
ORIGINAL ARTICLE

A duration estimator for a continuous time war of
attrition game

Frederick J. Boehmke1*, Douglas Dion1 and Charles R. Shipan2

1Department of Political Science, University of Iowa, Iowa City, Iowa, USA and 2Department of Political Science, University
of Michigan, Ann Arbor, Michigan, USA
*Corresponding author. Email: frederick-boehmke@uiowa.edu

(Received 6 March 2018; revised 15 March 2019; accepted 10 February 2020; first published online 6 July 2020)

Abstract
We developed a maximum likelihood estimator corresponding to the predicted hazard rate that emerges
from a continuous time game of incomplete information with a fixed time horizon (i.e., Kreps and Wilson,
1982, Journal of Economic Theory 27, 253–279). Such games have been widely applied in economics and
political science and involve two players engaged in a war of attrition contest over some prize that they
both value. Each player can be either a strong or weak competitor. In the equilibrium of interest, strong
players do not quit whereas weak players play a mixed strategy characterized by a hazard rate that
increases up to an endogenous point in time, after which only strong players remain. The observed length
of the contest can therefore be modeled as a mixture between two unobserved underlying durations: one
that increases until it abruptly ends at an endogenous point in time and a second involving two strong
players that continues indefinitely. We illustrate this estimator by studying the durations of Senate filibus-
ters and international crises.

Keywords: Duration and survival analysis; maximum likelihood estimation (MLE)

1. Introduction
Politics is replete with situations in which two players, or groups of players, decide whether to
compete for a prize. As initially conceived in evolutionary biology (e.g., Maynard Smith 1974;
Riley 1980) and then further developed by Kreps and Wilson (1982) in the context of explaining
the value of a firm’s reputation, these games can be characterized as wars of attrition, in that once
both sides decide to fight for the prize, the contest continues until one player concedes or time
runs out. In particular, the equilibrium of interest involves strong players contesting the issue and
fighting until time runs out, whereas weak players play a mixed strategy in which they probabil-
istically quit the contest over time.

This equilibrium produces a number of distinct empirical predictions. First, weak players exit
at an increasing rate, resulting in a hazard rate for contests involving at least one weak player that
exhibits positive duration dependence. Second, weak players will never contest the issue until time
expires. Instead, there is an endogenously determined point in the game by which all weak players
will have conceded. Since strong players never quit, any contest lasting beyond this point has a
hazard of zero until time expires, producing a discontinuity as the overall hazard drops precipi-
tously from the large, increasing hazard down to zero.

Although these features of the equilibrium provide for rich theoretical insights into the contest
being modeled, they also make it difficult to test the predictions of the theoretical model with
existing duration estimators. We therefore develop an estimator that captures the salient features
© The European Political Science Association 2020.
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of the equilibrium outlined above. As such, the estimator we derive provides a way for scholars to
test the predictions of continuous time games of incomplete information with a fixed end point.

Our estimator uses a mixture model approach to account for the fact that the observed data
from the war of attrition game we describe represent a combination of two distinct processes.
The first—in our model, those involving at least one weak player—has a distribution that permits
an increasing or decreasing hazard but with a support ending with the endogenous time horizon.
The second—those involving two strong players—allows any non-negative duration and also fea-
tures a monotonic hazard. By estimating a mixture between these distributions we are able to
assess whether the resulting empirical hazards fit those predicted by the war of attrition theory,
including estimating the endogenous time point and testing whether contests involving at least
one weak player exhibit an increasing hazard. In addition to evaluating the presence and
shape of the two hazards, our estimator, which we release as a Stata package, allows researchers
to include covariates explaining the hazard of contests involving at least one weak player and the
mixture probability. Thus researchers can separately assess how shifts in players’ types affect the
number of contests involving weak players and the failure rate of such contests contribute to
changes in the observed durations.

We demonstrate the value of our estimator with two applications. First, we examine the dur-
ation of filibusters in the United States Senate to evaluate claims that the modern filibuster no
longer serves an informational role by sorting out weak and strong sides to a given issue. Our
second application examines the duration of international crises, which has long been viewed
through the war of attrition framework. Both applications exhibit the features of a war of attrition,
with a small hazard for contests involving two strong players and an increasing hazard with an
endogenous end point that occurs well below the largest observed durations. We also find evi-
dence that ignoring the mixture structure of the data or factors that influence the mixture
leads to incorrect inferences about covariates’ influence on the hazard for contests involving at
least one weak player.

Our analysis thus provides new insights into the significant topics of international crises and
Senate filibusters. But our contributions extend well beyond these specific applications. To begin
with, our approach follows the logic of previous studies that espouse the importance of deriving
empirical estimators directly from theoretical models to improve our ability to understand empirical
phenomena (see, e.g., Morton 1999; Signorino 1999). In this respect, our study is closely tied in
spirit to the Empirical Implications of Theoretical Models program (see, e.g., Granato et al. 2010).

This tighter link between theory and empirical work is especially relevant in the context of war
of attrition models, given the strikingly widespread use of such models to examine political phe-
nomena. For international crises, our new estimator provides a more nuanced evaluation of the
crises bargaining process, one that outperforms standard duration models and provides evidence
consistent with the presence of two types of states (weak and strong) that use the bargaining pro-
cess as a way to signal their willingness to resolve disputes via conflict. For filibusters, we illustrate
our estimator’s value by addressing an important question that has plagued scholars and com-
mentators alike: does the modern filibuster (i.e., since cloture reform in 1975) still serve an infor-
mational role by sorting out weak and strong sides to a given issue? Our results suggest it does.

