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Flow-induced vibration control of a circular
cylinder using rotational oscillation feedback
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first published online 21 May 2018)

The effect of imposed rotation on a slender elastically mounted circular cylinder free
to oscillate transversely to the incident flow has been studied experimentally in a
free-surface water channel. Rotation rate and direction are imposed to be proportional
to either the cylinder’s transverse displacement or the cylinder’s transverse velocity
to determine the effectiveness of these rotation laws to control the dynamics of
the cylinder, either to reduce or to enhance oscillations. The former can be of
interest for energy harvesting purposes whereas the latter can be useful to avoid
unwanted oscillations. In all cases, non-dimensional mass and damping are fixed
(m∗= 11.7, ζ = 0.0043) so the analysis is focused on the role of the rotation law and
the reduced velocity. The Reynolds number based on the diameter of the cylinder
ranges from 1500 to 10 000. Results are presented in terms of steady-state oscillation
characterization (say, amplitude and frequency) and wake-pattern topology, which
was obtained through digital particle image velocimetry. Both laws are able to either
reduce or enhance oscillations, but they do it in a different way. A rotation law
proportional to the cylinder’s displacement is more effective to enhance oscillations.
For high enough actuation, a galloping-type response has been found, with a
persistent growth of the amplitude of oscillations with the reduced velocity that
shows a new desynchronized mode of vortex shedding. On the other hand, a rotation
law proportional to the cylinder’s transverse velocity is more efficient to reduce
oscillations. In this case only vortex-induced-type responses have been found. A
quasi-steady theoretical model has been developed, which helps to explain why
a galloping-type response may appear when rotation is proportional to cylinder
displacement and is able to predict reasonably the amplitude of oscillations in those
cases. The model also explains why a galloping-type response is not expected to
occur when rotation is proportional to the cylinder’s velocity.

Key words: aerodynamics, flow–structure interactions

1. Introduction
Flow-induced vibrations (FIV) of elastic bodies occur somewhat frequently. They

take place in a large variety of physical and biological systems, like airplane wings,
leaves of trees, long-span bridges, tall buildings, heat exchange devices, clarinet reeds

† Email address for correspondence: antonio.barrero@upm.es
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or offshore structures, to name only a few. Such FIV can cause both severe (even
destructive) vibrations and beneficial motions. The fluid flow and the elastic response
of the body are coupled, since the fluid force causes the body to deform and, as the
body deforms, its orientation to the flow changes and so does the fluid force. The
interaction between the moving body and the fluid flow is very complex and depends
on a large number of parameters related to the fluid flow characteristics (among
them flow velocity, fluid density and viscosity, turbulence of the inflow), structural
(mechanical) properties of the body (mass, stiffness and mechanical damping) and
geometry (shape of the body, surface roughness, etc.). Understanding the fluid–elastic
coupling is of interest from both the scientific and the practical sides. Regarding
the practical side, a new field of interest has recently emerged since FIV are being
considered as a means to extract energy from fluid flows. As proposed by Bernitsas
et al. (2008), a device called VIVACE (acronym for vortex-induced vibration aquatic
clean energy) was developed to extract energy from water currents by oscillations
induced by vortex shedding from a spring-mounted circular cylinder. Additional
efforts have been made later in this direction, namely, Sanchez-Sanz, Fernandez &
Velazquez (2009), Barrero-Gil, Pindado & Avila (2012), or Grouthier, Michelin &
de Langre (2013). There have been other initiatives to extract energy efficiently,
taking advantage of other FIV phenomena, like galloping (Barrero-Gil, Sanz-Andres
& Alonso 2010; Abdelkefi, Hajj & Nayfeh 2012, 2013; Vicente-Ludlam, Barrero-Gil
& Velazquez 2014), wake galloping (Jung & Lee 2011) or flutter (Doaré & Michelin
2011; Singh, Michelin & De Langre 2012).

There is a large variety of FIV phenomena but, broadly speaking, two different
classes constitute the basis for the analysis of many related problems. The first
one is vortex-induced vibration (VIV), which is caused by a nonlinear resonance
phenomenon. For Reynolds number Re high enough (say, larger than 50), the flow
separates from the body surface, generating an unsteady broad wake, where large-scale
vortices are shed periodically from the body surface, leading to an alternating fluid
force on the body. The shedding frequency of the vortices is related to the undisturbed
flow speed and the size and shape of the body as shown by Strouhal (1878). When
the frequency of the vortex shedding is close enough to the natural frequency
of oscillation of the elastic body, a close-to-resonance condition is achieved and
significant oscillations in the body can appear when the mechanical properties of
the body (such as damping) are appropriate. VIV has been widely investigated,
both experimentally and numerically, mainly through the canonical problem of a
spring-mounted rigid circular cylinder under the action of a uniform fluid flow.
Usually, the main interest has been focused on assessing the effect of different
mechanical and fluid parameters on the VIV response: steady-state oscillations
(amplitude and frequency), fluid forces on the cylinder, or flow pattern in the wake.
For a detailed review, the reader is referred to Blevins (1990), Sarpkaya (2004, 2010),
Williamson & Govardhan (2004), Bearman (2011) or Paidoussis, Stuart & De Langre
(2011).

The other canonical problem that should be cited here is galloping (Parkinson
1989). This is a motion-induced instability that appears in elastic bluff bodies with
certain geometrical shapes – non-axisymmetric cross-sections like square, D-section,
triangular or H-type (Naudascher & Rockwell 1994) – when the velocity of the
incident flow exceeds a critical value. Then, a small transverse displacement of the
body induces an angle of attack relative to the incoming flow and an asymmetric
pressure distribution, so that fluid force appears in the direction of the displacement in
such a way that energy is transferred from the flow to the body and oscillatory motion
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(mainly transversely to the unperturbed flow) develops. Unlike VIV, which typically
occurs only in a certain range of flow velocities and with self-limited amplitude,
galloping takes place for any value of the flow velocity higher than the critical value
and has a monotonic increase of amplitude with flow velocity. Galloping is mainly
driven by the instantaneous angle of attack between the body and the incoming flow
and does not necessarily need a synchronization between the oscillations and vortex
formation and shedding.

As said earlier, VIV of a circular cylinder has been much studied in the past, due
to the extensive use of cylindrical elements in structures and engineering systems
as well as its interest from the scientific side. Most of these studies considered the
conceptually simple case of an elastically mounted rigid cylinder (Sarpkaya 2010).
Recently, an imposed asymmetry effect in the VIV of a spring-mounted circular
cylinder was numerically studied at Re = 100 by Bourguet & Jacono (2014). The
cylinder was free to oscillate transversely to the flow over a wide range of reduced
velocities. In addition, rotation of the cylinder around its axis, with fixed direction of
rotation and fixed rotation rate, was imposed. The cylinder was subject to VIV-type
vibrations up to rotation rates of α = 4 (α is the non-dimensional rotation rate,
defined as the ratio of rotational velocity at the cylinder’s surface to the unperturbed
flow velocity). Oscillations increase with α as well as the region of synchronization
where oscillations are significant up to a non-dimensional rotation rate close to α= 4.
Notoriously, they also reported a wake mode composed of a triplet of vortices and
a single vortex per cycle (T+S wake mode) for some specific non-dimensional
rotation rates and reduced velocity, which had not been previously reported in the
literature on non-rotating cylinders in VIV. Seyed-Aghazadeh & Modarres-Sadeghi
(2015) experimentally studied this same problem for Reynolds number between 350
and 1000, concluding that the lock-in regime got narrower at high rotation rates and
oscillations ceased beyond α = 2.4. When the cylinder is also allowed to oscillate
along the in-line direction, Stansby & Rainey (2001) reported large oscillations with
amplitudes higher than 10 diameters, with low-frequency galloping-like responses
occurring without lock-in.

