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The evaporatively driven cloud-top mixing layer
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Direct numerical simulations of the turbulent temporally evolving cloud-top mixing
layer are used to investigate the role of evaporative cooling by isobaric mixing locally
at the stratocumulus top. It is shown that the system develops a horizontal layered
structure whose evolution is determined by molecular transport. A relatively thin
inversion with a constant thickness h = κ/we is formed on top and travels upwards
at a mean velocity we � 0.1(κ |bs |χ2

c )1/3, where κ is the mixture-fraction diffusivity,
bs < 0 is the buoyancy anomaly at saturation conditions χs and χc is the cross-over
mixture fraction defining the interval of buoyancy reversing mixtures. A turbulent
convection layer develops below and continuously broadens into the cloud (the
lower saturated fluid). This turbulent layer approaches a self-preserving state that is
characterized by the convection scales constructed from a constant reference buoyancy
flux Bs = |bs |we/χs . Right underneath the inversion base, a transition or buffer zone
is defined based on a strong local conversion of vertical to horizontal motion that
leads to a cellular pattern and sheet-like plumes, as observed in cloud measurements
and reported in other free-convection problems. The fluctuating saturation surface
(instantaneous cloud top) is contained inside this intermediate region. Results show
that the inversion is not broken due to the turbulent convection generated by the
evaporative cooling, and the upward mean entrainment velocity we is negligibly
small compared to the convection velocity scale w∗ of the turbulent layer and the
corresponding growth rate into the cloud.
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1. Introduction
The marine stratocumulus-topped boundary layer plays a fundamental role in the

planet radiative energy balance because of its contribution to the Earth’s albedo, and
accurate models of this archetype of moist convection are of primary importance
in large-scale analyses of atmospheric flows (Stevens et al. 2005). The mixed-
layer theory of Lilly (1968) has already identified the relevant parameters several
decades ago, pointing to the entrainment rate at the top of the boundary layer as a
determining quantity. Several refinements of this seminal work and different closures
of that entrainment rate have been proposed ever since, but a clear and complete
understanding of the physics of the boundary-layer top is still missing, which translates
into an unacceptable variability of order 1 in current models (Stevens 2002).

† Present address: Max Planck Institute for Meteorology, Bundesstraße 53, 20146 Hamburg,
Germany. Email address for correspondence: jpmellado@itv.rwth-aachen.de
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6 J. P. Mellado

Early field measurements (Caughey, Crease & Roach 1982) and large-eddy
simulations (Deardorff 1980) have been tremendously improved over the last 30
years. Measurement resolutions of the order of centimetres have been reached
in the second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II)
campaign (Stevens et al. 2003b), and these data have spawned several analyses of the
entrainment mechanism at the cloud top (Stevens et al. 2003a; Faloona et al. 2005;
Gerber et al. 2005; Haman et al. 2007; Haman 2009). At the same time, numerical
simulations have achieved grid resolutions of the order of metres (Stevens et al. 2000;
Moeng, Stevens & Sullivan 2005; Yamaguchi & Randall 2008; Kurowski, Malinowski
& Grabowski 2009), complementing, in this way, experimental data more reliably.
Stochastic methods such as the linear-eddy model (Krueger 1993; Wunsch 2003) have
also been applied to the problem, exploring alternative explanations of the available
data. All this work seems to confirm that entrainment occurs in a finite-sized region
at the cloud top, the so-called entrainment interface layer, at least in a first stage.
However, it is difficult to define this layer quantitatively, the proposed thicknesses
fluctuate strongly and this zone exhibits very different mixing patterns. Moreover,
structures below the centimetre scale have been documented, and the interaction
between several small-scale phenomena – such as molecular mixing, droplet dynamics
or phase transitions – and the large-scale motion remains partly obscure. This paper
addresses one of these small-scale aspects: the role of evaporative cooling by isobaric
mixing in the local dynamics of the cloud boundary.

In this context, evaporative cooling is a topic in itself and it is recurrently amended
in the literature. At the stratocumulus top, the relatively warm and dry-air current
descending from the upper troposphere meets the convection boundary layer and
forms a strong inversion that limits the vertical growth of the latter. When a parcel
of cool fluid from the cloud mixes with the upper subsiding layer, molecular transfer
of heat tends to warm the former and, at the same time, mass diffusion promotes
droplet evaporation, which tends to cool the resulting mixture. When this second
mechanism dominates, the final mixture acquires a buoyancy smaller than that of the
local environment and tends to sink, setting the fluid into motion. This phenomenon
is known as buoyancy reversal (Siems et al. 1990; Wunsch 2003), which, in this case,
is induced by evaporative cooling. The implications of such processes for the large-
scale behaviour of the stratocumulus-topped boundary layer, like the observed cloud
break-up (Deardorff 1980; Randall 1980), have been debated for a long time.

Among the different approaches adopted to investigate this problem, Siems et al.
(1990) considered small-domain idealized two-layer models of the cloud top as a
means to gain insight into some particular aspects of it. One of the relevant parameters
that they introduced is the non-dimensional ratio D = −bs/b1 between the minimum
buoyancy anomaly (relative to the lower layer) of the intermediate mixtures, bs , and
the buoyancy difference across the inversion, b1. Shy & Breidenthal (1990) reported
laboratory studies in a water tank using different liquid mixtures to create different
buoyancy reversals at the density interface. Numerical studies by Siems et al. (1990)
and Siems & Bretherton (1992) considered buoyancy reversal due to evaporative
cooling, so that bs then corresponds to just saturation conditions. One conclusion
is that buoyancy reversal alone cannot explain the stratocumulus break-up for the
small values of D typical of atmospheric conditions (D � 0.05 or less). More recently,
Wunsch (2003) confirmed this conclusion based on stochastic simulations, and pointed
to the possible relevance of molecular diffusion in the general evolution of the system.
The question, though, remains of what is really occurring at the interface in the case
0 <D � 1.
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The evaporatively driven cloud-top mixing layer 7

We follow this strategy based on reduced-complexity systems and consider the
cloud-top mixing layer as an idealized configuration designed to investigate particular
questions about the local dynamics of the cloud boundary over length scales of the
order of metres and under controlled conditions. It is emphasized that the purpose
is neither the study of, nor the derivation of results directly applicable to, the whole
stratocumulus-topped boundary layer (whose thickness is of the order of 1 km), but
rather the understanding of elementary aspects of the cloud interface. We explore
here one of these aspects, evaporative cooling, and the basic question we try to answer
is: What happens when a layer of warm and dry air lies on top of a second layer,
cool and moist, under buoyancy reversing conditions? It was soon realized that the
condition D > 0, the non-dimensional Randall–Deardorff criterion (Deardorff 1980;
Randall 1980), entails an unstable equilibrium state. The linear stability analysis by
Mellado et al. (2009) indeed shows that, if D > 0, the system sustains an unstable mode
with a characteristic time

√
4πλ/|bs |, for a perturbation wavelength λ, in addition

to interfacial gravity waves with a phase velocity
√
λb1/(4π). However, these authors

also argue that in the usual atmospheric conditions, the subsequent turbulent state
that may arise inside the cloud is too weak to break the inversion and create cloud
holes, in agreement with the series of works introduced in the previous paragraph;
the turbulent motion is restricted to the cloud. The argument is that the time scale
associated with the restoring force of the inversion and the time scale of the unstable
downdraft are in a ratio equal to

√
D, and D is a small number, i.e. the inversion

returns to the equilibrium position fast compared to the time that the heavy mixture
below needs to move downwards a distance λ. This conjecture based on the linear
stability analysis and two-dimensional simulations is confirmed here by means of
three-dimensional direct numerical simulations.

This investigation characterizes in depth, not only qualitatively but also
quantitatively, by means of scaling laws, the evolution of the turbulent cloud-top
mixing layer for the geophysically relevant case 0 < D � 1. This paper is organized as
follows. The formulation employed in the study, based on a mixture-fraction variable
χ , is summarized in § 2. The general evolution of the system is described in § 3 with
the help of visualizations, and § 4 considers in detail the vertical layered structure
observed in these visualizations. An inversion base can be defined at a height zi

that separates an inversion layer on top, dominated by molecular transport, from a
turbulent convection layer below, dominated by turbulent transport. The inversion
layer is studied next in § 5, providing explicit expressions for its thickness h and
for the upward entrainment velocity we as a function of the parameters of the
problem. Then, the turbulent convection layer is investigated in § 6. This order of
presentation emphasizes that (i) the inversion is not broken by the turbulent motion
underneath and (ii) molecular transport at the base of the inversion controls the
evolution of the system. As a consequence, we can construct a reference buoyancy
flux Bs , and the corresponding convection scales characterize the turbulent region in
the same way as in classical free convection (Deardorff 1970). Before the concluding
remarks, § 7 looks at the results from three different points of view: classical turbulent
convection, mixing across a density interface and the stratocumulus-topped boundary
layer.

