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Abstract

We study projectional properties of Poisson cut-out sets E in non-Euclidean spaces. In
the first Heisenbeg group H=C×R, endowed with the Korányi metric, we show that the
Hausdorff dimension of the vertical projection π(E) (projection along the center of H)
almost surely equals min{2, dimH(E)} and that π(E) has non-empty interior if dimH(E) > 2.
As a corollary, this allows us to determine the Hausdorff dimension of E with respect to the
Euclidean metric in terms of its Heisenberg Hausdorff dimension dimH(E).

We also study projections in the one-point compactification of the Heisenberg group, that
is, the 3-sphere S3 endowed with the visual metric d obtained by identifying S3 with the
boundary of the complex hyperbolic plane. In S3, we prove a projection result that holds
simultaneously for all radial projections (projections along so called “chains”). This shows
that the Poisson cut-outs in S3 satisfy a strong version of the Marstrand’s projection theorem,
without any exceptional directions.

2020 Mathematics Subject Classification: Primary: 60D05;
Secondary: 28A80, 37D35, 37C45, 53C17.

1. Introduction

In this paper, we investigate strong Marstrand-type projection theorems for random cut-
out sets in two (related) non-Euclidean spaces: the (first) Heisenberg group H, and its
compactification, that is the 3-sphere S3 endowed with the visual metric d obtained by
identifying S3 with the boundary of the complex hyperbolic plane.
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Our focus is on certain projections of these cut-out sets and their dimension.
In the Heisenberg group H, we look at the dimension of the vertical projection (along the

center) as well as the dimension of the fibers; as an interesting corollary, this allows us to
compute the Hausdorff dimension of the cut-out set with respect to the Euclidean metric on
H. The following is an informal version of our main theorem in the Heisenberg group.

THEOREM A. Let E be a random Poisson cut-out set in the Heisenberg group, with
Hausdorff dimension β. Then with positive probability:

(i) πZ (E), the vertical projection of E, has Hausdorff dimension inf{β, 2}; and if β > 2,
πZ (E) has non-empty interior;

(ii) the Hausdorff dimension of E with respect to the Euclidean metric is equal to

φ(β) =
{

β if 0 < β ≤ 2
2 + 1

2 (β − 2) if 2 < β ≤ 4 .

Recall that for any subset of the Heisenberg group with Hausdorff dimension β, the
Euclidean Hausdorff dimension is at most φ(β) (see e.g. [2, theorem 1·1]) so that the ran-
dom sets E have the maximal Euclidean Hausdorff dimension in terms of their Heisenberg
dimension.

In the classical Euclidean setting, if X is a random Poisson cut-out set in R
n with

Hausdorff dimension s ∈ ]0, n[, then, with positive probability, for any orthogonal projec-
tion π :Rn →R

d , the image π(X) has Hausdorff dimension inf{d, s} [18]. To generalise
this result to Heisenberg group in a meaningful way, we would need to introduce a family
of projections that is a suitable generalisation of the family of Euclidean projections. One
way to do this would be to start from the quotient mapping along the center, πZ , considered
in Theorem A, and to move around the point at infinity. In this paper, we will actually work
in the compactification of the Heisenberg group, that is the 3-sphere S3 endowed with the
visual distance that comes from identifying S3 with the boundary at infinity of the complex
hyperbolic plane. The foliation of H by translates of the center Z yields, in the compacti-
fication, a foliation of S3 \ {∞} by the so-called chains passing through ∞. By moving ∞
around S3, one obtains the family of projections needed; more precisely, if x is some fixed
point of S3, any other point y lies on a unique chain passing through x ; this defines the radial
projection along chains passing through x , or, in short, radial projection at x which can be
defined so as to take values in the Euclidean sphere S2.

At this point, let us emphasise the following:

Unless stated otherwise, S3 will always be endowed with the visual metric d coming
from the identification with the visual boundary of the complex hyperbolic plane.

This is not the same thing as the visual metric coming from the identification with the visual
boundary of the real hyperbolic 4-space. The former has dimension 4 whereas the latter is
the familiar Euclidean 3-sphere and has dimension 3.

Given a random Poisson cut-out set E ⊂ S3, we can, with positive probability, compute
the Hausdorff dimension of the image of E through the radial projections at every point
x ∈ S3 simultaneously.

Thus, our work is related to the recent program aiming to show that for many sets
and measures of random or dynamical origin, the statement of the Marstrand’s projection
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theorem holds without any “exceptional” directions. See e.g. [10, 15, 18] and references
therein. The following is our main result.

THEOREM B. Let E be a random Poisson cut-out set in S3 (endowed with the visual
distance d), with Hausdorff dimension β ∈ ]0, 4[. Then with positive probability, for every
point x of S3, the radial projection of E at x has Hausdorff dimension inf{2, β}, and non-
empty interior if β > 2.

We refer the reader to Section 5 for the exact definition of the radial projection, the
definition of the visual metric on S3 as well as the Poisson cut-out sets we consider.

We note that the “radial projections” we consider are also studied in [6] where a
Marstrand-type projection result is stated: if A is a Borel subset of S3 of Hausdorff dimen-
sion α with respect to the Euclidean metric dE , then for Lebesgue-almost every x ∈ S3, the
radial projection of A at x has Hausdorff dimension inf{2, α}. This is a special case of [6,
theorem 5]; pay attention to the fact that in this result the dimension of A is computed
with respect to the Euclidean metric. In fact, this result is not true if we consider the visual
metric d instead. For instance, the chains in S3 are 2-dimensional, but their radial projec-
tions always have Hausdorff dimension 1, see Remark 5·13. Nevertheless, our main results
shows that the behaviour of random sets under the radial projections resembles that of a
strong Marstrand theorem: with positive probability, the dimension of the projection takes
the “expected value" simultaneously for all projections.

Many authors have previously studied Marstrand-type projection theorems in the
Heisenberg group, see e.g. [1]; the projections studied by these authors are quite differ-
ent in nature. Namely, they consider projections onto horizontal homogeneous subgroups of
H, i.e. subgroups of the form Vθ = eiθ

R× {0} ⊂C×R, as well as projections along these
subgroups. The projection onto Vθ is essentially the same thing as the vertical projection πZ

followed by an orthogonal projection in C, and there is not much to say beyond Marstrand’s
original Theorem in the plane. Projections along the horizontal Vθ are more interesting but
also very different from the projections along chains we are considering. In fact the Vθ and
their translates are the R-circle passing through the point at infinity, they are in some way
the opposite of the chains we are looking at. In the boundary of complex hyperbolic plane,
a chain is the boundary of a totally geodesic complex submanifold, of sectional curvature
−4, whereas a R-circle is the boundary of a totally geodesic real 2-submanifold of sectional
curvature −1. We refer to [9] for these notions.

The main ingredient of the proofs of our main theorems is an abstract result, Theorem
3·2, which holds for Poisson cut-out sets under fairly general hypotheses. The result is a
straightforward generalisation of the main result in [18] into a non-Euclidean setting. In
order to apply Theorem 3·2 in our non-Euclidean setting, we need to derive a geometric
estimate of Hölder type; in the Heisenberg group, this boils down to estimating the intersec-
tions of vertical lines with Heisenberg balls, see (4·1). In S3 the corresponding estimate is
somewhat more involved (see Lemma 5·17).

The paper is organised as follows. In Section 2, we recall the construction of random
Poisson cut-out sets (and measures) and the formula giving their Hausdorff dimension with
positive probability. In Section 3, we state the Hölder regularity Theorem 3·2; this result
will allow us to control the measure of cut-out sets along families of “fibres”; we also state
some elementary Lemmas that allow us to derive dimensionality results from the regular-
ity provided by the Theorem. These results are applied in Section 4 where we deal with
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the Heisenberg group and its non-Euclidean metric; this is where Theorem A is proved.
This section is also a warm-up for the next one, which is more technical and deals with S3

endowed with the visual metric d. We spend some time introducing the needed properties of
this metric, and defining the family of projections we are studying. The main argument for
the proof of Theorem B is in Section 5·7, and the most technical part (where we prove the
geometric Hölder estimate needed to apply Theorem 3·2) is deferred to Section 5·8.

Hausdorff dimension of sets will be denoted by dimH; Hausdorff dimension of measures
will be denoted by dim. Recall that by definition

dim(μ) = inf{dimH(A) ; μ(A) > 0} .

The upper box dimension will be denoted by dimB. The s-dimensional Hausdorff measure
is Hs . For definitions, see [12].

The closed, resp. open, ball of radius r and center x is denoted by B(x, r), resp. B◦(x, r).
Positive and finite constants will be denoted by c, C , etc. When there is no danger of

misunderstanding, we are quite flexible in the notation, for instance, the value of C may
change from line to line. We will use subscript, when there is a need to stress the dependency
of a constant on certain parameters. For instance, Cε is a positive and finite constant whose
value may depend on a parameter ε > 0 (but not on other variables relevant for the context).
If 0 < A, B < ∞ are variables and A ≤ C B, we will denote A � B. The notation B 	 A
means that A � B and B � A. When necessary, the dependency will be indicated with a
subscript notation, i.e. if A ≤ C B where C depends on some data D, we will write A �D B.

2. Dimension of conformal Poisson cut-out sets

In this Section, we define random Poisson cut-out sets and measures and recall some
results regarding their Hausdorff and box-counting dimensions. We present these results in
a generality that is sufficient for the purposes of the paper. For more general results, see e.g.
[11, 13, 21].

Let Z0 be a boundedly compact metric space and assume that for some m > 0 it carries a
Borel measure H such that: For any x ∈Z0,

H(B(x, r)) = f (r) , (2·1)

where

lim
r→0

f (r)

rm
= 1 . (2·2)

Later in this paper, we will only consider the case m = 4. More precisely, Z0 will be either
the Heisenberg group H, or its compactification S3 endowed with the visual metric, and H
will be a suitable normalization of the usual Lebesgue measure (resp. surface measure) on
H (resp. S3).

We endow X =Z0×]0, 1] with the σ -finite measure

Q =H⊗ dr

rm+1
10<r≤1.

To any pair (x, r) ∈X we associate the closed ball B(x, r) ⊂Z0.
For any real number γ > 0, we consider a Poisson point process of intensity γ Q on X .

For convenience of the reader, let us recall the definition.
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Definition. Let X be a complete separable metric space and let M be a σ -finite Borel
measure on X . A Poisson point process with intensity M is a random subset Y ⊂X such
that:

(i) for each Borel set A⊂ X , the number N (A) := #A∩Y is a Poisson random variable
with mean M(A);

(ii) for pairwise disjoint Borel sets Ai ⊂X , i ∈N, the random variables N (Ai) are
independent.

It is well known and easy to see that this is a well-defined object.
Returning to our setup (X endowed with M = γ Q), we let E0 be the associated random

Poisson cut-out set:

E0 =Z0 \
⋃
i∈I

B◦(xi , ri ) ,

where Y = {(xi , ri ) ; i ∈ I } is the Poisson point process considered. In that setting, the most
basic result is the following.

PROPOSITION 2·1. If γ > m, then E0 is a.s. empty. If 0 < γ ≤ m, then for any bounded
subset Z of Z0, almost surely

dimB(Z ∩ E0) ≤ m − γ .

In particular,

dimH(E0) ≤ m − γ .