Another category deals with imposed combined translational and rotational
oscillation. Blackburn, Elston & Sheridan (1999) were able to generate thrust in
quiescent fluid by imposing combined translational and rotational oscillation. Nazarinia
et al. (2009a,b) extended this study and experimentally characterized the flow around
a circular cylinder undergoing imposed combined translational and rotational motion
in a free stream, obtaining new interesting wake modes. Al-Mdallal (2004), Kocabiyik
& Al-Mdallal (2005) and Nazarinia et al. (2009a) showed the possibility of reducing
the synchronization region of the cylinder’s motion in the near wake through the
effect of the phase shift, velocity ratios and motion frequency of the translational
and rotational modes. Finally, cited here should be experiments made considering
rotational oscillations of a circular cylinder at rest in order to avoid vortex shedding
using flow velocity in the wake as a feedback control variable (Fujisawa, Kawaji &
Ikemoto 2001). More recently, Lu et al. (2011) linked the rotary oscillation of the
cylinder to the fluctuating lift fluid force coefficient as an active control strategy for
lift force reduction.

In the above-mentioned studies, the rotation imposed to the cylinder is not linked
to the dynamics of the cylinder, and therefore is not coupled with the result of the
fluid–elastic interaction. Recently, we thought that it could be of interest to link
the rotation direction and rate to the oscillating cylinder dynamics, to see if this
could be a method to reduce or enhance oscillations. Note that this is a full active
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control technique where imposed rotation takes the cylinder dynamics as a feedback.
To study this question, we carried out two-dimensional (2D) numerical simulations
at low Reynolds number (Vicente-Ludlam et al. 2017) and investigated how the
selected strategy for the cylinder’s rotation, proportional to either the cylinder’s
transverse displacement (with respect to the static, without flow, cylinder position)
or its velocity, affects the cylinder’s response. It was found that, depending on the
law of rotation, oscillations could be significantly increased or decreased with respect
to the non-rotating cylinder. This result can be of applied interest, either to protect
cylindrical structures (by diminishing oscillations) or to extract energy from the
fluid flow (by enhancing oscillations). It was also found that, for certain cases of the
rotating law proportional to the cylinder’s displacement, a galloping-type response was
observed, and a quasi-steady theoretical model can reasonably predict the amplitude
of oscillation for these cases.

The Reynolds number in the numerical simulations that we carried out was 100.
However, in many actual applications, 2D numerical simulations at Re = 100 might
not be accurate enough and significant differences may appear for higher Reynolds
numbers. The VIV response at low Reynolds numbers (laminar flow regime) is
characterized by a two-branch curve, which presents a maximum amplitude of
non-dimensional oscillations of A∗≈ 0.6. The branches appearing are usually classified
as the initial branch and the lower branch. The initial branch corresponds to the initial
reduced velocities where oscillations start. The vortex pattern in the near wake is
characterized by a 2S mode (single vortex being shed per half-cycle of oscillations).
After the initial-to-lower branch transitions, the maximum amplitude is obtained. The
lower branch exhibits a C (2S) mode of vortex emission, where single vortices are
shed per half-cycle and downstream they appear to coalesce (Prasnath & Mittal 2008;
Vicente-Ludlam et al. 2017). On the other hand, for larger Reynolds numbers, the
response is characterized by a three-branch curve. They are classified as the initial,
upper and lower branches (Williamson & Govardhan 2004). The upper branch appears
in the transition between the initial and lower branches and is the region within the
VIV curve with largest amplitude of oscillation. With respect to the modes of vortex
emission, similarly to the low-Reynolds-number regime, the initial branch is composed
of a 2S mode of vortex emission. Alternatively, the lower branch presents a 2P mode
of vortex emission where a pair of vortices (with opposite rotation direction) is shed
per half-cycle of oscillation. The upper branch presents a 2P0 mode, where a pair
of vortices is shed per half-cycle, but the secondary vortex is much smaller than the
primary one (Morse & Williamson 2009).

The Reynolds number, in addition to determining whether the upper branch
appears or not, also influences the maximum amplitude of oscillations, which
increases with Reynolds number as shown by Govardhan & Williamson (2006).
They found that the maximum amplitude of oscillations appears to be governed by
the mass-damping parameter as well as the Reynolds number. The differences found
in classic (non-rotating) VIV of a circular cylinder due to Reynolds number encourage
us to extend the numerical simulations presented in Vicente-Ludlam et al. (2017), and
to see the extent to which the results found in the idealized numerical simulations
(2D flow, uniform incoming flow, pure transverse motion of the cylinder, fixed
Reynolds number) occur in experiments, in a larger Reynolds-number regime and
with an experimental set-up closer to potential applications. Therefore, we have
experimentally studied the idea of imposing a rotation in the cylinder axis (linked
to its dynamics), with a Reynolds number in the range of 1500–10 000 (between
one and two orders of magnitude higher than the computational studies we presented
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in Vicente-Ludlam et al. (2017)). During experiments, an active control of cylinder
rotation in real time, with low enough time lag, that closely follows the cylinder
transverse position/velocity was implemented. When rotation was proportional to
the cylinder’s transverse displacement, significant changes in the response were
found with respect to the non-rotating case. Depending on the sign of the constant
of proportionality between rotation and cylinder displacement, the oscillations were
diminished or significantly enhanced. In the latter case, even a galloping-type response
appeared when the forced rotation is greater than a certain level. When the cylinder
rotates proportionally to the cylinder’s transverse velocity, it is possible to increase
or diminish oscillations but the response always has a vortex-induced type (resonant)
character.

This article is organized as follows. In § 2, the experimental set-up is described,
including a description of the recirculating water channel where experiments have
been performed as well as a description of the particle image velocimetry (PIV) set-
up used to characterize the flow field of the near wake of the oscillating cylinder.
Also, validation tests of the water channel are given by comparing VIV results of a
non-rotating circular cylinder to similar ones published in the literature. In § 3, flow-
induced vibration results for the cylinder with prescribed rotatory law proportional to
the cylinder’s position are presented first. A quasi-steady theoretical model has been
developed and presented which can reasonably predict the amplitude of oscillation for
these cases (galloping-type response). Afterwards, the results for the cylinder with a
rotation law proportional to the cylinder’s velocity are presented. The quasi-steady
model helps to explain why a galloping-type response is not expected to occur in
this case. For each of the rotation laws investigated, vorticity contour maps obtained
through PIV measurements have been presented and discussed. Finally, concluding
remarks are presented in § 4. Additionally, in the supplementary material associated
with this article, movies displaying oscillations in experiments with different rotating
laws are presented at https://doi.org/10.1017/jfm.2018.332.

