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Given a graph G, let Q(G) denote the collection of all independent (edge-free) sets of

vertices in G. We consider the problem of determining the size of a largest antichain in

Q(G). When G is the edgeless graph, this problem is resolved by Sperner’s theorem. In this

paper, we focus on the case where G is the path of length n − 1, proving that the size of a

maximal antichain is of the same order as the size of a largest layer of Q(G).

2010 Mathematics subject classification: Primary 05D05

1. Introduction

1.1. The G-independent hypercube: definition and motivation

Let n ∈ N and let G = (V , E) be a graph on V (G) = [n] = {1, 2 . . . n}.

Definition. A subset A ⊆ [n] is G-independent if A is an edge-free set of vertices in G.

The G-independent hypercube Q(G) is the collection of all G-independent subsets of [n].

G-independent hypercubes are our main object of study in this paper. By definition,

the G-independent hypercube is a subset of the n-dimensional hypercube Qn. Indeed, if G

is the graph with no edges then Q(G) is exactly Qn, the collection of all subsets of [n].

We will be particularly interested in Q(G) when G is the path of length n − 1, Pn, or

the cycle of length n, Cn. These can be thought of as the collection of zero–one strings of

length n with no consecutive ones (with winding round in the case of Cn). These are natural

combinatorial spaces, which have already appeared in a variety of contexts. Considered as

graphs, the G-independent hypercubes Q(Pn) and Q(Cn) have been studied as an efficient

network topology in parallel computing [8, 9, 16]. In this setting, they are known as
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the Fibonacci cube and the Lucas cube respectively. Cohen, Fachini and Körner [2] gave

bounds for the size of large antichains in Q(Pn) in connection with skewincidence, a new

class of problems lying halfway between intersection problems and capacity problems for

graphs. Talbot [18] proved a direct analogue of the Erdős–Ko–Rado theorem [5] for the

Lucas cube Q(Cn). To state his result, we need to make a standard definition.

Definition. Let r be an integer with 0 � r � n. The rth layer of the G-independent

hypercube, denoted by Q(r)(G), is the collection of all G-independent subsets of [n] of size

r.

We can now state Talbot’s theorem.

Theorem 1.1 (Talbot). Let A ⊆ Q(r)(Cn) be a family of pairwise intersecting sets, and let

A� be the collection of all Cn-independent r-sets containing 1. Then |A| � |A�|.

Talbot’s proof used an ingenious cyclic compression argument and easily adapts to the

Q(Pn) setting as well. In this case, the study of Q(Cn) was motivated by a conjecture of

Holroyd and Johnson [7] on the independence number of a vertex-critical subset of the

Kneser graph first identified by Schrijver [14].

1.2. Antichains and G-independent families

Our efforts in this paper are directed towards finding G-independent analogues of another

classical combinatorial result in the hypercube, namely Sperner’s theorem.

A subset of the hypercube A ⊆ Qn is an antichain if, for all A,B ∈ A with A �= B,

neither A ⊂ B nor B ⊂ A. How large an antichain can we find? Clearly for all integers r

with 0 � r � n, the rth layer of Qn is an antichain. So certainly we can find an antichain at

least as large as the largest layer of Qn, and a celebrated theorem of Sperner [15] asserts

that this is in fact the best we can do.

Theorem 1.2 (Sperner’s theorem). Let n ∈ N, and A ⊆ Qn be an antichain. Then

|A| � max
r

|Q(r)
n | =

(
n

�n/2�

)
.

We consider the following generalization of Sperner’s problem.

Problem 1.3. Let n ∈ N, and let G be a graph on [n]. What is the maximum size of an

antichain in Q(G)?

Write s(G) for the maximum size of an antichain in Q(G). We call s(G) the width

of Q(G). As in Sperner’s theorem, the size of a largest layer in Q(G) gives us a lower

bound on the width s(G). This is not sharp in general: if G is the star on [n] with edges

{1i : 2 � i � n}, then it is easy to see that s(G) is larger than the largest layer of Q(G) by

1. The width s(G) can in fact be much larger than a largest layer of Q(G), as the following

example shows.
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Example 1.4. Let m ∈ N. Let G be a complete multipartite graph having for each integer

i ∈ [m] exactly �22m−2i+i/2� parts of size 2i.

The graph G in the example above is T -partite, where

T =

m∑
i=1

�22m−2i+i/2�,

and has

n =

m∑
i=1

�22m−2i+i/2�2i

vertices, which is of order 22m . A set of vertices in G is independent if and only if it

meets at most one of the parts of G. An antichain in Q(G) is therefore the disjoint union

of a collection of antichains, each lying inside a distinct part of G. It then follows from

Sperner’s theorem that the size of a maximal antichain in Q(G) is

s(G) =

m∑
i=1

�22m−2i+i/2�
(

2i

2i−1

)
=

m∑
i=1

22m−2i+i/2 22i

√
2i

√
2

π

(
1 + O

(
1

i

))

=

√
2

π
m22m (1 + o(1)).

(Here in the first line we have used Stirling’s approximation for the factorial.)

On the other hand, the layers of Q(G) are much smaller: the size of the rth layer

oscillates between peaks which have order 22m , one for each i with 1 � i � m. These peaks

occur when r is close to 2i−1, and correspond to the largest layer for the parts of size 2i.

Close to the peak corresponding to i, the sum of the contribution from the parts of size

2j for j �= i has order dominated by the contribution from the parts of size 2i. It follows

that

max
0�r�n

|Q(r)(G)| = O(22m ) = o(s(G)).

Thus in general s(G) and max{|Q(r)(G)| : 0 � r � n} need not even be of the same order.

Question 1.5. When is

s(G) = max
0�r�n

|Q(r)(G)|?

A natural guess is that it is sufficient for most vertices in G to look more or less the

same. Let G be a graph. Recall that an automorphism of G is a bijection φ : V (G) → V (G)

such that φ maps edges to edges and non-edges to non-edges. A graph is vertex-transitive

if, for every x, y ∈ V (G), there exists an automorphism of G mapping x to y.

Conjecture 1.6. Let G be a vertex-transitive graph. Then

s(G) = max
0�r�n

|Q(r)(G)|.
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Of course, vertex-transitivity is not a necessary condition for the width of Q(G) to

coincide with the size of the largest layer. Indeed, consider the complete graph on n

vertices with one edge removed. This is not vertex-transitive, but the largest antichain

is exactly the largest layer, i.e., the collection of all singletons. Similarly the path Pn,

while not vertex-transitive, is close to the vertex-transitive cycle Cn, and we believe the

conclusion of Conjecture 1.6 holds for G = Pn too.