Proof. The proposition is well known, but let us provide the simple proof for reader’s
convenience. Let γ ′ < γ and pick r0 = r0(γ ) > 0 such that

f (r) >
γ ′

γ
rm (2·3)

for 0 < r < r0.
First we bound the probability that some small ball is not eaten out by the cut-out. Let

A = B(x, δ) where x ∈Z and δ > 0. Then

P(A ∩ E0 
=∅) ≤ Cδγ ′
, (2·4)

where C is some constant (which depends on d and γ ). Indeed, in order to cut out the δ-ball
A it is enough that there is a ball B(xi , ri ) such that ri > δ and x belongs to B(xi , ri − δ).
Now by (2·1), (2·3), and the definition of Q,

P

(
x ∈
⋃
ri >δ

B(xi , ri − δ)

)
= 1 − exp

(
−γ

∫ 1

r=δ

f (r − δ)

rm+1
dr

)
≥ 1 − exp

(
−γ ′

∫ r0

δ

(r − δ)m

rm+1
dr

)
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≥ 1 − exp

(
−γ ′

∫ r0

δ

dr

r

)
≥ 1 − Cδγ ′

,

where C = Cγ ′ > 0 is a constant.
Now for each n ≥ 1, let Qn be a covering of Z with balls of radius 2−n centered in Z , such

that #Qn ≤ C2nm , where C is some fixed constant. It is easy to check that such a Qn does
exist for any n. Let Nn be the number of A ∈Qn that meet E0. We know by the previous
computation that E[Nn] ≤ C2n(m−γ ′). Thus, for any ε > 0,

E

[ ∞∑
n=1

2n(γ−m−ε)Nn

]
< ∞ .

In particular, a.s., Nn ≤ 2n(m−γ+ε) when n is large. The claims follow from this at once.

We now fix for simplicity a bounded closed subset Z ⊂Z0 of positive H-measure. There
is no hope to prove that the estimate for dimB(Z ∩ E0) is almost surely an equality, since,
as one may check, the cut-out set E0 ∩Z is empty with positive probability for any γ >

0. On the other hand, it is possible to show that equality holds with positive probability.
Unsurprisingly, the proof relies on the construction of a “natural” measure on the cut-out set.

For every n ∈N let

En =Z \
⋃

ri ≥2−n

B(xi , ri )

and

μn = βn1En , (2·5)

where

βn = exp

(
γ

∫ 1

r=2−n

f (r)

rm+1
dr

)
is the reciprocal of P(x ∈ En) (note that βn is independent of x). Recall that βn ∼ 2γ n in the
sense that limn→∞ log βn/n = γ . Let

E =
⋂

n

En = E0 ∩Z .

It is easy to see (see e.g. [17]) that, almost surely, the sequence of (random) finite Radon
measures μnH converges in the weak*-sense to a finite measure μ supported on E . We
call this measure μ the cut-out measure. The following proposition shows that there is an
equality in Proposition 2·1 with positive probability. For a proof, see e.g. [13]. See also
Lemma 4·7.

PROPOSITION 2·2. Assume that γ ∈]0, m[. Then there is a positive probability that μ 
= 0;
and, conditional on μ 
= 0, it holds almost surely that μ is exact-dimensional and

dim(μ) = dimH(E) = m − γ.
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Recall that exact dimensionality means that the local dimension

dim(μ, x) = lim
r↓0

log (μ(B(x, r)))

log r

exists and obtains a constant value for μ-almost every x .

Remark 2·3. Throughout the paper, we will denote by P the law of the Poisson point process
considered (this depends only on Q = Q(H, γ )) and (with a slight abuse of notation), we
will think of P as a probability measure on the space of compact subsets of Z .

3. Spatially independent martingales in metric spaces

In this section, we recall a version of the main result of [18] on spatially independent
martingales. This will allow us to control the measure of our Poisson cut-out set along the
fibres of the projections we will be considering. In the Heisenberg group (Section 4), we
only look at the vertical projection, so the fibres will be the vertical lines. In S3 (Section 5)
we consider the family of radial projections at every point, so the fibres will be all complex
chains. (For technical reasons we will have to look at compact spaces of complex chains.)

Controlling the measure of our Poisson cut-out set along the fibres of the projection is
how we will be able to derive results on the projected measure.

We now describe the abstract setting of the Theorem. Let Z be a separable locally com-
pact metric space. We consider a random sequence of functions μn : Z → [0, +∞), jointly
defined on some probability space enjoying the following properties:

(i) μ0 is a deterministic function with bounded support (we will denote its support by �);
(ii) there exists an increasing filtration of σ -algebras Bn ⊂B, such that μn is Bn-

measurable. Moreover, for all x ∈Z and all n ∈N,

E(μn+1(x)|Bn) = μn(x);
(iii) there is C < ∞ such that μn+1(x) ≤ Cμn(x) for all x ∈Z and n ∈N;
(iv) there is C < ∞ such that for any (C2−n)-separated family Q of Borel sets of diameter

≤ C−12−n , the restrictions {μn+1|Q|Bn} are independent.

Definition 1. Following [18], we call a random sequence (μn) satisfying the above
conditions an SI-martingale, (where SI stands for spatially independent).

Remark 3·1. The sequence (2·5) is an obvious example of an SI-martingale, and in fact, the
only example dealt with in this paper. Note that the dyadic discretization (μn and En are
approximations of μ and E at level 2−n) is used for the simplicity of notation only.

THEOREM 3·2 (Regularity of fibres). Let (μn)n∈N be an SI-martingale, and let (ηt)t∈
 be
a family of finite Radon measures (“fibre measures”) indexed by a metric space (
, d). We
assume that there are constants 0 < γ, κ, γ0, θ0, C < ∞ such that the following holds:

(A1) dimB
 < ∞;
(A2) ηt(B(x, r)) ≤ Cr κ for all x ∈Z , r > 0 and t ∈ 
;
(A3) almost surely, μn(x) ≤ C 2γ n for all n ∈N and x ∈Z;
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(A4) almost surely, there is a random integer N0, such that

sup
t,u∈
,t 
=u;n≥N0

∣∣∫ μn dηt − ∫ μn dηu

∣∣
2nθ0 d(t, u)γ0

≤ C . (3·1)

Suppose that κ > γ . Then, almost surely:

(i) for all t ,
∫

μn dηt converges uniformly to a finite number X (t);
(ii) for each t ∈ 
 such that

∫
μ0(x) dηt(x) > 0, we have P(X (t) > 0) > 0;

(iii) the function t �→ X (t) is (Hölder) continuous.

Suppose that κ ≤ γ . Then, almost surely,

sup
n∈N, t∈


2−θn

∫
μn dηt < ∞ ,

as long as θ > γ − κ .

Remark 3·3.

(i) In [18], the Theorem is stated in the Euclidean setting Z =R
d (see [18, theorems 4·1

and 4·4]). However, the proofs work verbatim in any metric space Z . The only minor
change is in the proof of [18, lemma 3·4], where instead of the dyadic cubes of sizes
2−n , one should consider a disjoint cover of sptηt with sets Q j satisfying diam(Q j ) ≤
C2−n and such that each Q j contains a ball B(x j , 2−n) for some x j ∈ spt η.

(ii) As explained in [18], there is a scope for weakening the assumptions of Theorem
3·2 We shall not discuss these generalisations here since the above version is enough
for our application in the Heisenberg group and the visual sphere.

(iii) The Hölder exponent of t �→ X (t) is deterministic and quantitative in terms of the
data (κ, γ, γ0, θ0), see [18].

In applying Theorem 3·2 we will need two companion results, Lemmas 3·4 and 3·5,
corresponding to the two possible conclusions in the Theorem.

LEMMA 3·4. Let Z be a compact metric space endowed with a Radon measure H. Let
also π :Z →R

k be a Lipschitz mapping and, for any t ∈R
k , ηt be a finite Radon measure

supported on π−1(t) such that H is equivalent to the finite Borel measure∫
ηt dt : A �−→

∫
Rk

ηt(A) dt (3·2)

with Radon-Nikodym derivative uniformly bounded away from 0 and +∞. Finally, let μn be
a sequence of bounded Borel functions Z → [0, ∞[ such that:

(i) the sequence of Radon measures (μnH)n weak*-converges to a finite Radon mea-
sure μ;

(ii) for any t,
∫

μndηt converges to a finite number X (t), and the convergence is
uniform in t ;

(iii) the mapping t �→ X (t) is continuous, and there is some t0 ∈R
k such that X (t0) 
= 0.

Then the push-forward measure πμ is absolutely continuous, and t0 is an interior point of
π(supp(μ)).

https://doi.org/10.1017/S0305004121000177 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000177


Poisson cut-outs in the Heisenberg group and the visual sphere 205

Proof. Using (3·2) and (i), we get the follwing estimates for the projected measures of balls
centered at u ∈R

k :

πμ(B◦(u, r)) ≤ lim inf
n→∞ π(μnH)(B◦(u, r))� lim inf

n→∞

∫
B◦(u,r)

∫
μn dηt dt ,

πμ(B(u, r)) ≥ lim sup
n→∞

π(μnH)(B(u, r))� lim sup
n→∞

∫
B(u,r)

∫
μn dηt dt .

Taking (ii) and (iii) into account, it then follows that πμ is absolutely continuous (with
respect to the Lebesgue measure on R

k), and that the Radon–Nikodym derivative of πμ at
u ∈R

k is comparable to X (u). Thus the claim.

LEMMA 3·5. In the setting of Lemma 3·4, suppose that (3·2) and (i) hold with μ 
= 0.
Assume further, that for some constants θ and C :

(iv) supn∈N, t∈Rk 2−θn
∫

μn dηt < ∞;
(v) for each n ∈N, there is a 2−n-dense family Dn ⊂ π(�) such that

πμ
(
B(t, 2−n)

)≤ C
(
π (μnH)

(
B(t, C2−n)

)+ 2n(θ−k)
)

for all t ∈Dn, n ∈N .

Then, dim π E ≥ dim πμ ≥ k − θ .

Proof. The assumptions readily imply that if t ∈Dn and 0 < r ≤ 2−n , then

πμ(B(t, r)) ≤ Cπ (μnH) (B(t, C2−n)) + C2n(θ−k)

≤ C2n(θ−k) + C
∫

u∈B(t,C2−n)

∫
μn dηu du

≤ C2n(θ−k) ,

(3·3)

with constants that are independent of t, r and n. Since for an arbitrary t ∈ π(�), B(t, r)

may be covered by boundedly many B(ti , 2−n), ti ∈Dn , the estimate (3·3) continues to hold
(with slightly bigger constants), for all t ∈R

k , n ∈N. In particular, this means that

dim(πμ, t) = lim inf
r↓0

log πμ(B(t, r))

log r
≥ k − θ

for all t ∈ sptπμ. Whence the claim.

In order to apply Lemma 3·5, we will also need the following probabilistic statement
concerning the convergence speed of the μn measures of a fixed subset of Z . We state
the lemma for measures satisfying (2·1)–(2·2) although it clearly holds under much more
general assumptions.

