint angles for pitch and roll control to maintain the balance of NAO lower body are derived
below

3.2.1 Pitch control
The pitch control is essential for single leg stand, crouching, and squatting postures. The proposed algo-
rithm uses adaptive pitch control for ankle, knee, and hip joints to keep the CoM of the robot inside the
foot base area.
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Table I. Translation and DH translation parameters for joints of NAO robot.

j Joints Translation matrix (A) parameters DH transformation (T) parameters
dx (mm) dy (mm) dz (mm) a (mm) α (rad) d (mm) θ (rad)

1 Torso 0 0 0 0 0 0 0
2 HeadYaw 0 0 NeckOffsetZ 0 0 0 head_yaw
3 HeadPitch 0 0 0 0 −π/2 0 head_pitch - π/2
4 RShoulderPitch 0 -ShoulderOffsetY ShoulderOffsetZ 0 −π/2 0 r_shoulder_pitch
5 RShoulderRoll 0 0 0 0 π/2 0 r_shoulder_roll + π/2
6 RElbowYaw 0 0 0 -ElbowOffsetY π/2 UpperArmLength r_elbow_yaw
7 RElbowRoll 0 0 0 0 −π/2 0 r_elbow_roll
8 RWristYaw 0 0 0 0 π/2 LowerArmLength r_wrist_yaw
9 LShoulderPitch 0 ShoulderOffsetY ShoulderOffsetZ 0 −π/2 0 l_shoulder_pitch
10 LShoulderRoll 0 0 0 0 π/2 0 l_shoulder_roll + π/2
11 LElbowYaw 0 0 0 ElbowOffsetY π/2 UpperArmLength l_elbow_yaw
12 LElbowRoll 0 0 0 0 −π/2 0 l_elbow_roll
13 LWristYaw 0 0 0 0 π/2 LowerArmLength l_wrist_yaw
14 RHipYawPitch 0 -HipOffsetY -HipOffsetZ 0 -π/4 0 r_hip_yaw_pitch - π/2
15 RHipRoll 0 0 0 0 −π/2 0 r_hip_roll - π/4
16 RHipPitch 0 0 0 0 π/2 0 r_hip_pitch
17 RKneePitch 0 0 0 -ThighLength 0 0 r_knee_pitch
18 RAnklePitch 0 0 0 -TibiaLength 0 0 r_ankle_pitch
19 RAnkleRoll 0 0 0 0 −π/2 0 r_ankle_roll
20 LHipYawPitch 0 HipOffsetY -HipOffsetZ 0 -3π/4 0 l_hip_yaw_pitch - π/2
21 LHipRoll 0 0 0 0 −π/2 0 l_hip_roll + π/4
22 LHipPitch 0 0 0 0 π/2 0 l_hip_pitch
23 LKneePitch 0 0 0 -ThighLength 0 0 l_knee_pitch
24 LAnklePitch 0 0 0 -TibiaLength 0 0 l_ankle_pitch
25 LAnkleRoll 0 0 0 0 −π/2 0 l_ankle_roll
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Table II. Masses and CoM parameters of NAO robot [42].

i Link name Mass (Kg) X (m) Y (m) Z (m)
1 Torso 1.0496 −0.00413 0 0.04342
2 Neck 0.07842 −1e− 05 0 −0.02742
3 Head 0.60533 −0.00112 0 0.05258
4 Right Shoulder 0.09304 −0.00165 0.02663 0.00014
5 Right Biceps 0.15777 0.02455 −0.00563 0.0033
6 Right Elbow 0.06483 −0.02744 0 −0.00014
7 Right ForeArm 0.07761 0.02556 −0.00281 0.00076
8 Right Hand 0.18533 0.3434 0.00088 0.00308
9 Left Shoulder 0.09304 −0.00165 −0.02663 0.00014
10 Left Biceps 0.15777 0.02455 0.00563 0.0033
11 Left Elbow 0.06483 −0.02744 0 −0.00014
12 Left ForeArm 0.7761 0.02556 0.00281 0.00076
13 Left Hand 0.18533 0.03434 −0.00088 0.00308
14 Right Pelvis 0.06981 −0.00781 0.01114 0.02661
15 Right Hip 0.14053 −0.01549 −0.00029 −0.00515
16 Right Thigh 0.38968 0.00138 −0.00221 −0.05373
17 Right Tibia 0.30142 0.00453 −0.00225 −0.04936
18 Right Ankle 0.13416 0.00045 −0.00029 0.00685
19 Right Foot 0.17184 0.02542 −0.0033 −0.03239
20 Left Pelvis 0.06981 −0.00781 −0.01114 0.02661
21 Left Hip 0.14053 −0.01549 0.00029 −0.00515
22 Left Thigh 0.38968 0.00138 0.00221 −0.05373
23 Left Tibia 0.30142 0.00453 0.00225 −0.04936
24 Left Ankle 0.13416 0.00045 0.00029 0.00685
25 Left Foot 0.17184 0.02542 0.0033 −0.03239