Conjecture 1.7.

s(Pn) = max
0�r�n

|Q(r)(Pn)|.

1.3. Results and structure of the paper

In their study of skewincident families, Cohen, Fachini and Körner [2] found themselves

needing to give a bound on s(Pn). They showed that

s(Pn) � |Q(Pn−1)| =

(
2

1 +
√

5
+ o(1)

)
|Q(Pn)|,

a bound which was sufficient for their purposes, but which, as they observed, is fairly

weak. They asked for the value of s(Pn), and remarked that none of the classical proofs

of Sperner’s theorem seemed to adapt to this setting. The main purpose of this paper is

to try to answer their question. We shall focus on Q(Pn) and Conjecture 1.7, though our

techniques also apply in a more general setting (see Theorem 5.1 in Section 5). We show

the following.

Theorem 1.8. There exists a constant C > 1 such that

s(Pn) � C max
0�r�n

|Q(r)(Pn)|.

This improves the earlier bound of Cohen, Fachini and Körner [2] by a multiplicative

factor of O(n−1/2). It is, however, a far cry from Conjecture 1.7, and in addition has a

rather calculation-intensive proof.

Our paper is structured as follows. In Section 2, we run through some preliminaries. In

Section 3, we prove Theorem 1.8. We then prove small cases of Conjecture 1.7 in Section 4,

and briefly discuss why some classical proofs of Sperner’s theorem do not adapt well to

the Fibonacci cube setting. In Section 5 we explain how the proof of Theorem 1.8 can

be made to work in a more general setting. We end in Section 6 with some questions on

isoperimetric problems in Q(Pn).

2. Preliminaries

2.1. Counting in the Fibonacci cube

The Fibonacci sequence (Fn)n∈Z�0
is the sequence defined by the initial values F0 = 0,

F1 = 1 and the recurrence relation Fn+2 = Fn+1 + Fn for n � 0. It is a well-known fact
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(and an easy exercise) that the sizes of Fibonacci cubes are given by terms of the Fibonacci

sequence: |Q(Pn)| = Fn+2.

We now compute the size qrn = |Q(r)(Pn)| of a layer in Q(Pn).

Lemma 2.1. qrn = (
n − r + 1

r ).

(We follow the standard convention that a binomial coefficient (
a
b ) with b > a or b < 0

evaluates to zero.)

Proof. This is again an easy exercise in enumeration, but as we use the same counting

technique later on in the paper, we write out the proof in full here.

Note that Q(r)(Pn) is empty for r > �n/2�, so we may assume r � �n/2�. We build

all zero–one sequences of length n containing exactly r ones and such that all ones

are separated by at least one zero as follows. We begin with the separated sequence

1010101 . . . 01 of length 2r − 1 and containing r ones and (r − 1) zeros. Then we insert

zeros in the (r + 1) ‘bins’ defined by the gaps between successive ones, the gap to the left

of the leftmost 1 and the gap to the right of the rightmost 1. We have n − 2r + 1 zeros

to insert into these bins. The number of ways of partitioning n − 2r + 1 objects into r + 1

labelled lots is just (
n − r + 1

r ), proving our claim.

Next, let us identify the largest layers of Q(Pn).

Lemma 2.2. Let r� be an integer maximizing the layer size |Q(r)(Pn)|. Then,

r� =

⌈
5n + 2 −

√
5n2 + 20n + 24

10

⌉

or

r� =
5n + 2 −

√
5n2 + 20n + 24

10
+ 1.

Remark. The maximal layer thus satisfies

r� =
5 −

√
5

10
n + O(1),

and is unique unless 5n + 2 −
√

5n2 + 20n + 24 is an integer multiple of 10.

Proof. We consider the ratio between the sizes of two consecutive layers of Q(Pn):

|Q(r+1)(Pn)|
|Q(r)(Pn)|

=

(
n − r

r + 1

)
/

(
n − r + 1

r

)

This is greater than or equal to 1 if and only if r satisfies

5r2 − r(5n + 2) + (n2 − 1) � 0,
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which in the range 0 � r � �n/2� happens if and only if

r � 1

10
{5n + 2 −

√
5n2 + 20n + 24}.

The lemma follows.

Now let us consider Q(Pn) as a directed graph D(Pn) by setting a directed edge from A

to B if B = A ∪ {b} for some b /∈ A, i.e., if B covers A in the partial order induced by ⊆.

Definition. The in-degree d−(A) of a set A ∈ Q(Pn) is the number of edges of D(Pn)

directed into A, while the out-degree d+(A) is the number of edges of D(Pn) directed out

of A.

Given a set A ∈ Q(r)(Pn), its in-degree d−(A) is always exactly r; however, as we shall

see next, its out-degree could take any integer value between n − 3r and n − 2r.

Write Q(r,d)(Pn) for the collection of elements of Q(r)(Pn) with out-degree equal to d, and

let qr,dn = |Q(r,d)(Pn)|.

Lemma 2.3.

qr,dn =

(
r + 1

d − n + 3r

)(
n − 2r

n − 2r − d

)
.

Proof. We can characterize the out-degree in terms of ‘empty bins’. Recall that in

Lemma 2.1 we built Q(r)(Pn) from the zero–one sequence of length 2r − 1, 1010 . . . 101 by

placing the n − 2r + 1 remaining zeros into the r + 1 ‘bins’ defined by the gaps between

consecutive ones. Suppose i zeros have been placed in bin j. Then the corresponding

interval of zeros will contribute i − 1 to the out-degree. Thus the out-degree associated

with a zero–one sequence s is

d = n − 2r + 1 − (r + 1 − z(s)) = n − 3r + z(s),

where z(s) is the number of bins which have not received any zero.

Now, how many of our zero–one strings have z empty bins? There are (
r + 1
z ) ways of

choosing the bins which will be empty, whereupon we need to put at least one zero into

the remaining r + 1 − z bins. We then have to allocate the remaining n − 2r + 1 − (r +

1 − z) = n − 3r + z zeros to the r + 1 − z non-empty bins; there are, as we observed in

the proof of Lemma 2.1, (
n − 2r
r − z ) ways of doing this. Setting z = d − n + 3r concludes the

proof of the lemma.