2. Experimental set-up and validation
2.1. Experimental set-up

The experiments were carried out in a free-surface recirculating water channel with
controlled inflow conditions at the test section in terms of mean speed, uniformity
and low turbulence. A sketch of the water channel is given in figure 1. The water
current is driven by two axial pumps manufactured by ABS, model RCP 500. The
rotation speed of the pumps is regulated by a variable-frequency drive from Power
Electronics, model SD503942. Guide vanes are placed in the corners of the water
channel to guide the flow and reduce pressure losses. To improve flow quality in
the test section, a honeycomb (hexagonally shaped cells with diameter 4.5 mm and
a length-to-diameter ratio of 12) and a fine screen are located before the entrance of
the test section. As is known, the honeycomb is a very effective flow-straightening
device (as shown by Bradshaw & Pankhurst (1964)) and the screen is effective
to reduce mean non-uniformities and fluctuations of the streamwise component.
During experiments, the flow speed U at the test section was varied between 75 and
480 mm s−1, which gives a Reynolds-number range of Re=UD/ν ≈ 1500–10 000, ν
being the kinematic viscosity of the water and D the cylinder diameter. With respect
to the inflow conditions, the turbulence intensity was lower than 1.5 % and the velocity
uniformity presented variations lower than 5 % throughout the test section studied.
Further details regarding the water channel can be found in Xu-Xu, Barrero-Gil &
Velazquez (2016).
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Gravity
direction

1800 mm

3200 mm

Guide vanes Test area

Axial pumps

Honeycomb
and screen

Flow direction

5200 mm

FIGURE 1. Schematic elevation and plan of the free-surface water channel.

The test section is 3000 mm in length, 900 mm in width and the working depth
is 830 mm (A; see figure 2a). The test section is made of glass, which allows
the flow to be viewed from either side, as well as from the bottom, allowing one
to perform flow visualizations through PIV measurements. A circular cylinder (B),
made of aluminium, of diameter D= 25 mm and immersed length L= 430 mm, was
attached through a bearing (C) to the shaft of a servomotor (D) fixed to the free end
of a double-blade elastic system. The elastic system, which follows the arrangement
introduced in Assi et al. (2006), was made up of two parallel rigid aluminium blocks
(E), coupled to a pair of thin spring-steel flexor blades (F). The elastic system not
only acts as the cylinder support, but also provides the linear restoration response.
In this way, the cylinder is restricted to oscillate in the transverse direction to the
flow (y) with low mechanical damping. Figure 2(b) presents a detailed view of the
flexors and elastic system, including the servomotor attached to it. The transverse
displacement and acceleration of the circular cylinder were measured by a non-contact
laser vibrometer (G) from Aquity AR500-500 (range 500 mm, resolution 0.05 mm)
and by an accelerometer (H) from Measuring Specialities (range ±2 g, resolution
2 mg).

An AC servomotor, 60ST-M013330C from MIGE, with a peak torque of 3.9 N m
and a maximum rated speed of 3000 r.p.m., was used. To measure the angle of
rotation, the servomotor includes a photoelectric encoder with resolution of 0.036◦.
To impose the rotation law, a signal command was sent to the servomotor controller.
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Honeycomb
and screen

Laser
vibrometer (G)

Laser set (I )

Laser target
and accelerometer 

(H)

xU
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Flexor blades (F)

Servomotor (D)

Rigid block (E) Bearing (C)
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Camera (J) Test section (A)
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(a) (b)
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FIGURE 2. (Colour online) Sketch of the experimental set-up (dimensions are in
millimetres) of the water channel. (a) Schematic top view and side view of the water
channel. (b) Photograph of a close view of the elastic system. (c) Detail of the elastic
system’s deformation when a translation in the transverse direction is applied.

Depending on the rotation law, this signal command was proportional either to the
cylinder’s position (measured with the laser vibrometer) or to the cylinder’s velocity
(obtained by integration of the accelerometer’s signal). The time delay between the
servomotor response and the signal command was under 5 ms, which is much smaller
than the characteristic oscillation times during the experiments (a maximum phase
lag of 1.5◦ was observed). The cylinder was connected to the shaft of the servomotor
through a bearing manufactured at our installations. Before each run, parallelism of
the cylinder as well as dynamic balancing was checked through measurements of the
accelerometer installed.

All data (position, acceleration, rotation angle) were recorded and registered using
a Compact-Rio microprocessor from National Instruments (NI cRio-9024) and an
analogue input module from National Instruments (±10 V, NI-9201) with a sampling
frequency of 200 Hz for each parameter combination of flow velocity and prescribed
rotation law for a total of 16 minutes. The first 6 minutes were spent achieving
steady-state conditions while the remaining 10 minutes were used for recording.
After that, the water speed was increased and the measurement procedure repeated.
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2.2. Data reduction and rotation laws evaluated
For each run, the instantaneous transverse position y(t) around the static (no-flow)
position, acceleration ÿ(t) and rotation angle θ(t) of the cylinder were directly
measured and registered. The dynamical equation of the cylinder and the rotation
laws employed are, respectively,

mÿ+ cẏ+ ky=−mAÿ+ 1
2ρU2DLCy, (2.1a)

θ = k1y or θ = k2ẏ, (2.1b,c)

where m is the total oscillating mass, c is the mechanical damping constant, k is
the stiffness of the system, and k1 and k2 are feedback constants, which relate the
rotation to be imposed on the cylinder and the displacement/velocity of the cylinder,
respectively. Both c and k were measured in free decay tests in still air. Regarding
the right-hand side of (2.1a), note that the fluid force has been split into two terms,
a potential added-mass term (−mAÿ) and a viscous one (ρU2DLCY/2), as suggested
in Govardhan & Williamson (2000); ρ is the fluid density, and Cy is a dimensionless
fluid force coefficient.

Equation (2.1b,c) shows the two rotation laws that have been tested in order to
determine how such rotation affects the VIV response of the cylinder; in particular,
(i) the cylinder is rotated proportionally to its transverse displacement and (ii) the
cylinder is rotated proportionally to its transverse velocity.

The equation of motion of the cylinder and the rotation laws prescribed can be made
dimensionless by introducing D and f−1

N = ((m+mA)/k)1/2 as reference length and time
scales. This gives

Y ′′ + 4πζY ′ + 4π2Y =
2U∗2

π(m∗ +CA)
Cy, (2.2a)

θ = k̃1Y or θ = k̃2Y ′, (2.2b,c)

where Y = y/D, ζ = c/[2(k(m+mA))
1/2
] is the damping ratio, m∗ =m/(ρD2L) is the

mass ratio, CA is the potential added-mass coefficient (CA=1.0 for a circular cylinder),
k̃1 = Dk1 and k̃2 = fNDk2 are the non-dimensional feedback constants, and the prime
stands for differentiation with respect to non-dimensional time t∗ = fN t.

A standard method of analysis employed for the study of FIV problems is based on
the introduction of time-averaged quantities (Sarpkaya 2004). The following variables
were computed from each run: (i) the steady-state normalized maximum amplitude of
oscillation A∗=A10/D, where A10 denotes the maximum 10 % peaks of oscillation for
each run; (ii) the normalized frequency of oscillations f ∗= f /fN , where the frequency
of oscillations f was computed from the fast Fourier transform of y(t).