Ankle Pitch: For the calculation of ankle pitch, we have used the filtered nao robot joint angles and
distance between the joints calculated from TF (transforms) or nao documentation. Figure 2 represents
the side view of right leg joints of NAO robot in squat position where A, K , H, T are ankle, knee, hip,
torso joints, and αp, kp, hp, tp are the respective joint angles. The vectors

−→
AK,
−→
KH,
−→
HT ,
−−−→
TCoM are used to

represent the joint positions with base_footprint that is the point on the ground between two legs as the
origin. From the geometry of the robot as in Fig. 2, the vector

−−−→
ACoM connecting ankle joint and CoM

is written as
−−−→
ACoM =−→AK +−→KH +−→HT +−−−→TCoM (3)

The CoM should be inside the foot base area for which the real part of the
−−−→
ACoM should be in the range

[− 3, 9] cm. To ease the calculation part,

Real(
−−−→
ACoM)= 0 (4)

Let L1 be the distance between ankle (A) & knee (K), L2 be the distance between knee (K) & hip (H),
L3 be the distance between hip (H) & torso (T), and L4 be the distance between torso (T) & CoM. Then,
from Fig. 2,

L4 =
√

x2 + z2 (5)

tp = tan−1

(
x

z

)
(6)
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Figure 2. A side view representation of right leg joints of NAO robot in a squat position for pitch
control.

⇒ L1 cos (90+ αp)+ L2 cos (90+ αp + kp)+ L3 cos (90+ αp + kp + hp)

+ L4 cos (90+ αp + kp + hp + tp)= 0

⇒ L1 sin (αp)+ L2 sin (αp + kp)+ L3 sin (αp + kp + hp)+ L4 sin (αp + kp + hp + tp)= 0 (7)

After dividing equation (7) by sin (αp), we get

⇒ L1 + L2 cos (kp)+ L2 cot (αp) sin (kp)+ L3 cos (kp + hp)+ L3 cot (αp) sin (kp + hp)

+ L4 cos (kp + hp + tp)+ L4 cot (αp) sin (kp + hp + tp)= 0

⇒ cot (αp)=−L1 + L2 cos (kp)+ L3 cos (kp + hp)+ L4 cos (kp + hp + tp)

L2 sin (kp)+ L3 sin (kp + hp)+ L4 sin (kp + hp + tp)

⇒ αp =− tan−1

(
L2 sin (kp)+ L3 sin (kp + hp)+ L4 sin (kp + hp + tp)

L1 + L2 cos (kp)+ L3 cos (kp + hp)+ L4 cos (kp + hp + tp)

)
(8)

From Table III, it can be seen that ankle pitch lies between the range of (−67.97◦, 53.4◦). So, we
constrain the calculated ankle pitch within these joint limits. After assigning the values of joint limits if
the Real(Z0)= Real(

−−−→
ACoM) is within [−3 cm, 9 cm] that is CoM is inside the foot base, then no further

changes are required and the angles are published in the ROS.

Real(Z0)= L1 cos (90+ αp)+ L2 cos (90+ αp + kp)+ L3 cos (90+ αp + kp + hp)

+ L4 cos (90+ αp + kp + hp + tp)= 0

Real(Zo) ∈ [− 3, 9]

However, if Real(Z0) exceeds its limits, then we adjust the knee pitch to balance the robot.