Note that Lemma 2.3 implies that qr,dn �= 0 if and only if n − 3r � d � n − 2r. These

bounds are attained by, for example, the zero–one sequence consisting of r 010-blocks

followed by a single block consisting of n − 3r zeros (out-degree n − 3r), and the zero–one

sequence consisting of r 10-blocks followed by a single block consisting of n − 2r zeros

(out-degree n − 2r). These two examples are the extremes we have to contend with inside

a layer of the Fibonacci cube.
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Lemma 2.3 has the following corollary.

Corollary 2.4. Let r, n be fixed, and let d� = d�(r, n) be an integer maximizing qr,dn . Then

d� =

⌈
(n − 2r)2 + 2n − 5r − 1

n − r + 3

⌉

or

d� =
(n − 2r)2 + 2n − 5r − 1

n − r + 3
+ 1.

Proof. Consider the ratio qr,d+1
n /qr,dn . By Lemma 2.3, this is equal to

qr,d+1
n

q
r,d
n

=

(
r + 1

d + 1 − n + 3r

)(
n − 2r

n − 2r − d − 1

)/(
r + 1

d − n + 3r

)(
n − 2r

n − 2r − d

)
.

Solving the associated linear inequality, we see that qr,d+1
n /qr,dn � 1 if and only if

d � (n − 2r)2 + 2n − 5r − 1

n − r + 3
, (2.1)

with equality if and only if we have equality in (2.1). The corollary follows.

Remark. Note that the proof of Corollary 2.4 establishes in fact that qr,dn is strictly

increasing in d until it hits its (at most two) maxima, and then becomes strictly decreasing

in d. We shall use this monotonicity later on.

Corollary 2.5. Let r� be an integer maximizing qrn, and let r = r� + c
√
n for some

c ∈
[
−

√
log n,+

√
log n

]
.

Then, for d�(r, n) an integer maximizing qr,d, we have

d�(r, n) =

(
5 −

√
5

10

)
n −

(
5
√

5 − 7

2

)
c
√
n + (20 − 8

√
5)c2 + O(1).

Proof. This is a straightforward calculation from Corollary 2.4, from the fact that

r� =
5 −

√
5

10
n + O(1)

(Lemma 2.2), and from the hypothesis on r,

d�(r, n) =
(n − 2r)2

n − r
+ O(1) =

(
2
√

5
10

n − 2c
√
n
)2

5+
√

5
10

n − c
√
n

+ O(1),

which, expanded to second order, yields the desired result.

2.2. Concentration

With the combinatorial preliminaries out of the way, let us obtain some concentration

results for qrn = |Q(r)(Pn)| and qr,dn = |Q(r,d)(Pn)|. Given the binomial coefficients appearing

https://doi.org/10.1017/S0963548314000558 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000558


Sperner’s Problem for G-Independent Families 535

in Lemmas 2.1 and 2.3, we expect Chernoff-type concentration of both the weight in

Q(Pn) around the heaviest layer(s) Q(r�)(Pn) and of the out-degrees in Q(r)(Pn) around the

likeliest out-degree(s) d� = d�(r, n). By double-counting, we also expect, analogously to Qn,

that the largest layer in Q(Pn) will occur when the in-degree and the average out-degree

are the same – that is, by the observation after Corollary 2.4, when r ≈ (n − 2r)2/(n − r).

Solving this yields

r ≈ (5 −
√

5)

10
n,

matching the estimate we made after Lemma 2.2 and perhaps giving better intuition as

to why the maximum occurs at this point.

These heuristic observations we have made regarding concentration are indeed correct,

and can be proved formally using Stirling’s approximation,

m! =

(
1 + O

(
1

m

))√
2πm

(
m

e

)m

,

and some simple calculus.

Let F be the function

F : x �→ (1 − x) log(1 − x) − x log x − (1 − 2x) log(1 − 2x).

Lemma 2.6. Let α = α(n) be a sequence of real numbers with 10−9 < α(n) < 1/2 − 10−9

and αn ∈ N for n � 4. Then

qαnn =

(
(1 − α)

√
1 − α√

2πα(1 − 2α)(1 − 2α)
+ O

(
1

n

))
n−1/2 exp

(
nF(α)

)
.

Proof. This is a straightforward calculation from Lemma 2.1 and Stirling’s formula:

qαnn =

(
n − αn + 1

αn

)
=

((1 − α)n)!

(αn)!((1 − 2α)n)!

(
(1 − α)n + 1

(1 − 2α)n + 1

)
.

Substituting Stirling’s approximation in the above (which we can do since α and 1 − 2α

are both bounded away from 0) then yields the claimed equality.

As expected given that the maximum of qαnn occurs when

α =
5 −

√
5

10
+ O(n−1),

we find that F attains a global maximum at (5 −
√

5)/10:

F ′(x) = log

(
(1 − 2x)2

x(1 − x)

)
,

which is strictly positive for x < (5 −
√

5)/10, vanishes at (5 −
√

5)/10 and becomes strictly

negative for x > (5 −
√

5)/10. Computing the second derivative, we find

F ′′
(

5 −
√

5

10

)
= −5

√
5.
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Corollary 2.7. Let Q(r�)(Pn) be a largest layer of Q(Pn). Then the following hold.

(i) If r = r� + c
√
n for some c ∈ [−

√
log n,

√
log n], then

qrn = exp

(
−5

√
5c2

2
+ o(1)

)
qr�n .

(ii) There are

O

(
n exp

(
−5

√
5

2
log n

)
qr�n

)
= o(qr�n )

sets in Q(Pn) with size differing from r� by more than
√
n log n.

Proof. This is immediate from Lemma 2.6 and the calculation above.

We now turn to out-degree concentration. Define

G(x, y) = x log x + (1 − 2x) log(1 − 2x) − y log y − 2(x − y) log(x − y)

− (1 − 3x + y) log(1 − 3x + y).

Lemma 2.8. Let α = α(n) and β = β(n) be sequences of real numbers satisfying 10−9 <

β(n) < α(n) − 10−9, and α(n) < (1 + β − 10−9)/3 and nα, nβ ∈ N for n � 9. Then,

qαn,(1−3α+β)n
n =

(
α
√
α(1 − 2α)

2π(α − β)2
√
β(1 − 3α + β)

+ O

(
1

n

))
n−1 exp

(
nG(α, β)

)
.

Proof. This is a straightforward calculation from Lemma 2.3 and Stirling’s formula:

qαn,(1−3α+β)n
n =

(
αn + 1

βn

)(
(1 − 2α)n

(α − β)n

)

=

(
αn + 1

(α − β)n + 1

)
(αn)!