LEMMA 3·6. Let μn be an SI-martingale on a space Z and let H be a measure on Z
satisfying (2·1)–(2·2). Suppose μn(x) ≤ C2γ n for all x ∈Z , n ∈N. Let Z ⊂Z be open and
� < m − γ . Then

P
(
(μ(Z) > 4

(
μn(Z) + 2−n�

) |Bn

)≤ C exp
(−c2n(m−γ−�)

)
.
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Proof. Applying [18, lemma 3·4] with η =H|T and κl = (l − n)−22−n�/2 yields

P

(
μl(T ) ≥ μl−1(T ) + (l − n)−22−n�/2

√
μl−1(T )

)
≤ C exp

(−c(l − n)−42l(m−γ )−n�
)

.

Noting the bounds 2−n�/2
√

μl−1(T ) ≤ max{2−n�, μl−1(T )} and
∑

l>n(l − n)−2 < 4 and
summing over all l > n implies

P

(
lim sup

l→∞
μl(T ) ≥ 4

(
μn(T ) + 2−n�

))≤ C exp
(−c2n(m−γ−�)

)
.

Since T is open, μ(T ) ≤ lim infl μl(T ) ≤ lim supl μl(T ) and the claim follows.

4. Conformal cut-outs in the Heisenberg space

4·1. Basic facts about the Heisenberg group

Let H denote the Heisenberg group C×R equipped with the group law (u, s) · (v, t) =
(u + v, s + t + Im(ūv)) and the Korányi metric d(p, q) = ||q−1 · p||, where ||(u, s)|| =
(|u|4 + 4s2)1/4 (here |u| is the usual modulus of u ∈C). This is a boundedly compact
separable metric space.

With this metric, H has Hausdorff dimension 4. Indeed, the Haar measure H on H (which
is just the Lebesgue measure on R

3), suitably normalised, is 4-uniform, that is,

H(B(x, r)) = r 4 for all x ∈H, r > 0 .

The identification H=C×R allows to endow this space with the usual Euclidean metric
dE. The following well known lemma describes the way both metrics relate to each other.
Recall that the center Z of H is the “vertical” line {0} ×R and it is also equal to the derived
group D(H); we denote by π the quotient mapping H→H/Z .

LEMMA 4·1.

(i) The identity mapping from any compact subset of H into C×R is Lipschitz.
(ii) If π(x) = π(y),

d(x, y) = √
2dE(x, y)

1
2 .

(iii) The Euclidean and Heisenberg metrics are equal modulo Z, i.e. for all u, v ∈H/Z,

inf
x,y

dE(x, y) = inf
x,y

d(x, y),

where x, resp. y, runs through π−1(u), resp. π−1(v).

Note that the identity mapping from H into R
3 is not globally Lipschitz. Another way to put

the third statement is to say that H/Z , endowed with the quotient of the Heisenberg metric,
identifies isometrically with the Euclidean plane.

4·2. Poisson cut-out sets in Heisenberg group

As in Section 2, we define the intensity measure

Q =H⊗ dr

r 5
1r<1

on H×]0, 1[.
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Let � be the unit ball in H. Fix some parameter γ ∈]0, 4[ and consider a random
Poisson point process {(xi , ri ) ; i ∈ I } ⊂H×]0, 1[ with intensity γ Q. The resulting random
cut-out set is

E = � \
⋃
i∈I

B(xi , ri).

As before, we let also μ be the random cut-out measure supported on E .
We will denote Hausdorff dimension (of sets and measures) with respect to the

Korányi metric by dimHeis
H .

In this setting, the general Proposition 2·2 implies the following.

PROPOSITION 4·2. Almost surely, conditional on μ 
= 0,

dimHeis(μ) = dimHeis
H (E) = 4 − γ .

In what follows, we denote the “expected Hausdorff dimension" of E (with respect to the
Heisenberg metric) by β = 4 − γ .

4·3. Vertical projection of Poisson cutouts in Heisenberg group

THEOREM 4·3. Almost surely, conditional on μ 
= 0:

(i) if β > 2, the push-forward measure πμ is absolutely continuous and π(E) has non-
empty interior;

(ii) if β ≤ 2, dim(πμ) = dimH(π(E)) = β.

Remark 4·4. The first results concerning the projections of random sets were obtained by
Falconer [7], and Falconer and Grimmett [8]. According to these results, the vertical pro-
jection of a random Cantor set E ⊂R

2 has Hausdorff dimension min{1, dimH(E)}, and
nonempty interior if dimH(E) > 1. The Theorem 4·3 can be considered an analogue of this
classical result in the Heisenberg setting.

Before proving Theorem 4·3, let us state the main geometric ingredient of the proof. For
any u ∈H/Z , let ηu be the 2-dimensional Hausdorff measure on π−1(u), ηu = H2|π−1(u);
the reader may check that ηu is equal to the usual Lebesgue measure on the affine line
Lu = π−1(u).

LEMMA 4·5. There is a constant 0 < C < ∞ such that for all 0 < r ≤ 1 and all u, v ∈
H/Z,

|ηu(B(0, r)) − ηv(B(0, r))| ≤ C |u − v| 1
2 . (4·1)

Proof. By definition,

B(0, r) = {(z, t) ∈H : |z|4 + 4t2 ≤ r 4} ,

and a straightforward computation (using the fact that ηu is the Lebesgue measure on π−1(u),
and assertion (ii) in Lemma 4·1) gives

H2(Lu ∩ B(0, r)) =
{

c1

√
r 4 − |u|4 if |u| ≤ r

0 otherwise
,
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(where c1 is some constant) which after a simple computation leads to the estimate

H2(Lu ∩ B) − H2(Lv ∩ B)| ≤ c2

√|u − v| .

(Here we are ignoring the term
√

r since r ≤ 1, and c2 is some fixed constant.)

Proof of Theorem 4·3. We wish to apply Theorem 3·2 to the SI-martingale (μn)n , 
 =H/Z
(endowed with the quotient metric) with κ = 2 and γ = 4 − β.

Then, the only non-trivial hypothesis is (A4) and we will verify this using Lemma 4·5.
Let u, v ∈H/Z . Identifying H/Z with C and u, v with (u, 0), (v, 0), we consider u, v also
as elements of H if necessary. Moreover, we use the notation ηy for ηπ(y), for any y ∈H. We
will show that for all x ∈H, 0 < r ≤ 1,

ηv

(
B(x, r) \ vu−1 B(x, r)

)≤ C |u − v|1/2 , (4·2)

for some constant 0 < C < ∞.
To that end, denote x = (w, p). Since the map y �→ x−1 y is a Heisenberg isometry and it

maps vertical lines onto vertical lines, we have

ηv

(
B(x, r) \ vu−1 B(x, r)

)= ηx−1v

(
B(0, r) \ x−1vu−1 B(x, r)

)
= ηx−1v (B(0, r) \ zB(0, r)) ,

where z = x−1vu−1x . A simple calculation implies that z = (a, b), where |a|, |b| ≤ C |u −
v|. Thus, the map y �→ zy, π−1(u) → π−1(v) has the form

z(u, s) = (v, s + ε) ,

where ε ≤ C |u − v|. It follows that π−1(x−1v) ∩ zB(0, r) is a Euclidean translate of the line
segment π−1(x−1u) ∩ B(0, r) tilted in the horizontal direction by (a Euclidean distance) at
most C |u − v|. Since ηx−1v is the Lebesgue measure on the line π−1(π(x−1v)), it follows that

ηx−1v (B(0, r) \ zB(0, r)) ≤ ε + |ηx−1v (B(0, r)) − ηx−1u (B(0, r)) | ≤ C |u − v| 1
2 ,

using Lemma 4·5 and the fact ε ≤ |u − v| ≤ |u − v| 1
2 .

To show that (4·2) implies (A4) we adapt the proof of [18, proposition 6·1] to the current
situation. We first note that if Nn denotes the number of Poisson cut-out balls with radius
> 2−n (i.e. those (xi , ri ) ∈Y for which, ri > 2−n), then almost surely, there is a random
integer M0 such that Nn ≤ 25n for all n ≥ M0. See [18, lemma 5·15] for a proof of this fact.
(Here 5 may be replaced by any number > 4).

Next, let us consider a union
⋃N

i=1 Bi ⊂H of N balls. Denote

Ci = (Bi ∩ �) \ vu−1(Bi ∩ �) ,

Di = vu−1(Bi ∩ �) \ (Bi ∩ �) ,

A =
N⋃

i=1

(Bi ∩ �) ∩ vu−1(Bi ∩ �)
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and further decompose

ηv(� \ ∪N
i=1 Bi ) = ηv(�) − ηv (A) − ηv

(∪N
i=1Ci \ A

)
,

ηu(� \ ∪N
i=1 Bi ) = ηv(vu−1(� \ ∪N

i=1 Bi )) = ηv(vu−1(�)) − ηv (A) − ηv

(∪N
i=1 Di \ A

)
,

ηv(�) − ηv(vu−1�) = ηv

(
� \ vu−1(�)

)− ηv

(
vu−1(�) \ �

)
.

Applying these for the cut-out balls with ri > 2−n , this allows us to estimate

2−γ n

∣∣∣∣∫ μn dηv −
∫

μn dηu

∣∣∣∣= ∣∣∣ηv(� \ ∪Nn
i=1 Bi ) − ηu(� \ ∪Nn

i=1 Bi )

∣∣∣
≤ ηv(� \ vu−1(�)) + ηv(vu−1(�) \ �) +

Nn∑
i=1

(ηv(Ci) + ηv(Di)) .

Recalling (4·2) and that Nn ≤ 25n , this implies∣∣∣∣∫ μn dηv −
∫

μn dηu

∣∣∣∣≤ C2(5+γ )n|u − v|1/2 ,

for all n ≥ M0. That is, (A4) holds with γ0 = 1/2, θ0 = 5 + γ .
Now that we have Theorem 3·2 at our disposal, we finish the proof by applying Lemma

3·4 or Lemma 3·5 according as β > 2 or β ≤ 2. If β > 2 (that is, γ < 2), Lemma 3·4 implies
directly that πμ is absolutely continuous and that π(E) has non-empty interior.

If β ≤ 2 (i.e. γ ≥ 2), we know that the assumption (3·5) of Lemma 3·5 holds for all θ >

2 − β, but it still remains to verify (3·5). We use Lemma 3·6 as follows: Fix δ > 0 and
denote θ = 2 − β + δ. Given n ∈N, consider a 2−n-dense family Dn ⊂ π(�) ⊂H/Z with
cardinality at most C22n . Lemma 3·6 applied to each Z = π−1(B(t, 2−n)), t ∈Dn (with � =
β − δ) gives

P

(
πμ(B(t, 2−n)) > 4

(
πμn(B(t, 2−n)) + 2n(δ−β)

)
for some t ∈Dn

)
≤ C22n exp

(−c2nδ
)

.

Thus,
∞∑

n=1

P
(
πμ(B(t, 2−n)) > 4

(
πμn(B(t, 2−n)) + 2n(δ−β)

)
for some t ∈Dn

)
< ∞

and by the Borel–Cantelli lemma, almost surely, there exists N0 ∈N such that

πμ(B(t, 2−n)) ≤ 4
(
μn(B(t, 2−n)) + 2n(δ−β)

)
for all t ∈Dn, n ≥ N0 .

Replacing 4 by (a random) constant M < ∞, the above remains true also for 1 ≤ n < N0.
Lemma 3·5 now implies that dimH E ≥ dim(π(μ)) ≥ β − δ and letting δ ↓ 0 completes the
proof. Recall that π is locally Lipschitz, so that it cannot increase the dimension of E nor μ.