2. Formulation
A simplified formulation based on a mixture-fraction variable χ is used (Albrecht,

Penc & Schubert 1985; Bretherton 1987). Physically, the mixture fraction is equal to
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8 J. P. Mellado
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Figure 1. Vertical structure of the cloud top (a) in terms of the mixture fraction χ and the
buoyancy b. Buoyancy mixing function be(χ) from (2.2) for reference case A11 in table 1; inset
shows the associated parameters (b).

the relative amount of matter in the fluid particle that proceeds from one of two
differentiated regions in the system, and it naturally appears as a normalized conserved
scalar measuring conserved properties, such as the total-water content and the total
enthalpy at the cloud boundary under certain conditions. Details of this methodology
have been recently discussed by Mellado et al. (2010), who argue that the major
assumptions behind this approach can be summarized as follows: (i) the liquid phase
can be described as a continuum, (ii) local thermodynamic equilibrium exists and (iii)
the liquid-phase diffusivity is equal to that of vapour and dry air. Estimates indicate
that the conditions required for the validity of these premises are generally not met
at the top of stratocumulus clouds, and therefore some caution should be exerted
when drawing connections with the real atmospheric problem. The main reasons are
that droplets, with a number density of the order of 1mm−3 and a typical diameter
of 10 µm, are too scarce and too large for the two-fluid approximation. However, in
spite of these limitations, this methodology has been very helpful in the study of some
aspects of latent-heat effects at the cloud boundary, using χ as a prognostic as well
as a diagnostic variable. At the same time, this formulation provides the limit of very
small droplets for more sophisticated physical models of two-phase flows. On top of
conditions (i)–(iii), the relatively small velocity fluctuations and the small domain size
favour an incompressible framework. Last, the small variations in the density field
(less than 5 %) justify the Boussinesq approximation.

The cloud-top mixing layer, by definition, consists of two infinite horizontal layers
of moist air: the upper region, which is warm and unsaturated, and the lower region,
which is cool and saturated (condensate-laden). The lower layer (cloud) is chosen
to correspond to χ =0, and the upper layer (cloud-free) corresponds to χ = 1 (see
figure 1a). No mean shear is considered in this study, and the lapse rates inside each
layer are set to zero. The frame of reference is chosen with the axis Oz along the
vertical and pointing upwards, and therefore perpendicular to the two horizontal
layers parallel to the plane x1Ox2. The system is statistically homogeneous inside the
horizontal planes, and the data inside these planes are used to construct the different
statistics, which depend then on the vertical coordinate z and the time t .

In addition to the mixture fraction χ(x, t), the problem is described in terms of
the dependent variables v(x, t) representing the velocity vector, with components
(v1, v2, w) along the directions Ox1, Ox2 and Oz, respectively, and the buoyancy
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The evaporatively driven cloud-top mixing layer 9

b(x, t). The evolution in time of these fields is determined by

∂v

∂t
+ ∇ · (v ⊗ v) = −∇p + ν∇2v + bk,

∇ · v = 0,

∂χ

∂t
+ ∇ · (vχ) = κ∇2χ,

b = be(χ).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.1)

The parameter ν is the kinematic viscosity, κ is the scalar diffusivity, p is a modified
pressure divided by the reference density and k is the unit vector along Oz.

The buoyancy mixing function be(χ), describing the thermodynamics of the system,
is prescribed as

be(χ)

b1

= − D

χs

χ +

(
1 + D

1 − χs

+
D

χs

)
δs ln

[
exp

(
χ − χs

δs

)
+ 1

]
, (2.2)

and is depicted in figure 1(b). It is defined in terms of the saturation mixture fraction
χs and the buoyancy-reversal parameter:

D = −bs

b1

, (2.3)

where bs = be(χs). There is a first branch χ <χs in which b varies between 0 and
the buoyancy bs at saturation conditions χs and which corresponds to the cloud.
There is a second branch χ >χs where the buoyancy increases up to b1, the strength
of the stable inversion due to the density difference between the lower and upper
horizontal layers. These two branches are finally smoothed over an interval δs in
mixture-fraction space due to smoothness requirements imposed by the numerical
scheme. An important derived quantity is the cross-over mixture fraction

χc =
χs + D

1 + D
, (2.4)

which partitions the field at each time into a negatively buoyant region {x : χ(x) ∈
(0, χc)} and a positively buoyant region {x : χ(x) >χc}. The consequence of the
nonlinear relation between χ and the thermodynamics, represented by be(χ), is that
the two-layer structure in terms of the conserved quantities implies a three-layer
structure in terms of the buoyancy, as shown in figure 1(a), which is unstable if D > 0.

The initial condition is specified by

χ(x, 0) =
1

2

[
1 + erf

(
z + ζ

2δ

)]
, (2.5)

where the vertical displacement ζ (x1, x2) is used to generate a broadband perturbation.
The background mixture-fraction field is obtained by setting ζ ≡ 0 in the equation
above. The gradient thickness

δχ (t) =
1

(∂〈χ〉/∂z)max

(2.6)

is often used to measure the depth of a mixing layer, where 〈χ〉 is the mean mixture
fraction. For the unperturbed case ζ ≡ 0, the relation to δ in (2.5) is δχ,0 � 3.54δ.
The perturbation vertical displacement ζ (x1, x2) is characterized by a Gaussian power
spectral density centred at some given spatial frequency 1/λ and with a standard

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

28
31

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010002831


10 J. P. Mellado

�Tl (◦C) �qt (g kg−1) ql,c (g kg−1) D χs χc f1 f2

A11 9.7 −7.5 0.5 0.031 0.09 0.117 1.33 0.48
A21 8.5 −8.4 0.5 0.062 0.09 0.143 1.37 0.53
A12 13 −8.2 1.2 0.031 0.18 0.205 1.40 0.54

Table 1. Simulation series. Reference case A11 taken from field measurements of nocturnal
marine stratocumulus (Stevens et al. 2003a): �Tl , jump across the inversion in liquid-water
static energy temperature; �qt , jump in total-water content; ql,c , cloud liquid-water content.
Cases A21 and A12 are derived to investigate the effects of the buoyancy-reversal parameters
D and χs independently. The cross-over mixture fraction χc is defined in (2.4). The last two
columns contain the prefactors of the upward mean entrainment velocity (cf. (5.6)) and the
rate of broadening of the convection layer (cf. (6.12)).

deviation equal to 1/(6λ), so that there is practically no energy with spatial frequencies
below 1/(2λ). The phase of ζ is random.

The initial velocity field is set to zero. This implies that the mean velocity field
remains zero for all times because of the horizontal statistical homogeneity, the
symmetries of the problem and the solenoidal character of the velocity field.

The problem so defined depends on the parameters {ν, κ, b1, bs, χs} and the
additional set {λ, ζrms , δ} characterizing the initial condition. Dimensional analysis
shows that the general solution can be expressed in non-dimensional form in terms
of the non-dimensional quantities {Pr, D, χs}, where the Prandtl number Pr = ν/κ

has been introduced, and those corresponding to the initial condition. One of the
contributions of this study is precisely the derivation of particular non-dimensional
expressions for the evolution of quantities of physical relevance over a self-preserving
regime, approximately independent of the initial conditions, which develops after an
initial transient. The Prandtl number is set to 1 in all the cases, so that the parameter
space we consider is {D, χs}, in particular, the region D � 1 and χs � 1, characteristic
of atmospheric conditions at the top of the stratocumulus clouds (Stevens et al. 2005).

The set of configurations analysed in this study is defined in table 1. The reference
case A11 corresponds to field measurements of nocturnal marine stratocumulus
during the first research flight RF01 of the DYCOMS-II field campaign (Stevens
et al. 2003a). The effects of the buoyancy-reversal parameters D, the strength of the
reversal, and χs , the extent of the reversal in mixture-fraction space, are considered
in the derived configurations A21 and A12, respectively.

Details about the numerical algorithm can also be found in Mellado et al. (2010).
The transport equations, written in Cartesian coordinates, are solved using finite
differences on a structured mesh: sixth-order compact Padé schemes for the first- and
second-order spatial derivatives and a fourth-order Runge–Kutta scheme for the time
advancement. The Poisson equation is solved using Fourier decomposition along the
periodic horizontal planes x1Ox2 in order to reduce it to a set of one-dimensional
second-order equations, equations that are solved consistently with the high-order
compact schemes used to compute the derivatives. No-penetration free-slip boundary
conditions are imposed at the top and the bottom.

With respect to the specifics of the numerical simulations used in this paper, the grid
size is 2048×2048×1536, where the grid stretching in the vertical direction leads to a
domain height of about 1.1L0 if L0 is the horizontal size of the computational domain.
The viscosity ν is such that the reference Rayleigh number is Ra = b1L

3
0/(νκ) = 4×1011.

The smoothing parameter in the buoyancy mixing function is δs = 0.09/16. The initial
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The evaporatively driven cloud-top mixing layer 11

(a)

(b)

Figure 2. Evolution inside a vertical plane of the negative buoyancy field, with grey scale
varying between black for b = bs (minimum) and white for zero: (a) t1(Bs/δ

2
χ,0)

1/3 = 7.96;
(b) t2(Bs/δ

2
χ,0)

1/3 = 15.4. Upper triangular side marks indicate the position of the inversion
base at z = zi , and lower ones correspond to z = zi − z∗.

thickness of the inversion layer is set to δχ,0 = 0.023L0, so that the corresponding
thickness χcδχ,0 of reversing mixtures is initially resolved by about 6 points. The
initial perturbation ζ is defined by λ= δχ,0/1.5 and the root-mean-square (r.m.s.) is
ζrms/δχ,0 = 0.1. The system is temporally evolving and the mixing region grows in time;
the simulation is stopped at t2 to avoid finite-domain-size effects, when the thickness
of the turbulent region is about one half of the horizontal domain size (about 20δχ,0)
and the pressure fluctuation at the boundaries is about 2 % of the maximum inside
the turbulent zone. Grid independence studies are presented in the Appendix.