2.3. Particle image velocimetry measurements
The PIV set used to characterize the flow field of the near wake of the cylinder was
from Dantec Dynamics. Flow illumination was provided by a pulsed Nd:YAG 800 mJ
laser. Each laser pulse lasted for 5 µs. Images were taken using a Dantec Dynamics
Flow Sense 2ME camera with a resolution of 1600 pixels × 1200 pixels. Data
transmission was made directly to the PC RAM via a PCIe-1427 image acquisition
board, which allows for an information transfer greater than 200 MB per second. The
camera lens was a Zeiss Makro-Planar T 2/50 mm ZF. The laser sheet intercepts
the circular cylinder perpendicular to its axis at a height of 210 mm from its bottom
end. After passing through the sidewalls, it was verified that the thickness of the
laser sheet was smaller than 1 mm. The camera was set under the water channel
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perpendicular to the laser sheet. The flow was seeded with hollow glass spheres
having a diameter of 10 µm (HGS-10). Synchronization between image capturing
and flow illumination and the analysis was carried out using the Dynamic Studio
Dantec software.

PIV measurements were carried out with the laser sheet perpendicular to the
circular cylinder at a constant height of 210 mm from the bottom end of the cylinder
with the camera situated under the water channel (oriented perpendicular to the laser
sheet; see figure 2a). The field of view of the camera corresponds approximately
to a rectangle of 9D × 6.75D that has physical dimensions of 225 mm × 169 mm
containing 1600 pixels× 1200 pixels and focuses on the near wake after the circular
cylinder.

Sampling of the flow field was carried out at a frequency of 15 Hz. Each sample
of the flow field was generated through an adaptive cross-correlation from the images
obtained from two consecutive laser pulses separated by 3 ms in time. For the
case of highest reduced velocity analysed (U∗ = 15), the mean flow velocity was
0.38 m s−1. Thus, a particle would travel around 1 mm between two consecutive
laser pulses (which is much less than the characteristic length of the problem,
D = 25 mm). Each PIV area was divided into smaller sub-interrogation areas
of 128 pixels × 128 pixels and, through a parallel self-consistent recomputation
of the flow field in successive interrogation areas of 64 pixels × 64 pixels and
32 pixels × 32 pixels (or 4.5 mm × 4.5 mm), with 50 % overlap, spatial resolution
refinement was obtained (final computations were consistent with the flow fields
obtained for larger windows). The final spatial resolution of the flow field for the
experimental tests was of the order of 2 mm, which is considered to be sufficient to
obtain information of the near-wake vortex shedding structures.

With regard to time resolution, large-scale vortices have a characteristic time scale
(related to the Strouhal number, St = fvD/U) of 1–3 Hz for the range of reduced
velocities under consideration, which is roughly 5–15 times lower than the acquisition
time scale (15 Hz). The recording sequence consisted of 300 frames (lasting 20 s),
which is equivalent to approximately 20 oscillation cycles of the circular cylinder. The
measurement process was repeated three times for each set of parameters investigated.

2.4. Validation test
To validate the experimental set-up and to obtain reference data for comparison, a non-
rotating VIV circular cylinder curve was obtained. As said before, the circular cylinder
had a diameter of D = 25 mm and submerged length of L = 430 mm (aspect ratio
L/D=17.2 and blockage ratio of 2.7 %). From the mechanical point of view, the mass
ratio was m∗ = 11.7 and damping ζ = 0.0043 (yielding a mass-damping parameter
value of m∗ζ = 0.0506). The Re at the peak of the amplitude curve response was
Re= 3200.

Figure 3 shows the measured VIV response in terms of A∗ (A∗10) as a function of the
reduced velocity U∗. All measurements have been made with increasing water speed.
For comparison purposes, results from Khalak & Williamson (1999), Assi et al. (2006)
and Klamo (2007) are also given. The mass ratios of Khalak & Williamson (1999)
(m∗=10.1), Assi et al. (2006) (m∗=8.1) and Klamo (2007) (m∗=6.5) are comparable
to our final set-up (m∗= 11.7), while the mass-damping parameters were m∗ζ = 0.017,
0.016 and 0.01, respectively, which are smaller than the mass-damping ratio of the
present study (m∗ζ = 0.0506). The Reynolds-number ranges of all cases are similar.
In particular, the Reynolds number at the amplitude’s curve peak was Re≈ 5000 for
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FIGURE 3. Comparison of experimental results for the normalized amplitude variation
with reduced velocity. Triangles are from Khalak & Williamson (1999) (m∗ = 10.3, ζ =
0.0017), open circles are from Klamo (2007) (m∗ = 6.5, ζ = 0.0015), squares are from
Assi et al. (2006) (m∗ = 8.1, ζ = 0.0020) and solid circles stand for the present results
(m∗ = 11.7, ζ = 0.0043).

Khalak & Williamson (1999), Re≈ 5500 in Assi et al. (2006), Re≈ 2600 in Klamo
(2007), and Re≈ 3200 for the present VIV test.

As can be seen, all VIV responses present three distinctive branches, which
correspond to the initial, upper and lower branch, respectively. As described by
Govardhan & Williamson (2006), the VIV curve shows three such distinctive branches
for high enough Reynolds number and low enough mass-damping parameter. The
transition between the initial and upper branches happens at U∗≈ 4.5 and a distinctive
lower branch can be observed between U∗ ≈ 6 and U∗ ≈ 9 where desynchronization
occurs. With respect to the maximum amplitude obtained, the differences appear
to be mainly due to the effect of the Reynolds number. This point was studied in
Govardhan & Williamson (2006) where a ‘modified Griffin plot’ was introduced and
a best fit for a wide range of mass damping and Reynolds number was given as
A∗fit = [1 − 1.12m∗ζ + 0.3(m∗ζ )2] log10(0.41Re0.36), which for our experimental set-up
yields a theoretical maximum amplitude of oscillation of A∗fit = 0.82, which agrees
closely with the maximum amplitude measured of A∗ = 0.8.

With regard to the end conditions, no attached end-plate was used (the effects of
end conditions are reviewed in Morse, Govardhan & Williamson (2008)), which leads
to a less distinctive upper/lower transition (similar to those from Assi et al. (2006) and
Klamo (2007)). The decision not to use an end-plate was meant to avoid undesired
effects when rotating the cylinder because small misalignments might lead to large
damping effects when the cylinder rotates.

The overall agreement is good. As can be seen, all VIV amplitude responses present
slight differences, which can be reasonably ascribed to the different experimental
conditions listed previously. Other important factors that alter the VIV response, and
could explain some differences, include the inflow properties such as its turbulence
or uniformity.
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FIGURE 4. Maximum non-dimensional amplitude oscillation as a function of the reduced
velocity for (a) positive values and (b) negative values of the rotating parameter k̃1.

3. Results
The effects of rotating the cylinder on its dynamical behaviour (namely the

amplitude and frequency of oscillation) are presented here. Two strategies are
proposed and compared, focusing mainly on the enhancement in oscillation amplitude
or reduction in the oscillations. To better understand the mechanisms underlying the
oscillations of the cylinder, PIV visualizations of the near wake are also presented.

3.1. Rotation proportional to position
Firstly, the effect of rotating the cylinder along its axis proportionally to the position
of the cylinder will be studied,

θ = k̃1Y, (3.1)

where k̃1 is a non-dimensional feedback constant that relates the position of the
cylinder to the rotation angle of the cylinder along its axis. The cylinder’s response
is presented in § 3.1.1 and the different wake patterns in certain configurations are
examined in § 3.1.2. A quasi-steady model is developed and presented in § 3.1.3.