Finally, as Powell (2017: 22) recently noted, “[w]ars of attrition provide workhorse models for
analyzing many different kinds of conflict.” Within political science, the war of attrition has been
used to understand a wide variety of phenomena, including deterrence and bargaining (e.g.,
Fearon 1994, 1995), cabinets and coalitions in parliamentary democracies (e.g., Carmignani
2001) and budgetary negotiations (e.g., Klarner et al. 2012). Our Supplementary appendix refer-
ences over two dozen relevant examples in Political Science and other fields. Clearly, this theory
has been applied to a strikingly wide range of noteworthy political topics. Yet, empirical work has
lagged behind. Our approach solves some of the problems associated with testing these models,
and thus allows for more accurate and appropriate interrogation of the data across a broad set of
political (and non-political) phenomena.
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In this section, we outline the basic assumptions and results of the Kreps and Wilson (1982)
continuous time war of attrition model with incomplete information. Our presentation is a bit
brief, so we refer interested readers to the discussion in Dion et al. (2016) and its very detailed
Supplementary technical appendix.

1.1 Preliminaries

The original application of the model was to competition between a monopolist and a potential
entrant (Kreps and Wilson 1982), which was treated as a continuous time war of attrition. The
model involves competition between two players, i = 1, 2 over an issue, worth a > 0 to player 1 and
b > 0 to player 2. The game proceeds in two stages: first, players must decide whether to contest
the issue, then, if both players do contest, they engage in a coTntinuous time war of attrition that
ends either when one player concedes or when time runs out. The maximum length of time, T, is
normalized to 1. The player who does not concede receives the prize, the value of which decreases
over the course of a contest, whereas the other side receives no value for the prize. Discounting
occurs as the contest continues so that the prize’s value is reduced to (1− t)a if player 1 wins and
(1− t)b if player 2 wins.1

Both players have one of two types: weak or strong. Weak players pay a cost for prolonging the
contest whereas strong ones gain. Payoffs are based on whether a player concedes or wins the
contest and also on when the contest ends. A strong player 1 will receive (1− t)a + t if she
wins at time t compared to t if she concedes at t. For a weak player 1 the payoff of winning a
contest at time t is (1− t)a− t and −t for losing one. Player 2 has similar payoffs, with b replacing
a in the preceding. Each player knows their type, but is uncertain of their opponent’s type. In
particular, it is common knowledge that there are prior probabilities p that player 1 is strong
and q that player 2 is strong, with 0 < p < 1 and 0 < q < 1.

We focus on the sequential equilibrium identified by Kreps and Wilson (1982). Given their
positive value for fighting, strong players always contest the issue and continue fighting as
long as necessary. Weak players do not always contest the issue but, when they do, they quit fight-
ing at some positive rate. This rate is determined by the need to keep weak players indifferent
between continuing to fight and conceding. For this to occur, a precise balancing condition
must be met at each point in time during the contest:

qt = pb/at , (1)

where pt and qt give the probability that each player is strong at time t.
When the two players have the same value for the prize (i.e., when a = b), then we have a sym-

metric situation in which the probability of facing a strong type is equal for both players. When
a > b, player 1 has a greater reason, ceteris paribus, to continue fighting. To maintain indifference,
then, the probability of facing a strong player 2 must be greater, and in fact qt . pa/bt if a > b. The
situation is reversed, of course, when a > b.

Since the balancing condition must be satisfied at all time periods, it must be satisfied at the
outset (i.e., where t = 0). This is unlikely to be the case given exogenously specified prior beliefs
( p, q): either there will be an excess probability that player 2 is strong (C) or that player 1 is strong
(q < pa/b). For simplicity, we assume the side with the excess probability will play a mixed strategy
in the first stage, bringing beliefs at t = 0 to the required balance.2 This assumption affects only
entry rates and does not affect the general shape of the hazard once a contest begins.

1Dion et al. (2016, Supplemental appendix) solve a version of the game in which the value of the prize does not decrease.
That version predicts two flat hazards and therefore constitutes a special case of the estimator we derive here.

2See Figure 1 in the technical appendix of Dion et al. (2016) for an illustration of the entry process and the constraint of
Equation 1 in equilibrium.
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Depending on which of these two cases the game starts in, the equilibrium strategies are repre-
sented differently in terms of the parameters of the model, but are still analogous to each other.
We focus on the first case (an excess probability that player 1 one is weak) for ease of
presentation.

1.2 Predicted hazard rate

In the equilibrium just outlined, the rates of exit for each type (subscript S or W) of player (super-
script 1 or 2) at time t are as follows:

h1S(t) = 0, (2)

h2S(t) = 0, (3)

h1W(t) = 1

a(1− t)− aq(1− t)(a−1)/a
, (4)

h2W(t) = 1

b(1− t)− bqa/b(1− t)(b−1)/b
. (5)

Furthermore, since at t = 0, Equation 1 implies that qa/b = p, the initial distribution over pairs
of types at t = 0 is:

cSS(0) = q(a+b)/b, (6)

cSW(0) = qa/b(1− q), (7)

cWS(0) = (1− qa/b)q, (8)

cWW(0) = (1− qa/b)(1− q), (9)

where ψlk(t) is the proportion of the dyads with player 1 of type l∈Θ = {S, W} and player 2 of
type k∈Θ.

These hazard rates imply a survival function equal to one for strong players and the following
for weak players:

S1W(t) = (1− t)1/b − qa/b

1− qa/b
, (10)

S2W(t) = (1− t)1/a − q
1− q

. (11)
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The survivor function for any given contest is the product of the survivor function for the two
players involved in it, since a contest ends when just one player decides to quit. Note that for these
two survivor functions to be positive, it must be the case that t≤ 1− qa. This condition implies
that all contests involving at least one weak player must end by 1− qa. We refer to this endogen-
ous stopping time as t*.