3. Visualizations
Figure 2 presents the negative buoyancy field inside vertical planes at two different

times, t1 and t2 > t1, using a grey scale to indicate its magnitude: zero buoyancy
in white and minimum buoyancy b = bs in black. (The vertical extent shown is
only a fraction of the size of the computational domain.) Two features are worth
noticing. First, a temporally evolving turbulent convection layer develops inside the
cloud beneath the inversion as a consequence of the buoyancy-reversal instability.
Cool-fluid downdrafts form in the cusps between the domes conforming the cloud
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12 J. P. Mellado

(a)

(b)

Figure 3. Evolution inside a vertical plane (same as figure 2) of the logarithm of the scalar
dissipation rate εχ . Colour scale starting at black for the threshold 10−6 max{〈εχ 〉} and
increasing in the sequence blue–brown–white.

top, domes created by the corresponding upwelling motion in between. Second, the
coldest (heaviest) mixtures corresponding to the iso-surface χ(x, t) =χs concentrate
in thin horizontal zones near the top of the cloud, whose mean vertical position is not
appreciably displaced in the vertical direction between the two times t1 and t2. These
layers containing especially cold mixtures are thickened at the base of the downdrafts
because of the local straining motion, but no hole is formed through which pure
fluid from above penetrates deep inside the cloud; the cloud top is not broken by the
evaporatively driven motion.

This previous description is very reminiscent of thermal convection below a cold
surface (Townsend 1959; Deardorff & Willis 1967; Turner 1973; Adrian, Ferreira &
Boberg 1986; Siggia 1994; Ahlers, Grossmann & Lohse 2009), and this observation
will be used below. The difference is, of course, that the upper boundary of the
turbulent convection layer, the inversion base, is fluctuating here; more specifically,
the instantaneous saturation surface χ(x, t) =χs imposes the condition b(x, t) = bs on
it, but the motion of this saturation surface (the instantaneous cloud top) is part of
the solution.

The layered vertical structure of the system is better appreciated in figure 3 in
terms of the local scalar dissipation rate εχ = 2κ |∇χ |2. Inside the convection layer, the
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The evaporatively driven cloud-top mixing layer 13

scalar field develops a lamellar structure typical of turbulent mixing, also observing
the intermittent character of this region as irrotational fluid from the cloud below
is entrained into the turbulent zone. In addition, this visualization shows a distinct
horizontal stripe that sits on top of this convection layer, the so-called interfacial
or inversion layer. The relatively strong scalar gradient found there is caused by the
mean field 〈χ〉 growing from small values χ <χc inside the lower half space to the
upper bound χ =1 inside the upper half space over a relatively short distance. This
region is stably stratified and therefore it supports waves, which can be excited by
the turbulent motion below.

Figure 4 shows the buoyancy field as in figure 2 throughout a horizontal plane
close to the cloud top, in particular at the height where the horizontal velocity
fluctuation is maximum. A cellular pattern is seen clearly, where the cells represent
the domes below which the cloud fluid from the lower layer is ascending, their
grey tones precisely indicating partially mixed conditions. Among these cells there
is a more-or-less connected network of black-and-white troughs that represents the
mild local penetration of the upper layer through this reference plane as the fluid
is pulled down by the falling plumes underneath. The black regions inside these
troughs indicate the coldest mixtures that develop in the vicinity of the saturation
surface and that ultimately cause the motion. The horizontal divergence v1,1 + v2,2

was also calculated, and its structure is very similar to that in figure 4 – the grey cells
correspond to positively diverging regions and the meandering canyons around them
are the converging zones, with a negative horizontal divergence and a corresponding
positive extensional strain w,z in the vertical direction.

It is worth noting that these downdrafts are not isolated structures but organized
into drapes reminiscent of the cracked morphology that is often observed from above
the cloud deck (Nicholls 1989; Gerber et al. 2005; Stevens et al. 2005). These structures
have also been documented in free convection next to a horizontal surface, where
they are referred to as sheet-like plumes (Asaeda & Watanabe 1989; Goldstein &
Volino 1995; Theerthan & Arakeri 2000; Flack, Saylor & Smith 2001). In agreement
with the observations made in free convection, visualizations here show that these
(convection) lines move randomly as the system develops in time and they are the
birth place of the plummeting thermals that transport the stratifying scalar χ into
the turbulent region beneath the inversion. Some of the convection cells amalgamate
to create larger ones, whereas some others are sucked down by the downdrafts, the
characteristic size increasing with time, as appreciated by comparison of figures 4(a)
and 4(b). However, as already remarked before, this coherent motion does not create
any hole through the density interface – there is no finger of pure upper layer fluid
penetrating across the inversion deep into the lower region – because its inertia is not
strong enough compared with the restoring force imposed by b1. In other words, the
corresponding bulk Richardson number is simply too high, as later documented in § 7.

4. Vertical structure of the system
Average profiles are now considered in order to be more concise about the layered

structure observed before. For this purpose, the vertical distance z will be measured
with respect to the height zi(t) of the inversion base. This reference position is defined
in terms of the maximum gradient of the mean buoyancy, one of the possible choices
(Sullivan et al. 1998; Moeng et al. 2005). We will see that this location coincides with
that of the maximum gradient of the mixture fraction due to the functional relation
between both scalars, and any of them can be used in the calculation of zi . The usual
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14 J. P. Mellado

(a)

(b)

Figure 4. Evolution inside a horizontal plane just beneath the inversion of the negative
buoyancy field. For legend see figure 2.
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Figure 5. Profiles of mean mixture fraction (a) at different times: solid line, t1(Bs/δ
2
χ,0)

1/3 =

7.96; dashed line, t(Bs/δ
2
χ,0)

1/3 = 12.0; dot-dashed line, t2(Bs/δ
2
χ,0)

1/3 = 15.4. Budget of the

transport equation (b) at the same times: turbulent flux, g = 〈w′χ ′〉; (negative) molecular flux,
g = κ∂〈χ〉/∂z.

justification for this particular definition of the inversion base is that it corresponds
to the height of maximum mean stratification N2 = ∂〈b〉/∂z and therefore the vertical
motion is inhibited the strongest at this height. Results will confirm that this definition
is indeed an appropriate one.

The average mixture fraction 〈χ〉 is presented in figure 5(a) at equidistant times
between t1 and t2 for the reference case A11. These curves are mainly characterized
by the relatively thin inversion region around zi(t) over which the variations in 〈χ〉
are of order 1, and by the fact that the shape of this inversion does not change
significantly during that interval of time. On the other hand, the variation of the
mixture fraction in the convection layer for z < zi is notoriously smaller; only a
fraction of the saturation value χs (equal to 0.09 for this reference case), and the
zoomed view in the inset of the figure is really needed to appreciate the details of this
turbulent zone. A second difference as compared to the inversion is that 〈χ〉 within
the convection layer does vary in time, broadening downwards by about a factor of
2 between t1 and t2 and decreasing slightly in magnitude.

The mean fluxes on the right-hand side of the transport equation of 〈χ〉,
∂〈χ〉
∂t

=
∂

∂z

(
κ

∂〈χ〉
∂z

− 〈w′χ ′〉
)
, (4.1)

plotted in figure 5(b), clarify the layered structure of the system even further.
(Henceforth, an apostrophe indicates a fluctuating field.) This figure shows that
the inversion base zi(t) unambiguously separates the upper region dominated by
molecular transport, the inversion, from the lower region within the cloud dominated
by turbulent transport, the convection layer. In between, a relatively thin transition
region can be identified over which the turbulent flux falls to a very small value in
favour of a dominant molecular flux.

The saturation surface χ(x, t) =χs (instantaneous cloud top) remains within that
transition layer, very near to the inversion base. Figure 6 presents the probability
density function (p.d.f.) of the vertical distance between the saturation surface and
the inversion base at zi . It is seen that excursions of the iso-surface into the region
z > zi are rare, and the mean position stays very close to the base of the inversion,
as indicated by the range of abscissas spanned in figure 6. It is true that this mean
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(a) (b)

–1.2 –0.9 –0.6 –0.3 0 0.3 –0.12 –0.09 –0.06 –0.03 0 0.03

p.
d.

f.

(zs – zi)/δχ,0 (zs – zi)/z*

Figure 6. Probability density function of the vertical distance between the instantaneous cloud
top at z = zs(x, y) and the inversion base at z = zi , normalized by the initial gradient thickness
δχ,0 in (a) and by the characteristic depth of the convection layer z∗ in (b), at different times.
For legend see figure 5.

position of the fluctuating surface mildly moves downwards in time and the standard
deviation increases slightly, but at a rate much slower than the thickening of the
convection layer observed before in figure 5. This last remark is clearly exposed
by figure 6(b), where the random variable is normalized with z∗(t), a length scale
representing the thickness of the convection layer. (This convection scale will be
discussed in detail in § 6.) In fact, this p.d.f. allows us to be more precise about the
previous statement in § 3: ‘no hole is formed at the cloud top through which a finger
of pure fluid from the upper layer penetrates deep into the cloud layer’; it means
that the vertical position of the instantaneous cloud top remains next to the inversion
base within a distance that is much smaller than, and that does not scale with, the
thickness z∗ of the turbulent convection layer. (Actually, its position tends to a delta
function at zi(t) in these relative terms.)

This behaviour of the saturation surface is important to understand the relations
between the statistics of the mixture fraction χ and those of the buoyancy b. Both
scalars are related by the nonlinear mixing function be(χ) depicted in figure 1(b).
However, the nonlinearity is set by the discontinuity in the derivative at χ = χs ,
and we have learnt in the previous paragraph that this iso-surface remains right
underneath the inversion base. Therefore, the mixture fraction and the buoyancy are
linearly related inside the inversion layer. In particular, the gradient thickness,

δb =
b1

(∂〈b〉/∂z)max

, (4.2)

is approximately equal to δχ (1 − χs)/(1 + D), and the inversion base, defined in terms
of the maximum of the mean buoyancy gradient, can also be calculated based on the
maximum gradient of the mean mixture fraction, as anticipated in the first paragraph
of this section. In the same way, the linear relation b = −(D/χs)χ holds pointwise
in almost all of the convection layer. The complete variation of the mean buoyancy
is shown in figure 7(a): the inversion profile follows that of the mixture fraction in
figure 5(a), and the variation inside the convection region mimics that of 〈χ〉 but
simply with an opposite sign. The essential departure between the mixture-fraction
and the buoyancy fields (χ is a conserved scalar whereas b is not) is restricted to a
transition layer adjacent to the inversion base at z = zi .
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Figure 7. Profiles of mean buoyancy (a) at different times (note that a different scale is used
for 〈b〉 < 0). Profiles of mixture-fraction fluctuation intensity (b) at different times. For legend
see figure 5.