3.1.1. Cylinder dynamics
Owing to the character of the rotation imposed, symmetry is not broken and

oscillations take place around the equilibrium position without flow (Y = 0) for all
values of U∗ and k̃1. Thus, the cylinder’s response can be described by its main
frequency of oscillation f ∗ = f /fN and the dimensionless amplitude A∗ = A10/D of the
cylinder’s steady-state oscillations.

Figure 4 shows the variation of the amplitude of oscillation for different values of
k̃1. With respect to the non-rotating case (that is, k̃1 = 0), positive values of k̃1 lead
to a reduction of the maximum amplitude of oscillation as well as a reduction of the
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region of U∗ where the cylinder undergoes large-amplitude oscillations. However, as
can be seen, between k̃1= 1.25 and k̃1= 2.5, the reduction in amplitude of oscillation
is not very significant (figure 4b). If k̃1 is further increased, the picture does not vary
much (regarding amplitude of oscillation, or synchronization region). With respect to
the different branches of the curve, transition between the initial and upper branches
is anticipated as k̃1 increases. Finally, it can be noted that the differentiation between
upper and lower branches is increasingly lost.

For negative values of k̃1, the picture is quite different (see figure 4b): oscillations
are significantly enhanced and two different responses can be observed. For
−1.8< k̃1 < 0, the response amplitude exhibits in all cases a bell-shaped evolution as
a function of the reduced velocity, which resembles the classical VIV response. This
suggests that the vibrations occur under a wake–body synchronization mechanism. As
k̃1 becomes more negative, oscillations are more intense, the range of synchronization
is enlarged, and the reduced velocity at which maximum amplitude is achieved
is delayed as well as the initial–upper branch transition. A different behaviour
has been found when k̃1 < −1.8. As can be observed, for k̃1 = −2.125, just after
the initial–lower transition, A∗ seems to adopt a quasi-linear dependence on the
reduced velocity. This resembles the dependence of galloping-type instability where
motion-induced forces are dominant, in contrast to VIV where fluid forces are
mainly driven by vortex shedding. For k̃1 = −2.125, values up to U∗ = 16 only
are presented. The reason has to do with the actual limitations of the experimental
set-up. Specifically, beyond that threshold, the amplitude of the oscillations of the
elastic blades is such that their elastic response starts to lose linearity. This raises the
question of whether a galloping-like response will continue forever, or at some value
of the reduced velocity the oscillations would start to decay. To analyse this point
in more detail, an analysis of the near-wake flow pattern is made in the following
subsection (figure 7), which shows that synchronization between vortex shedding and
oscillations is lost. In addition, a quasi-steady model is developed in the next section,
which explains the galloping-type response observed. The value k̃1 = −1.875 shows
an intermediate behaviour: after the initial–upper branch transition, the amplitude
response curve adopts a linear trend with the reduced velocity, but at U∗ ≈ 10 it
loses this trend following an almost constant amplitude of oscillation for increasing
U∗ until large-amplitude oscillations cease abruptly at U∗ = 20.

In figure 5, the normalized frequency of oscillations f ∗ is plotted as a function
of the reduced velocity for different values of k̃1. Owing to the large value of the
reduced mass, variation of f ∗ with U∗ is relatively small. In the initial branch the
frequency is lowered slightly and then increases linearly with U∗. For k̃1> 0 the slope
of the frequency variation with U∗ is significantly increased. On the other hand, for
negative values of k̃1 (up to k̃1>−1.8), f ∗ is lowered and the slope with U∗ is smaller.
Importantly, for large negative values of k̃1 (i.e. k̃1<−1.8), f ∗ reaches a near-constant
value after U∗≈ 10. This result reinforces the idea that for large negative values of k̃1
the cylinder undergoes galloping-type oscillations. Seemingly, the initial–upper branch
transition branch occurs near f ∗ = 1 for all values of k̃1 (similar to the classical VIV
response).

3.1.2. PIV of the near wake for rotation proportional to the position
Here, PIV visualizations of the near wake are presented to understand the effect of

the rotation of the cylinder on the wake patterns. Non-dimensional vorticity contours
are given for different values of k̃1 at two values of the reduced velocity, U∗ = 5.2
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FIGURE 5. Non-dimensional oscillating frequency of the cylinder as a function of
the reduced velocity for (a) positive values and (b) negative values of the rotating
parameter k̃1.

(near the peak amplitude) and U∗ = 7.5, which correspond to the upper and lower
branches, respectively, in the classical VIV curve (k̃1 = 0). The non-dimensional
vorticity contour images have been treated by proper orthogonal decomposition
(POD) so as to retain high-level energy modes and to filter high spatial and temporal
frequencies (for further details, the reader is referred to Berkooz, Holmes & Lumley
(1993) and Ma et al. (2003)).

As mentioned earlier, the classical VIV response, for the Reynolds numbers
under consideration (Re = 3200) and for low enough mass-damping parameter
(m∗ζ = 0.0506), is characterized by a three-branch curve. Regarding the wake patterns,
the initial branch is characterized by a 2S mode of vortex emission at the centreline.
The upper branch presents a 2P0 mode of vortex shedding structure (as described
in Morse & Williamson (2009)), which consists of two pairs of vortices shed per
cycle where the secondary vortex has a intensity of circulation smaller than the main
vortex (figure 6a). In the lower branch, the secondary vortex has grown in intensity
developing into a full 2P mode (figure 6b). Further increasing the velocity leads to a
desynchronization between vortex emission and oscillation.

For k̃1 > 0, the wake structure in the initial branch is equivalent to the case
without actuation (2S vortices shed near the centreline). After the transition, near the
peak amplitude, the secondary vortex is reduced and even disappears as k̃1 grows
(figure 6c), thus evolving from a 2P0 mode to a 2S mode of vortex shedding (as
k̃1 is increased) where two single vortices are shed per cycle at the outer part of
the oscillation’s cycle (near its maximum amplitude). Also, the main vortex reduces
its intensity compared to the case without actuation. This phenomenon probably
occurs because the cylinder rotates in the opposite direction to the vortex being
shed, therefore reducing the intensity of the circulation of the vortex shed, which
contributes to a reduction of the amplitude of oscillation. As will be seen in the next
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FIGURE 6. (Colour online) Non-dimensional vorticity contours ωD/U for two values
of reduced velocity (U∗ = 5.2, 7.5) and four values of k̃1 (k̃1 = 0, 1.25, −1.0,
−1.875), respectively. Red indicates clockwise circulation and blue indicates anticlockwise
circulation. Vortical structures are highlighted with a red dashed line. P represents a pair
of vortices shed per half-cycle corresponding to a 2P mode of vortex shedding. P0 is
equivalent to the previous one but with the secondary vortex being qualitatively smaller
(circulation intensity-wise). S structures represent a single vortex being shed per half-cycle,
which corresponds to a 2S mode of vortex shedding. Note that, for completeness, the
amplitude of oscillation for each case is indicated by a double-headed arrow.

subsection (§ 3.1.3), from a quasi-steady point of view, the lift coefficient depends
on the rate of rotation, and positive values of k̃1 lead to a lift coefficient opposite
to the velocity of displacement, thus contributing to a reduction of the amplitude
of oscillation expected. Finally, as U∗ grows, the upper and lower branches are no
longer distinguishable and desynchronization is anticipated (figure 6d).