4·4. Dimension of random Heisenberg cutouts with respect to the Euclidean metric

Consider the continuous piecewise linear function φ : [0, 4] → [0, 3]

φ(β) =
{

β if β ≤ 2,

2 + 1
2 (β − 2) if β > 2.
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It is a general fact (see [2]) that for any Borel subset A ⊂H, if we let β (resp. α) be the
Hausdorff dimension of A with respect to the Heisenberg (resp. Euclidean) metric, then

α ≤ φ(β). (4·3)

Our next Theorem states that for Heisenberg Poisson cut-outs, this is an equality with
positive probability.

We fix γ ∈]0, 4[ and consider a random Heisenberg cut-out E of parameter γ as in the
previous section. Let also μ be the cut-out measure and, as before, β = 4 − γ . Conditional
on μ 
= 0, β is almost surely equal to the Hausdorff dimension of E and μ (with respect to
the Heisenberg metric).

THEOREM 4·6. With positive probability, the Hausdorff dimension of E with respect to
the Euclidean metric, dimEucl

H (E), is given by

dimEucl
H (E) =

{
β if β ≤ 2,

2 + 1
2 (β − 2) if β > 2.

We first prove the following:

LEMMA 4·7. If β > 2 and μ 
= 0, then with positive probability, dimHeis
H (Lu ∩ E) ≥ β − 2

for (Lebesgue) positively many u ∈R
2.

Recall that Lu is the vertical line π−1(u) for u ∈H/Z �R
2.

Proof. Fix u ∈R
2. The restricted sequence μn|Lu is clearly an SI-martingale on Lu (recall

the definition of μn , (2·5)). Furthermore, denoting

νn = μnηu = 2(4−β)nηu|En ,

a standard calculation using the second moment method implies that for any ε > 0,

E

(
lim sup

n→∞

∫ ∫
d(x, y)2−β+ε dνn dνn

)
< ∞ ,

see e.g. [13, lemma 2·3]. Thus, if ν is a weak*-limit of the sequence νn , then almost surely,∫ ∫
d(x, y)−t dν dν < ∞

for all t < β − 2. Thus, dimHeis
H (E ∩ Lu) ≥ dimH ν ≥ 2 − β almost surely, provided ν 
= 0.

Note that the total mass of ν equals the random variable X (u) from Theorem 3·2. Since
P(X (u) > 0) > 0 for all u ∈ B◦(0, 1), Fubini’s theorem yields

P×L {(E, u) : dimHeis
H (E ∩ Lu) ≥ 2 − β

}=
∫

P
(
dimHeis

H (E ∩ Lu) ≥ 2 − β
)

du

≥
∫

P(X (u) > 0) du

> 0,
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(where L is the Lebesgue measure on H/Z �R
2). Thus

L{u : dimHeis
H (E ∩ Lu) ≥ 2 − β} > 0

with positive probability.

Remark 4·8. Although we will not use it, we note that Lemma 4·7 actually holds in a
much stronger form: Almost surely, dimHeis

H (E ∩ Lu) = β − 2 for all u ∈R
2 with X (u) > 0,

in particular for an open set of u ∈R
2, provided μ 
= 0. This stronger form of dimension

conservation may be derived using similar arguments as in [18, theorem 12·1].

Proof of Theorem 4·6. Assume first that β ≤ 2. If μ 
= 0, we know by Theorem 4·3 that
almost surely, the projection π(E) has Hausdorff dimension β; since the quotient map-
ping π :H→H/Z identifies with the projection mapping π :C×R→R, and the latter is
Lipschitz, we deduce that

dimEucl
H (E) ≥ dimH(π(E)) = β

and the converse inequality is true because it is always true that dimEucl
H (E) ≤ dimHeis

H (E),
recall Lemma 4·1, and dimHeis

H (E) is almost surely ≤ β (Proposition 2·1).
Now assume that β > 2. Suppose that dimH (E ∩ Lu) ≥ β − 2 for positively many u ∈

H/Z . By Lemma 4·7, this is an event of positive probability.
We are going to show that dimEucl

H (E) ≥ 1 + β/2. We argue by contradiction and assume
that for some t < 1 + β/2, the t-dimensional Hausdorff measure of E with respect to the
Euclidean metric,

Ht
Eucl(E)

is finite. By [12, theorem 7·7], we deduce that for Lebesgue-almost all u ∈R
2,

Ht−2
Eucl(E ∩ Lu) < ∞,

(where Lu is still the vertical line {u} ×R). Hence, by Lemma 4·1 (ii),

H2t−4
Heis (E ∩ Lu) < ∞

for almost all u, which contradicts the fact that dimHeis
H (E ∩ Lu) = β − 2 > 2t − 4 for

positively many u by Lemma 4·7.

Remark 4·9. Other families of fractals that enjoy equality in equation (4·3) can be found in
[2] (“horizontal fractals”) and [5] (limit sets of Schottky groups in “good position” at the
boundary of the complex hyperbolic plane).

We note that our result also provides an alternative to [2, theorem 1·7]: for any β ∈]0, 4[,
we construct a “natural” example of a bounded Borel subset A of H with Hausdorff dimen-
sion β with respect to the Heisenberg, such that the Euclidean Hausdorff dimension of A is
equal to φ(β).

5. Projections of Poisson cut-outs in S3

This is the main section of the paper. In the first Subsection, 5·1 we introduce the
Euclidean metric dE on P

2
C

and S3 as well as the visual metric d on S3. In Subsection 5·2 we
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define chains and state some useful Lemmas. In Subsection 5·3 we look at the radial projec-
tion along chains passing through a given point of S3. In Subsection 5·4 we show that the
metric dE on the space of chains passing through a given point x is comparable, away from
x , to the Hausdorff distance between these chains seen as subsets of S3. In Subsections 5·5
and 5·7 we state and prove our main result (Theorem B from the Introduction). In Subsection
5·6 we recall why S3, endowed with the visual distance, can be seen as the compactification
of H, and how the disintegration, along chains passing through a point x , of the Lebesgue
measure on S3, is comparable to the 2-dimensional Hausdorff measure on these chains. The
last paragraph Subsection 5·8 is devoted to a Hölder estimate for the measure of chains
intersected with a small annulus.

5·1. The 3-sphere and its metrics

We endow C
3 with two non-degenerate Hermitian forms: for u = (u0, u1, u2) and

v = (v0, v1, v2) in C
3, let

u · v =
2∑

i=0

uivi and 〈u, v〉 = u0v0 − u1v1 − u2v2.

Note that u · v is the usual inner Hermitian product of u and v. The Euclidean norm of u is
‖u‖ = √

u · u. We denote by q the quadratic form associated to 〈·, ·〉, i.e. q(u) = 〈u, u〉. The
group of unimodular q-isometries SU(1, 2) is denoted by G.

For any non-zero w ∈C
3, we denote by w⊥ the set of all u ∈C

3 such that 〈u, w〉 = 0.
It is a general fact (see [3, section 1·9]) that if E is a finite-dimensional complex vec-

tor space endowed with a non-degenerate Hermitian form �, then for any k ≥ 1 there is a
canonical extension of � to the exterior product

∧k E , denoted by
∧k

�, such that

k∧
�(u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk) = det(�(ui , v j )),

where the right-hand side is the usual determinant of the k × k matrix whose (i, j)-
coefficient is �(ui , v j ).

In this paper we will mostly consider the extension of the inner Hermitian product to∧2
C

3, defined by the relation

(u ∧ v) · (u′ ∧ v′) =
∣∣∣∣u · u′ u · v′

v · u′ v · v′

∣∣∣∣
and the corresponding Euclidean norm will be denoted by ‖u ∧ v‖; it is characterised by the
fact that ‖u ∧ v‖ = ‖u‖ · ‖v‖ if and only if u · v = 0.

Let P2
C

be the complex projective plane,

P
2
C

= {[x0 : x1 : x2] ; (x0, x1, x2) ∈C
3 \ {0}},

where [x0 : x1 : x2] are the usual homogenous coordinates of (x0, x1, x2), so that [x0 : x1 :
x2] = [λx0 : λx1 : λx2] for any λ 
= 0. We will often use the same notation for elements of P2

C

and arbitrary lifts in C
3 \ {0}, and the letters u, v, w, x, y, z may denote at the same time a

non-zero vector in C
3 or the corresponding point of P2

C
. Likewise, we will usually denote by

w⊥ the complex projective line that is the image of w⊥ \ {0} in P
2
C

.
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We endow P
2
C

with the metric defined by

dE(u, v) = ‖u ∧ v‖
‖u‖ · ‖v‖ . (5·1)

Let us recall why dE satisfies the triangle inequality. When v lies in the plane spanned by
u and w this is easy to check; otherwise, let v′ be the orthogonal projection of v onto that
plane (with respect to the Hermitian inner product); it follows from the definition of dE (and
the obvious inequality ‖v′‖ ≤ ‖v‖) that

dE(u, v′) ≤ dE(u, v)

and likewise with w instead of u; we thus have

dE(u, w) ≤ dE(u, v′) + dE(v′, w) ≤ dE(u, v) + dE(v, w)

which is the triangle inequality.
The definition of dE above is equivalent to

dE(u, v)2 = 1 − |u · v|2
‖u‖2 · ‖v‖2

(5·2)

which shows that dE is the sinus of the angle metric. It is therefore biLipschitz equivalent to
the usual Riemannian metric on P

2
C

.
In P

2
C

we consider the 3-sphere

S3 = {[1 : x1 : x2] ∈ P
2
C

; |x1|2 + |x2|2 = 1} = {u ∈ P
2
C

; q(u) = 0}.
On S3 the restriction of dE is biLipschitz-equivalent to the usual Euclidean metric, but we

are more interested in the visual metric d which we now define:

d(u, v) =
√

|〈u, v〉|
‖u‖ · ‖v‖ (5·3)

for any u, v ∈ S3. If S3 is viewed as the boundary of the complex hyperbolic plane H
2
C

, then
d is the visual metric associated to the hyperbolic metric on H

2
C

. See e.g. [14]. Note that if
S3 was identified with the boundary of the real hyperbolic 4-space, the corresponding visual
metric would be biLipschitz-equivalent to dE .

Balls of S3 with respect to d will be denoted by B(x, r) for x ∈ S3 and r > 0. Such a ball
will sometime be called a “visual ball”.