Inversion layer

Convection layer
Transition or buffer

χ = 0

zi

χ = 1

Cloud top

Inversion base

Figure 8. Sketch representing the layered structure of the system: inversion layer on top,
dominated by molecular transport and supporting waves; convection layer below, dominated
by turbulent transport and containing a transition layer just beneath the inversion base
at z = zi(t).

In terms of the scalar turbulent fluctuation with respect to the mean profiles
discussed so far, figure 7(b) plots the mixture-fraction r.m.s. and shows that this
fluctuation is very intense in relative terms inside the convection layer because its
magnitude is comparable to the mean values presented in figure 5(a). There is also a
dominant peak in the profile close to z = zi , which simply quantifies the oscillatory
motion of the strong gradient region illustrated in the visualizations of § 3. Above
this point, the fluctuation decays rapidly across the inversion, though it is non-
zero, indicating inhomogeneities and therefore some motion inside it. However, it is
reminded that the vertical transport due to this motion is small compared to the
molecular contribution, as observed in figure 5(b).

As a summary of this section, figure 8 sketches the vertical structure of the cloud-top
mixing layer. The inversion base at z = zi(t), defined in terms of the maximum mean
buoyancy gradient, partitions the space into two very differentiated regions: the
inversion layer on top, dominated by molecular processes, and the convection layer
below, dominated by turbulent transport. In the following sections, we investigate
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Figure 9. Temporal evolution of inversion properties (a): solid line, area g =
∫

(1 − 〈χ〉) dz as
used in (5.1); dashed line, thickness g = h as defined by (5.4). Temporal evolution of the height
of the inversion base (b): solid line, g = zi − zi(t1) as obtained from the definition in terms of
〈χ〉; dashed line, g =

∫
t1

wedt ′ using (5.3).

each of them separately; first, we consider the details of the inversion layer, in § 5,
which is intricately related to the upward mean entrainment velocity, and then we
look at the turbulent convection layer, in § 6, where a self-preserving state is observed.

5. The inversion layer
Let us now examine the inversion layer more closely. Integration of the transport

equation (4.1) for 〈χ〉 from zi(t) upwards leads to

d

dt

[∫ ∞

zi

(1 − 〈χ〉) dz

]
=

κ

δχ

− 〈w′χ ′〉(zi, t) − (1 − χi)
dzi

dt
, (5.1)

where χi(t) = 〈χ〉(zi(t), t) is the mean mixture fraction at the inversion base . According
to this equation, the evolution of the area enclosed by the profile 〈χ〉 and the reference
value χ = 1 within the inversion is proportional to the difference between the mean
fluxes at the inversion base and its vertical displacement measured in terms of the
(upward) mean entrainment velocity:

we =
dzi

dt
. (5.2)

Figure 9(a) shows that this area remains approximately constant, as already
anticipated by inspection in figure 5(a), which suggests that the terms on the right-
hand side of (5.1) approximately balance each other. Furthermore, figure 5(a) also
shows that 〈w′χ ′〉(zi, t) � κ/δχ , i.e. the turbulent flux at the inversion base is negligible
compared with the molecular flux, and therefore the dominant balance in (5.1) occurs
between this molecular transport and the displacement velocity we. Hence, we can be
computed from local properties of the mean mixture-fraction profile at the inversion
base at time t according to

we � κ

h
, (5.3)

where the thickness of the inversion h is defined in terms of the mean gradient at
zi as

h = δχ (1 − χi). (5.4)
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The degree of accuracy with which this dominant balance between we = dzi/dt and
κ/[δχ (1 − χi)] in (5.1) is achieved is illustrated in figure 9(b), which plots zi(t) as
obtained from the identification of the maximum gradient in the mean mixture-
fraction profile at each time t and the quantity zi(t1)+

∫
t1

wedt , where we is calculated
according to (5.3). The approximate collapse beyond t1 confirms the hypothesis, which
is satisfied with a relative error of about 16 % (relative difference of the slopes of the
curves in figure 9(b) between t1 and t2).

Figure 9(a) shows the thickness h as a function of time for the reference case A11.
The most important property of this curve is that it approaches a constant value after
an initial transient. Once the dependence on time t drops out, dimensional analysis
implies that h ∼ (κ2/b)1/3, where the constant of proportionality is a function of D

and χs , and b is a buoyancy parameter, either bs or b1. However, the steadiness of h

suggests a dynamic balance among the diffusion, viscosity and buoyancy, and a more
specific scaling can be obtained following the classical theory of turbulent convection
(Turner 1973), as discussed shortly, the only difference being that in the cloud-top
mixing layer, there exists a stable inversion next to the unstable reversing region.

Let l be the thickness of an inversion layer over which the stratifying agent χ varies
between 0 and 1. This inversion is stably stratified, except for a zone of order χcl on
the lower edge where the buoyancy reversal develops according to figure 1. Without
molecular processes, this configuration is unstable and, if perturbed, the buoyancy-
reversal instability develops (Mellado et al. 2009). However, when the diffusivity κ

is retained in the analysis, the inversion thickens at a rate κ/l and may inhibit the
previous instability. Since χc is small for the relevant atmospheric conditions, the
time scale needed for the thickening of the inversion layer to cover the distance χcl is
simply td = χcl

2/κ . At the same time, the perturbation suffers an acceleration of order
|bs | and, once it moves, it is opposed by a drag proportional to the viscosity ν and
the velocity; the time needed by a perturbation of order χcl to cover a distance of the
order χcl because of this mechanism is tb = ν/(χcl|bs |). If td � tb, for instance, because
l is small enough, then the initial perturbation is smoothed out. On the contrary, if
tb � td , then the buoyancy reversing regions of fluid can escape the diffusion front
advancing from above, setting the fluid into motion.

This comparison of scales suggests that, in a dynamic equilibrium, the inversion
is characterized by the thickness l at which both times are similar, which leads to
td/tb =χ2

c |bs |l3/(κν) ∼ 1, a typical criterion based on a critical Rayleigh number.
If the layer were thicker, then the reversing mixture below would fall off the
inversion, thus reducing l; if the layer were thinner, then diffusion would increase l.
However, free-convection studies show that critical Rayleigh numbers are normally
of order 103, and estimates are more accurate if the condition χ2

c |bs |l3/(κν) ∼ 103 is
employed (Siggia 1994). Consequently, the thickness of the inversion is characterized
by l ∼ 10[κν/(|bs |χ2

c )]1/3, suggesting the scalings

h =
10

f1χ
2/3
c

Pr1/3(κ2/|bs |)1/3, (5.5)

for the thickness h defined in (5.4), and

we =
f1χ

2/3
c

10
Pr−1/3(κ |bs |)1/3, (5.6)

for the velocity we defined in (5.3). We, of course, recover the relations h ∼ (κ2/b)1/3

and we ∼ (κb)1/3, which were anticipated before based only on dimensional analysis;
the expectation from the reasoning of the earlier paragraphs is that we obtain
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Figure 10. Temporal evolution of the mean upward entrainment velocity we normalized
with inversion scales as in (5.6). Effect of molecular diffusivity (a): solid line, reference case
A11 with κ0; dashed line, κ = 2κ0; dot-dashed line, κ = 4κ0. Effect of buoyancy parameters
(b) in table 1: solid line, reference case A11; dashed line, case A21 with double D; dot-
dashed line, case A12 with double χs .

the leading-order dependence on D and χs , and f1 = f1(Pr, D, χs), of order 1,
then represents higher-order corrections. Only the case Pr = 1 is considered in this
study.

The scaling with respect to κ is confirmed by figure 10(a), which includes, in
addition to the reference case A11, the curves from two additional simulations: a first
one with twice and a second one with four times the diffusivity κ of case A11. It
is seen that all of the curves approach the same value, in spite of having different
initial conditions and actually different computational meshes, since the last two
simulations were performed on a grid with half the size of the reference mesh. Hence,
the dominant role of the scalar molecular diffusivity κ in the evolution of the system
is unequivocally stated in these results, confirming the hypothesis already put forward
by Wunsch (2003).

The particular functional dependence of we on D and χs expressed by (5.6) is more
delicate because it hinges on the mechanistic argumentation presented in the previous
paragraphs. Support for this scaling is given in figure 10(b), which plots the non-
dimensional function f1 for the cases A11, A21 and A12 presented in table 1, covering
the range of variation in the buoyancy-reversal parameters D and χs , corresponding
to the typical atmospheric conditions at the stratocumulus top. Normalized velocities
are indeed of order 1, and the approximately constant values observed during the
last part of the simulations are collected in table 1, with f1 varying between 1.33
and 1.40. The second observation is precisely that this variation among the different
cases is relatively small, about 5 %, which implies that the function f1(D, χs) is
approximately constant in the cases of interest. This means that we depends solely on
bs to the leading order; the inversion strength b1 enters only as a correction through
the term χc =(χs + D)/(1 + D) � χs(1 + D/χs) due to the small values of D.