Knee Pitch: There are various motions that a human can do with ease, but the robot can fail to perform
with just mapping of joint angles and controlling ankle pitch. To perform such actions, we need to adjust
the incoming knee pitch slightly to keep the robot balanced. From Fig. 2 and equation (7), knee pitch is
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Table III. NAO leg joints limits for pitch control.

Right leg joint angles limits Left leg joint angles limits
hp = (−88◦, 27.73◦) hp = (−88◦, 27.73◦)

kp = (−5.9◦, 121.47◦) kp= (−5.29◦, 121.04◦)
αp = (−67.97◦, 53.4◦) αp= (−68.15◦, 52.86◦)

derived as given below

⇒ L1 sin (αp)+ L2 sin (αp + kp)+ L3 sin (αp + kp + hp)+ L4 sin (αp + kp + hp + tp)= 0

⇒ L1 sin (αp)+ L2 sin (αp) cos (kp)+ L2 cos (αp) sin (kp)+ L3 sin (kp) cos (αp + hp)

+ L3 cos (kp) sin (αp + hp)+ L4 sin (kp) cos (αp + hp + tp)+ L4 cos (kp) sin (αp + hp + tp)= 0

⇒ [L2 sin (αp)+ L3 sin (αp + hp)+ L4 sin (αp + hp + tp)] cos (kp)

+ [L2 cos (αp)+ L3 cos (αp + hp)+ L4 cos (αp + hp + tp)] sin (kp)=−L1 sin (αp) (9)

Let,

A= [L2 cos (αp)+ L3 cos (αp + hp)+ L4 cos (αp + hp + tp)],

B= [L2 sin (αp)+ L3 sin (αp + hp)+ L4 sin (αp + hp + tp)], and C=−L1 sin (αp)

⇒ A sin (kp)+ B cos (kp)=C

⇒ A√
A2 + B2

sin (kp)+ B√
A2 + B2

cos (kp)= C√
A2 + B2

let,
A√

A2 + B2
= sin (φ), and

B√
A2 + B2

= cos (φ)

⇒ sin (kp) sin (φ)+ cos (kp) cos (φ))= C√
A2 + B2

(10)

⇒ cos (kp − φ)= C√
A2 + B2

⇒ kp =± cos−1

(
C√

A2 + B2

)
+ φ + 2πn, where n ∈ Z& φ = tan−1

(
A

B

)

⇒ kp =± cos−1

(
C√

A2 + B2

)
+ tan−1

(
A

B

)
+ 2πn, where n ∈ Z (11)

Hip pitch: The above formula is used to find the knee pitch when ankle pitch alone cannot suffice the
balancing criteria. However, there may be a situation when both ankle pitch and knee pitch together
cannot balance the robot. For that, we need to slightly adjust the hip pitch to balance the robot. Then
from Fig. 2,

⇒ sin (αp + kp + hp)=−L1 sin (αp)+ L2 sin (αp + kp)+ L4 sin (tp)

L3

(12)

⇒ hp =− sin−1

(
L1 sin (αp)+ L2 sin (αp + kp)+ L4 sin (tp)

L3

)
− αp − kp (13)

The overall procedure of pitch control to balance the whole body is presented in Algorithm 1.
It aims to compute αp, kp, hp such that Real(Z0) always lies in range [− 3, 9] cm. The
constrain(j_angle, Min, Max) function constrains the given joint angles j_angle within nao joint
limits. Min is the lower limit, and Max is the upper limit of a particular joint. For both legs, the
hip pitch (hp) and knee pitch (kp) from the motion file are used to calculate ankle pitch (αp) from
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Algorithm 1. Proposed Pitch control algorithm

1: Procedureconstrainj_angle, Min, Max
2: if j_angle < Min then
3: j_angle←Min
4: else
5: if j_angle > Max then
6: j_angle←Max
7: return j_angle
8: Procedure calcAnklePitchhp, kp, tp

9: return arctan ((L2 sin (kp)+ L3 sin (kp + hp)+ L4 sin (kp + hp + tp))/(− 1 ∗ (L1 + L2 cos (kp)
+L3 cos (kp + hp)+ L4 cos (kp + hp + tp))))