In practice, however, we will never know for sure what types of players are involved in a contest
since information about each player’s type is private information (though we could employ some
measures to capture variation in the prior probability of players). We therefore calculate the
expected hazard rate by taking the weighted average of the unobserved hazards. In doing so
we distinguish between those involving at least one weak player, which have an increasing hazard
through t*, and those involving two strong players, which have a flat hazard through t = 1. This
allows us to develop an estimator that more closely approximates the theoretically-derived data-
generating process and which offers stark predictions about the overall hazard.

We start by averaging the survival function for the three different pairings including at least
one weak player (i.e., Q2

W = {SW , WS, WW}):

SW(t) =
∑
ij[Q2

W

cij(t)Si(t)Sj(t), (12)

= (1− t)(a+b)/ab − q(a+b)/b

1− q(a+b)/b
. (13)

We then derive the expected hazard rate for contests involving one of these three pairings:

hW(t) = − ∂ ln SW(t)
∂t

, (14)

= a+ b
ab(1− t)

[ ]
(1− t)(a+b)/ab

(1− t)(a+b)/ab − q(a+b)/b

[ ]
. (15)

Importantly, since all weak players have exited by some point t* = 1− qa the hazard function
for contests involving at least one weak player is only defined up through t* = 1− qa. Importantly,
this hazard increases with t until weak types have exited by t*.

The second part of the hazard describes contests with two strong players and, since they never
quit, is zero until the game ends: hSS(t) = 0. The mixture probability between those two hazards is
given by the proportion of contests involving two strong players, ψSS = q(a+b)/b, which means that
the probability of at least one weak player is 1− q(a+b)/b. Figure 1 plots examples of the hazards
for contests with two strong players and those involving at least one weak player.

2. A war of attrition hazard estimator
In this section we propose an estimator that captures the main features of the model just
described: a mixture over two types of contests, one of which has an endogenous time point
by which all such contests have ended. Since the outcome of interest constitutes a duration we
draw from methods developed to model time to failure from survival or duration analysis.
Since strong–strong contests all fail at the same time and after all the other contests have
ended, the predicted distribution of failure involves a positive density up through t*, followed
by a density of exactly zero, and ending with a point mass for the end of the strong–strong
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contests. In empirical applications, however, we wouldn’t know the values of t* or the end of time,
T. Yet, maximum likelihood estimation (MLE) typically assumes that the estimated parameters do
not determine the support of the distribution (see, e.g., King (1998: 75) for a discussion of this). If
the support for the distribution of strong–strong contests did not include values of t immediately
greater than t* (which it would not if it were a point mass strictly greater than t*), then our esti-
mate of t* would in fact help set the support of the mixture distribution.

We therefore propose an estimator that deviates slightly from the theoretical prediction by
allowing any non-negative duration value. We maintain the estimation of t* since that constitutes
a critical feature of the war of attrition: the informational battle leads to an endogenous time
horizon after which only one type of contest remains. We therefore allow failures for contests
involving two strong players to fail at any point in time. We expect that in practice the hazard
of such failures will be small relative to the hazard for contests involving weak players. To test
comparative statics predictions from the theory, the estimator allows users to parameterize the
duration process and the mixing probabilities.3

Figure 1. Predicted hazard rates for contests between two strong players and contests involving at least one weak player,
varying b and q.
Note: Value of a set to 1.

3Our estimator bears some similarities to so-called cure duration models (Schmidt and Witte, 1989). Although both have
two populations, two crucial distinctions arise: the presence of the endogenous time horizon that to estimate and the fact that
in a war of attrition all observations will fail whereas in a cure model “cured” observations never fail.
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2.1 The likelihood function

To build the likelihood for the theoretically-derived data-generating process, we start with the
hazard for contests involving strong–strong pairs. Although the incomplete information model
predicts a hazard of zero for these contests (until the end of the period, when they all end),
we relax this for the reasons described above by assuming a non-zero hazard rate, which we
model as a Weibull duration. If the structure of the theoretical model is correct, we expect this
hazard to be small relative to the hazard for contests involving weak types. Although we have
no particular sense of “smallness” here, to be consistent with the hazards depicted in Figure 1,
the hazard for strong–strong contests should be near zero or at least almost entirely below the
other hazard. Such a hazard could arise by averaging over the differing end points from each
of multiple instances of the war of attrition, leading to a hazard when aggregated over those con-
tests. Depending on how they are spread out, that distribution could be increasing, e.g., if they are
uniform; flat, e.g., if they are exponential; or decreasing, e.g., if they are Weibull with negative
duration dependence.4

For strong–strong pairs the observed duration, tSSi , which we superscript by players’ types for
purposes of exposition, is generated according to a standard Weibull distribution:

tSSi = exp (−a)× ei.

When e
p
i follows a standard exponential distribution, ϵi follows a Weibull distribution with

shape parameter pSS > 0. When the shape parameter is greater than one the data exhibit an
increasing hazard over time and when it is less than one they exhibit a decreasing hazard. The
Weibull has the following cumulative density function:

Fwbl(ei) = 1− exp (−e
pSS
i ). (16)

Since the rate of failure for pairs of strong players does not depend on any parameters in the
theoretical model, we merely parameterize it with a constant hazard. Define λSS = exp (α), where
α captures the constant baseline hazard rate, which allows us to write ei = lSStSSi .5 Inserting this
into our c.d.f. and then taking the derivative with respect to tSS gives us the density of an obser-
vation as

fwbl(t
SS
i |lSSi ) = pSS(l

SS
i )

pSS(tSSi ) pSS−1 exp (−(lSSi t
SS
i )

pSS). (17)

For contests involving at least one weak player, the war of attrition model predicts an increas-
ing hazard and an endogenous end point, t*. Since a Weibull distribution allows an increasing
hazard as a special case, we use it as the starting point for the distribution of their durations,
which we denote tWi . To capture the end point we modify the associated Weibull distribution
by truncating it at t*. This produces a distribution with support from zero to t* and whose cumu-
lative distribution reaches one at t*. Thus, as in the theoretical model, all contests in this popu-
lation will end by t*.

