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Electronic communications, as well as other categories of interactions within social networks,

exhibit bursts of activity localised in time. We adopt a self-exciting Hawkes process model

for this behaviour. First we investigate parameter estimation of such processes and find that,

in the parameter regime we encounter, the choice of triggering function is not as important

as getting the correct parameters once a choice is made. Then we present a relaxed maximum

likelihood method for filling in missing data in records of communications in social networks.

Our optimisation algorithm adapts a recent curvilinear search method to handle inequality

constraints and a non-vanishing derivative. Finally we demonstrate the method using a data

set composed of email records from a social network based at the United States Military

Academy. The method performs differently on this data and data from simulations, but the

performance degrades only slightly as more information is removed. The ability to fill in large

blocks of missing social network data has implications for security, surveillance, and privacy.

Key words: Hawkes processes, maximum likelihood, missing data, constrained optimization,

social networks

1 Introduction

1.1 Burstiness and Hawkes processes

The ways humans interact has long been a subject of interest. The rise of electronic com-

munication, and particularly social media, has made large data sets of human interactions

available. Growing interest in privacy and cybercommunications has led to questions

about what can be learned from this data and how it is used.

A natural first question is how to model patterns of social interactions. A point process

seems a natural choice, but the simplest point process, the Poisson process, is ill suited

to modelling several classes of human activity, including communication. The problem,

broadly speaking, is that human activity patterns tend to be “bursty”, that is, more tightly

clustered in time than a Poisson process. See, for example, Figure 1. Two point patterns
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Figure 1. Two point patterns. The axis is time in days, and circles indicate events. Each point

pattern has 68 events. (a) Timestamps of emails sent between IkeNet user 6 and IkeNet user 15. (b)

A simulated Poisson process.

are plotted. Figure 1(a) is taken from the IkeNet data set, which will be discussed in detail

later. It shows the times that two particular users sent each other emails. Figure 1(b) is a

realisation of a Poisson process. The two point patterns have the same number of events,

but the IkeNet point pattern is more strongly clustered. This suggests a Poisson process

is a suboptimal choice for modelling human interactions. Furthermore, the absence of

any apparent time scale of usual periodic human behaviour (hourly, daily, weekly, even

monthly) rules out a non-homogeneous Poisson process with deterministic intensity. Bursty

dynamics have been observed in Web browsing [35], emails [1], communications within

electronic social networking systems [33], mobile phone calls [24], FTP requests [30], and

even face-to-face interactions [16].

In 1971 Hawkes [13, 14] introduced a class of self-exciting point processes that have

come to bear his name. A Hawkes process is a non-homogeneous point process n(t) whose

intensity is governed by

λ(t) = μ +
∑
ti<t

g(t − ti; θ). (1.1)

Each ti is an event time, μ is a deterministic background intensity, and g is a triggering

function specifying how much a recent event increases the intensity, hence the notion of

the Hawkes process as self-exciting. Here, we note explicitly the dependence of g on a

vector θ of parameters because we will estimate these parameters statistically, but we

may omit it later for notational convenience. (Non-parametric approaches to estimating

g have also been developed [18, 21].) Likewise we may write λ(t|{ti}n(t)i=1) when we want

to emphasise the dependence of λ on the history. The background intensity μ can be

time-dependent, but we take it as a constant for simplicity. This choice has precedent in

seismology [21].

Figure 2 shows Hawkes process realisations with μ = 0.15 and g(t) = 0.5e−0.6t. The

intensity and event times are plotted against time. The Hawkes process events are more

tightly clustered in time than the Poisson process of Figure 1(b), perhaps more closely

resembling Figure 1(a).

The Hawkes process appears in the seismology literature as a model for the timing of

earthquakes and their aftershocks [26]. As interest in and availability of large data sets

of human activities have grown, Hawkes processes have been used to model electronic
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Figure 2. Three realisations of a Hawkes process with μ = 0.15 and g(t) = 0.5e−0.6t. The

horizontal axis is time. Circles indicate events, and the solid curve is the intensity.

communications [5], gang crimes [10, 15, 34], and even terrorist and insurgent activity

[19, 25].