For k̃1 < 0, the transition between the initial and upper branch is delayed; thus
figure 6(e,g) shows a 2S vortex emission mode at the centreline, as these contours
still represent the wake structure of the initial branch. As U∗ increases, after the
transition, a 2P0 mode is obtained (or 2P mode). The vortices shed increase in
strength (compared to k̃1 = 0) as k̃1 becomes more negative, because the rotation of
the cylinder is in the same direction as that of the vortices being shed, thus increasing
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FIGURE 7. (Colour online) Non-dimensional vorticity ωD/U contours for U∗ = 17 and
k̃1 = −1.875 evaluated at four different displacements of the cylinder. Red indicates
clockwise circulation and blue indicates anticlockwise circulation. The amplitude of
oscillation is indicated by the double-headed arrow.

the circulation of such vortices (figure 6f,h). The vorticity flux from the surface of the
cylinder to the flow is Γs = −πDuw, where uw is the circumferential cylinder speed.
For this rotating law, uw=Dk1ẏ/2 and therefore Γs=−πD2k1ẏ/2, which suggests that
vorticity emission from the cylinder’s surface contributes to increasing the circulation
of the shed vortex when k1 is negative. This contributes to the enhancement of the
amplitude of oscillation. Noticeably, the vortices are shed at the outer part of the
oscillation’s cycle; thus, it seems that the rotation of the cylinder (for the range of k̃1
investigated) does not modify the phase at which such vortical structures are emitted.

The increase in amplitude is also related to the lift coefficient that appears due to
the rotation of the cylinder (from a quasi-steady point of view) in the direction of the
velocity of displacement, thus contributing to the enhancement of the oscillations for
negative values of k̃1.

Furthermore, a case for U∗ = 17 and k̃1 = −1.875 is analysed to observe the
mechanism underlying oscillations for large negative values of k̃1 and large U∗.
In figure 7, four different time snapshots are presented, and overprinted in a blue
dashed line is the past trajectory of the cylinder. As can be observed, the picture
is very different from the previous ones where there was synchronization between
vortex emission and oscillation of the cylinder. In this case, the vortices are shed
independently of the cylinder’s oscillation at its own frequency and thus the wake
pattern resembles that of a wave as each vortex is shed independently at different
points of the cycle of oscillation. In particular, the normalized vortex emission
frequency is f ∗v = fv/fN = 3.44, which compares reasonably well to that of the Strouhal
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FIGURE 8. (a) Schematics of the forces acting on the cylinder in a quasi-steady situation.
(b) Average transverse force coefficient and average in-line force coefficient as a function
of the dimensionless rotation rate α. Experiments to determine CL and CD have been
carried out at Re ≈ 9000, which corresponds to U∗ = 15 for the current set-up. Dashed
lines represent the linear best fits.

value of vortex emission for a cylinder at rest (St = 0.21), which yields f ∗vrest = 3.57
(= StU∗). Thus, for large values of negative k̃1 and reduced velocity, there is no
synchronization between vortex emission and oscillation, and the amplitude response
tends to a linear dependence with U∗ resembling a galloping-type oscillation.

3.1.3. Quasi-steady model for galloping-type response
As observed in the previous subsection, there is a clear separation in the dynamical

behaviour between the cases for k̃1 > −1.8 and those where k̃1 < −1.8. In the
latter case, from a certain value of the reduced velocity, the amplitude of oscillation
increases linearly with the reduced velocity, leading one to assume that some kind of
galloping-type phenomenon is happening. Also, the frequency of vortex emission for
large U∗ follows the Strouhal law, therefore increasing linearly with U∗, whereas the
frequency of oscillation is locked at f ∗≈ 1. A quasi-steady model is proposed here to
explain the observed behaviour, to determine for which values of k̃1 a galloping-type
behaviour is expected to hold, and to see the capability of the model to predict
the cylinder’s dynamics by comparing the amplitude of oscillation given by the
quasi-steady model with experimental results.

For the quasi-steady analysis, it is assumed that the instantaneous transverse force
can be obtained from the steady lift and drag force with an equivalent instantaneous
velocity and angle of attack αF (Blevins 1990). In figure 8(a) a scheme of the
equivalent configuration is shown.

Taking into account the lift and drag force coefficients and projecting onto the
transverse (cross-flow) direction, one has

Cy =
Ur

U
(−CL cos(αF)−CD sin(αF))=−

CL

cos(αF)
−CD

tan(αF)

cos(αF)
, (3.2)

where αF is the instantaneous angle of attack, tan(αF)=−ẏ/U, cos(αF)= U/Ur, Ur

is the relative incident flow speed (Ur =
√

U2 + ẏ2), and CL and CD are, respectively,
the lift and drag time-averaged fluid force coefficients, which can be obtained from
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the ‘static’ configuration as a function of the dimensionless rotation rate. Figure 8(b)
shows the lift and drag coefficient variations with the dimensionless rotation rate
obtained from experiments carried out in a water channel where the rotation rate
was fixed at different values and fluid forces were measured using a force sensor.
Assuming, as a first approximation, a linear variation with the rotation rate of CL
and CD, one has

CL =CLαα =CLα
θ̇D
2Ur

, (3.3a)

CD =CDo −CDα|α| =CDo −CDα

∣∣∣∣ θ̇D
2Ur

∣∣∣∣ . (3.3b)

When the cylinder rotates proportionally to the cylinder’s displacement (θ ′ = k̃1Y ′),
(3.3a) and (3.3b) can be written in dimensionless form as

CL =
CLα

2
k̃1

Y ′

U∗r
, (3.4a)

CD =CDo −
CDα

2

∣∣∣∣k̃1
Y ′

U∗r

∣∣∣∣ , (3.4b)

where U∗r = Ur/fND = U∗/cos(αF) is the non-dimensional relative incident flow
velocity. From figure 8(b), the linear best fit yields CLα = −1.2, CDo = 1.06 and
CDα = 0.36, which are in good agreement when compared to similar experiments and
numerical simulations (Mittal & Kumar 2003; Karabelas et al. 2012; Bourguet &
Jacono 2014). Introducing (3.4a) and (3.4b) into (3.2), and taking into account that
cos(αF)

−1
=Ur/U, one obtains

Cy =−
CLα

2
k̃1

Y ′

U∗
−CDo

Y ′

U∗

√
1+

(
Y ′

U∗

)2

+
CDα

2

∣∣∣∣k̃1
Y ′

U∗

∣∣∣∣ Y ′

U∗
, (3.5)

which is the transverse fluid force coefficient evaluated from a quasi-steady basis. This
model for the transverse force coefficient mainly neglects the effect of the vortices
shed (note that there is no fluid force without cylinder motion), which is theoretically
valid for U∗ large enough with respect to St−1 (Parkinson 1989). The first term in
(3.5) can be seen as a positive linear damping for k̃1 > 0, reducing possible amplitude
oscillations, or as a linear negative damping term for k̃1 < 0, which, on the other
hand, contributes to amplifying the amplitude of oscillations. The last two terms are
nonlinear damping terms associated with the drag force. Note that there is no stiffness
term that could significantly change the frequency of oscillation, thus leading to the
result that the frequency of oscillation should coincide with fN , that is, f ∗= 1 (which
agrees well with results shown in figure 5(b) for k̃1 = −1.875 and k̃1 = −2.125 for
large reduced velocities).