The truncated Weibull arises by dividing the cumulative distribution function of a standard
Weibull, as already presented above, by the probability that tWi ≤ t∗. Since we wish to parameter-
ize the hazard of contests including a weak player we write tWi = exp (−Xib)× ui and define
lWi = exp (Xib), where the superscriptW indicates that this parameterizes the hazard for contests
that involve at least one weak player. From this we derive the density and the associated hazard to

4Note that in our motivation analogy of averaging over contests, one still obtains an increasing hazard for the contests
involving at least one weak player.

5Note that this corresponds to a hazard interpretation to match the exposition of our theoretical results.
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use for interpretation after estimation:

ftwbl(t
W
i |lWi , tWi ≤ t∗) = pW(lWi )

pW (tWi ) pW−1 exp (−(lWi tWi )
pW )

1− exp (−(lWi t∗) pW )
, (18)

ftwbl(t
W
i |lWi , tWi . t∗) = 0; (19)

htwbl(t
W
i |lWi , tWi , t∗) = pW(lWi )

pW (tWi ) pW−1 exp (−(lWi tWi )
pW )

exp (−(lWi tWi )
pW )− exp (−(lWi t∗) pW )

. (20)

The observed data represent a convex combination of these two duration processes depending
on the types of players involved, which we do not observe. Let π denote the initial probability (i.e.,
after players decide whether or not to contest the issue but before the contest begins) that a con-
test involves two strong players and therefore corresponds to the exponential duration process.
Combining these terms leads to the following likelihood function, in which we drop all super-
scripts on the outcome variable, ti, since we cannot distinguish players’ types for outcomes
that end before t*:

L(b, a, p, pSS, pW , t∗|t, X) =
∏n
i=1

pfwbl(ti|lSS)+ (1− p)ftwbl(ti|lWi ), (21)

=
∏n
i=1

ppSS(l
SS
i )

pSS t pSS−1
i exp (−(lSSi ti)

pSS) (22)

+ (1− p)ci
pW(lWi )

pW t pW−1
i exp (−(lWi ti)

pW )

1− exp (−(lWi t∗) pW )

[ ]
,

where ci∈ {0, 1} indicates that an observations fails after t* to ensure that the density of the trun-
cated Weibull contributes zero to the likelihood in such cases. Importantly, note that although t*
determines the largest value of the truncated Weibull distribution, the possible values of t include
all positive duration outcomes via the mixture with the standard Weibull for strong–strong pairs.

Lastly, we incorporate heterogeneity in the probability that a given contest involves two strong
players by parameterizing π. This allows us to estimate variation across observations in the mix-
ture probabilities for the possible types of contests, which improves prediction of the parameters
of the duration for each type of contest. We model π with a logit equation, replacing it in the
likelihood above with the observation-specific probability:

pi = exp (Wig)
1+ exp (Wig)

(23)

One can then take the log and proceed to maximization. The likelihood is easily adapted to
account for data involving right censoring, as we show in our Supplementary appendix.
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2.2 Estimation

We here discuss some practical issues that emerge when estimating this likelihood and discuss
how we address them. The first lies in directly estimating t*. As noted earlier, t* is the endogenous
point in time by which all contests involving at least one weak player will have ended. At one
extreme, estimating it simultaneously with the other parameters proves difficult. At the other
extreme, assuming a specific value works in practice, but makes the results sensitive to that choice.
Our middle approach involves searching over many values to identify the best one. We classify
observations by whether they exceed or fall below some candidate value of t*, estimate the
other parameters of the model given t*, repeat for multiple candidate values, and choose the
one with the largest final log-likelihood.6 With a finite number of values in a given data set we
can search over all observed t*.7 Note that the precision of the estimates will therefore depends
on the realized duration outcomes in a given data set and, in particular, on whether observations
exist near the true value of t*. Of course, any estimator would suffer from a lack of richness in
observed outcomes, so this problem is not specific to ours alone.

The coarseness of the observed outcomes leads to a second estimation issue for the endogen-
ous time horizon. Specifically, the likelihood becomes flat when t* achieves sufficiently large
values. This makes sense since once t* becomes very large, the Weibull cumulative density func-
tion equals 1 at or before t*. The truncated Weibull distribution used for estimation always
reaches one at t*, but when the underlying, untruncated Weibull distribution reaches one
increases in t* do not affect the likelihood since all observations from the Weibull for weak con-
tests will have failed with probability one even without the truncation adjustment. Such observa-
tions therefore contribute only through the weighted density for strong–strong contests, πifexp(ti|
λSS), for values above and just below t*. Under some conditions, it may be the case that this flat
region of the likelihood represents the maximum.8 When this happens, we have multiple values of
t* that maximize the likelihood. We address this by leveraging the theoretical definition of t*:
since it represents the point by which all contests involving at least one weak player have
ended, we select the smallest value of t* that maximizes the likelihood. Since the c.d.f. evaluated
at this point is one, then all such contests have, in fact, ended. Note that this choice does not affect
the values of the other parameter estimates since it only affects the truncation adjustment, which
remains equal to one among the set of t* that maximize the likelihood.9

In the end our estimator produces a likelihood that corresponds to the theoretical data-
generating process for a continuous time war of attrition as depicted in Figure 1. In fact, it is
even more general than this, since it allows decreasing hazards for contests involving at least
one weak player and does not assume that this hazard lies above the hazard for contest involving
two strong players. Thus, the theoretical prediction represents a special case of our empirical esti-
mator rather than being assumed by it. Furthermore, our estimator parameterizes the duration of
weak contests and the mixture probability to test whether they vary as expected with measures of
the parameters of the theoretical model. Finally, note that our estimator also includes both the
Weibull and exponential models as special cases, allowing researchers to test whether the data
merely represent the outcome of a standard duration process.10 We have released a custom

6Note that estimating the parameters in this way may tend to understate the standard errors since each individual maxi-
mization treats t* as fixed.