This section can be summarized as follows: the inversion base zi , and therefore the
inversion as a whole (see sketch in figure 8), moves upwards linearly in time with a
constant thickness, and it is characterized by the inner scales constructed from we,
given by (5.6), and the molecular diffusivity κ of the stratifying scalar χ (equal to the
normalized enthalpy and total water specific humidity). In particular, the thickness
h = κ/we is given by (5.5).
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6. The convection layer
We now turn to the convection layer, the turbulent zone that develops below the

inversion base. Integration of (4.1) from zi(t) downwards leads to

d

dt

∫ zi

−∞
〈χ〉dz =

κ

δχ

− 〈w′χ ′〉(zi, t) + χiwe � we, (6.1)

where the last step follows from 〈w′χ ′〉(zi, t) � κ/δχ , (5.3) and (5.4), as explained in
the previous section. This result is the reason for the scaling of the mixture-fraction
fluxes in figure 5(b) in terms of we, which then yields normalized values of order 1 in
the figure, in particular the normalized turbulent flux 〈w′χ ′〉/we inside the turbulent
convection layer. At the same time, we have learnt in the previous section that the
linear relation b = −(bs/χs)χ , corresponding to the left branch of the buoyancy mixing
function be(χ), holds over most of the convection layer, outside a thin region next to
the inversion base zi where the saturation surface χ(x, t) =χs stays. These two facts
imply that the turbulent buoyancy flux B = 〈w′b′〉 is characterized by the reference
buoyancy flux

Bs = we|bs |/χs =
(
0.1f1χ

2/3
c /χs

)
Pr−1/3

(
κb4

s

)1/3
, (6.2)

where (5.6) has been used to express we in terms of the parameters of the problem.
We explore in this section several consequences of this important finding.

6.1. Convection scales

The argumentation of the previous paragraph implies that the motion inside the
turbulent convection layer is determined by the molecular buoyancy flux at its upper
boundary, the inversion base. This observation, in conjunction with the previous
result that the cloud top concentrates in a relatively thin region next to zi and is
not broken, confirms the similarity of this problem with free convection below a cold
plate. Therefore, following Deardorff (1970), a convection velocity can be defined as

w∗ =
(
z∗Bs

)1/3
. (6.3)

In the case of the cloud-top mixing layer considered in this study, a length scale
z∗ measuring the depth of the turbulent zone is not imposed externally – the system
is temporally evolving and the mixing region broadens continuously in time. One
possible definition of a thickness is

z∗ =

∫
B dz/Bs, (6.4)

based on the depth-integrated value of the turbulent buoyancy flux B . (If the limits
of integration are not shown explicitly, the integral extends over the whole domain.)
This choice is not arbitrary, but follows Deardorff (1980) in the sense that then
w∗3 =

∫
B dz, a definition of the convection velocity w∗ also considered by other

authors (Sayler & Breidenthal 1998; Faloona et al. 2005) except for a numerical
factor of order unity.

Hence, the outer scales w∗ and

b∗ = w∗2/z∗ = Bs/w
∗, (6.5)

defined from Bs and z∗ (in contrast to the inner scales derived from we and κ),
provide the magnitude of large-scale statistics within the convection layer beneath the
inversion, and the corresponding profiles can be expressed as a function of only the
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Figure 11. Self-similar vertical profiles of the mean buoyancy (a) and the buoyancy
fluctuation intensity (b) for different times. For legend see figure 5.
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Figure 12. Self-similar vertical profiles of total velocity r.m.s. (a) and its partition into the
horizontal fluctuation intensity urms =

√
Ruu and the vertical one wrms =

√
Rww (b) for different

times. For legend see figure 5.

following self-similar variable:

ξ =
z − zi

z∗ . (6.6)

This is exposed, for instance, in figure 11(a), where the curves depicting 〈b〉 at different
times approximately collapse on top of each other when scaled by the convection
variables, in contrast to figure 7(a). The same is illustrated in figure 11(b) in terms of
the buoyancy fluctuation, where it is further seen that b∗ represents the typical r.m.s.
value around the centre of the turbulent region and that the depth of the convection
layer is about 2z∗.

This characterization in terms of the convection scales within the turbulent region is
very well portrayed by the statistics related to the velocity field, as observed in figure 12.
Figure 12(a) contains the turbulent kinetic energy per unit mass, q2/2 = (Rww +Ruu)/2,
where the vertical Reynolds stress is Rww = 〈w′w′〉 and the horizontal Reynolds stress
is Ruu = 〈u′u′〉 =R11 + R22 = 〈v′

1v
′
1〉 + 〈v′

2v
′
2〉. This figure also shows that the kinetic

energy concentrates within the cloud and it is strongly capped by the inversion
at z � zi , with a mild motion in the inversion layer, which is consistent with the
fluctuation of the mixture fraction found in figure 7(b) as well.

The partition of q2 into the vertical and the horizontal energy mode is presented
in figure 12(b). Apart from the scaling in terms of w∗ and z∗, the main feature is
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Figure 13. Self-similar vertical profiles of the terms in the transport equation for q2/2, from
(6.7), in (a): solid line, buoyancy production rate g =B; dashed line, turbulent dissipation
rate g = −ε; dot-dashed line, turbulent transport rate g = −∂T /∂z. Same for Ruu/2, from (6.8),
in (b): solid line, pressure–strain correlation g = Πuu ; dashed line, g = −εuu ; dot-dashed line,
g = −∂Tuu/∂z.

the anisotropy of the flow, not only because in the bulk of the convection layer, the
vertical fluctuation is about 1.4 times larger than the horizontal, but also because close
to the inversion base, this behaviour is reversed and the horizontal motion is much
stronger than the vertical one. In fact, the maximum urms in the whole convection
layer occurs there, a maximum that seems to scale with w∗ and that forms across a
distance of the order of 0.1z∗; we will refer to this region as the transition or buffer
zone.

6.2. Kinetic-energy budgets

Further insight into the vertical structure of the system sketched in figure 8, and
in particular about the buffer layer, is provided by the transport equations of the
velocity fluctuations. The turbulent kinetic energy evolves according to

∂q2/2

∂t
= −∂T

∂z
+ B − ε, (6.7)

where T = 〈w′v′
iv

′
i/2+p′w′ −v′

iτ
′
iz 〉 is the turbulent flux along the vertical direction and

the mean turbulent dissipation rate is ε = 〈v′
i,j τ

′
ij 〉, with the viscous stress tensor being

τij = ν(vi,j + vj,i). The terms on the right-hand side are plotted in figure 13(a), having
averaged the self-similar profiles g(ξ ) over the three times between t1 and t2 in order to
improve statistical convergence and the clarity of the figure. The turbulent buoyancy
flux B , being positive over most of the space, is responsible for the production of
kinetic energy. This production is ultimately caused by the sheet-like plumes and
thermals dropping from the instantaneous cloud top (see figure 2), which strongly
correlates the heavy parcels (with negative buoyancy) with the negative vertical
velocity and which sets up an upwelling motion of lighter fluid in between. A local
negative value of turbulent buoyancy flux is observed around z � zi , but it extends
over a very narrow region and it is small compared to the other two contributions
on the right-hand side of the previous transport equation. The turbulent diffusion
vertically redistributes the turbulent kinetic energy, transporting it from the interval
−0.7 <ξ < −0.1, where the production is maximum towards the lower and upper
edges of the turbulent zone, promoting, in this way, the broadening of the mixing
region. Finally, as a consequence of the velocity fluctuations, viscous dissipation
removes kinetic energy at a rate ε throughout the whole convection layer although
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the maximum arises in the transition zone, consistent with the sharp variation of
velocity fluctuations that occurs there.

The transfer of kinetic energy between the vertical and the horizontal velocity
component is quantified by the pressure–strain correlation Πuu = 〈p′(v′

1,1 + v′
2,2)〉, a

source term in the equation

∂Ruu/2

∂t
= −∂Tuu

∂z
+ Πuu − εuu , (6.8)

where Tuu = 〈(v′
1v

′
1 +v′

2v
′
2)w

′/2−v′
1τ

′
xz −v′

2τ
′
yz 〉 and εuu = 〈v′

1,j τ
′
xj +v′

2,j τ
′
yj 〉. Figure 13(b)

shows that Πuu is positive over the whole convection layer, as expected, with a
magnitude about 0.5Bs , half of that of the turbulent buoyancy flux B in figure 13(a).
The former figure also provides a measure of the intensification of this transfer process
inside the transition layer, between zi − 0.1z∗ and zi , where the peak achieves three
times larger values. This strong generation of horizontal kinetic energy determines
the local behaviour of the other two terms in the transport equation for Ruu . First,
the transport term is negative and indicates a transfer in physical space of Ruu out
of the buffer zone. This means that Tvv , the vertical counterpart, is about 2Bs inside
that region in order to yield the values of T = Tvv + Tuu observed in figure 13(a), i.e.
Tvv is comparable to Πuu in that zone. Second, the dissipation rate εuu develops a
marked maximum in the transition zone due to the high values of Ruu . This maximum
accounts for almost all of the peak in the total term ε observed in figure 13(a).

The behaviour of these energy budgets is qualitatively very similar to that observed
by Leighton, Smith & Handler (2003) in evaporative cooling beneath the free surface
of a water–air system, in spite of the differences in the boundary conditions (they use
a rigid free-slip wall) and the fact that they force a steady regime. Both configurations,
the cloud top and the water free surface, share the feature that the vertical motion is
strongly hindered at some height, and this causes the negative correlation between the
local vertical variation of the vertical velocity w,z and the local pressure high, which
brings about the formation of a strong peak in the profile of Πuu beneath the inversion
base, in our study, and beneath the free surface, in their work. The transport terms are
also similar in both cases: −∂Tuu/∂z becomes negative next to the capping interface
and −∂T /∂z strongly positive, and the major contribution to the latter arises again
because of the contribution from the pressure fluctuations to the turbulent transport
(not explicitly shown in figure 13(a) for clarity). The same behaviour with respect to
the total transport term T has also been documented in the case of a solid no-slip
boundary (Moeng & Rotunno 1990; Kerr 2001; Kunnen, Geurts & Clercx 2009).