Let H be the usual Lebesgue measure on S3. One may check (Lemma 5·16) that if f (r)

is the measure of a visual ball of radius r , then

lim
r↓0

f (r)

r 4
= a ,

for some 0 < a < ∞.
For convenience, we normalise H such that a = 1. Note that the measure of a Euclidean

ball of radius r is equal, up to some multiplicative constant, to r 3 for any r small enough.
In the next Lemma we state some easy facts which we will use freely. Recall that G =

SU(1, 2) acts on S3 (because it preserves q). For g ∈ G, we denote by ||g|| the usual operator
norm of g.
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LEMMA 5·1. In S3 endowed with the visual metric d:

(i) For any u, v ∈ S3,

d(u, v)2 ≤ dE(u, v)� d(u, v);

(ii) For any u, v ∈ S3 and g ∈ G,

d(gu, gv) = d(u, v)

√
‖u‖
‖gu‖

‖v‖
‖gv‖

and

d(gu, gv)

d(u, v)
≤ 1 + ‖Id − g−1‖; (5·4)

(iii) For any x ∈ S3, and g ∈ G,

d(x, gx) ≤√‖Id − g‖ · ‖g−1‖; (5·5)

(iv) For g ∈ G, x ∈ S3 and r > 0,

gB(x, r) ⊂ B
(

x, r +
√

‖Id − g‖ · ‖g−1‖
)

. (5·6)

Proof. Statement (i) is verified by an elementary computation that we omit. First part of
statement (ii) follows from the definition of d, see (5·3), and implies the second part. Let
us prove statement (iii) briefly; because x belongs to S3, we have 〈x, x〉 = 0 so |〈x, gx〉| =
|〈x, gx − x〉| ≤ ‖x‖‖x − gx‖. Hence

d(x, gx) ≤
√

‖x‖2‖Id − g‖
‖x‖‖gx‖ ≤

√
‖I d − g‖ · ‖g−1‖

where we used the fact that ‖x‖ ≤ ‖g−1‖ · ‖gx‖. Finally, (iv) follows from (iii) and the
triangle inequality.

5·2. Chains

Definition 2. If L ⊂ P
2
C

is a (complex) projective line which meets S3 in more than one
point, we say that the intersection

L ∩ S3

is a chain.

If follows from the definition that through two points of S3 there passes one and only one
chain. Chains are not geodesics, though, and the reader should not think that they minimize
length in any way.

If x is a fixed point of S3, the family of all chains passing through x yields a foliation
of S3 \ {x}, the leaves of which are of the form L \ {x}, where L is a chain passing through
x . We will shortly (see 5·3) provide an explicit family of projections (πx)x∈S3 such that the
fibres of πx are the chains passing through x (with x removed) and πx , restricted to any
compact subset of S3 \ {x}, is a Lipschitz mapping into S2 (with one point removed).
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Remark 5·2. At this point, it is perhaps useful to draw the reader’s attention to the fact
that in the Euclidean sphere S3 with a fixed point x , the family of all small circles (in the
usual sense) passing through x does not yield a foliation of S3 \ {x}, because a single point
y belongs to several (indeed, infinitely many) small circles passing through x . In order to
obtain a foliation, one would have to fix both a point x and a direction in the 3-dimensional
space tangent to S3 at x .

The chains we are considering are very special “small circles”: they are the small cir-
cles which are the boundaries of totally geodesic submanifolds of the complex hyperbolic
space H2

C
of curvature −4 (assuming the complex hyperbolic metric is normalized to have

curvature between −4 and −1).
A crucial property of chains is that they are Ahlfors-regular of dimension 2 with respect

to the restriction of the visual metric. See Lemma 5·6 and the discussion thereafter.

It is easy to check that any chain is of the form w⊥ ∩ S3, where w ∈C
3 \ {0} is such that

q(w) < 0, and the projective class of w is uniquely defined. We will denote by LC the space
of all chains; LC identifies with the space of all w ∈ P

2
C

such that q(w) < 0 (where we denote
by w both an element of P2

C
and some lift of this element in C

3):

LC = {w ∈ P
2
C

; q(w) < 0}.
This space will be endowed with the restriction of dE. We will use the letter L to denote a
chain. The chain w⊥ ∩ S3, where w ∈LC, will be denoted by Lw.

LEMMA 5·3. Let K be a compact set of chains, i.e. a compact subset of LC. Then for any
fixed chain w0 ∈LC, there is a compact subset K of G such that K= K · w0.

Proof. The operation of G on LC is transitive (because of Witt’s transitivity Theorem, see
e.g. [3, section 4·3]) and smooth. Let H be the stabiliser of w0 in G; then the quotient G/H
is homeomorphic to LC (because G is a Lie group); and any compact subset of this quotient
space can be lifted to a compact subset of G. Indeed let y be some point of G/H and fix a
lift x of y in G; there is a compact neighbourhood V of x in G and the image of V in G/H
is a neighbourhood of y (because the mapping G → G/H is open) that is also compact.
Hence we have found a compact lift of a small compact neighbourhood of y. Using the
local compactness of G/H we see that any of its compact subsets can indeed be lifted to a
compact subset of G. Hence the Lemma.

The previous Lemma will allow us to prove metric estimate for compact sets of chains
by considering a fixed chain, carrying out explicit computations, and then using Lemma 5·1
to move the chain around using elements g in a compact subset of G, only losing some
bounded multiplicative constants in the process.

We will also need the following more precise version:

LEMMA 5·4. Fix a chain L0 ∈LC. There is a neighbourhood U of L0 in LC such that
for any L ∈U there is g ∈ G mapping L0 onto L and satisfying ‖Id − g‖ 	 dE(L0, L) 	
‖Id − g−1‖.

Proof. As before, let H be the stabiliser of L0 in G; the homeomorphism φ : G/H →LC,
considered in the proof of the previous Lemma, is locally biLipschitz when G/H is endowed
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with the usual Riemannian metric, that is the quotient, by H , of the right-invariant Lie group
metric on G.

Fix a neigbourhood U of L0 where the restriction of φ−1 is biLipschitz, and small enough
that there is a smooth section σ : φ−1(U) → G that maps the image of Id in G/H to Id.
Recall that smooth sections exist locally because G is a Lie group and H is closed.

Then σ ◦ φ−1 is a biLipschitz mapping from U onto its image. If L belongs to U and
g = σ ◦ φ−1(L), then L = gL0 by definition of σ and φ, and ‖Id − g‖ 	 d(L , L0) because
the operator norm is locally Lipschitz equivalent to the right-invariant Lie group metric of G.

5·3. Radial projection along chains

To any x ∈ S3 we are going to associate a projection mapping from S3 \ {x} into the
Euclidean 2-sphere:

πx : S3 \ {x} −→ S2

If we call x the “direction” of the projection, we can then study Hausdorff dimension of
projections in some direction, in almost every direction, or in every direction.

Let x ∈ S3. The orthogonal x⊥ (in P
2
C

) is a complex projective line tangent to S3 at x . For
any y ∈ S3 distinct from x , the projective lines y⊥ and x⊥ have a single intersection point,
which belongs to LC (i.e. if u is a lift of this element to C

3, then q(u) < 0).
Let πx(y) be this intersection point. Then πx(y)⊥ ∩ S3 is the chain passing through x and

y. Although x and y play symmetric roles (so that πx(y) is actually equal to πy(x)), our
notation emphasises the fact that we see πx(y) as an element of the projective line x⊥. This
is, by definition, the projection of y in the “direction” of x . Note that

πx : S3 \ {x} −→ x⊥ \ {x}
is onto and the fibres of this mapping are the chains passing through x ; this is, of course the
main point here: the geometric structure we are interested in is the family of foliations of S3

by chains, and projection mappings are but a tool to study the geometry of our cut-out sets
with respect to these foliations.

The codomain x⊥ \ {x} is endowed with the restriction of dE. Note that x⊥ is a complex
projective line, so that we have indeed defined a mapping from S3 \ {x} onto a Euclidean
2-sphere with one point removed.

LEMMA 5·5. The restriction of πx to any compact subset of S3 \ {x} is Lipschitz when S3

is endowed with the restriction of either d or dE.

Proof. For dE, this is proved in [6, proposition 1]. Recalling Lemma 5·1 (i), this holds also
for the visual metric d.

We will need the following:

LEMMA 5·6. Let x, y be in S3, x 
= y, and consider πx(y) as an element of C3. Then

〈πx(y), πx(y)〉
‖πx(y)‖2

= − |〈x, y〉|2
‖x ∧ y‖2

.
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Note that the left-hand side is well-defined and equal to 〈w, w〉/‖w‖2 for any representative
w of πx(y) in C

3.
In this Lemma, the left-hand side depends only on the complex projective line passing

through x and y; in particular, if L is a fixed chain, then for any distinct x, y ∈ L the number

|〈x, y〉|2
‖x ∧ y‖2

depends only on L . This is a quantitative version of the fact that along chains, d2
E is

comparable to d.

Proof. Consider the mapping κ :∧2
C

3 →C
3 defined by the relation

〈κ(u ∧ v), w〉e0 ∧ e1 ∧ e2 = u ∧ v ∧ w

for any u, v, w ∈C
3, where (e0, e1, e2) is the canonical basis of C3. It is easy to check that

κ is an isometry when C
3 is endowed with either 〈·, ·〉 or the Hermitian inner product, and∧2

C
3 is endowed with the corresponding extension.

Also, by definition κ(u ∧ v) is a representative, in C
3, of πx(y) if u (resp. v) is a

representative of x (resp. y). We thus have

〈πx(y), πx(y)〉
‖x ∧ y‖2

= 〈κ(x ∧ y), κ(x ∧ y)〉
‖κ(x ∧ y)‖2

and this proves the Lemma because using the relations q(x) = q(y) = 0 one sees that 〈x ∧
y, x ∧ y〉 = −|〈x, y〉|2.

5·4. Metric inequalities

LEMMA 5·7. Let K be a compact set of chains. For any L ∈K, let ηL be the 2-
dimensional Hausdorff measure with respect to the restriction d|L. Then uniformly in L ∈K,

ηL(B(x, r))� r 2

for any x ∈ S3 and r > 0.

Proof. If L satisfies the conclusion of the Lemma (for any x and r ), and g belongs to some
compact subset of G, then gL also satisfies the conclusion of the Lemma, with a new con-
stant that depends continuously on g. Indeed, g yields a biLipschitz mapping from L to
gL , see Lemma 5·1 (ii); the 2-dimensional Hausdorff measure on gL is thus equivalent
to the push-forward, through g, of the 2-dimensional Hausdorff measure on L , and the
Radon–Nikodym density is bounded.

Now if L is the chain orthogonal to, e.g., w = [0 : 0 : 1], an easy computation shows
that indeed ηL(B(x, r))� r 2 for any x ∈ S3 and r > 0. Hence the Lemma follows from an
application of Lemma 5·3.

LEMMA 5·8. Fix a compact subset K of LC. For w ∈K such that q(w) < 0 we denote by
Lw the corresponding chain, i.e. Lw = w⊥ ∩ S3.

The following holds uniformly in x ∈ S3 and w ∈K:

d(x, Lw) 	 dE(x, Lw) 	 dE(x, w⊥) = |〈x, w〉|
‖x‖ · ‖w‖ . (5·7)
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Here, d(x, Lw) is the visual distance from x to Lw, that is,

d(x, Lw) = inf
y∈Lw

d(x, y) .

Likewise dE(x, Lw) is the corresponding Euclidean distance (the same quantity, where
dE(x, y) is replaced by d(x, y)) and dE(x, w⊥) is the Euclidean distance from x
to w⊥ in P

2
C

.
The content of this lemma is two-fold: first, d and dE are comparable transversally to

chains (compare to Lemma (4·1) (i)); second, this transversal distance is given by the simple
formula above.