7In practice, estimation for values of t* near the maximum and minimum sometimes proves difficult given that almost all
observations would be classified into just one of the two underlying durations.

8For example, this may occur if the true maximum is a little below the point at which the c.d.f. equals one, but no obser-
vation with the relevant duration value exists in the data set.

9To assess the viability of these two strategies, we conducted a series of Monte Carlo experiments to evaluate our estimator.
These are available from the authors upon request. In short, the estimator typically converged fairly quickly and produced
estimates close to the true values.

10The Weibull case occurs either when t* is infinitely large and πi = 0, ∀i, or when πi = 1, ∀i; the exponential case emerges
when either the preceding two conditions hold and pW = 0 or when πi = 1, ∀i, and pSS = 0. Note that since all of these tests
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Stata package that users can install to easily run the models, view the final log-likelihoods profiled
over the values of the outcome variable, and generate plots of the estimated hazards.11 Both of our
applications are performed in Stata 14.2 using this package.

3. Application 1: filibustering in the US Senate
In this section, we employ our new estimator to study the duration of filibusters in the United
States Senate. This application is motivated by a long series of claims in the press (e.g., Will
1982) and academic literature (e.g., Binder and Smith 1997) regarding a supposed trivialization
of the filibuster over the last few decades starting with a change to the cloture rule in 1975. In
particular, we assess the validity of claims by multiple experts consistent with Wawro and
Schickler’s (2006) conclusion that that “(t)he contemporary context of lawmaking in the
Senate has essentially eliminated the informational benefits that used to accrue from these
kind of battles.”12 Dion et al. (2016) argue that the filibuster fits the war of attrition framework
well with two sides—either weak or strong—clashing over some issue of value.

To assess these claims we utilize replication data from Dion et al. (2016), which employs Beth’s
(1994) measure of filibuster length.13 We estimate the hazard of filibusters with variables accounting
for the 1975 rule change and the importance of issues being filibustered. The former captures the
shift in cloture from two-thirds to three-fifths of those present and voting (and revised to 60 votes in
1980). The latter codes the issues underlying filibusters as important, not important, and “unclear”
using Binder’s (1997) list of important issues. The war of attrition model predicts that issue import-
ance decreases the hazard of weak filibusters and increases the probability of a strong–strong filibus-
ter (Dion et al. 2016). We compare our results to those from a standard Weibull estimator.

To estimate the best overall value of the endogenous time horizon, t*, we fix it at a particular
value and then estimate the other parameters. We repeat this procedure for all observed filibuster
lengths. Figure 2 plots the final log-likelihood for every case that converged (those that did not are
indicated by ticks inside the horizontal axis; for presentation we did not plot results for values
greater than 50). The maximum final likelihood occurs when t* = 9. In line with our discussion
of the estimation process the likelihood remains flat after t* = 18 when the Weibull c.d.f. under-
lying the truncated Weibull equals one; after this point the parameter estimates do not change.

Table 1 reports the results of this estimation along with a second model that include covariates
along with estimates from the corresponding Weibull models. Consider first the results with no
covariates. The first two equations report the truncated Weibull results for contests involving at
least one weak player, the second two equations report the Weibull results for contests involving
two strong players, and the final equation reports the logit model capturing the mixture of these
two types of contests. From these results we observe that contests with a weak player exhibit posi-
tive duration dependence, as expected in a war of attrition. Contests involving two strong players do
as well, but with a smaller value indicating a much flatter hazard. The logit model has a negative
constant parameter, which indicates slightly less than half of all contests involve two strong players.
The Weibull results reported in the first column attempt to capture these two type of contests with
one equation and indicate even smaller positive duration dependence that either of the two equa-
tions in the war of attrition results. A likelihood ratio test for the Weibull against our estimator can
be performed since the Weibull corresponds to the case in which t*→∞ and the probability of a
strong–strong contest is zero, though we make an adjustment since the test involves two boundary
values. Shapiro (1988) shows that the appropriate statistic comes from the �x2 which here represents

involve boundary values in the null hypotheses adjustments must be made to the standard likelihood ratio test (Shapiro,
1988), which we detail later.

11Version 1.0 of the package is included with our replication data, but for the most current version run net search
warofatt in Stata.

12For additional work on the filibuster, see Bawn and Koger (2008), Bell (2011), Binder et al. (2002); or Koger (2010).
13These data are available at https://www.journals.uchicago.edu/doi/suppl/10.1086/690223.
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the convex combination of three distributions, �x2 = (1/4)x20 + (1/2)x21 + (1/4)x22, and which has
a critical value of 4.231.14 The resulting test statistic exceeds this threshold.

More helpfully, Figure 3 plots the predicted hazards from the war of attrition estimator with no
covariates along with their 95 percent confidence intervals.15 The resulting hazards correspond
quite closely to the plots depicted in Figure 1, with the hazard for filibusters involving at least
one weak player increasing from the beginning of a filibuster up through nine days, by which
point all such contests will have all ended. The hazard for filibusters with two strong players
stays quite low and increases slightly, as expected from the results. We have no expectation
regarding the form of duration dependence for strong–strong contests, but do expect it to be
small relative to the one for weak contests. Note that for presentational purposes we only plot
the hazards up through 40 days, but the strong–strong hazard increases very slowly to the longest
observed filibuster, which lasts 97 days. Finally, the logit equation estimates that 42 percent of the
observed filibusters involve two strong players.

The other pair of models adds in covariates. As predicted, high importance and unclear
importance issues have lower hazards than low importance issues, with both significant in the
war of attrition estimator. This is what we expect since weak players contesting important issues
are willing to fight longer based on their greater value. In contrast, the results indicate no differ-
ence in the hazard for weak contests after the 1975 cloture reform. These results reverse them-
selves in the equation for the mixture probability, with the post-1975 period containing fewer
strong players but no evidence of variation by issue importance.