10:Procedure calcKneePitchαp, hp

11: A= L2 cos (αp)+ L3 cos (αp + hp)+ L4 cos (αp + hp + tp)
12: B= L2 sin (αp)+ L3 sin (αp + hp)+ L4 sin (αp + hp + tp)
13: C=−L1 sin (αp)
14: return arccos (C/

√
A2 + B2)+ arctan (A/B)

15: Procedure calcHipPitchαp, kp, tp

16: return arcsin (− 1 ∗ (L1 sin (αp)+ L2 sin (αp + kp)+ L4 sin (tp))/L3)− αp − kp)
17: for i= 0 to 2 do
18: αp = calcAnklePitch(hp, kp, tp)
19: αp = constrain(αp, αMin, αMax)
20: if (RealZMin < RealZ(αp, hp, kp, tp) < RealZMax) then
21: publish αp, hp, kp

22: else
23: kp = calcKneePitch(αp, hp, tp)
24: kP = constrain(kp, kMin, kMax)
25: if (RealZMin < RealZ(αp, hp, kp, tp) < RealZMax) then
26: publish αp, hp, kp

27: else
28: hp = calcHipPitch(αp, kp, tp)
29: hP = constrain(hp, hMin, hMax)
30: if (RealZMin < RealZ(αp, hp, kp, tp) < RealZMax)
31: publish αp, hp, kp

32:
33: exit

the function calcAnklePitch(hp, kp, tp). The computed ankle pitch is checked whether it is in its joint
limits through the constrain(j_angle, aMin, aMax) function. If the ankle pitch is less than aMin (lower
limit of ankle pitch) given in Table III; then, ankle pitch is assigned to αp = aMin =−67.97 (for right
leg as an example), and if ankle pitch is greater than aMax (upper limit of ankle pitch), then it is
assigned to αp = aMax = 53.4. Then if the Real(Z0)= RealZ(αp, hp, kp, tp) is in range of [− 3, 9] cm
where RealZMin =−3 and RealZMax= 9, then the angles are published in ROS, otherwise knee pitch
is calculated from calcKneePitch(αp, hp, tp) function. The calculated knee pitch is constrained within
joint limits as given in Table III by the function constrain(k, kMin, kMax). And checked if the Real(Z0) is
in range of [− 3, 9] cm; then, the angles are published in ROS. Otherwise, hip pitch is calculated from
the function calcHipPitch(αp, kp, tp, );, it is also constrained within its joint limits and Real(Z0) is again
checked for [− 3, 9] cm range. If it is in the range then joint angles are published otherwise exit.
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Figure 3. A front view representation of left leg joints of NAO robot in one-leg stand position.

3.2.2 Roll control
Similar to pitch control, the robot also needs roll control to balance itself in a one-leg stand posture. The
algorithm predicts the position of CoM and also ensures that it remains inside the single foot base area.
It controls the ankle roll and hip roll to maintain the whole-body balance of the NAO robot.

Ankle roll: The motions involving single leg stand is difficult and challenging to balance as compared
to motions with double leg stand. The ankle roll is a function of LHA that is the length of Hip to ankle
and it depends on the ankle pitch and knee pitch. This is because of the distance between hip and ankle
changes when the knee bends. The Fig. 3 represents the front view of the robot where it is balancing on
its left foot. All the lengths between the joints are taken from TF (transforms). So, from Fig. 3 the ankle
roll (αr) is written as

−−−→
ACoM =−→AH +−→HT +−−−→TCoM (14)

Real(
−−−→
ACoM)= 0

LHA sin (αr)+ L6 sin (hr)+ L5 sin (tr)= 0 (15)

where, tr = tan−1

(
y

z

)
& L5 =

√
y2 + z2

αr = sin−1

(
L6 sin (hr)+ L5 sin (tr)

LHA

)
(16)

A side view representation of right leg joints of NAO robot in one-leg stand position is given in Fig. 4.
The imaginary part of the Z1 vector is considered to get the vertical projection of the leg. The ankle pitch
(αp) and knee pitch (kp) are calculated from the above pitch control algorithm. Then from Fig. 4,

Z1 =−→AK +−→KH

= L1∠(90◦ + αp)+ L2∠(90◦ + αp + kp)

LHA = Img(Z1)

= L1 sin (90◦ + αp)+ L2 sin (90◦ + αp + kp)

= L1 cos (αp)+ L2 cos (αp + kp)
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Table IV. NAO leg joints limits for roll control.