It is of interest to study the theoretical value of k̃1 from which the galloping-type
response is expected to occur according to the quasi-steady model. To do so, note that
(3.5) can be linearized retaining only the linear terms:

Cy ≈−
CLα

2
k̃1

Y ′

U∗
−CDo

Y ′

U∗
. (3.6)
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FIGURE 9. Comparison between quasi-steady solution and the present experimental
results for k̃1 =−2.125.

Galloping-type oscillations may occur when the linearized term of the transverse force
coefficients yields a positive value only, thus

k̃1 <−
2CDo

CLα
'−1.76, (3.7)

which compares well with the results found during experimental results, since
galloping-type oscillations appeared for k̃1 < −1.8. To obtain the amplitude of
oscillations, the dynamical equation for the cylinder (2.2a) along with Cy given
by (3.5) can be solved analytically by the harmonic balance method such as in
Vicente-Ludlam et al. (2014) and Vicente-Ludlam, Barrero-Gil & Velazquez (2015,
2017) or numerically with a Runge–Kutta scheme.

Figure 9 assesses the validity of the quasi-steady model proposed with the present
experimental results for k̃1 = −2.125 with good agreement for high enough reduced
velocity (say U∗ > 8) with errors smaller than 10 %. This reinforces the idea that for
large negative values of k̃1 and enough reduced velocities the cylinder is driven mainly
for motion-induced fluid forces, which can be reasonably well described by the quasi-
steady hypothesis. However, for k̃1 = −1.875 the quasi-steady model fails to predict
the amplitude of oscillations of the experimental data since, after an initial linear trend
with U∗, the amplitude of oscillations keeps a nearly constant value until these cease
at U∗= 20. This could be caused by the low value of the linear part of the transverse
force from (3.5) at this value of k̃1, which is very close to the minimum theoretically
predicted by the quasi-steady model, making other phenomena not taken into account
in the quasi-steady model overcome the galloping-type oscillations.

3.2. Rotation proportional to the cylinder’s velocity (θ = k̃2Y ′)
Another strategy that has been studied is to modify the response of a circular cylinder
undergoing VIV by rotating the cylinder proportionally to its own transverse velocity.
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FIGURE 10. Maximum non-dimensional amplitude oscillation as a function of the
reduced velocity for (a) positive values and (b) negative values of the rotating
parameter k̃2.

Results including amplitude and frequency of oscillation and non-dimensional vorticity
contours are presented here. In what follows, the cylinder is rotated according to the
feedback equation

θ = k̃2Y ′, (3.8)

where k̃2 is a non-dimensional feedback constant. The cylinder’s response is presented
in § 3.2.1 and the different wake patterns in certain configurations are examined in
§ 3.2.2.

3.2.1. Cylinder dynamics
In figure 10, the amplitude of oscillation of the cylinder is plotted as a function

of the reduced velocity for different values of k̃2. For k̃2 > 0 the response is greatly
attenuated with respect to the curve without actuation (figure 10a, see curve k̃2 = 0).
With k̃2= 1.25, the peak amplitude is A∗≈ 0.22 whereas when rotating proportionally
to the cylinder’s displacement, for k̃1 = 2.5 (which approximately leads to twice the
level of rotation for a prescribed amplitude of oscillation) the maximum oscillation
does not exceed A∗ = 0.5 (as was shown in figure 4a). Thus rotating the cylinder
proportionally to its velocity of oscillation is considerably more efficient in terms
of attenuating the amplitude of oscillation with less actuation. On the other hand,
negative values of k̃2 lead to an increase of the amplitude of oscillation as well as
an increase of the synchronization region undergoing large-amplitude oscillations.
However, as can be seen in figure 10(b), further decreasing k̃2 does not modify
the type of response obtained, namely, no galloping-type oscillations have been
found. This result can be explained through the quasi-steady model, which gives the
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FIGURE 11. Non-dimensional oscillating frequency of the cylinder as a function of
the reduced velocity for (a) positive values and (b) negative values of the rotating
parameter k̃2.

following transverse fluid force coefficient:

Cy =−
CLα

2
k̃2

Y ′′

U∗
−CDo

Y ′

U∗

√
1+

(
Y ′

U∗

)2

+
CDα

2

∣∣∣∣k̃2
Y ′′

U∗

∣∣∣∣ Y ′

U∗
. (3.9)

This equation is obtained in the same way as (3.5), but taking into account that
rotation is now proportional to the velocity of oscillation. From (3.9) note that it is
not possible to introduce negative damping that can overcome the damping introduced
by the drag coefficient. Thus, the increase of the amplitude of oscillations has to be
explained by the modification of the structure of the near wake (namely, intensity
of vortices shed). The transition between the initial and upper branch is not as
pronounced as it is for the case without actuation (or when rotating the cylinder
proportionally to its position), and the reduced velocity at which the transition occurs
is not modified by k̃2. Also, the distinction between the upper and lower branches is
lost as actuation (either positive or negative) is increased.

Finally, with regard to the frequency of oscillation (figure 11), k̃2 does not modify
f ∗ significantly. The value of the non-dimensional frequency of oscillation nearly fits
into a single curve for all values of k̃2, thus explaining why the initial–upper branch
transition occurs at similar reduced velocity as the frequency of oscillation reaches
f ∗= 1 at nearly the same reduced velocity. Negative values of k̃2 (figure 11b) increase
the region of synchronization; therefore, the frequency of oscillation keeps growing
with the same slope until desynchronization occurs (for larger U∗ as k̃2 becomes more
negative).

3.2.2. PIV of the near wake for rotation proportional to the velocity of displacement
For positive values of k̃2, the initial branch is not modified with respect to the

case without actuation (presenting a 2S mode of vortex shedding at the centreline).
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FIGURE 12. (Colour online) Non-dimensional vorticity contours for two values of reduced
velocity (U∗= 5.5, 7.5) and four values of k̃2 (k̃2= 0, 0.625, −0.625, −1.25), respectively.
Red indicates clockwise circulation and blue indicates anticlockwise circulation. Vortical
structures are highlighted with a red dashed line. P represents a pair of vortices shed per
half-cycle corresponding to a 2P mode of vortex shedding. P0 is equivalent to the previous
one but with the secondary vortex being qualitatively smaller (circulation intensity-wise).
S structures represent a single vortex being shed per half-cycle, which corresponds to a
2S mode of vortex shedding. Note that, for completeness, the amplitude of oscillation for
each case is indicated by a double-headed arrow.

At U∗ = 5.5 for k̃2= 0 (which corresponds to the upper branch), a 2P0 mode of vortex
shedding was observed (figure 12a). As k̃2 increases, the amplitude of oscillation
diminishes and still a 2P0 mode is observable (figure 12c, k̃2 = 0.625), though
circulation intensity is reduced and vortices are shed nearer to the centreline. Further
raising of k̃2 leads to an increasingly undefined wake pattern where 2P vortex emission
is mixed with 2S mode alternately (driven by the low amplitude of oscillation as well
as the rotation of the cylinder). As the reduced velocity is increased (U∗ = 7.5), the
picture is similar where 2P vortex emission (for k̃2= 0, figure 12b) slowly evolves to
a 2S mode as k̃2 increases (figure 12d exhibits a fully 2S mode for k̃2 = 0.625 and
amplitude of oscillation lower than 0.2).
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FIGURE 13. (Colour online) Non-dimensional vorticity contours for U∗ = 9.5 and three
values of k̃2 (k̃2 = 0, −0.625, −1.25), respectively. Red indicates clockwise circulation
and blue indicates anticlockwise circulation. Vortical structures are highlighted with a red
dashed line. P represents a pair of vortices shed per half-cycle corresponding to a 2P mode
of vortex shedding. P0 is equivalent to the previous one but with the secondary vortex
being qualitatively smaller (circulation intensity-wise). S structures represent a single
vortex being shed per half-cycle, which corresponds to a 2S mode of vortex shedding.
Note that, for completeness, the amplitude of oscillation for each case is indicated by a
double-headed arrow.