Proof. Fix w ∈C
3 such that q(w) < 0. For any x ∈ P

2
C

, the formula

dE(x, w⊥) = |〈x, w〉|
‖x‖ · ‖w‖

is wellknown and easy to check. Also, the inequality dE(x, Lw) ≥ dE(x, w⊥) is obvious.
Now fix w0 = [0 : 0 : 1] and let x be some element of S3. A simple calculation shows that

dE(x, Lw0)� dE(x, w⊥
0 ). If g is some element of SU(1, 2) and we denote by w the image

gw0, then we have, for any x ∈ S3,

dE(x, Lw)� dE(g−1x, Lw0)� dE(g−1x, w⊥
0 )� dE(x, gw⊥

0 ) = dE(x, w⊥),

where the constants depend on the operator norms of g and g−1.
If K is a fixed compact subset of LC, there is a compact subset K of G such that K=

K · w0. The previous argument then gives

dE(x, Lw)�K dE(x, w⊥),

for any x ∈ S3 and w ∈K.
Similarly, one can check that for any x ∈ S3, d(x, Lw0)� dE(x, Lw0) and then for g ∈ G,

d(x, Lgw0)� d(g−1x, Lw0)� dE(g−1x, Lw0)� dE(x, Lw),

where the constants depend on the operator norms of g and g−1, and we argue as before.

LEMMA 5·9. Let K1, K2 be non-empty disjoint compact subsets of S3. For any x ∈ K1,
y ∈ K2 and any chain Lw (w ∈LC) passing through x and K2,

dE(πx(y), w) 	 d(y, Lw) .

Proof. Let K ⊂ S3 be a compact set such that K ∩ K1 =∅ and the δ-neighbourhood
K2(δ) = ∪u∈K2 B(u, δ) ⊂ K for some δ > 0. Recall that the restriction of πx to K is Lipschitz,
with a uniform Lipschitz constant when x ∈ K1, when K is endowed with the restriction of
(the Euclidean or) the visual metric. This yields at once the inequality

dE(πx(y), w)� d(y, Lw ∩ K ) .

Because K1 and K2 are disjoint (and y belongs to K2), the right-hand side is comparable
to d(y, Lw). Hence, we obtain dE(πx(y), w)� d(y, Lw) and what is left is to prove the
converse inequality.
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Recalling Lemma 5·8, it suffices to prove that

|〈y, w〉|
‖y‖‖w‖ � ‖w ∧ πx(y)‖

‖w‖‖πx(y)‖ . (5·8)

First, remark that the exterior product
∧3

C
3 is a complex line; it is readily checked that

the canonical extension of 〈·, ·〉 to this complex line is equal to the extension of the Hermitian
inner product. We thus have

‖w ∧ πx(y) ∧ y‖2 = 〈w ∧ πx(y) ∧ y, w ∧ πx(y) ∧ y〉

=
∣∣∣∣∣∣

〈w, w〉 〈w, πx(y)〉 〈w, y〉
〈πx(y), w〉 〈πx(y), πx(y)〉 〈πx(y), y〉

〈y, w〉 〈y, πx(y)〉 〈y, y〉

∣∣∣∣∣∣ .

By definition, y is orthogonal to πx(y) and to y itself, from this, it follows at once that the
above determinant is equal to

−|〈w, y〉|2 × 〈πx(y), πx(y)〉.
Now use the fact (Lemma 5·6) that

〈πx(y), πx(y)〉 = −‖πx(y)‖2 × |〈x, y〉|2
‖x ∧ y‖2

.

All in all, we thus have

‖w ∧ πx(y) ∧ y‖ = ‖πx(y)‖ × |〈w, y〉| × |〈x, y〉|
‖x ∧ y‖ .

We can now prove inequality (5·8). The above computations yields

‖w ∧ πx(y) ∧ y‖
‖w‖‖πx(y)‖‖y‖ = |〈w, y〉|

‖w‖‖y‖ × d(x, y)2

dE(x, y)

and for x ∈ K1, y ∈ K2 the distance d(x, y) is uniformly bounded below by some positive
constant, while dE(x, y) is bounded above by 1. We thus have

‖w ∧ πx(y) ∧ y‖
‖w‖‖πx(y)‖‖y‖ � |〈w, y〉|

‖w‖‖y‖
and the left-hand side is bounded above by dE(w, πx(y)) because, for any u1, u2, u3 ∈C

3,
one has

‖u1 ∧ u2 ∧ u3‖ ≤ ‖u1‖ × ‖u2 ∧ u3‖
and this finishes the proof.

COROLLARY 5·10. Let K1, K2 be non-empty disjoint compact subsets of S3 and let K be a
compact set such that K ∩ K1 =∅ and K2(δ) ⊂ K . For any x ∈ K1 and any u, v ∈LC such
that Lu and Lv both pass through x and K2,

dE(u, v) 	 d(Lu ∩ K , Lv ∩ K ),
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where the right-hand side denotes the Hausdorff distance between the Lu ∩ K and Lv ∩ K ,
with respect to either the visual or the Euclidean metric.

Recall that if A, B are closed subsets of some metric space X , the Hausdorff distance
d(A, B) is the number

max{θ(A, B), θ(B, A)},
where

θ(A, B) = sup
x∈A

d(x, B) .

Proof. The previous Lemma (recall (5·4)) shows that if u, v are as in the statement of the
Corollary, then for any y ∈ Lu ∩ K2,

d(y, Lv ∩ K ) 	 dE(u, v)

and in particular the supremum, for y ∈ Lu ∩ K , of the left-hand side, is comparable to
dE(u, v). With the notation above, we thus have

θ(Lu ∩ K , Lv ∩ K ) 	 dE(u, v)

and the corollary follows from this.

The content of the above results should be clear: it is a generalisation of the fact that
in Heisenberg group, the Hausdorff distance between two vertical chains is the same when
computed with respect to either the Euclidean or the Heisenberg metric, and it is also equal
(by definition) to the distance between the images of these vertical chains in the quotient
space H/Z . We are now replacing the vertical projection with the radial projection with
respect to any point, simply losing some multiplicative constants in the process.

The following lemma will be needed in the course of the proof of Lemma 5·18.

LEMMA 5·11. Let B, V be non-empty disjoint compact subsets of S3. There is a constant
C > 0 such that the following holds: for any x, x ′ ∈ B, any chains Lu, Lu′ passing through
x, x ′ respectively and also meeting V , and for any r > 0,

π−1
x (B(u, r)) ∩ V ⊂ π−1

x ′ (B(u′, C(r + dE(u, u′)))) .

Proof. Note that u ∈ x⊥ and u′ ∈ x ′⊥. The claim follows from the previous results along with
the triangle inequality for the Hausdorff metric. Let V ′ be a compact set disjoint form B such
that it contains the δ-neighbourhood V (δ) for some δ > 0. Then, we know from Corollary
5·10 that d(Lu ∩ V ′, Lu′ ∩ V ′) is comparable to dE(u, u′). Thus, for all y ∈ π−1

x (B(u, r)) ∩
V , the triangle inequality along with Lemma 5·9, (5·4), and Corollary 5·10 yields

dE(πx ′(y), u′) 	 d(y, Lu′ ∩ V ′) ≤ d(y, Lu ∩ V ′) + d(Lu ∩ V ′, Lu′ ∩ V ′)

	 dE(πx(y), u) + dE(u, u′) ≤ r + dE(u, u′)

and this is equivalent to the required inclusion.
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5·5. Statement of the main result

Just like in the previous section, we can define random Poisson cut-outs in S3 with respect
to the visual metric. We obtain a random cut-out set E and a random finite Borel measure
μ, supported on E , and non-zero with positive probability.

Let γ be the intensity parameter of the cut-out as in Section 2. Conditional on μ 
= 0, we
know that, almost surely, dimH(E) = 4 − γ and, also, μ has exact dimension 4 − γ .

Our main Theorem deals with the behaviour of the cut-out set with respect to radial
projections along chains in every “direction”, i.e. along πx for every x ∈ S3. This extends
the corresponding results for projections of Euclidean cut-out sets along every orthogonal
projection [18].

THEOREM 5·12. Let E be a random Poisson cut-out set in S3 and let μ be the cut-out
measure.

Let β be the Hausdorff dimension of E (with respect to the visual metric). Then, almost
surely on μ 
= 0, the following holds: For every x ∈ S3,

dimH(πx(E \ {x})) = dim(πxμ) = inf{2, β} (5·9)

and, if β > 2, πx(μ) is absolutely continuous and πx(E \ {x}) has non-empty interior.

Remark 5·13. As explained in the introduction to this paper, it is not true that if A is a Borel
subset of S3 of Hausdorff dimension β with respect to the visual metric, and if we pick x at
random with respect to the Lebesgue measure on H, then the image πx(A) has almost surely
Hausdorff dimension inf{2, β}.

For instance, any chain L ⊂ S3 has (visual) Hausdorff dimension 2, but all of its radial
projections πx(L) are smooth curves (or singletons if x ∈ L) so their dimension is ≤ 1.

However, in the special case when α, the Hausdorff dimension of A with respect to the
Euclidean metric, is given by

α = φ(β),

(where φ is as in (4·4)), it is true that πx(A) has Hausdorff dimension inf{2, β} for almost all
x ; this follows at once from [6, theorem 5]. Theorem 5·12 shows that for Poisson cut-outs,
we have a much stronger result: We can replace “almost all x ∈ S3”, by “all x ∈ S3”.

At first, it might look surprising that the result holds for all directions since typically
Marstrand type results allow a small negligible set of exceptional “directions". Heuristically,
the random placement of the cut-out balls implies that all directions are typical. We note
that also for many deterministic fractals, it is predicted that unless there are strong structural
reasons (such as exact overlap), there should be no exceptional directions. We refer to [16,
20] for recent results and more background in the deterministic setting.

Theorem 5·12 will be proved in Section 5·7 using Theorem 3·2. For now, let us make some
general remarks about the method. For any fixed chain Lu , the SI-martingale properties of
μn allows to control the sequence

∫
Lu

μn d H2 and the size of the intersection E ∩ Lu . Here,
the geometry is not that important. We use the stochastic homogeneity of the governing
Poisson point process and the fact that the chains are (locally) Ahlfors regular of dimension
2, although somewhat less would suffice. Whence, for a fixed chain, we almost surely, have
good control on the intersections Lu ∩ E via estimating

∫
Lu

μn d H2 for all n ∈N. However,
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in order to draw the conclusion for all projections, we need to control these intersections uni-
formly over all chains Lu and this is the main technical task of the proof. This is achieved via
a discretisation argument, which, on the other hand, rests on the geometry of the intersec-
tions of the chains with the cut-out balls (see Lemma 5·17). It is reasonable to expect a result
analogous to Theorem 5·12 for many other random sets and measures, but because of the
involved technical complications, we have focused on the ball-type cut-outs. We note that
even in the Euclidean setting, switching from balls to cubes may cause additional technical
complications (see e.g. [19, pp. 719–720]).

5·6. Relating S3 to Heisenberg group

To explain the connection between Theorem 5·12 and Theorem 4·6, we spend some time
explaining the relationship between the visual sphere S3, its fibres, and the Heisenberg group
H. This connection also explains why {πx}x∈S3 is a “natural” family of projections.

It is well known that the Euclidean n-sphere minus one point x is mapped onto the
Euclidean space R

n through the so-called stereographic projection. This mapping is one-to-
one and conformal. Small circles of the Euclidean n-sphere passing through x are mapped
onto affine lines of Rn .