Figure 2. Value of final log-likelihood for different values of t* (filibuster duration, no covariates).
Note: Plot represents the final value of the log-likelihood for the war of attrition duration estimator using all observed values of the
outcome variable (filibuster length) in the data set. For presentation purposes, results for two values greater than fifty not included,
but they continue the flat trend up through 50. The four upward ticks on the horizontal axis indicate values for which the estimator did
not report regular convergence or exceeded 50 iterations.

14Stata’s likelihood for the standard Weibull model drops the (constant) −∑
i ln(ti) term. We wrote our own Weibull MLE

that includes it to ensure comparability; it also reports b̂ directly whereas Stata’s streg procedure reports b̂p̂.
15We generate the confidence intervals by sampling 10,000 draws of the parameters from their estimated distribution for

each value of t, calculating the hazards, and then capturing the 2.5 and 97.5th percentiles. Because the distribution of the
shape parameters is skewed, the upper bounds of the confidence intervals are further from the predicted value than the
lower bounds.
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These results contrast with those from the standard Weibull model. Although both models
indicate that high importance issues have lower hazards, the Weibull alone indicates a positive
and significant effect of the 1975 cloture reforms, corresponding to a greater hazard and shorter
filibusters. This result appears to occur in the standard Weibull due to its inability to account for
the reduction in the probability of strong participants since 1975, which it instead misattributes to
an increase in the hazard. Not surprisingly given these differences, the statistical comparison of
the two models rejects the standard Weibull in favor of the war of attrition estimator. Taken
together, these results run contrary to the common wisdom that the 1975 reforms “trivialized”
the filibuster. The hazard for filibusters did not move much after 1975, rather our results indicate
a sizeable drop in the proportion of strong types willing to fight for their issues. The structure of
the filibuster game itself did not change—the commitment of the players playing it did.

Figure 4 summarizes these results by plotting the estimated hazard rates for strong–strong
filibusters and for the different types of filibusters involving at least one weak player. We do
not report confidence intervals to more clearly interpret the effects of the covariates on the
hazards.16 Again, the overall shape closely resembles that of our theoretical model. But we can

Table 1. Weibull and partial cure hazard model results for duration of filibusters, 1919–1993 (hazard form)

Weibull War of attrition

Weak Contests Hazard
High Importance Policy −0.486∗∗ −0.463∗∗

(0.188) (0.159)
Unclear Importance Policy −0.305 −0.368∗∗

(0.206) (0.164)
1975 and After 0.766∗∗ 0.013

(0.131) (0.132)
constant −2.276∗∗ −2.352∗∗ −1.943∗∗ −1.484∗∗

(0.057) (0.207) (0.144) (0.179)
Weak Contests Duration Dep.

constant (lnpW) 0.131** 0.277** 0.728** 0.732**
(0.061) (0.054) (0.076) (0.077)

Strong–Strong Contests Hazard
constant −2.772** −3.042**

(0.089) (0.106)
Strong–Strong Contests Dur. Dep.

constant (lnpSS) 0.193** 0.309**
(0.083) (0.101)

Probability both strong
High Importance Policy 1.359

(1.286)
Unclear Importance Policy 0.182

(1.255)
1975 and After −2.515**

(0.594)
constant −0.317* −0.504

(0.191) (1.209)
Estimated value of t* 9 15
Final log-likelihood −877.62 −841.96 −838.43 −813.13
AIC 1759.25 1693.91 1688.87 1650.26
�x2 test for model comparison 78.38 57.66

Note: N = 274. Robust standard errors reported. See the text and Shapiro (1988) for information on the �x2 test for model comparison between
the Weibull and our estimator given the presence of two boundary values. The critical value with two such parameters is 4.23.

16In our experience plotting confidence intervals suggests misleading conclusions about statistical significance. Because the
shape parameter is exponentiated to keep it positive, the upper bound of the confidence interval of the hazard is much further
away from the expected value than the lower bound and increasingly so as the value of time increases. This leads to substan-
tial overlap in plots when comparing two hazards, thereby making easy to incorrectly infer that the two hazards do not differ
in a statistical sense even if they are substantively different. To show the difference and assess statistical significance more
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also see how changes in various conditions affect the hazard for weak contests. The black line
represents the baseline case, which consists of unimportant issues before the 1975 cloture reform.
Increasing issue importance decreases the hazard by about one-half both for issues of unclear
importance and important issues. The 1975 cloture reform has basically no effect, increasing
the hazard ever so slightly relative to the baseline, which is consistent with the small estimated
coefficient.

4. Application 2: the duration of international crises
We next apply our estimator to the duration of international crises. A significant part of the lit-
erature on crisis onset and escalation casts crises precisely as a “war of attrition” (Fearon 1994:
577). As Fearon (1995) notes elsewhere, imperfect information is one of a handful of ways
that we might observe war since parties could otherwise perfectly negotiate away their differences.
This imperfect information is often cast in terms of types for the two states involved (e.g., Banks
1990), with type capturing the level of cost states are willing to incur to win the prize (e.g., con-
tested territory). Crisis escalation serves as a precursor to war, with both sides attempting to sig-
nal their types in the hopes that their opponent will back down.