In contrast, the dissipation profiles depend on having a slip or a no-slip boundary
condition. These profiles are qualitatively similar between the cloud top and the water
free surface, but, in the case of a solid wall, the dissipation develops a stronger
maximum at the wall, which seems reasonable due to the no-slip constraint. One-to-
one comparisons between slip and no-slip boundary conditions would be interesting
in this matter to make a more quantitative statement.

6.3. Explicit expressions of the growth rate

We conclude the analysis of the convection layer with the investigation of the growth
rates of the turbulent mixing region. By integrating (6.7) in space, we obtain the
relation

d

dt
(cqz

∗w∗2) = 2(1 − cε)w
∗3, (6.9)
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Figure 14. Integrated turbulent quantities for case A11 normalized by the convection scales,
in (a): solid line, kinetic energy cq ; dashed line, dissipation rate cε . Temporal evolution of
the non-dimensional function f2, from (6.12), in (b), for the different cases in table 1: solid
line, reference case A11; dashed line, case A21 with double D; dot-dashed line, case A12 with
double χs .

where the non-dimensional coefficients

cε =
1

w∗3

∫
ε dz, cq =

1

w∗2z∗

∫
q2 dz (6.10)

are plotted in figure 14(a) as a function of time. The quantity cq must approach a
constant behaviour cq(D, χs) if the convection scales w∗ and z∗ really characterize the
turbulent motion of the convection layer, and such a behaviour is approximately
observed after an initial transient beyond t(Bs/h2)1/3 � 5, though there are still
oscillations of the order of 10 % which are likely due to a lack of statistical
convergence; wider domains would be necessary to assess this question. The
approximately steady evolution of cε(D, χs) after the initial transient (also appreciated
in figure 14(a)) represents the inviscid scaling of the turbulent dissipation rate.

If we accept this constancy of both coefficients, (6.9) and the definition w∗3 =Bsz
∗

provide a system of two equations for the two unknowns w∗ and z∗, which can be
easily integrated. In particular, we can write

dz∗

dt
= f2w

∗, (6.11)

where a second non-dimensional function f2(D, χs) defined by

f2 =
6

5

1 − cε

cq

(6.12)

appears in the general description of the system, in addition to the function f1

characterizing the inversion layer. Equation (6.11) explicitly gives the growth rate of
the thickness of the convection layer dz∗/dt in terms of the convection velocity w∗.
Once an initial condition is provided, e.g. the thickness z∗(t1) at a particular time t1,
the depth of mixing region evolves according to

z∗(t) = z∗(t1)

[
1 + (2f2/3)

t − t1

[z∗(t1)2/Bs]1/3

]3/2

. (6.13)

We then need f2. The evolution of f2 is plotted in figure 14(b) for the three cases
in table 1. These curves show more temporal variability than f1 in figure 10, but it
can also be concluded that, within the accuracy allowed by the statistical convergence
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Figure 15. Temporal evolution of the convection scales in terms of the thickness h of the
inversion layer: solid line, length z∗/h; dashed line, velocity w∗/(Bsh)1/3; dot-dashed line,
buoyancy b∗/(B2

s /h)1/3; the smooth solid line corresponds to (6.13).

of the current simulations, they approach a constant value. It is also noted that the
variation of f2 with D and χs is small, meaning that the main dependence of
the statistics here considered on the buoyancy-reversal parameters is captured by
the definition of the reference buoyancy flux Bs given by (6.2). A mean value for
each case constructed over the interval of time t1 < t < t2 is collected in table 1, and
varies between 0.48 and 0.54. Once f2 is known, (6.13) provides accurate predictions
of the evolution in time of the depth z∗ of the convection layer. For instance, the
mean value f2 � 0.48 was used for the reference case A11 and the result is shown in
figure 15, comparing it with that computed from its definition (6.4). The difference
between theory and results of about 10 % is consistent with the oscillations observed
in figure 14. Once z∗ is available, a good prediction of the other convection scales
follows immediately from their very definition because Bs is a known constant. In
particular, we have the power laws w∗ ∝ t1/2 and b∗ ∝ t−1/2; both of these variables
are included in figure 15 as well.

A note on the time scales is worth the discussion at this point. Equation (6.13)
indicates that the characteristic time of the turbulent convection zone is of the order
of (z∗2/Bs)

1/3 (increasing with time as z∗ grows), and this is the reason to normalize
the horizontal axis in figures 14 and 15 with (h2/Bs)

1/3. This scale is different from
that of the inversion layer, equal to h2/κ according to the discussion presented in § 5.
The ratio of both time scales is 0.1f1(χsχ

2
c /Pr)1/3(z∗/h)2/3, and this is a small number

for the conditions considered here, of the order of 0.1 for the values z∗/h � 20
reached in these simulations, which explains the difference in the magnitude of the
non-dimensional times appearing in the figures of § 5 from those appearing in this
section. The convection layer must become of the order of 600 times thicker than the
inversion layer for both time scales to be comparable, and this number explains why,
with the domain sizes affordable in this study, the inversion moves upwards extremely
little compared to the growth of the turbulent region underneath.

This section can be summarized as follows: the state below the inversion base is
analogous to free convection below a cold plate. Hence, an expression of the reference
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z∗/h η/�x z∗/λz λz/η u′/w∗ w′/w∗ Ret Reλ Re∗ Ri∗ Ra∗

A11 24 1.2 19 28 0.84 0.74 1800 220 4800 590 0.4 × 109

A21 39 0.9 26 31 0.86 0.78 2400 250 8000 293 1.1 × 109

A12 39 1.2 19 28 0.90 0.76 1600 200 4800 716 0.5 × 109

Table 2. Length-scale ratios, turbulence intensities and derived quantities at the final
time t2. Reynolds numbers Ret = (q2/2)2/(εν), Reλ = w′λz/ν and Re∗ = z∗w∗/ν; convection
Richardson number Ri∗ = b1z

∗/w∗2; Rayleigh number Ra∗ = z∗3|bs |/(κν); Nusselt number
Nu∗ = wez

∗/κ = z∗/h. Maximum values are used for the mean turbulent dissipation rate ε and
the turbulence intensities.

buoyancy flux Bs has been derived (cf. (6.2)), and the convection scales constructed
from it characterize the statistics inside this turbulent region and allow the derivation
of an explicit expression for the growth rate of the convection layer (cf. (6.13)).

7. Discussion
So far, we have tried to dissect the system analysing the different regions conforming

it (sketched in figure 8) as independently as possible. The intention of this section is
to bring them together and consider the problem as a whole, and we do it by looking
at the system from different points of view.

7.1. Turbulence parameters

The turbulent state of the mixing layer can be characterized by the convection
Reynolds number

Re∗ =
z∗w∗

ν
. (7.1)

The values achieved at the end of the simulations vary between 5000 and 8000
depending on the case, which, although moderate, are high enough to explain the
turbulent character of the flow. Note that it keeps increasing as Re∗ ∝ t2 based on the
scalings z∗ ∝ t3/2 and w∗ ∝ t1/2 obtained before. The Taylor-scale Reynolds number
Reλ = wrmsλz/ν based on the vertical fluctuations, where λz = wrms/[〈(∂w′/∂z)2〉]1/2 is
the corresponding Taylor microscale, has been calculated using the statistical values
at ξ � −0.4, where the maximum of the vertical turbulent kinetic energy is found
according to figure 12(b). The final values are above 200, relatively large. Note,
however, that the flow is very anisotropic and, if the isotropic definition [5q4/(3εν)]1/2

of the Taylor-scale Reynolds number is used, the magnitude is about 100.
Table 2 presents different scales and parameters characterizing the flow at the

final time t2, when the three cases have a similar thickness z∗ of the turbulent
convection layer. It is observed that the buoyancy-reversal parameter D has a greater
effect than the saturation mixture fraction χs , and simulation A21 shows a larger
Reynolds number than the other two as a consequence of the corresponding more
intense forcing. This behaviour is consistent with (6.2), which shows that the reference
buoyancy flux Bs depends more strongly on the saturation buoyancy anomaly bs

than on χs . However, the velocity r.m.s. normalized by w∗ is approximately the same
in all three cases, which confirms the dominant role of this convection velocity in
characterizing the turbulent region.

The Kolmogorov length η = (ν3/ε)1/4 is included in table 2 in terms of the ratio to the
Taylor microscale λz to provide a measure of the scale separation, which is moderate,
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of the order of 30. The ratio η/�x of order 1, which is comparable with values
in other simulation studies using the same numerical algorithm, guarantees a good
enough resolution. It is worth noting that the Kolmogorov scales remain constant
in time, since ε is proportional to Bs = w∗3/z∗ (see figure 13a), and this reference
buoyancy flux is constant; the system develops self-similarly, generating increasingly
larger scales. The ratio between the inversion thickness h and the Kolmogorov scale
η is therefore constant and, for the reference case A11, it is relatively large, about 25.

7.2. Classical turbulent convection

As often mentioned previously, the cloud-top mixing layer presents certain similarities
with free convection below a cold surface. In this respect, it is appropriate to define
a Rayleigh number as

Ra∗ =
z∗3|bs |

κν
, (7.2)

based on the buoyancy anomaly bs at saturation conditions. It increases with time
proportionally to t9/2 as the convection layer thickens into the cloud, reaching values
in the range (0.5–1.0)×109 by the end of the simulations.