Right leg joint angles limits Left leg joint angles limits
αr = (−44.06◦, 22.80◦) αr = (−22.79◦, 44.06◦)
hr = (−45.29◦, 21.74◦) hr = (−21.74◦, 45.29◦)

Figure 4. A side view representation of left leg joints of NAO robot in one-leg stand position.

Putting the value of LHA in equation (16),

αr =− sin−1

(
L6 sin (hr)+ L5 sin (tr)

L1 cos (αp)+ L2 cos (αp + kp)

)
(17)

If Real(→ACoM) 
= 0, then hip roll is calculated by the formula given in equation (18),

hr =− sin−1

(
LHA sin (αr)+ L5 sin (tr)

L6

)

=− sin−1

(
(L1 cos (αp)+ L2 cos (αp + kp)) sin (αr)+ L5 sin (tr)

L6

)
(18)

The plot of joint angles of a motion when the left leg is on the ground and the right leg is moving
sidewards is shown in Fig. 5. From the Table IV, we can see that the right and left hip roll (hr) have
dissimilar ranges. So, it is inverted by multiplying with −1 to map them in the same range and ease
the calculations. Thereafter, the difference of the right and left hip roll is taken to predict which leg
should balance the robot and which leg should perform the action. While performing the motion, if
the difference exceeds a threshold angle 2◦ (determined experimentally), the left hip roll is overridden
to balance the robot. In Fig. 6, the red dotted line represents the threshold region. If the difference of
LHipRoll and RHipRoll (red line) is greater than the positive threshold value, the right leg will balance
and the left leg will perform the given motion. When the difference is lower than the negative threshold
value, the left leg will balance and the right leg will perform the motion. The LHipRoll line in Fig. 6
represents that the joint angle values are overridden by the proposed algorithm to balance the robot while
performing a motion in which left leg is on the ground and right leg is moving sidewards.

The Algorithm 2 explains the proposed roll control mechanism for balancing the whole body of NAO
robot. The constrain(j_angle, Min, Max) function constrains the given joint angles j_angle within NAO
joint limits. Min is the lower limit, and Max is the upper limit of a particular joint. Here, LHR & RHR
are the left and right hip roll taken from the motion file to calculate balanceLeg that is on which leg
the robot should balance. If the balanceLeg is lower than negative threshValue which is the threshold
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Figure 5. A plot of raw joint angles when the NAO’s left leg is on the ground and right leg is moving
to the side.

Figure 6. A plot of processed joint angles after implementing the proposed roll control algorithm to
balance the whole body of NAO when the left leg is on the ground and right leg is moving to the side.

determined experimentally as 2◦, then the balanceLeg will be the left leg and the right leg will perform
the given motion. When the balanceLeg is greater than positive threshValue, balanceLeg will be the
right leg and the left leg will perform the given motion. Ankle roll (αr) is calculated by taking the ankle
pitch (αp), knee pitch (kp), and hip roll (hr) from the motion file. The function constrain(αr, aMin, aMax) is
used to constrain the ankle roll within its lower limit aMin & upper limit aMax given in Table IV according
to the left or right balanceLeg. Then if the Real(Z0)= RealZ(αr, hr, tr) is in range of [− 3, 9] cm where
RealZMin =−3 and RealZMax= 9, then the angles are published in ROS; otherwise, hip roll is calculated.
The constrain(hr, hMin, hMax) is used for assigning the hip roll between the lower joint limit hMin and upper
joint limit hMax of hip given in Table IV. And checked if the Real(Z0) is in range of [− 3, 9] cm, then the
hip roll and ankle roll are published to the ROS for whole-body balance otherwise exit.
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Algorithm 2. Proposed Roll control algorithm

1: Procedure constrainj_angle, Min, Max
2: if j_angle < Min then
3: j_angle←Min
4: else
5: if j_angle > Max then
6: j_angle←Max
7: return j_angle
8: balanceLeg← LHR− (− 1 ∗ RHR)
9: if balanceLeg <−threshValue then