We can therefore think of the crisis onset and bargaining stage in terms similar to the war of
attrition model with two sides competing over a prize. Each state can be either weak or strong,
which could correspond to their ability to suffer audience costs (Fearon 1994), the strength of
the military forces (Morrow 1989), or their resolve to fight for the prize. They each choose
whether to engage in the crisis and how long to escalate before backing down. The side that
backs down loses the prize and bears the cost of the contest whereas the winner secures the
prize. Strong states may gain from the crisis by enhancing their reputation or letting their leaders

Figure 3. Estimated filibuster hazard rates from partial cure estimator.
Note: Estimates from Table 1 with no covariates (t* = 9). Black lines indicate the predicted hazard rate for each type of contest. Gray bars
give a nonparametric 95 percent confidence interval estimated by sampling 10,000 draws of the parameters from their estimated dis-
tribution and calculating the corresponding value of the hazard at many values of filibuster length.

clearly we therefore recommend plotting the difference between the hazards. In this case (not shown), this shows that the
confidence interval for the difference only includes zero for very small values of filibuster length.
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display their strength whereas weak states incur costs for fighting, such as audience costs. If both
sides are sufficiently strong and neither state backs down by some endogenous time horizon, then
they settle the contest through a war. The crisis therefore serves as an explicit mechanism for
learning about the strength of ones’ opponent (Morrow 1989; Fearon 1994).

Although many similarities abound, key differences in Fearon’s (1994) implementation lead to
deviations from the predictions of the classic war of attrition model. He highlights two such dif-
ferences: the option to escalate from a crisis to war rather than just continuing or backing down
and the incurrence of audience costs only by the side that loses. In fact, his version of the war of
attrition model for international crises predicts a negative expected hazard rate for crises up
through the endogenous time horizon.

Despite these deviations from the classic war of attrition model, our estimator remains flexible
enough to capture the salient features of these models of the duration of crisis bargaining in
ways that previous research has not. The theoretical literature makes clear that crisis escalation
serves as a signaling process through which weaker types attempt to appear strong, but often
end up backing down. Stronger types, on the other hand, will remain committed and not back
down. Finally, models of the process typically identify an endogenous time horizon after
which neither party will exit (Fearon 1994). Our estimator captures these dynamics. Helpfully,
it allows for both increasing and decreasing hazards among crises involving at least one weak
player. Furthermore, as noted previously, it includes both the exponential and Weibull models
as special cases. If the data do not mirror the implied process then we expect to obtain one of
these special cases.

To guide our models, we draw on DeRouen and Goldfinch’s (2005) analysis of the duration of
the length of all international crises from 1918 to 1994 using the International Crisis Behavior

Figure 4. Estimated filibuster hazard rates from partial cure estimator with covariates.
Note: Estimates from Table 1 (t* = 15). The reported hazards for contests involving at least one weak player each vary just one of the
indicator variables at a time from the baseline (which represents unimportant issues pre-1975). We omit confidence intervals on this
figure since it would be too cluttered and hard to interpret. Adding them, however, confirms what we learn from the table, i.e., the
hazards for important and unclear issues differ from the hazard for unimportant issues.
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data (Brecher and Wilkenfeld 2000).17 The outcome variable indicates the number of days a state
is in a crisis. DeRouen and Goldfinch’s data include information on 710 actors from 220 distinct
crises and capture information about both the target and the opponent. The remaining crises last
anywhere from 1 to 1359 days. We replicate their analysis with the exception of employing a
Weibull rather than a two-parameter gamma model, though they note little difference between
the two. We employ the same eight independent variables.

Table 2 reports the results for the Weibull and war of attrition duration estimators. As with the
filibuster analysis, the best way to interpret the results is by plotting the estimated hazard. Figure 5
reveals that such crises produce an increasing hazard rate through 44 days whereas crises involv-
ing two stronger states have a relatively small and decreasing hazard. Again, the plotted confi-
dence intervals show clear separation between the two. The logit mixture equation estimates
indicate that 78 percent of crises involve two strong players. Taken together, these results comport

Table 2. Weibull and partial cure hazard model results for duration of international crises, 1918–1994 (hazard form)

Weibull War of Attrition

Weak Contests Hazard
Violence −0.449** −1.854** −2.112**

(0.102) (0.330) (0.394)
Log Relative Cap. −0.042 −0.172 −0.085

(0.038) (0.109) (0.071)
Joint Democracy −0.099 −0.493 −0.780**

(0.181) (0.364) (0.320)
Contiguity 0.174 0.394 0.336

(0.109) (0.262) (0.258)
Rivals 0.035 −0.199 −0.183

(0.105) (0.244) (0.172)
Ethnic −0.584** −0.459* −0.570**

(0.110) (0.253) (0.153)
Territory −0.075 −0.080 0.079

(0.108) (0.324) (0.288)
Social Unrest −0.090 −0.356 −0.145

(0.106) (0.234) (0.250)
constant −4.687** −4.462** −2.937** −3.273** −3.026**

(0.052) (0.122) (0.199) (0.407) (0.264)
Weak Contests Duration Dep.

constant (ln pW) −0.249** −0.188** 0.491** 0.504** 0.647**
(0.025) (0.025) (0.116) (0.156) (0.256)

Strong–Strong Contests Hazard
constant −5.011** −5.048** −4.994**

(0.065) (0.099) (0.110)
Strong–Strong Contests Dur. Dep.

constant (ln pSS) −0.108** −0.159** −0.164**
(0.034) (0.037) (0.040)

Probability both Strong
Log Relative Cap. 0.192**

(0.092)
Joint Democracy −0.333

(0.863)
constant 1.260** 0.628** 1.173**

(0.216) (0.277) (0.376)
Observations 699 674 699 674 674
Estimated value of t* 44 309 308
Final log-likelihood −4042.70 −3876.04 −4019.82 −3856.61 −3854.12
AIC 8089.39 7772.07 8051.65 7741.22 7740.23
�x2 test for model comparison 45.74 38.85 43.84

Note: Robust standard errors reported. See the text and Shapiro (1988) for information on the �x2 test for model comparison between the
Weibull and our estimator given the presence of two boundary values. The critical value with two such parameters is 4.23.