It is more difficult to define a surrogate for the thermal layer, because here the
saturation surface χ(x, t) =χs at which the Dirichlet boundary condition b = bs is
imposed is fluctuating. However, we have found in § 4 that this iso-surface remains
close to the inversion base in comparison to the thickness z∗ of the convection layer –
increasingly close as the system develops in time. At the same time, figure 5(b) clearly
shows that the molecular flux of the mixture fraction falls for z < zi relatively fast
over a thin region in favour of the turbulent flux. In sum, it seems reasonable to define
a thermal boundary layer based on the mean gradient of χ evaluated at z = zi , the
inversion base. This yields χiδχ as the thickness of that thermal layer, i.e. a fraction
χi/(1 − χi) (order 1) of the inversion layer thickness h, and therefore it also remains
constant in time.

The Nusselt number can be defined as usual by the ratio between the actual
molecular transport of the stratifying scalar χ through the inversion, quantified by
we in (6.1), and a reference one κ/z∗ based only on pure diffusion, i.e.

Nu∗ =
wez

∗

κ
. (7.3)

Then, the Nusselt number is equal to the ratio between the depths of the turbulent
layer, z∗, and of the inversion, h = κ/we; the values of this ratio at the end of the
simulations are presented in table 2 and vary between 25 and 40.

Figure 16 uses Ra∗ as an independent variable instead of the time t to plot different
parameters. The convection Reynolds number introduced before can be expressed
as Re∗ ∝ (Ra∗)4/9Pr−2/3 (Pr = 1 in our case) according to the definition of Bs in
(6.2), where the constant of proportionality is given by (0.1f1χ

2/3
c /χs)

1/3. Similarly,
the Nusselt and Rayleigh numbers are related by Nu∗ =(0.1f1χ

2/3
c )(Ra∗)1/3. The good

agreement between these scalings and the data (seen in figure 16), or equivalently,
the constancy of the scaling exponents 4/9 for the Reynolds number and 1/3 for
the Nusselt number, follows from the steadiness of the non-dimensional function f1

shown in figure 10 (the normalized mean entrainment velocity we), and they are one
of the possible limits reported in the literature (Turner 1973; Siggia 1994; Ahlers
et al. 2009). It corresponds to the case of no mean wind, which is consistent with the
situation here because the system is an open configuration and there is no external
constraint (like the boundaries of a tank) that imposes a large-scale circulation.
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Figure 16. Non-dimensional parameters as a function of the Rayleigh number for reference
case A11: circles, Reynolds number; squares, Nusselt number; triangles, Richardson number.
Lines indicate the power-law scalings discussed in the text.

7.3. Mixing across the density interface

The vertical structure of the system, namely the fact that a turbulent mixing zone is
established next to an inversion layer, makes the problem akin to that of turbulent
mixing across a density interface (Turner 1973; Fernando 1991; Fernando & Hunt
1997). From this point of view, the convection Richardson number

Ri∗ =
b1z

∗

w∗2
(7.4)

plays an important role and therefore it is also included in figure 16. The scaling as
DRi∗ ∝ (Ra∗)1/9Pr1/9 observed in this figure, with the constant of proportionality
equal to (0.1f1χ

2/3
c /χs)

−2/3, is again a simple consequence of the steadiness of f1. More
relevant for this discussion is the high value that it reaches, of the order of 300 or larger
and increasing with time as t1/2. This result helps in explaining why the turbulence
is not likely to break the inversion, as appreciated repeatedly during this study. Note
that the gradient Richardson number corresponding to the strong horizontal motion
observed in figure 12(b) just beneath the inversion base at z = zi leads to a similar
conclusion because, although the magnitude of the velocity grows as t1/2, the thickness
of the transition layer over which this maximum horizontal velocity develops seems to
be of the order of 0.1z∗, i.e. it increases proportionally to t3/2, and the associated shear
strength diminishes with time while the stratification of the inversion remains constant.

A Richardson number Riη = b1η/v2
η based on the Kolmogorov scales, though smaller

than Ri∗, still remains larger than 1. It can be shown that the definitions of η and
vη = (νε)1/4, along with (6.2), lead to the relation DRiη ∝ (Bs/ε)

3/4Pr1/4, where the
constant of proportionality is (0.1f1χ

2/3
c /χs)

−3/4. The scaling of the dissipation rate
ε with Bs implies that the right-hand side is constant and of order unity for the
cases of interest shown in table 1. Therefore, Riη ∼ 1/D, and this estimate indicates
that not even the smallest (in the average) turbulent scales can break the inversion
and the turbulence is obliged to remain within the cloud, since D � 1 for the usual
atmospheric conditions.
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Another relevant parameter in this context is the internal Richardson number
defined in terms of the inversion thickness h by

Ri(I ) =
b1h

w∗2
. (7.5)

Values below π2 are associated with the flapping of a thin inversion, whereas the
condition Ri(I ) > π2 corresponds to a relatively thick inversion that contains a certain
number of modes of internal motion (see Fernando & Hunt 1997 and references
therein). In our case, it can be written as Ri(I ) =Ri∗h/z∗ and table 2 shows that Ri(I )

varies between 10 and 25 among the different cases. This result implies the possibility
of a wave motion inside the inversion that would explain the fluctuations observed
in the scalar field (figure 7b) and the velocity field (figure 12) for z > zi . On the other
hand, these numbers are close to the cross-over value π2 and Ri(I ) diminishes with
time as t−1 due to the growth of the velocity w∗, which suggests that a change in
regime, and maybe in scaling laws, could appear later in time. However, it is not clear
how the formation of the reversing mixtures adjacent to the inversion (see figure 2),
which are ultimately the driving mechanism of the whole system, could modify this
behaviour. Larger domains are needed to investigate this issue.

It is also interesting to express the mean entrainment velocity we as a function of
the convection Richardson number Ri∗ defined above. Within the regime considered
in this study, (6.2) leads to

we

w∗ = χs(DRi∗)−1, (7.6)

recovering one of the power-law scalings commonly proposed in the literature (Turner
1973; Fernando 1991; Sayler & Breidenthal 1998). It is worth noting that the ratio
we/w

∗ is very small, since χs � 1 for normal atmospheric conditions and DRi∗ > 1
increases with time, as discussed after (7.4), and it quantifies the observation often
made before during this study that the turbulent convection layer broadens within
the cloud very fast compared to the steady motion upwards of the inversion.

In sum, we have observed certain similarities between the cloud-top mixing layer
and the classical problem of turbulent mixing across a density interface. However, in
spite of these analogies, it should be kept in mind that the cloud-top mixing layer
is driven by the local phenomena occurring at the density interface itself (buoyancy
reversal resulting from molecular mixing) and the turbulent motion is a consequence
of this. In this respect, the cloud top is different from the classical problem, where the
turbulent state is imposed at some given distance from the inversion by some external
mechanism (normally an oscillating grid or a mean shear). For this reason, the former
coupled configuration as a whole has been denominated as interfacial convection in
the past by Sayler & Breidenthal (1998), who considered radiative forcing in a closed
tank instead of the evaporative cooling effects in an open domain studied in this
paper.

7.4. Stratocumulus top

Last, the results need to be considered from the point of view of the atmospheric
problem that motivated this investigation in the first place, namely the stratocumulus
top. It is, however, important to recall that the focus of the current research is not
the stratocumulus-topped boundary layer as a whole, but a small domain around
the cloud upper boundary. In particular, the simulations discussed in this paper
correspond to a thickness of 2z∗ � 5 m (the time interval is t2 � 200 s), a size that
overlaps with the grid steps currently used in large-eddy simulations.
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The first result to emphasize is that the buoyancy-reversal instability indeed leads
to a turbulent state inside the cloud layer, but the inversion is not broken – there
is no finger of pure upper layer fluid penetrating deep across the inversion into the
lower region. The only consequence of the turbulent mixing that develops is that the
inversion is forced to travel upwards at a constant speed we, instead of propagating
at the usual diffusion rate proportional to

√
κ/t .

The second thing to comment on is that the scales associated with the cloud-
top mixing layer driven purely by evaporative cooling are small. For instance, for
the reference case A11 corresponding to field measurements during the flight RF01
of the DYCOMS-II campaign, we =0.1f1(κ |bs |χ2

c )1/3 is equal to 0.16 mm s−1, and
the associated inversion thickness h = κ/we is about 97 mm (κ = 1.5 × 10−5 m2 s−1

and an inversion strength b1 = 0.25 m s−2 have been used in these estimates). The
reference buoyancy flux Bs = ws |bs |/χs is then 1.3 × 10−5 m2 s−3. Using a thickness
2z∗ of approximately 5 m implies a characteristic velocity fluctuation w∗ = (Bsz

∗)1/3

of about 32 mms−1 and the broadening velocity is dz∗/dt = f2w
∗ � 15 mm s−1. These

values are at least one order of magnitude smaller than those encountered at the
cloud top (Stevens et al. 2003a; Gerber et al. 2005), where entrainment rates we vary
between 3 and 5 mms−1, velocity fluctuations are of the order of 1 m s−1 and turbulent
dissipation rates about 10−2 m2 s−3 are measured, and indicate that the entrainment
mechanism is not determined by evaporative cooling alone, but by some of the other
physical phenomena entering into the problem.

This conclusion is consistent with previous work, suggesting that evaporative
cooling plays a minimal role at the cloud top even though buoyancy reversal is
predicted to occur (Gerber et al. 2005). A different question is what is the role of
evaporative cooling in the boundary of already existing holes created, for instance,
by the radiatively driven convection, such as the cloud interior mixing instability
proposed by Gerber et al. (2005) and further studied by Haman (2009). We cannot
comment on these issues because all additional forcings apart from evaporative
cooling have been eliminated in our simulations, and therefore the question remains
open.