((α − β)n)!(βn)!

((1 − 2α)n)!

((α − β)n)!((1 − 3α + β)n!)
.

Substituting Stirling’s approximation in the above then yields the claimed equality. (We can

do this since α, β, (α − β), (1 − 2α) and (1 − 3α + β) are all bounded away from 0. Note that

for n � 9 there exist at least two distinct integers m1 and m2 with n/4 � m1 < m2 � n/3,

and hence legal choices of α(n) and β(n), so that our claim is not vacuous.)

Again it is no surprise that for a fixed α, the function Gα : y �→ G(α, y) attains a global

maximum at β = α2/(1 − α):

G′
α(y) = log

(
(α − y)2

y(1 − 3α + y)

)
,

which is strictly positive for y < α2/(1 − α), vanishes at α2/(1 − α) and becomes strictly

negative for y > α2/(1 − α). Computing the second derivative, we find

G′′
α

(
α2

1 − α

)
= − (1 − α)3

α2(1 − 2α)2
.
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In particular, for

α =
5 −

√
5

10
+ O

(√
log n

n

)
,

we have

G′′
α

(
α2

1 − α

)
=

25 + 11
√

5

2
+ O

(√
log n

n

)
.

Corollary 2.9. Let r� be an integer maximizing qrn, and let r = r� + O(
√
n log n). Let d� =

d�(r, n) be an integer maximizing qr,dn . Then we have the following.

(i) If d = d� + c
√
n for some c ∈ [−2

√
log n,+2

√
log n], then

qr,dn = exp

(
− (25 + 11

√
5)c2

4
+ o(1)

)
qr,d�n .

(ii) There are

O

(
n exp

(
− (25 + 11

√
5)

4
log n

)
qr,d�n

)
= o

(
n−2qr,d�n

)

sets in Q(r)(Pn) with out-degree differing from d� by more than
√
n log n.

2.3. Summation bounds

We shall also need the following simple bounds on a sum of exponentials.

Lemma 2.10. Let p(x) = a0 + a1x + a2x
2 be a quadratic polynomial with a2 > 0. Then

C1(p) �
∑
i∈Z

e−p(i) � C2(p),

where C1(p), C2(p) are strictly positive constants depending only on a0, a1 and a2.

Proof. This is an easy exercise: just use comparison with integrals to bound the sum,

and then elementary calculus to evaluate
∫
e−p(x)dx.

Corollary 2.11. There are constants C1 > 0 and C2 > 0 such that if r is an integer with

|r − r�| �
√
n log n and d� = d�(r, n) is an integer maximizing qr,dn , then

C1
qrn√
n

� qr,d�n � C2
qrn√
n
.

(We could also have proved this directly by calculating the ratio qr,d�n /qrn using

Lemmas 2.1, 2.3 and Corollary 2.4.)

Proof. By Corollary 2.9(ii) we may discard sets in Q(r)(Pn) with out-degree differing from

d� by more than
√
n log n. Divide the remaining sets in Q(r)(Pn) into out-degree intervals
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of width
√
n:

Ii = {A ∈ Q(r)(Pn) : d� + i
√
n � d+(A) < d� + (i + 1)

√
n},

for i ∈ Z ∩ [−
√

log n,
√

log n]. Then, by Corollary 2.9(ii), monotonicity of qr,dn as d moves

away from d�, and Corollary 2.9(i), we have

qrn =
∑
i

|Ii| + o(qrn)

�
∑
i�0

qr,�d�+i
√
n�

n

√
n +

∑
i<0

qr,�d�+(i+1)
√
n�

n

√
n

= 2
√
n

∑
i�0

exp

(
−

(
25 + 11

√
5

4

)
i2 + o(1)

)
qr,d�n ,

which by Lemma 2.10 is at most (
√
n/C1)q

r,d�
n for some absolute constant C1 > 0. The

inequality in the other direction follows in much the same way.

3. Proof of Theorem 1.8

Let Q(r�)(Pn) be a largest layer of Q(Pn), and for every r let d�(r, n) be an integer maximizing

qr,d�n . By Corollary 2.7, we can restrict our attention in a proof of Theorem 1.8 to layers

r with |r − r�| �
√
n log n. We denote by Q′(Pn) the corresponding subset of Q(Pn). Note

that for n sufficiently large (say n > 100), every element of Q′(Pn) has non-zero out-degree

in the directed graph D(Pn).

3.1. Dissection into blocks and overlapping trapeziums

Let c1 = 1/100. We divide Q′(Pn) into (overlapping) blocks of layers

Bt =
⋃

{Q(r)(Pn) : r� + c1t
√
n � r � r� + c1(t + 1)

√
n},

each of which is roughly c1

√
n layers wide. (Here t takes integer values in [−

√
log n/c1,√

log n/c1].)

If t � 0, we divide the top layer Q(r+)(Pn) of Bt into out-degree intervals

Is,t =
⋃

{Q(r+ ,d)(Pn) : d�(r+, n) + s
√
n � d � d�(r+, n) + (s + 1)

√
n},

each of which ranges over roughly
√
n different out-degrees.

Each such interval Is,t defines a trapezium

Ts,t = {A ∈ Bt : ∃A′ ∈ Is,t with A ⊆ A′}.

For n sufficiently large, the union of these (overlapping) trapeziums covers all of Bt (since

all sets in Bt have positive out-degree).

If on the other hand t < 0, we divide the bottom layer Q(r−)(Pn) of Bt into out-degree

intervals

Is,t =
⋃

{Q(r− ,d)(Pn) : d�(r−, n) + s
√
n � d � d�(r−, n) + (s + 1)

√
n},
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with again each interval defining a trapezium

Ts,t = {A ∈ Bt : ∃A′ ∈ Is,t with A′ ⊆ A}.

Taken together, the overlapping trapeziums Ts,t cover all of Bt in this case too.

3.2. Strategy

The heart of our proof of Theorem 1.8 is the following lemma.

Lemma 3.1. There is an absolute constant C3 > 1 such that, for every antichain A ⊆ Q(Pn)

and every integer

t ∈
[

−
√

log n

c1
,

√
log n

c1

]
,

we have

|A ∩ Bt| � C3 max{qrn : Q(r)(Pn) ⊆ Bt}.