10: balanceLeg← leftLeg
11: else
12: if balanceLeg > threshValue then
13: balanceLeg← rightLeg
14: Img(Z1)← L1 ∗ cos (ap)+ L2 ∗ cos (ap + kp)
15: αr← arcsin ((− 1) ∗ L6 sin (hr)+ L5 sin (tr)/Img(Z1))
16: αr = constrain(αr, aMin, aMax)
17: if (RealZMin < RealZ(αr, hr, tr) < RealZMax)
18: publish αr, hr

19: else
20: hr← arcsin ((− 1) ∗ Img(Z1) ∗ sin (αr)+ L5 sin (tr)/L6)
21: hr = constrain(hr, hMin, hMax)
22: if (RealZMin < RealZ(αr, hr, tr) < RealZMax) then
23: publish αr, hr

24: else
25: exit

3.3 Human motion recognition using CNN
The concept of robots recognising the human motions has become essential for reliable teleoperation.
The prerequisite for this system is to have an ability to predict the intentions of human operators to
perform a meaningful task. One of the major challenges of human motion recognition is the human
motion variability. The same motion is performed differently by the same person over time and also
different person perform the same motion in different ways. In this case, the robot should efficiently
recognise the human motions and perform the tasks associated with it. To handle this issue, a novel
deep 1D-CNN is presented in this work. The architecture of the proposed 1D-CNN consists of 7-layer
deep network structure represented in Fig. 7. It comprises four convolutional layers, one max-pooling
layer, one global average pooling layer, and one fully connected layer. The proposed 1D-CNN is designed
for the automated classification of whole-body human motions.

Zero Padding: The foremost challenge comes while dealing with 1D CNN is the length of the input
samples must be same. But in human motion recognition, the motions captured by Kinect may have
different durations. Hence, the length of input motions are different. It is necessary to adopt a prepro-
cessing technique which converts the input samples of different lengths into a fixed length. Therefore,
zero padding is introduced to satisfy the condition imposed by the input layer of CNN. Zero can be
padded at the start or end of the input vector. It can also be padded both at the start and end of the input
vector by keeping the data values in the middle of the vector. Here, the input samples are mapped joint
angles which are fed to the proposed 1D-CNN. The input sample with the maximum length (max_len)
is determined. The length of the remaining input samples is increased to the max_len by padding zero
so that each sample has an equal length.
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Figure 7. Block representation of the proposed deep 1D-CNN architecture.

Proposed deep 1D-CNN Architecture: The first layer is the convolution layer that extracts features
from the given fixed-length input signals of shape 120 × 14. The convolution operations is performed
using 100 filters with a kernel size of 3 on each input vector with stride= 1. The convoluted joint angle
signals of n frames are used to generate feature maps containing the most prominent features. In the
second layer, the convolution operation is repeated with the same 100× 3 size on the previously obtained
feature maps with stride= 1. In the third layer, max-pooling layer is used to generate new feature maps
by taking the maximum values in the specified regions on the feature maps obtained from the previous
convolution layer. It reduces the size of feature maps according to the pooling size. In this layer, the
feature maps are reduced by one third using 3-unit regions. In the fourth and fifth layer, the convolution
operation is repeated with 256× 3 size combinations to learn higher-level features. The Rectified Linear
Unit (RELU) is used as an activation function in all the convolution layers to impart non-linearity in the
network structure. The output of the fifth layer is fed to the global average pooling layer. It generates new
feature maps by taking the average values in the specified regions of the feature maps obtained from the
previous layers. It also helps to avoid overfitting at this layer by reducing the parameters in the model.
The features obtained from the global average pooling layer are placed as the input to the fully connected
layer. This layer connects each neuron of the layer to each neuron of the next layer. The dropout rate of 0.8
is applied in this layer. It loses the 20% of hidden layer neurons; thus, dependency between the neurons
is reduced. It is equivalent to training on different NNs with the reduced neurons and helps to learn more
robust and diverse features. This is applied to avoid overfitting and improve generalisation during the
learning phase in the NN. The output of the fully connected layer is fed to the softmax function, which
performs the classification of human motions. It computes the probability of each motion by mapping
the output of neurons into [0, 1] intervals. The motion with the highest probability is the predicted human
motion. The detailed parameters of each layer of the deep 7-layer 1D-CNN are given in Table V. The
conventional backpropagation algorithm with a batch size of 121 is used to train the CNN model for
1000 epochs. The Adaptive moment estimation (Adam) is the optimisation algorithm adopted to update
the parameters of the proposed 1D-CNN with a learning rate of 0.0001. It enhances the efficiency of the
training process and converges at a faster rate. The categorical cross-entropy loss function is used, given
that the model learning is a multi-class classification problem. All the chosen parameters of proposed
1D-CNN are determined by brute force technique after observing the performances of the validation
sets.