Third, it has been shown that the system is controlled by molecular processes at
the inversion base. (The reference buoyancy flux Bs depends explicitly on the scalar
diffusivity κ .) This behaviour, in particular a mean entrainment rate proportional to
κ1/3, has already been proposed by Wunsch (2003), and it implies that models, e.g.
subgrid closures for large-eddy simulations, need to retain the effect of molecular
processes in them (which is not normally the case) if they are to faithfully capture
the phenomena studied in this paper.

Further comparisons of the current results, based on direct numerical simulations
of open configurations, with those of Wunsch (2003), based on stochastic simulations
of closed configurations, are nevertheless limited. The solid wall at the bottom in the
latter case possibly modifies the upward entrainment rate we and certainly changes
in time the mean value of the mixture fraction of the lower region when adiabatic
boundary conditions are employed. Similarly, extrapolations of our study to higher
values of D require caution because the parallelism with free convection below a cold
plate often employed in this paper was based on the observation that the saturation
surface χ(x, t) =χs remains increasingly close to the inversion base, a horizontal
reference plane; it is not clear what happens when D � 1, i.e. when the time scale
of the falling reversal mixtures is comparable to that of the restoring force of the
inversion and therefore the saturation surface might become more convoluted. These
issues remain to be explored in future work.
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8. Conclusions
Latent-heat effects in the turbulent cloud-top mixing layer have been investigated

for the typical atmospheric conditions of small buoyancy reversal 0 <D = −bs/b1 � 1
using direct numerical simulations. It has been shown that the buoyancy-reversal
instability leads to a turbulent state inside the cloud. However, results have also
confirmed that these evaporative cooling effects do not break the inversion.

A regime is established with a vertical structure that consists of an inversion layer
on top, dominated by molecular transport, and a turbulent convection layer below,
dominated by turbulent transport. The separation of both is well represented by the
position of the maximum mean buoyancy gradient (maximum mean stratification), the
inversion base. It is shown that molecular processes at this inversion base determine
the evolution of the whole system, which helps to explain the difficulties encountered
in the past to study the problem using large-eddy simulation with classical subgrid
closures.

The inversion layer is characterized by the inner scales formed with the constant
upward mean entrainment velocity we =0.1f1(κ |bs |χ2

c )1/3 (the Prandtl number is
considered to be unity throughout this paper) and the diffusivity κ of the stratifying
scalar χ , where bs is the buoyancy anomaly at saturation conditions χs , and χc = (χs +
D)/(1+D) is the interval of buoyancy reversing mixtures. In particular, this inversion
layer has a constant depth h = κ/we. The non-dimensional function f1(D, χs) is of
order 1, and remains approximately constant in the interval of small parameters D and
χs characteristic of atmospheric conditions at the stratocumulus top. The evolution
of this region is negligibly slow compared to the rate at which the convection layer
below deepens into the cloud, making the problem similar to that of free convection
below a quasi-stationary cold plate.

The turbulent convection layer inside the cloud is characterized by the outer
or convection scales constructed with the reference buoyancy flux Bs = |bs |we/χs

and the length scale z∗ =
∫

B dz/Bs obtained from the depth-integrated turbulent
buoyancy flux B = 〈w′b′〉. A self-preserving state is approached where the thickness
of the turbulent region, of order 2z∗, grows according to z∗ � [(2f2/3)3Bst

3]1/2, the
velocity scales with w∗ =(Bsz

∗)1/3 and the buoyancy fluctuation is of the order of
b∗ = Bs/w

∗ = (B2
s /z

∗)1/3. The non-dimensional function f2(D, χs) is also of order 1 and
approximately independent of the buoyancy-reversal parameters within the range of
interest.

The Reynolds number z∗w∗/ν achieved in the simulations varies between 5000
and 8000, depending on the case. The corresponding Rayleigh number z∗3|bs |/(νκ)
is within the interval (0.5–1.0) × 109, and the Nusselt number wez

∗/κ varies between
25 and 40. The Reynolds and Nusselt numbers show power-law dependencies on the
Rayleigh number with exponents 4/9 and 1/3, which correspond to the classical limit
of no mean wind reported in free-convection problems. The convection Richardson
number b1z

∗/w∗2 is larger than 300 and increases with time, which explains the
inability of the turbulent layer to penetrate through the capping inversion.

The upper part of the convection layer, a transition or buffer zone of approximate
thickness 0.1z∗, is dynamically very active, with a strong transfer of vertical to
horizontal motion that brings about an intense anisotropy in the flow. This entails
the formation of a planform cellular pattern and sheet-like plumes, in agreement with
observations and laboratory experiments of related problems. The saturation surface
(instantaneous cloud top) lies predominantly inside this zone and is asymptotically
close to the inversion base, and so is the minimum mean buoyancy.
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Grid δs/χs |∇ · v|2/|∇ × v|2 �we (% )

R1 1024 × 1024 × 738 1/16 2 × 10−5 –
R2 1024 × 1024 × 738 1/32 3 × 10−5 0.8 ± 1.9
R3 2048 × 2048 × 1536 1/32 2 × 10−6 0.6 ± 1.9
R4 1024 × 1024 × 1024 1/16 2 × 10−5 0.4 ± 1.8

Table 3. Resolution requirements. Physical parameters D and χs correspond to reference case
A11 in table 1 and the reference Rayleigh number is Ra = b1L

3
0/(νκ) = 1011. Dilatation error

and the variation in the mean entrainment velocity (mean plus standard deviation) are shown
in the last two columns.
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Figure 17. Resolution study: solid line, reference case R1; dashed line, modified case R2 with
half δs; dot-dashed line, modified case R3 with half �x (double number of grid points in each
direction); dot-dot-dashed line, modified case R4 with 0.25L0 longer domain in the vertical
direction.

Comments on the original manuscript by Professor B. Stevens and Professor H.
Schmidt are gratefully acknowledged. Financial support for this work was provided
by the Deutsche Forschungsgemeinschaft within the SPP 1276 Metström program.
Computational time was provided by the German High Performance Computing
Centre for Climate- and Earth System Research (DKRZ) in Hamburg.

Appendix. Resolution requirements
Table 3 contains the set of simulations performed to confirm the independence of

the results discussed in the paper with respect to several parameters that need to be
prescribed in the simulation. The first case R1 corresponds to A11 in table 1 but with
a smaller reference Rayleigh number Ra = b1L

3
0/(νκ) = 1011, so that a smaller grid size

can be employed. This case is used as a reference to study in R2 the influence of the
smoothing parameter δs entering in the definition of the buoyancy mixing function
be(χ) in (2.2). This simulation is employed in turn to investigate the influence of the
resolution in case R3 by varying the grid step �x. Last, the effect of the domain size
is considered in simulation R4. The rest of the parameters are kept the same in all
four cases.

The effect of δs is considered first. The residual dilatation, which represents part of
the numerical error of the algorithm (Mellado et al. 2010), is plotted in figure 17(a)
in terms of the L2-norm. First, it is observed that the magnitude of this error is very
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small compared to other quantities associated with the velocity-gradient tensor, such
as in the case of the enstrophy shown in figure 17(a). Second, when the smoothing
parameter is reduced, there is an increase of about a factor 2, but this relative
error remains small during the whole simulation, below 10−4. Visualizations of the
dilatation (not shown) indicate that this error concentrates at the inversion base and
at the front of the falling downdrafts, where the steepest gradients form. On the other
hand, the effect on quantities of interest is small. For instance, figure 17(b) shows
the temporal evolution of the mean entrainment velocity we, as in figure 10, whose
importance in the development of the system has been clearly exposed in the main
text. It is appreciated that the deviation of R2 with respect to R1 is small; the last
column of table 3 quantifies this variation with respect to the reference case R1 in
terms of the mean and standard deviation of the relative difference in we along the
simulation, and it is less than 3 %. It is clear that other quantities do indeed depend
on δs , for instance the pointwise maximum of the buoyancy gradient because of the
very definition of be(χ), but this study does not focus on them.

Simulation R3, with a grid size 2048 × 2048 × 1536, was performed interpolating
the same initial condition as in case R1 into this new grid. The grid step �x is
therefore half of that in R2, the rest of the conditions being equal. The same two
statistics as used before to study the effect of δs are represented in figure 17 for this
new simulation. The residual dilatation decreases by an order of magnitude because
of the increase in resolution, but the relevant large-scale statistics remain close to the
reference case R1, as observed in the evolution of we.

Finally, case R4 explores the influence of the size of the vertical domain by
augmenting it in a length 0.25L0, where L0 is the horizontal dimension of the
computational domain. Recall that we need to place the upper and lower boundaries
far enough from the turbulent mixing zone to avoid any influence of the particular
boundary conditions imposed on the system, since we are interested in the open-
domain configuration, but at the same time computational cost needs to be minimized.
Comparisons between simulations R1 and R4 in figure 17 again confirm that the
reference case R1 is well defined in this respect. The value of the pressure fluctuation
intensity at the upper and lower boundaries at the final time is about 3 % of the
magnitude in the core of the turbulent region. The inversion base is at a distance of
about 0.25L0 from the upper boundary.

The conclusion of these resolution studies is that case R1 is well resolved, and gives
a reference for the scaling of the problem based on the results presented throughout
this paper, i.e. what grid size is needed for a given diffusivity κ . In particular, during the
bulk of the simulation R1, the resolution measured in terms of the inversion thickens
is δχ/�x � 32, in terms of a reference buoyancy-reversal layer is χcδχ/�x � 3.8 and
in terms of the Kolmogorov scale is η/�x � 0.6.
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