Provided we are able to prove Lemma 3.1, Theorem 1.8 is straightforward from our

concentration result on the layer size, Corollary 2.7.

Proof of Theorem 1.8 from Lemma 3.1. Let A be an antichain. Then, by Corollary 2.7(ii),

Lemma 3.1, and Corollary 2.7(i), we have

|A| =
∑
t

|A ∩ Bt| + o(qr�n )

�
∑
t

C3 max{qrn : Q(r)(Pn) ⊆ Bt} + o(qr�n )

= C3

(∑
t�0

qr�+�c1t
√
n�

n +
∑
t<0

qr�+�c1(t+1)
√
n�

n

)
+ o(qr�n )

� 2C3

(∑
t�0

exp

(
−5

√
5c1

2

2
t2 + o(1)

)
qr�n

)
+ o(qr�n ),

which is O(qr�n ) by Lemma 2.10.

Let us therefore turn to the proof of Lemma 3.1. This will be a shadow argument.

Definition. Let B ⊆ Q(Pn) be a subset of the Fibonacci cube. The lower shadow of B is

the family

∂−(B) = {B ∈ Q(Pn) : ∃b /∈ B such that B ∪ {b} ∈ B}.

The upper shadow of B is the family

∂+(B) = {B ∈ Q(Pn) : ∃b ∈ B such that B \ {b} ∈ B}.
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Recalling the directed graph D(Pn) we associated with Q(Pn), the lower shadow is the

in-neighbourhood of B in D(Pn) while the upper shadow is the out-neighbourhood of B.

Let t � 0, and let A ⊆ Bt be an antichain contained in the block Bt. Write A(r) for the

rth layer of A: A(r) = A ∩ Q(r)(Pn).

Let A0 = A, and let A(r+) be the topmost non-empty layer of A0 ⊆ Bt. Since A0 is an

antichain, the family

A1 =
(
A \ A(r+)

)
∪ ∂−(A(r+))

is also an antichain. Repeating this procedure with A1, then A2, etc., we can ‘push down’

our family into the bottom layer of Bt. We will thus be done in the proof of Lemma 3.1

if we can show that we have not shrunk the size of our family by more than a constant

factor in the process. (The t < 0 case proceeds identically with upper shadows instead of

lower shadows.)

To do this, we perform some careful accounting, and this is where our trapeziums (and,

unfortunately, some tedious calculations) come in. Roughly speaking, the further away

the out-degree lies from the layer’s average out-degree, the more we could be shrinking

our family when taking lower shadows. This effect is balanced out by the fact that the

further we are from the average out-degree the fewer sets we have at our disposal.

3.3. Shadows in the trapeziums

In this subsection, we prove the case t � 0 of Lemma 3.1 by taking shadows in trapeziums.

We first introduce some notation.

Let t � 0. Let r− = r� + �c1t
√
n� and r+ = r� + �c1(t + 1)

√
n� be the size of sets in the

bottom-most and top-most layers of Bt respectively. Given a family C ⊆ B, we let

φ(C) = {A ∈ Q(r−)(Pn) : ∃A′ ∈ C such that A ⊆ A′}

denote the collection of sets in the bottom-most layer of Bt which are contained in an

element of C. In other words, φ(C) is obtained from C by repeatedly replacing the highest

non-empty layer of C by its lower shadow until the entire family lies inside Q(r−)(Pn).

Proof of case t � 0 of Lemma 3.1. Let A be an antichain. Without loss of generality,

we may assume A ⊆ Bt. We shall show that

|A| − |φ(A)| � (1 + C4)q
r−
n

for some absolute constant C4 > 0, from which Lemma 3.1 follows with C3 = C4 + 2.

Let As = A ∩ Ts,t be the intersection of A with the trapezium Ts,t. By Corollary 2.9 and

the monotonicity of qrn, we have that

∣∣∣⋃{As : s ∈ Z \ [−
√

log n,
√

log n]}
∣∣∣ � c1

√
n · o

(
n−2qr−

n

)
= o(qr−

n ).

Thus, for the purpose of proving Lemma 3.1, it is enough to consider only the sets As

with s ∈ [−
√

log n,
√

log n].
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Observe that deleting an element from a set in Q(Pn) can increase its out-degree by at

most 3. It follows that sets in φ(As) have out-degree d satisfying

d�(r+, n) + s
√
n � d � d�(r+, n) + (s + 1)

√
n + 3c1

√
n.

As c1 = 1/100 it follows that φ(As) is disjoint from φ(As+2) for all s (since 3c1

√
n <

√
n).

In particular, sets in Q(r−)(Pn) are contained in at most two distinct φ(As), whence(∑
s

|φ(As)|
)

−
∣∣∣∣
⋃
s

φ(As)

∣∣∣∣ � |Q(r−)(Pn)| = qr−
n . (3.1)

Now we shall show that |φ(As)| is not much smaller than |As|. To obtain φ(As) from

As, we repeatedly replace the highest non-empty layer by its lower shadow. Since A (and

hence As) is an antichain, we know that the shadow of the family’s highest layer is disjoint

from the rest of the family. Thus our only concern is that the family could be shrinking

every time we take a lower shadow.

Observe that if B ⊂ Q(r)(Pn) and the maximum out-degree in the lower shadow of B is

Δ+, then, by counting edges from ∂−B to Q(r)(Pn), we have

|∂−B| � r

Δ+
|B|.

Going from As to φ(As), the worst ratio we would have to contend with at any stage of

the process is thus when

r = r− = r� + c1t
√
n + O(1)

and

Δ+ = d�(r+, n) + (s + 1)
√
n + 3c1

√
n + O(1).

Now, by Lemma 2.2,

r� =
5 −

√
5

10
n + O(1),

and by Corollary 2.5,

d�(r+, n) =
5 −

√
5

10
n −

(
5
√

5 − 7

2

)
c1(t + 1)

√
n + (20 − 8

√
5)c2

1(t + 1)2 + O(1).

A quick calculation then shows that the worst-case ratio is

r−
Δ+

=
5−

√
5

10
n + c1t

√
n

5−
√

5
10

n −
(

5
√

5−7
2

c1(t + 1) − (s + 1) − 3c1

)√
n + (20 − 8

√
5)c1

2(t + 1)2
+ O

(
1

n

)

=
1 + 10

5−
√

5
c1tn

−1/2

1 + 10

5−
√

5

(
s + 1 − 5

√
5−7
2

c1t + 13−5
√

5
2

c1

)
n−1/2

+ O

(
log n

n

)

= 1 − 10

5 −
√

5

(
s + 1 − 5

√
5 − 5

2
c1t +

13 − 5
√

5

2
c1

)
n−1/2 + O

(
log n

n

)
.