4. Experimental results
In this section, the experimental results of the proposed framework are presented. The developed deep
1D-CNN model automatically classifies ten different whole-body motions. The dataset is split into three
parts: training, validation, and test sets. In this experimental study, 60% of the data is used for the training
set, 20% is used as a validation set, and the remaining 20% is used as a test set. These distributions are
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Table V. The detailed parameters of the proposed deep 1D-CNN model.

Unit × Layer Output No. of
Layer no. Layer type Kernel parameters shape parameters
1 Convolution 100 × 3 Stride= 1,

Activation=RELU
118 × 100 4300

2 Convolution 100 × 3 Stride= 1,
Activation=RELU

116 × 100 30,100

3 Max-pooling 3 Stride= 3 38 × 100 0
4 Convolution 256 × 3 Stride= 1,

Activation=RELU
36 × 256 77,056

5 Convolution 256 × 3 Stride= 1,
Activation=RELU

34 × 256 196,864

6 Global average
pooling

– – 256 0

7 Fully-connected – Activation= Softmax,
Dropout rate= 0.8

10 2570

randomly selected. The training set is used to train the CNN model, and the validation set is used to tune
the CNN parameters. The trained model is then applied on the testing set. The data in the testing phase
are never seen by the model in the learning phase. The experiment performed is a supervised learn-
ing process. The training and validation performance graphs of the proposed 1D-CNN model during
1000 epochs are shown in Fig. 8(a) and (b). It is clearly seen from the graphs that there is no overfit-
ting problem in the proposed model. The training accuracy attains 98.30% in the training phase and
the validation accuracy achieves 95%. The training loss value in the learning phase is 0.0170, and the
validation loss value of the model is 0.760. The critical performance achieved by the trained model after
applying on the test data is analysed with standard evaluation criteria. The criteria used to assess the
proposed model performance are precision, sensitivity, specificity, and F1 score. The overall accuracy
of human motion recognition is also calculated for developed 1D CNN, NN, and HMM. The graphical
representation for comparison of the evaluation metrics of the proposed CNN model and state-of-the-art
methods is presented in Fig. 9. Ajili et al. [29] used HMM to develop a gesture recognition system for
nao robot teleoperation. The joint angle features were extracted by applying Laban movement analysis.
The extracted features were fed into the HMM. A grid search between 5 to 100 was done to find the
optimum number of symbols and states. The best recognition results obtained with the state= 5 and
observation symbols= 12. All the predicted gestures are converted into commands and sent to the NAO
robot. The developed HMM-based gesture recognition system is implemented on our dataset and attains
an accuracy of 89.7%. Jawed et al. [43] developed a NN based system to classify the whole-body pos-
tures of the patients for rehabilitation. The human skeleton was tracked by placing the Kinect at 0.6
m distance and 1.4 m height. The joint angles were extracted from the skeleton joint points and fed to
the classifier. The NN-based recognition system is applied on our dataset and achieves an accuracy of
92.3%. The proposed 7-layer CNN model provides 95% recognition performance, which is more than
the overall accuracy attained by the NN and HMM.

The judicious selection of model parameters plays a key role in achieving high recognition perfor-
mances. It may cause an overfitting or underfitting problem with inappropriate parameters. To analyse
the performance of 1D-CNN, different sizes of convolutional kernels are taken into consideration in
our experimental study. The effect of changing the filter size on the proposed model performance is
presented in Fig. 10(a). The model performance is tested for the kernel size ranging from 3 to 10. The
highest performance is achieved at kernel size= 3. The graph illustrates that the selection of the right
kernel size is very important as it affects the performance of the model drastically. The effect of changing
pool size on the model performance is shown in the Fig. 10(b). It concludes that it does not contribute
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Figure 8. Training and validation performances of the proposed deep 1D-CNN model with number of
epochs (a) Model accuracy (b) Model loss.