Likewise, the visual sphere S3 minus x is mapped onto the Heisenberg group H; this
mapping is locally biLipschitz, and chains passing through x are mapped onto vertical lines,
that is, translates of the center Z =R× {0}. We will now define this mapping and derive
some useful results.

The operation of SU(1, 2) on C
3 passes to the quotient and gives an operation of PU(1, 2)

on P
2
C

. Since S3 is the set of all w ∈ P
2
C

such that q(w) = 0, the operation of PU(1, 2) on P
2
C

can be restricted to the invariant subset S3.
Now fix a point x ∈ S3 and let Px be the stabiliser of x in PU(1, 2). The unipotent trans-

formations in Px form a subgroup isomorphic to H. The operation of H on S3 \ {x} is simply
transitive, allowing for an identification of S3 \ {x} with H. We refer the reader to [9, chapter
4] for details and for explicit descriptions of Px and H in appropriate coordinates (using
an Iwasawa decomposition of PU(1, 2)). Another useful (and more accessible) reference is
[14]. See also [4, pp. 47–55].

The identification of H with S3 \ {x} depends on the choice of a point in S3 \ {x} (this is
the point that will be identified with the origin of H). One way to choose this point is to
let o = [1 : 0 : 0] be the base point in the 4-ball B4 = {w ∈ P

2
C

; q(w) > 0}; the stabiliser K
of o in PU(1, 2) identifies with U(2) = SO(3) and the stabilizer of x in K identifies with
SO(2) and fixes exactly two points: x and x̂ ∈ S3. We let x̂ be the point of S3 associated to
the origin of H. (This identification of H with S3 \ {x} is uniquely defined up to conjugation
by an element of SO(2), that is, up to a Euclidean rotation with axis Z .)

Let φx : S3 \ {x} →H be the mapping we just defined. This is a “Heisenberg stereographic
projection at x”.

PROPOSITION 5·14.

(i) The Heisenberg stereographic projection φx maps chains passing through x (with x
removed) onto vertical lines in H. Any vertical line in H is the image of one and only
one chain passing through x.

(ii) Fix x ∈ S3 and let K be a compact subset of S3 \ {x}. There is a constant C > 0 such
that:
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(i) for any y, y′ ∈ K , C−1d(y, y′) ≤ d(φx(y), φx(y′)) ≤ Cd(y, y′) (where as before
we use the symbol d for both the visual metric on S3 and the Korányi metric on
H);

(ii) the push-forward of the Lebesgue measure on K through φx is equivalent to the
Lebesgue measure on φx(K ), and the Radon-Nikodym derivative is continuous
and lies between C−1 and C.

Proof. For the first point, see [9, 4·2·3.], The second point follows from the fact that
the push-forward of the visual metric through φx is locally biLipschitz-equivalent to the
Korányi metric, and the Lipschitz constant is locally continuous in x ; explicit formulas can
be found in [4, p. 54], but let us provide our own formulas for reader’s convenience.

Computations are made easier by replacing q with the orthogonally equivalent
q ′(x) = 2Re(x0x2) − |x1|2 (x = (x0, x1, x2)). Fix, in these new coordinates, x = (1, 0, 0),
x ′ = (0, 0, 1) in S3. Explicitly, if we denote by (e0, e1, e2) the canonical basis of C

3, in
which q is given by q(x) = |x0|2 − |x1|2 − |x2|2, and we let f0 = e0 + e2/

√
2, f1 = e1,

f2 = e0 − e2/
√

2, then

q(x0, x1, x2) = q ′(x0 f0 + x1 f1 + x2 f2) .

Note that this change of basis is orthogonal with respect to the inner product structure on C
3.

It can be checked that the Heisenberg group associated with x (i.e. stabilising x) consists
of the matrices of the form ⎛⎜⎜⎝

1 α is + |α|2
2

0 1 α

0 0 1

⎞⎟⎟⎠,

where α ∈C and s ∈R (see [14]). The orbit of x ′ through H is equal to S3 \ {x} and the
inverse of the Heisenberg stereographic mapping is given by

φ : (α, s) �−→
(

is + |α|2
2

, α, 1

)
∈ S3.

If we let h = (α, s), h′ = (β, t) be elements of H, a routine computation shows that the
quotient

d(φ(h), φ(h′))
d(h, h′)

is a continuous mapping that is uniformly bounded away from 0 and +∞ in any compact
subset of H.

If K is a compact subset of S3 \ {x}, the restriction of φ to K , composed with the quotient
mapping H→H/Z , gives, by passing to the quotient, a biLipschitz mapping

K/R −→H/Z ,

where K/R is the quotient of K by the equivalence relation R defined by “y, y′ are
equivalent if they lie on the same chain through x”, endowed with the quotient metric.

The Proposition follows.
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In particular, the previous Proposition tells that after identifying H and S3 via φx , the
projection πx identifies with the vertical projection π in H. In this sense, Theorem 5·12
is a strong Marstrand type result, a version of Theorem 4·3 valid simultaneously for “all
projections". We note that randomness is essential here, recall Remark 5·13.

Via the following lemma, Proposition 5·14 also helps us to adapt to the general framework
of Theorem 3·2 and Lemmas 3·4 and 3·5.

LEMMA 5·15. Fix x ∈ S3 and let K be a compact subset of S3 \ {x}. Denote by H1 the
restriction of Lebesgue measure to K and by H̃x the Borel measure on K defined, for any
Borel subset A ⊂ K , by

H̃x(A) =
∫

ηπ−1
x (u)(A)d(πxH1)(u),

where ηL is the 2-dimensional Hausdorff measure on the chain L; in other words, H̃x is
the measure obtained by taking the Lebesgue measure on K and replacing the conditional
measures on the fibres of πx with the 2-dimensional Hausdorff measure restricted to these
fibres.

Then, H̃x is equivalent to H1, and the Radon-Nikodym derivative lies between C−1 and
C, where C is a non-zero constant (depending on K ).

Proof. This Lemma follows from the previous Proposition recalling that on the vertical lines
of H, the conditional measures are equal to the two-dimensional Hausdorff measure.

5·7. Proof of the main result

Let us first verify (2·1) in the present setting.

LEMMA 5·16. The Lebesgue measure H on S3 can be rescaled in such a way that for any
x ′ ∈ S3,

lim
r→0

H(B(x ′, r))

r 4
= 1,

where B(x ′, r) is the ball of radius r centered at x ′ with respect to the visual metric d.

Proof. It is enough to show this for a fixed x ′ because the group of Euclidean isometries
of S3 preserve H as well as d. Let x, x ′ be as in the proof of Proposition 5·14, and let
φ :H→ S3 \ {x}. The push-forward, through φ, of the Korányi metric on H is called the
Hamenstädt metric based at x , denoted dx (it is a metric on S3 \ {x}); an easy computation
shows that

lim
y→x ′

d(x ′, y)

dx(x ′, y)

exists and may be taken to be 1 up to rescaling dx . Now let also Hx be the push-forward,
through φ, of the Lebesgue measure H on H, so that any ball of radius r with respect to dx

has Hx -measure r 4. Existence of the previous limit then implies the exisence of

lim
r→0

Hx(B(x ′, r))

r 4
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and because Hx is equivalent to H and the Radon–Nikodym derivative is continuous, we
conclude that

lim
r→0

H(B(x ′, r))

r 4

exists.

We now set out to prove Theorem 5·12. Fix a countable family (Bn) of balls such that any
x ∈ S3 belongs to infinitely many of the Bn , and

inf{diamBn ; x ∈ Bn} = 0 .

We denote by 2Bn the ball with same centre as Bn and twice the radius; the radii are chosen
so that 2Bn \ Bn 
=∅. The closure of the complement S3 \ 2Bn will be denoted by Vn . We
will work locally by using the fact that for any x ∈ S3, any finite Borel measure μ giving
zero measure to {x} can be written as

μ =
∑

μi ,

where, letting (Bni ) be the family of those Bn that contain x , μi is supported on Vni .
As in Section 5·5, consider a random Poisson cut-out set E and let μ be the corresponding

cut-out measure supported on E ; and fix a ball Bn0 from the previous family. We first state
the main technical lemma. Its proof is postponed to Section 5·8. Recall that for any chain L ,
ηL is the 2-dimensional Hausdorff measure restricted to L .

LEMMA 5·17. The space of chains LC can be covered by open subsets U satisfying the
following property: for any L , L ′ ∈U ,∣∣∣∣∣ηL

(
N⋃

i=1

Bi

)
− ηL ′

(
N⋃

i=1

Bi

)∣∣∣∣∣� N · d(L , L ′)1/4 (5·10)

for any finite family of (visual) balls (Bi)1≤i≤N . The constant implied in the notation �
depends only on U .

Assuming Lemma 5·17 holds, we will fix n0 ∈N and prove the statement of Theorem
5·12 for μ|Vn0 and πx , x ∈ Bn0 .

LEMMA 5·18. Conditional on μ(Vn0) 
= 0, the following, where μ′ = μ|Vn0 , holds almost
surely: for any x ∈ Bn0 ,

dim(πx(μ
′)) = inf{2, dim(μ′)} .

Moreover, πx(μ
′) is absolutely continuous and πx(E ∩ Vn0) has non-empty interior, if

dim(μ′) > 2.

Proof of the Lemma. Let K be the space of all chains passing through the compact subsets
Bn0 and Vn0 . Then, K is compact; indeed the mapping that sends a pair (x, y) of distinct
points of S3 to the chain passing through x and y is continuous, thus compactness of K
follows from the compactness of Bn0 × Vn0 .
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By virtue of Lemma 5·17, we can cover K with open sets U1, . . . ,Up, such that the
conclusion of Lemma 5·17 holds for any L , L ′ ∈Ui . Denote Ki =K ∩Ui .

For each index i , we wish to apply Theorem 3·2 to:

(i) the restricted SI-martingale (μ′
n)n where μ′

n = μn|Vn0 (this is again an SI-martingale);
(ii) the space of chains 
 =Ki ;

(iii) the family of measures (ηL)L∈Ki where for any chain L ∈Ki , ηL is the 2-dimensional
Hausdorff measure on L: ηL = H 2|L .

We will also apply Lemmas 3·4 and 3·5 for the projections πx , x ∈ Bn0 . Note that the co-
domain of πx , x⊥ \ {x} ⊂ P

2
C

, is a punctured Euclidean 2-sphere, which is locally biLipschitz
equivalent to R

2. Thus we may apply these lemmas for k = 2.
Let us now check that the assumptions of Theorem 3·2 are satisfied. Assumption (A1)

holds trivially. From (2·5) it follows that (A3) holds with any exponent γ ′ > γ . Assumption
(A2) is the content of Lemma 5·7.