In the second equation above we used the fact that t = O(
√

log n).
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Write ft(s) for the expression

ft(s) =
10

5 −
√

5

(
s + 1 − 5

√
5 − 5

2
c1t +

13 − 5
√

5

2
c1

)
.

If ft(s) < 0, then we have nothing to worry about: our family does not shrink as we take

successive shadows. On the other hand, if ft(s) � 0, then we have

|φ(As)| �
(

1 − ft(s)n
−1/2 + O

(
log n

n

))c1
√
n

|As|

= exp

(
−c1ft(s) + O

(
log n√

n

))
|As|. (3.2)

We now give an upper bound on the size of φ(As) (and hence, by (3.2), on |As|) when

ft(s) � 0 using our concentration results. Write s0 for the unique real solution to ft(s) = 0:

s0 = −1 +
5
√

5 − 5

2
c1t − 13 − 5

√
5

2
c1.

Since c1 = 1/100 and t � 0, we certainly have s0 > −2. By Corollary 2.5 and the fact that

t = O(
√

log n),

d�(r−, n) − d�(r+, n) =

(
5
√

5 − 7

2

)
c1

√
n + O

(√
log n

)
.

The out-degrees found in φ(As) ⊆ Q(r−)(Pn) are thus at least

δs = d�(r+, n) + s
√
n

= d�(r−, n) + s
√
n − 5

√
5 − 7

2
c1

√
n + O

(√
log n

)
= d�(r−, n) + g(s)

√
n + O

(√
log n

)
,

where g denotes the linear function

s �→ s −
(

5
√

5 − 7

2

)
c1.

Since s0 > −2, c1 = 1/100 and s is an integer, it follows from the above that apart from at

most two values of s � s0 (namely s = −1 and s = 0), the minimum out-degree in φ(As)

is greater than d�(r−, n) by a term of order
√
n. We can then use our concentration result

and the monotonicity of qr− ,d
n away from d�(r−, n) to bound |φ(As)| for s � 1:

|φ(As)| � (
√
n + 3c1

√
n)qr− ,δs

n

� (3c1 + 1)
√
nqr− ,d�(r− ,n)

n exp

(
−

(
25 + 11

√
5

4

)
g(s)2 + o(1)

)
(3.3)

� (3c1 + 1)C2q
r−
n exp

(
−

(
25 + 11

√
5

4

)
g(s)2 + o(1)

)
, (3.4)

by applying Corollary 2.9 in (3.3) and Corollary 2.11 in (3.4).
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Now ft(s) � f0(s) for all t � 0, so that by inequalities (3.2) and (3.4), we obtain

∑
s�s0

|As| �
∑
s�s0

|φ(As)| exp
(
c1ft(s) + O

(
log n√

n

))

� (3c1 + 1)C2q
r−
n

(
ec1f0(−1)+o(1) + ec1f0(0)+o(1)

+
∑
s�1

exp

(
c1f0(s) −

(
25 + 11

√
5

4

)
g(s)2 + o(1)

))

� C4q
r−
n (3.5)

for some absolute constant C4 > 0, by observing that g(s)2 is quadratic in s while f0(s) is

only linear and applying Lemma 2.10.

We are then essentially done:

|A| − |φ(A)| �
(∑

s

|As| − |φ(As)|
)

+

(∑
s

|φ(As)| −
∣∣∣∣
⋃
s

φ(As)

∣∣∣∣
)

�
(∑

s

|As| − |φ(As)|
)

+ qr−
n (by (3.1))

�
(∑

s�s0

|As|
)

+ qr−
n � (C4 + 1)qr−

n (by (3.5)),

from which it follows that

|A| � |φ(A)| + (C4 + 1)qr−
n

� (C4 + 2)qr−
n ,

with C4 + 2 a constant independent of t and n as required.

The proof of the case t < 0 of Lemma 3.1 is essentially the same as above, except that

we use upper shadows instead of lower shadows (so as to push the family towards the

largest layer rather than away from it). We conclude here the proof of Lemma 3.1 and

with it the proof of Theorem 1.8.

4. Small cases of Conjecture 1.7

We have not tried to optimize the constant C we get in our proof of Theorem 1.8, as our

methods will give a constant strictly greater than 1 when we believe the correct answer

should be exactly 1. We have, however, established Conjecture 1.7 for some small values

of n. Details follow below.

4.1. Partition into chains

A classical proof of Sperner’s theorem consists in partitioning Qn into symmetric chains,

each of which intersects the largest layer(s) of Qn.

Definition. An l-chain in Q(G) is a family of l distinct elements of Q(G), {A1, . . . Al}, with

A1 ⊂ A2 ⊂ . . . ⊂ Al .

https://doi.org/10.1017/S0963548314000558 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000558


544 V. Falgas-Ravry

If Conjecture 1.8 is true, then it follows from a theorem of Dilworth [3] that Q(Pn)

can also be partitioned into disjoint chains, each of which intersects the largest layer(s)

of Q(Pn). Finding an explicit construction of such a partition appears difficult however:

Q(Pn) is asymmetric, and which layer is largest changes in an awkward and aperiodic way

with n. It is fairly straightforward, however, to find such a partition for small n.

We begin with a partition of Q(P1) into a single chain (∅, {1}), then build a partition

for Q(Pn) iteratively for 2 � n � 9.

Our chains will come in three types: type A chains are chains in Q(Pn) every member

of which contains n; type B chains are chains in Q(Pn) no member of which contains n;

and type C chains are chains in Q(Pn) of length at least two where only the last member

contains n. Our initial partition of Q(P1) thus consisted of a single C -chain.

Given such a partition of Q(Pn), we build a partition of Q(Pn+1) into chains in the

following way.

• An A-chain (C1 ∪ {n}, C2 ∪ {n}, . . . Cl ∪ {n}) in Q(Pn) gives rise to a B -chain in Q(Pn+1),

namely

(C1 ∪ {n}, C2 ∪ {n}, . . . Cl ∪ {n}).

• A B -chain (C1, C2, . . . Cl) in Q(Pn) gives rise to (potentially) two chains in Q(Pn+1): a

C -chain

(C1, C2, . . . Cl , Cl ∪ {n + 1})

and (if l > 1) an A-chain

(C1 ∪ {n + 1}, C2 ∪ {n + 1}, . . . Cl−1 ∪ {n + 1}).