Figure 9. Detailed classification performance of the proposed model and other state-of-the-art
methods.

much in increasing the model performances. It can also be seen from the graph that if we keep increasing
the pool size, then the recognition performance reduces in our case. Based on the multiple runs, pooling
size of 3 is found to be best for the recognition. The performance of the model obtained with different
learning rate is presented in Fig. 10(c). The learning rate affects the recognition performances of the
model more than the pooling size. In our case, small changes in the learning rate sometimes causing
overfitting of the model. The best result is obtained with learning rate of 0.0001. The selection of opti-
misers has significant effects on the recognition performances of the classification system as shown in
Table VI. The Stochastic Gradient Descent (SGD) with momentum and RMSProp optimiser has almost
same recognition performance in our dataset. The Nadam optimiser provided a good recognition per-
formance but not as good as AdaMax. The highest recognition is achieved by the Adam optimiser. The
proposed 1D-CNN with selected model parameters is less complex and simpler to use. Moreover, it per-
forms better recognition than the state-of-the-art methods. The motion predicted by the proposed model
is published to ROS node. The NAO robot subscribes the defined node and imitates the same motion.
For example, a human is performing a motion in which both hands are raised on the side and left leg
is also on the side as shown in Fig. 11. The NAO robot is imitating the same human motion efficiently
with a balance control.
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Table VI. Performances of the proposed deep 1D-CNN classifica-
tion system with different optimisers.

Optimisers Accuracy of the proposed 1D-CNN model (%)
AdaMax 94.54
Nadam 92.72
RMSProp 89.09
Adam 95
SGD + momentum 89

Figure 10. Training and testing performances of the proposed deep 1D-CNN model with (a) increasing
kernel size (b) increasing pooling size and (c) increasing learning rate.

Figure 11. Imitation of human motion by NAO robot.

If the motion information provided by the Kinect is applied directly to the robot then the robot may
not perform the task accurately due to noise, experimental error, robot joint constraints, tracking error
etc. Also, if a human performs a slightly different motion, then the robot may confuse or recognise the
wrong motion, thus performing the wrong task. Furthermore, it will cause a problem for balance control.
The proposed teleoperation framework provides a good solution in this scenario. To tackle this issue,
the proposed 1D-CNN is trained with motions of different persons. So that the robot learns the way of
performing the same gesture by the different persons. A motion library is created with motion names
and its corresponding best motion information. Using the proposed recognition approach, it recognises
the motions accurately and picks its best motion information to imitate the motion. Once it predicts the
motion, the robot automatically prepares itself to balance its body and imitates the motions precisely.
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5. Conclusions and future work
In this study, a teleoperation framework is proposed based on Kinect and a humanoid robot, with the
capability of motion recognition and balance control. The proposed adaptive balancing technique for
NAO facilitates the robot to complete full-body postures efficiently. It works effectively in single as
well as double supporting phases. It estimates the dynamic CoM by solving forward kinematics of the
humanoid robot and applying weighted average of mass with the CoMs of individual links with respect
to the previous joint frames. It targets to keep the dynamic CoM inside the stable region, that is, the
foot base of the robot. We developed a robust 1D-CNN-based model that enables the robot to recognise
the full-body motions of humans. It uses the joint angles mapped from 3D skeleton information and
performed with a high accuracy. After recognising the motions performed in front of the Kinect, the NAO
robot automatically implements the proposed balancing technique and imitates the same motions. The
proposed framework is reasonable and presents a novel paradigm for future research studies. It brings up
new opportunities to build frameworks that easily integrate sensor-based techniques that produce signals
such as EEG, EMG. It encourages gesture/motion-based natural interactions between human and robot.
Our future work aims to extend the balance strategy to stabilise the robot dynamically under the effect of
external forces and moments using inertial measurement units and model-based closed-loop feedback
control system algorithms. Further, we will design advance features to facilitate the robots to understand
the human intentions.
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