17These data were downloaded from https://www.prio.org/JPR/Datasets/.
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with those of the war of attrition model. A subtle difference from the filibuster hazards emerges
with the truncated Weibull hazard for crises exhibiting an inflection point around 20 days. Its
presence here reflects the smaller (though still positive) value of the duration dependence param-
eter interacting with the impending truncation point in the denominator of the hazard.

Contrast these results with those from the standard Weibull estimator, which indicate negative
duration dependence, corresponding to a decreasing hazard rate. This finding emerges due to the
downward pressure exerted by the high proportion of crises involving two strong players. Since
their durations extend well beyond the endogenous truncation point and form a high proportion
of all cases, the Weibull model for all durations accounts for this with an overall decreasing haz-
ard. The decreasing rate comports with Fearon’s (1994) prediction. Although not inconsistent
with this prediction, our war of attrition estimator adds some nuance to that finding by capturing
the presence of two qualitatively different kinds of contests, one of which has an increasing haz-
ard rate as predicted by the war of attrition model.

Figure 6 offers another way to compare the relative performance of the two estimators. Here
we follow Maller and Zhou (1995) by constructing a probability–probability plot that compares
the predicted cumulative distributions from the Weibull and war of attrition estimators to the
observed cumulative distribution. The closer the curves lie to the 45° line the better the perform-
ance of the estimator relative to the truth. Here we see that both underpredict failures in roughly
the middle quintile. After about 0.35 the war of attrition estimator lies closer to 45° line, especially
between 0.4 and 0.85. The correlations between the estimators and the observed data show the at
Weibull at 0.91 and the war of attrition at 0.93.

The second and fourth models add covariates and further demonstrate the value of the war of
attrition estimator. These produce similar patterns of significance for the parameterized hazard
components, with the level of violence and the presence of an ethnic dispute decreasing the
hazard. The war of attrition estimator continues to indicate a sizeable proportion of crises involve

Figure 5. Estimated crisis hazard rates from partial cure estimator.
Note: Estimates from Table 2 with no covariates (t* = 44). Black lines indicate the predicted hazard rate for each type of contest. Light
gray bars give a nonparametric 95 percent confidence interval estimated by sampling the parameters from their estimated distribution
and calculating the corresponding value of the hazard at many values of crisis duration. The upper bound of the confidence interval for
the Weibull hazard is not shown past 0.4 since it approaches 30 and including it renders the other results imperceptible.
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two strong players, however, and the �x2 test continues to reject the basic Weibull model. Adding
covariates increases the estimate for t* from 44 to 309 days, though the overall shape of the
hazards for both types of crises remains remarkably similar.18

Our final model investigates whether the probability that both states are strong depends on
some of the observed covariates. Since the literature argues that democracies are better able to
generate audience costs (Fearon 1994) and that states with greater military resources ought to
be more resolved (Morrow 1989), we might expect both variables to increase the chance of
both players being strong. Although our results produce coefficients with signs as expected,
only capabilities emerge as significant. Furthermore, the inclusion of these variables in the mix-
ture equation alters the results in the duration equation for weak contests: joint democracy pro-
duces a larger effect and its coefficient becomes significant. These results indicate that although
capabilities predict states’ type and willingness to enter a crisis, they do not affect their willingness
to escalate a crisis once it starts. In contrast, once we account for the role of capabilities and joint

Figure 6. Probability–probability plot for comparison of model performance.
Note: Estimates from Table 2 with no covariates (t* = 44). A probability–probability plot compares the observed cumulative distribution
of the outcome variable with the cumulative distribution predicted by an estimator at the observed values. Perfect correspondence
occurs when the plotted curve falls on the 45° line.

18We note here that the inclusion of the violence variable produces the large value of t*. As DeRouen and Goldfinch (2005)
note, this variable likely suffers from endogeneity since the occurrence of war ends the crises on that day; theory and our
empirics indicate that the rate of occurrence of war depends specifically on the duration of the crises. We opted for exact
replication, but our general results hold without the violence variable, though the significance of some covariates changes
a bit.
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democracy in predicting players’ types, we learn that crises involving two democracies have a
smaller hazard and therefore tend to last longer.

5. Discussion and conclusion
In this paper we present a novel full information maximum likelihood estimator inspired by the
predictions from models of incomplete information such as the classic war of attrition game. We
illustrate the value of this war of attrition estimator with applications to the duration of filibuster-
ing in the US Senate and international crises, finding evidence in both consistent with informa-
tion revelation over the course of time and adding significant nuance to prior knowledge of these
two processes. Application to other settings, such as those outlined in our Supplementary appen-
dix, may prove fruitful as well.

Although the continuous-time war of attrition that inspired our estimator predicts an increas-
ing hazard through the endogenous end point, the estimator as proposed can already capture
increasing, flat, or decreasing hazards among the population involving contests with at least
one weak player. Thus it can be applied to approximate other theoretical models with similar
structures. There are a number of further developments that could be of value. For example,
one could allow for alternate forms of duration dependence for the population involving at
least one weak player, such as the log-normal or the two-parameter gamma distributions.

Furthermore, war of attrition games can be thought of as a particular type of game from a
more general category of political economy games where mixture distributions should be help-
ful—in particular, games with multiple equilibria, which have been applied to topics in inter-
national relations (e.g., Morrow, 2014 on how the laws of war can lead to restraint by states
and soldiers), political economy (e.g., Obstfeld, 1996 on currency crises), economic geography
(Krugman, 1991 on economic geography), repression and protest (Tyson and Smith, 2018),
and more. This broader set of games, of which wars of attrition can be viewed as a subset, are
contests in which the mixture of potential outcomes and actions might combine distinct pro-
cesses and which are therefore not appropriately modeled by standard approaches. Rather than
limiting our theoretical focus to only games with pure strategy equilibria, or abandoning models
that produce multiple equilibria because we cannot accurately test them empirically, our approach
suggests how models with mixed strategy equilibria can be properly tested.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psrm.2020.29.
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