• A C -chain (C1, C2, . . . Cl−1, Cl−1 ∪ {n}) in Q(Pn) gives rise to two chains in Q(Pn+1): a

B -chain

(C1, C2, . . . Cl−1, Cl−1 ∪ {n})

and an A-chain

(C1 ∪ {n + 1}, C2 ∪ {n + 1}, . . . Cl−2 ∪ {n + 1}, Cl−1 ∪ {n + 1}).

(Note that by construction all C -chains have length at least 2, so that each of them

does indeed produce an A-chain.)

It is easy to check that this iterative construction yields a partition of Q(Pn) into chains

through the largest layer for n = 1, 2, . . . 7 and n = 9. For n = 8, we obtain a partition of

Q(P8) containing one chain not intersecting the largest layer, Q(3)(P8). However, we can

fix this by replacing the three chains ({258}), ({25}, {257}) and ({57}) by the two chains

({25}, {258}) and ({57}, {257}). This establishes Conjecture 1.7 for all n � 9. The argument

in the next subsection gives a simpler proof for n = 2, 3 . . . 7, 9, and proves the additional

case n = 10.

4.2. Shadows

Another standard proof of Sperner’s theorem (indeed Sperner’s original proof) is to

‘push’ an antichain towards the largest layer of Qn by repeatedly replacing the antichain’s
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top-most layer by its lower shadow and the antichain’s bottom-most layer by its upper

shadow. Our proof of Theorem 1.8 is essentially a variant of this. Unfortunately, the

out-degrees in Q(Pn) are not sufficiently concentrated for this technique to give us even an

approximate form of Conjecture 1.7. We can, however, use shadow arguments to establish

some small cases of Conjecture 1.7.

For n � 2, set

Q′(Pn) =
⋃

(n−1)/4<r<(n+2)/3

Q(r)(Pn).

Lemma 4.1. Let n � 2 and let A be an antichain in Q(Pn). Then there exists an antichain

A′ in Q′(Pn) with |A| � |A′|.

Proof. Let A be an antichain, and assume A is non-empty (for otherwise we have

nothing to prove). Write A(r) for the rth layer of A:

A(r) = A ∩ Q(r)(Pn).

Let r+(A) = max{r : A(r) �= ∅} and r−(A) = min{r : A(r) �= ∅}. Suppose

r+(A) � n + 2

3
.

As A0 = A is an antichain, we have that the family

A1 =
(
A \ A(r+)

)
∪ ∂−A(r+)

is also an antichain. Now by counting edges between ∂−A(r+) and A(r+) in the directed

graph D(Pn), we see that

|∂−A(r+)| � r+

n − 2r+ + 2
|A(r+)| � |A(r+)|.

In particular, |A1| � |A0|. Repeating this procedure as many times as necessary, we can

produce an antichain at least as large as A with no set of size greater than or equal to

(n + 2)/3.

In the other direction, suppose

r−(A) � n − 1

4
.

As A0 = A is an antichain, we have that the family

A1 =
(
A \ A(r−)

)
∪ ∂+A(r−)

is also an antichain. Counting edges between A(r−) and ∂+A(r−), we have

|∂+A(r−)| � n − 3r−
r− + 1

|A(r−)| � |A(r−)|.

In particular, |A1| � |A0|. Repeating this procedure as many times as necessary, we can

produce an antichain at least as large as A with no set of size less than or equal to

(n − 1)/4.
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Now

n + 2

3
− n − 1

4
=

n + 11

12
,

and thus for n � 2 there always exists an integer r satisfying

n − 1

4
< r <

n + 2

3
,

so that the upper and lower shifting processes described above do not interfere with each

other. So we can obtain from any antichain A an antichain A′ which is at least as large

and which lies in Q′(Pn), as claimed.

Observe now that for n = 2, 3, 4, 5, 6, 7, 9 and 10 there is a unique integer r satisfying

n − 1

4
< r <

n + 2

3
.

Thus Conjecture 1.7 holds for these n. As we gave a partition of Q(P8) into chains meeting

the largest layer in the previous subsection (and as the case n = 1 is trivial), this means

that Conjecture 1.7 holds for all n < 11.

By Lemma 4.1, there is an antichain of maximum size in Q(P11) which lies entirely

inside Q(3)(P11) ∪ Q(4)(P11). The union of these two layers has size 154, and the largest

layer of Q(P11) is Q(3)(P11), which has size 84. Thus the first open case of our conjecture

asks whether we can find an antichain in Q(3)(P11) ∪ Q(4)(P11) with 85 or more elements.

Already this does not look amenable to a pure brute-force search.

5. Generalizations

Our proof of Theorem 1.8 needed very little structural information about the graph

sequence (Gn)n∈N = (Pn)n∈N. What we actually required in the proof was as follows.

(i) The layer size |Q(r)(Gn)| increases monotonically with r until it hits a maximum (or two

consecutive maxima) and then decreases monotonically, and this maximum occurs

when

r = r� = α�n + O(1),

where α� > 0 is a constant.

(ii) For α = α� + cn−1/2 and c = o(
√
n), we have

|Q(r)(Gn)| � e−γ1c
2+o(1)|Q(r�)(Gn)|,

where γ1 > 0 is a constant, and there are

o
(
|Q(r�)(Gn)|

)
sets in Q(Gn) with size differing from r� by more than o(n).

(iii) Within a layer, the number of sets with a given out-degree |Q(r,d)(Gn)| increases

monotonically with d until it hits a maximum (or two consecutive maxima) and then
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decreases monotonically. For r = αn and α = α� + o(1), this maximum occurs when

d = d�(r, n) = β�(α)n + O(1),

where β� is a continuous function of α.

(iv) For α = α� + o(1), β = β�(α) + cn−1/2 and c = o(
√
n), we have

|Q(r,d)(Gn)| � e−γ2c
2+o(1)|Q(r,d�(r))(Gn)|,

where γ2 > 0 is a constant, and there are

o

(
|Q(r)(Gn)|√

n

)

sets in Q(r)(Gn) with out-degree differing from d�(r, n) by more than o(n).

(v) For r = r� + o(n) and A ∈ Q(r)(Gn), removing a vertex from A increases its out-degree

by at most γ3, and adding a vertex to A decreases its out-degree by at most γ3, for

some constant γ3 > 0.