Finally, to verify the assumption (A4), we recall that if Nn denotes the number of Poisson
cut-out balls with radius > 2−n , then almost surely, there is a random integer M0 such that
Nn ≤ 25n for all n ≥ M0. Combining this with Lemma 5·17 yields∫

μn dηL −
∫

μn dηL ′ ≤ C2n(5+γ ′)d(L , L ′)1/4

for any n ≥ N0 and for all L , L ′ ∈Ki , recall (2·5).
Thus, the assumptions of Theorem 3·2 are satisfied. Let us now consider the case

dim(μ′) > 2 (this is the case when, in the notations of Theorem 3·2, γ < 2, since dim(μ′) =
4 − γ ). Theorem 3·2 implies that for any L ∈Ki ,∫

μ′
n dηL

converges uniformly to a finite number X (L) and the mapping L �→ X (L) is continu-
ous on Ki . Since the sets Ki are relatively open, this mapping remains continuous on
K=K1 ∪ · · · ∪Kp as well. Now fix some x ∈ Bn0 and apply Lemma 3·4 to the compact
metric space Z = Vn0 , the projection π = πx , the measure H|Vn0 , the sequence of Borel
functions (μ′

n|Vn0)n and the family of fibre measures (ηL |Vn0) where L goes through all
chains passing through x and meeting Vn0 . This Lemma yields the absolute continuity of
πxμ

′, and the fact that πx(suppμ′) has non empty interior, as desired.
Now we look at the case dim(μ′) ≤ 2 and fix some θ > 2 − dim(μ′). The conclusion of

Theorem 3·2 now gives, for any chain L ∈K, and any n,∫
μ′

n dηL � 2θn . (5·11)

In order to apply Lemma 3·5, we still need to check that, almost surely, the assumption
(3·5) in that lemma holds simultaneously for each πx , x ∈ Bn0 .

Let us fix ε = 1/(1000C), where C is the constant from Lemma 5·11, when the lemma is
applied for B = Bn0 , V = Vn0 . For each n, let Dn be an (ε2−n)- dense subset of K and for
each L ∈Dn pick x ∈ Bn0 and u ∈ πx(V0) such that L = π−1

x (u) and consider

TL := π−1
x (B(u, 21−n)) ∩ Vn0 .

Note that such a Dn may be chosen to have cardinality ≤ CK,ε24n .
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Using Lemma 3·6 as in the proof of Theorem 4·3 implies the existence of a random
constant M < +∞ such that

μ′(TL) ≤ M(μ′
n(TL) + 2n(θ−2)) (5·12)

for all L ∈Dn and all n ∈N.
Now, let us fix x ∈ Bn0 and let n ∈N. For each L = Lu ∈Dn , consider uL ,x ∈ πx(Vn0) such

that dE(uL ,x , u) ≤ ε2−n if there is any. Let Dx
n be the collection of all such uL ,x . It follows

from Lemma 5·11 that Dx
n ⊂ πx(Vn0) is 2−n-dense and

π−1
x (B(u′, 2−n)) ∩ Vn0 ⊂ TL ⊂ π−1

x (B(u′, C2−n)) , (5·13)

whenever u′ ∈Dx
n is such that u′ = uL ,x .

Combining (5·12) and (5·13) we have

πxμ
′(B(u, 2−n)) ≤ C

(
μ′

n(B(u, C2−n)) + 2n(θ−2)
)

,

for all n ∈N, and all u ∈Dx
n Recalling (5·11), we may now apply Lemma 3·5

which implies that dim(πxμ
′) ≥ 2 − θ . Note that, almost surely, this holds for all x ∈ Bn0

simultaneously. Hence the conclusion.

Proof of Theorem 5·12. If μ 
= 0, for any x ∈ S3 we can write μ as a countable sum

μ =
∑

i

μi ,

where each μi 
= 0 is supported on some Vni and x belongs to the corresponding Bni . Now
for any i , μi has same dimension as μ, and πx(μ

i) is absolutely continuous, resp. has
same dimension as μi , if dim(μ) > 2, resp dim(μ) ≤ 2. The same must hold for πx(μ) =∑

i πx(μ
i). In the same way, one obtains that πx(suppμ) is non-empty if dim(μ) > 2.

5·8. Technical Lemma

It remains to prove the technical Lemma 5·17. We will accomplish this in several parts.
One of the key steps is an estimate on the size of the intersection of a chain and an annulus,
see Lemma 5·19. Recall that G = SU(1, 2).

LEMMA 5·19. Let K be a compact subset of the space of chains LC. There is a constant
r0 such that for any x ∈ S3, L ∈K and 0 < δ ≤ r ≤ r0,

ηL (A(x, r, δ))� δ1/2, (5·14)

where ηL is the 2-dimensional Hausdorff measure on L, and

A(x, r, δ) = {y ∈ S3 ; r ≤ d(x, y) ≤ r + δ} .

The proof of this lemma relies on two facts. First, we devise an explicit parametrisation
of chains in general position.

Fix w = [1 : w1 : w2] where |w1|2 + |w2|2 > 1, so that w belongs to LC, and let κ2 =
|w1|2 + |w2|2 and υ2 = κ2 − 1. We denote by L the chain w⊥ ∩ S3. Then the mapping

θ �−→ yθ = [κ2, y1, y2] ∈ P
2
C

; (y1, y2) = (w1, w2) + υeiθ (−w2, w1), (5·15)
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(where θ ∈ [0, 2π[) is a smooth parametrization of L . If 1 + ε ≤ κ2 ≤ ε−1, the modulus of
the derivative of this mapping is bounded away from 0 and +∞ by a constant depending
only on ε; in particular, θ �→ yθ is, by (i) in Lemma 5·1, 1/2-Hölder (with a multiplicative
constant depending on ε) when [0, 2π[=R/(2πZ) is endowed with the usual torus metric
and S3 is endowed with the Heisenberg metric.

Secondly, we need an elementary estimate from plane geometry. Let S1 be the unit cir-
cle in the complex plane. For any 0 < δ ≤ r ≤ 0.001 (say), and any z ∈C, the Euclidean
length of the intersection of S1 with the annulus A(z, r, δ) = {u ∈C ; r ≤ d(z, u) ≤ r + δ}
is dominated by δ1/2, i.e.

H1(S1 ∩ A(z, r, δ))� δ1/2 . (5·16)

We leave it to the reader to verify the claims of the last paragraphs. Let us now prove the
Lemma 5·19.

Proof of Lemma 5·19. Our approach is fairly down-to-earth: we prove the needed estimate
for a fixed x which allows for explicit computations, and we use the transitivity of K =
SO(3) on S3 to deduce that the Lemma holds for any x ∈ S3. Until further notice, we let x
be the fixed element [1 : 1 : 0] of S3.

We denote by L0 the set of all w = [1 : w1 : w2] ∈ P
2
C

where κ2 = |w1|2 + |w2|2 > 1 and
w2 
= 0, and L0(ε) those w such that also 1 + ε ≤ κ2 ≤ ε−1 and |w2| ≥ ε. Any compact subset
of L0 is contained in some L0(ε) for ε small enough. Now fix ε > 0 and w ∈L0(ε), and let
θ �→ yθ be the mapping onto the chain L = w⊥ ∩ S3 defined above (5·15).

A simple computation gives

d(x, yθ )
2 = |κ2 − y1|

2κ2
= |w2|υ

2κ2
|eiθ − z| , (5·17)

where we denote

z = w1 − κ2

w2υ
.

Direct application of (5·16) yields that there is a constant r0 = r0(ε) such that for 0 < r <

r0(ε) and 0 < δ ≤ r 2,

H1({θ ∈ [0, 2π[ ; r ≤ d(x, yθ ) ≤ r + δ})�ε δ1/2.

If, on the other hand, r 2 < δ ≤ r , then it holds trivially that

H1({θ ∈ [0, 2π[ ; r ≤ d(x, yθ ) ≤ r + δ})� r ≤ δ1/2.

We thus see that this estimate holds, provided that 0 < δ ≤ r ≤ r0(ε), and we deduce (using
the 1/2-Hölderness of θ �→ yθ ) that

ηL (A(x, r, δ))�ε δ1/2 (5·18)

for 0 < δ ≤ r ≤ r0(ε), and w ∈L0(ε).
Let us now denote by L1 the set of all w = [1 : w1 : 0] where |w1| > 1, and let L1(ε) be

those w such that 1 + ε ≤ |w1|2 ≤ ε−1. Since

|〈x, ω〉|
||x ||||ω|| � 1 − |ω1|2 ≥ ε ,
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there is a constant r1(ε) such that for any w ∈L0(ε), and any 0 < δ ≤ r ≤ r1(ε), the
intersection A(x, r, δ) ∩ L is empty; the estimate (5·18) thus holds trivially also in this case.

Finally, we leave it to the reader to deal with the subset L2 ⊂LC of all w = [0 : w1 : w2]
where w1 and w2 are not both 0.

All in all, we have the following: let K be a compact subset of LC; there is a constant
r(K) such that, for any L ∈K and 0 < δ ≤ r ≤ r(K),

ηL (A(x, r, δ))� δ1/2 . (5·19)

Now recall the Iwasawa decomposition PU(1, 2) = K AN , where the operation of K on
S3 ⊂ P

2
C

identifies with the natural operation of SO(3). This operation is transitive, and it
preserves both dE and d, as well as chains (in other words, the image of a chain through an
element of K is another chain).

Apply the result above to the compact subset KK⊂ P
2
C

instead in K. We obtain r(KK) >

0 such that, for any 0 < δ ≤ r ≤ r(KK), and any w ∈ KK,

ηLw
(A(x, r, δ))� δ1/2 ,

(where still x = [1 : 1 : 0]). If ω ∈K and x ′ ∈ S3, let g ∈ K such that gx ′ = x . Then

ηLw
(A(x ′, r, δ)) = H 2

Heis(w
⊥ ∩ A(x ′, r, δ)) = H 2

Heis((gw)⊥ ∩ A(x, r, δ))

= ηLgw
(A(x, r, δ))� δ1/2 ,

as desired.

We may now finally complete the proof of Lemma 5·17.

Proof of Lemma 5·17. Let L1, L2 be two chains and let g ∈ G be such that L2 = gL1. For
any Borel subset A of S3,

η1(A) − η2(A) ≤ O (‖Id − g‖) + η2(g A \ A). (5·20)

Indeed, η1(A) = g∗η1(g A) (where g∗η1 is the push-forward of η1 through g) and g−1 :
L2 → L1 is a Lipschitz mapping with Lipschitz constant (1 + ‖Id − g‖) (see (5·4)), so

g∗η1(g A) ≤ (1 + ‖Id − g‖)2 η2(g A) (5·21)

and (5·20) follows.
In particular, if A is the union ∪i Bi of N balls, (5·20) implies∣∣∣∣∣η1

(⋃
i

Bi

)
− η2

(⋃
i

Bi

)∣∣∣∣∣
≤ O

(‖Id − g‖ + ‖Id − g−1‖)+∑
i

η1(g−1 Bi \ Bi ) + η2(gBi \ Bi ) .

In view of this, our task is to show that locally we can find g such that d(L1, L2) 	
‖Id − g‖ 	 ‖Id − g−1‖ and to bound η(gB \ B) by (a power of) ‖Id − g‖ where η is the
2-dimensional Hausdorff measure on some chain L sitting in a compact subset of LC.

https://doi.org/10.1017/S0305004121000177 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000177


230 LAURENT DUFLOUX AND VILLE SUOMALA

The first step is accomplished in Lemma 5·4. The second step follows from Lemma 5·19,
and from the fact that if B = B(x, r) is a ball of radius r , then by (5·6)

gB \ B ⊂ A
(

x, r,
√

‖Id − g‖ · ‖g−1‖
)

,

where A(x, r, δ) = {y ∈ S3 ; r ≤ d(x, y) ≤ r + δ}.
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