For negative k̃2, the initial branch is not modified (2S mode). After the transition,
in the upper branch (U∗ = 5.5), negative k̃2 markedly increases the circulation
of the vortices shed compared to the case without actuation, and the secondary
vortex is suppressed as k̃2 is diminished (figure 12e,g). For U∗ = 7.5 a 2P mode
of vortex emission (similar to k̃2 = 0) is obtained with increasing vortex circulation
intensity as k̃2 is diminished with also a diminishing intensity of the secondary
vortex (figure 12f,h). As observed, rotating the cylinder proportionally to its velocity
mainly affects the intensity of the vortices shed for this range of U∗ without affecting
the phase of vortex emission. For this rotating law, the vorticity flux from the
surface of the cylinder is Γs = −πD2k2ÿ/2 (note that circumferential velocity at
the cylinder’s surface is Dk2ÿ/2). This suggests that more circulation in the shed
vortex is expected for negative values of k2. Observe that if we consider ÿ≈−2πf 2y
(since oscillations have a harmonic character), it follows that Γs is in phase with the
cylinder’s displacement. This may help to accommodate vorticity generation in the
surface onto the growing vortex, increasing its circulation significantly.

Notably, as seen in figure 10(b), the synchronization region can be enlarged with
negative k̃2. In particular, non-dimensional vorticity contour maps are given at U∗=9.5
for the case without actuation (k̃2 = 0, figure 13a) and two negative values of k̃2

(k̃2=−0.625, k̃2=−1.25, figures 13b and 13c, respectively). As observed, for k̃2= 0,
oscillations are small due to desynchronization between vortex emission and the
cylinder’s oscillation. However, as k̃2 becomes more negative, the synchronization
region is enlarged and large-amplitude oscillations occur and a fully developed 2P
mode can be observed.

Finally, no quasi-steady flow pattern has been found with regard to the wake pattern
(as deduced from (3.9)).

4. Concluding remarks

Hydroelastic experiments have been performed to study the dynamical behaviour
and wake pattern of the fluid flow around a circular cylinder undergoing FIV
(m∗ = 11.7 and Reynolds number in the range 1500–10 000), free to oscillate in
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the transverse direction with an imposed rotation around its axis linked to the
cylinder’s dynamics. Two different rotating laws have been investigated: first, a
rotation proportional to the cylinder’s displacement; second, a rotation proportional to
the cylinder’s velocity. The main findings are as follows.

(i) Regarding the case where rotation is proportional to the cylinder’s displacement
(θ = k̃1Y), it has been found that positive values of k̃1 lead to a reduction in the
maximum amplitude of oscillation compared to that of the non-rotating VIV, and
the transition between the initial and lower branch happened for lower values of
reduced velocities. Also, the frequency of oscillation was slightly increased and the
region of VIV synchronization was diminished. On the other hand, negative values
of k̃1 significantly increase the maximum peak value of oscillations and increase the
reduced velocity at which this maximum occurs. Also, the region of synchronization
is greatly enlarged as k̃1 becomes more negative. In fact, if k̃1 overcomes a certain
negative value, the response obtained changes dramatically and a galloping-type
response is obtained, where the amplitude of oscillation increases almost linearly
for high values of the reduced velocity. In those cases, the frequency of oscillation
remains constant ( f ∗ close to 1) for high values of reduced velocity and the frequency
of vortex shedding increases approximately following the Strouhal law, and thus both
time scales (oscillation and vortex shedding) depart from each other. A large number
(increasing with the reduced velocity) of vortices are shed per oscillation cycle. From
the practical side, note that negative values of k̃1 could be of interest for energy
harvesting purposes as well as to promote mixing.

(ii) A quasi-steady model has been proposed to predict the amplitude of oscillation
for large negative values of k̃1 as well as to better understand the observed
results. When the time scales of the vortex emission and the oscillation period
are insignificantly different, the force can be considered in a quasi-steady fashion and
the Cy force coefficient can be expressed as a function of Y ′/U∗. Following (3.5), the
galloping condition is fulfilled for negative values larger than k̃1<−2CDo/CLα=−1.76,
which agrees well with the experimental results. The quasi-steady model predicts a
linear dependence of the amplitude of oscillation on the reduced velocity. As k̃1

becomes more negative, the slope of the amplitude oscillation with the reduced
velocity increases. The quasi-steady model was compared to experimental results with
good agreement between them.

(iii) For the case where rotation is proportional to the cylinder’s velocity (θ = k̃2Y ′),
it has been found that positive values of k̃2 lead to a reduction in the maximum
amplitude of oscillation compared to that of the pure VIV. Notably, this rotation
law leads to greater reduction of the amplitude of oscillation of the cylinder with
less actuation compared to rotating the cylinder proportionally to its displacement
(with k̃1 > 0), so rotation proportional to velocity should be applied to reduce the
amplitude of oscillations efficiently. On the other hand, negative values of k̃2 increase
the maximum value of oscillation. Regarding the frequency of oscillation, it nearly
fits into a single curve for all values of k̃2. Negative values of k̃2 increase the region
of synchronization; thus f ∗ keeps growing with U∗ until desynchronization occurs
and the vortex shedding frequency is always synchronized with the frequency of
oscillation. For all values of k̃2, oscillations occur under VIV (bell-shaped evolution
as a function of the reduced velocity).

(iv) The quasi-steady model developed helps to explain why a galloping-type
response is not expected to occur for the case of rotating the cylinder proportional
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to its oscillating velocity, since the linear transverse force term associated with
the rotation is proportional to the acceleration. Therefore, there is no excitation
that overcomes the damping term introduced by the drag force. This agrees with
experimental results and PIV visualizations performed in which all large-amplitude
oscillations obtained occur under a VIV-type solution.

(v) In general, investigated wake modes found for the parameter set of U∗, k̃1 and
k̃2 are equivalent to those observed for the non-rotating case (Morse & Williamson
2009), that is, modes 2S, 2P0 and 2P. Rotation of the cylinder mainly modifies the
intensity of the circulation of the vortices shed. Positive values of k̃1 and k̃2 lead
to a reduction in their intensity of circulation whereas negative values of k̃1 and k̃2
increase such intensity as a general trend. This is caused mainly by the direction of
rotation of the cylinder as well as its rotation rate. However, for high enough negative
values of k̃1 and high U∗, a new wake mode of vortex shedding has been found
where the vortex formation is decoupled from the oscillation of the cylinder. The
vortices are shed independently from the cylinder’s oscillation at its own frequency
and thus the wake pattern resembles that of a wave, as each vortex is shed at different
points of the cycle of oscillation. The shedding frequency of the vortices was found
to compare well with the frequency given by the Strouhal law. From the applied side,
the ability of the rotation law to fix a certain wake pattern can be of interest for some
applications (mixing, heat transport, etc.). Further experiments for higher values of the
feedback constants k̃1 and k̃2 should be performed to determine if new modes of vortex
emission emerge.
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