In fact, we could weaken (v): considering the case t � 0 only (the case t � 0 is similar)

and re-using the notation from Section 3.3, it is sufficient for our argument that in each

block Bt there at most O(qr−n ) ‘bad’ sets A whose out-degree can be changed by more

than γ3 by the addition or removal of a single vertex. Thus it would have been enough if

the following held.

(v′) For each layer Q(r)(Gn) with r = r� + o(n) there are at most

O

(
|Q(r)(Gn)|√

n

)

sets A whose out-degree can be changed by more than γ3 by the addition or removal

of a single vertex, where γ3 > 0 is a constant.

In particular, our proof of Theorem 1.8 actually gives the following more general result.

Theorem 5.1. Suppose
(
Gn

)
n∈N

is a sequence of n-vertex graphs satisfying properties (i)–(iv)

and (v′) above. Then there is a constant γ4 > 1 (depending only on the constants γ1, γ2, γ3, α�
and the function β�) such that

s(Gn) � γ4 max
0�r�n

|Q(r)(Gn)|.

Theorem 5.1 covers, for example, the case when Gn is the cycle Cn, or some finite power

of Pn or Cn. The calculations required to check that all the conditions above are satisfied

in these cases are very similar to those we performed in Section 2. For other graph families

where the theorem might apply, the checks could however become more involved.

We remark that the monotonicity condition in (i) is rather natural. Indeed, our example

in Section 1.2 of a graph sequence Gn for which the width was of larger order than the

size of a largest layer exploited precisely the non-monotonicity of the layer sizes.

Similarly, (iii) and (iv) feel like reasonable conditions if we want to rule out antichain

constructions spread over two consecutive layers and having size larger than the largest
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of the two layers by a factor of 1 + ε for some ε > 0 (e.g., by taking the union of the low

out-degree sets in the bottom layer and the complement of their upper shadow).

The requirement that α� ∈ (0, 1) in condition (i) forces Gn to have linear-sized inde-

pendent sets. Given this and the monotonicity part of condition (i), the Chernoff-type

concentration we require in condition (ii) is in fact what we would expect to see.

Finally, (v′) is a kind of homogeneity condition, chiming in with our intuition that a

graph G where ‘most’ vertices look ‘more or less the same’ should have width s(G) ‘more

or less the same’ as the size of the largest layer in Q(G).

Question 5.2. Suppose (Gn)n∈N is a sequence of graphs satisfying all the conditions in

Theorem 5.1. Is it the case that

s(Gn) = (1 + o(1)) max
r

|Q(r)(Gn)|?

6. Concluding remarks

6.1. The LYM inequality

Sperner’s theorem has over time given rise to an entire field, called Sperner Theory. We

refer the reader to the monograph of Engel [4] for more details on the subject. We have

already briefly discussed two different proofs of Sperner’s theorem in the previous section

(via a partition into disjoint chains and via shadow arguments) and the reasons why

they do not adapt well to the Q(Pn) setting. Let us make a remark here about a third

classical approach to Sperner’s theorem, via the elegant LYM inequality of Bollobás,

Lubell, Meshalkin and Yamamoto [1, 12, 13, 19].

Theorem 6.1 (LYM inequality). Let n ∈ N and A ⊆ Qn be an antichain. Then

n∑
r=0

|A ∩ Q(r)
n |

|Q(r)
n |

� 1.

Note that Sperner’s theorem is instant from LYM. Unfortunately we have been unable

to find a good analogue of the LYM inequality for Q(Pn). Not all maximal chains in Q(Pn)

have the same length, nor are elements in a given layer of Q(Pn) contained in the same

number of chains. Indeed, even restricting to ‘typical’ layers and ‘typical’ elements of those

layers does not help us. As for shadows, the out-degrees are insufficiently concentrated

for a uniform random chain to prove even an approximate form of Conjecture 1.7: a

divergence in the out-degree by an additive factor of O(
√
n) blows up to a divergence

by a constant multiplicative factor in the number of chain-extensions of order O(
√
n). So

to adapt the LYM strategy to our Q(Pn) setting, we would need to construct a biased

random chain which samples layers in a uniform manner. We could for example associate

an ‘energy’ to sets, which would be high on high out-degree sets, and then give our

random chain a slight bias toward lower energy configurations. Though we have been

unable to do this, it is probably one of the more promising approaches left open by our

investigations.
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6.2. Isoperimetric questions

One way we might try to construct a partition of Q(Pn) into chains is to find, for any pair

of consecutive layers, a matching in (the undirected version of) D(Pn) from the smaller

layer to the larger one. By Hall’s marriage theorem [6], such matchings exist if and

only if Hall’s condition is satisfied in the bipartite subgraphs of D(Pn) corresponding to

consecutive layers of Q(Pn); that is, if and only if for every r > r� and every A ⊆ Q(r)(Pn)

we have |A| � |∂−A|, and for every r < r� and every A ⊆ Q(r)(Pn) we have |A| � |∂+A|.
This makes us interested more generally in the following isoperimetric problems.

Problem 6.2. Let 0 � r � �n/2� and let 0 � s � qrn. Identify the families A ⊆ Q(r)(Pn) of

size s that minimize the size of the lower shadow.

Problem 6.3. Let 0 � r � �n/2� and let 0 � s � qrn. Identify the families A ⊆ Q(r)(Pn) of

size s that minimize the size of the upper shadow.

Remark. Since Q(Pn) is not closed under complements, these two problems are not

equivalent.

In the usual hypercube Qn, these problems were solved by Kruskal and Katona [10, 11]

using shifting techniques that cannot be adapted to Q(Pn) without additional ideas.

Talbot [17] has, moreover, exhibited examples which show that the families minimizing

the size of the lower shadow in Q(Pn) are not nested, suggesting that the problem may be

quite difficult.

Acknowledgements

The author would like to thank David Saxton for many stimulating conversations on

the problem, and the anonymous referees for their careful work and helpful suggestions,

which led to significant improvements in the presentation of this paper.

References

[1] Bollobás, B. (1965) On generalized graphs. Acta Mathematica Hungarica 16 447–452.

[2] Cohen, G., Fachini, E. and Körner, J. (2010) Skewincidence. IEEE Trans. Inform. Theory 57

7313–7316.

[3] Dilworth, R. P. (1950) A decomposition theorem for partially ordered sets. Ann. of Math. 51

161–166.

[4] Engel, K. (1997) Sperner Theory, Cambridge University Press.
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