The constraints on μ and g are modest. First, we assume that μ > 0. Second, so that the

process is self-exciting rather than self-dampening, we assume g is non-negative. Finally,

we assume that
∫ ∞

0 g(t; θ)dt < 1 to ensure that the process is stationary. The importance

of this assumption becomes clear when we recognise that
∫ ∞

0 g(t; θ)dt is the expected

number of immediate descendants of each event. Were it greater than 1, then each event

could be expected to give rise to infinitely many others. This would make the process

explosive and impossible to simulate repeatedly. It also runs against intuition for our

application to emails within a social network (all email threads end eventually) or indeed

any of the other applications mentioned above.

Our approach recalls that of Stomakhin, Short & Bertozzi’s work on networks of

criminal gang rivalries [34]. A gang that has been victimised by a rival will often retaliate,

setting off a burst of tit-for-tat crimes. Stomakhin, Short & Bertozzi associate to each pair

of rival gangs an independent Hawkes process whose events represent crimes committed

by one gang against the other. Then, noting that law enforcement often knows which

gang was victimised but not which gang was the perpetrator, they cast the task of solving

the crime as a missing data problem, in which a history of gang crimes is known but some

of the identities of the gangs involved in particular incidents are hidden. Like Stomakhin,

Short & Bertozzi, we will assign independent Hawkes processes to the connections within

a social network and solve a missing data problem. However, our variational approach

will be different.
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Table 1. Pairs of officers who exchanged > 100 emails

Pair Number of emails Pair Number of emails

(9,18) 1,042 (18,22) 222

(11,22) 511 (4,13) 134

(13,17) 302 (9,13) 131

(11,13) 293 (13,18) 130

(8,18) 281 (13,22) 120

(13,15) 223 (3,17) 116

Lee et al. [17] also use message data to solve an inverse problem. However, they seek

the actors’ positions in physical space rather than their identities. Also their approach is

fundamentally Bayesian, while ours is based in maximum likelihood.

1.2 The IkeNet data set

Between 2010 and 2011, email exchange data was collected from 22 volunteers, all mid-

career United States Army officers enrolled in the Eisenhower Leadership Development

Program, a one-year graduate program administered jointly by Columbia University

and the United States Military Academy. During their enrollment, members of this “Ike”

network were given cell phones with which they could access their military email accounts.

Of the 22 participants, 19 (90%) were male, and 17 (77%) were Caucasian. At the start

of the project they ranged in age from 26 to 33 years.

The data set consists of time stamps and anonymised sender and receiver codes from

8,896 emails sent among the participating officers over a 361-day period. This is a social

network with 253 connections. (We include self-connections because the volunteers emailed

themselves.) Emails were sent along 250 of these connections.

The emails are by no means distributed evenly among these 250 connections. Table 1

lists the 12 pairs of officers who exchanged more than 100 emails. The top pair (9,18)

exchanged 1,042 emails, or 11.7% of all the emails in the corpus. Together these top 12

exchanged 3,505 emails, or 39.4% of the corpus. Figure 3 is a histogram of the number

of emails exchanged among the remaining pairs, all of them less than 100. Many of the

pairs of officers exchanged only a few emails, while a few pairs exchanged a substantial

proportion of all emails in the corpus, and a few users (13, 18, 22) appear three times

or more in this list of highly active pairs. These observations are consistent with a

core–periphery structure, which is a characteristic of many social networks [7].

Fox et al. [11] perform several statistical studies of this data set, including fitting

Hawkes processes to the email patterns via maximum likelihood estimation. They find

that a Hawkes process model fits the IkeNet data better than a homogeneous Poisson

model, as measured by the Akaike information criterion (AIC). They also incorporate the

results of a leadership survey administered to the volunteers, revealing more details of the

social network.

Our approach differs from Fox et al.’s in two basic ways. First, while they assign an

independent Hawkes process to each officer (i.e., each node in the network), we assign one

to each relationship between officers (i.e., each edge in the network). This is appropriate
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Figure 3. Histogram of the number of emails sent between each pair of officers. Only pairs who

exchanged fewer than 100 emails are shown; see Table 1 for the others.

to the missing data problem, in which differences in the officers’ relationships matter a

great deal. Second, while Fox et al. allow the background rate μ to change periodically to

capture daily and weekly rhythms in email traffic, we take μ as a constant. We expect this

simplification’s impact to be modest, because Fox et al. found only a modest improvement

in AIC by moving to a time-varying μ, and because we do not expect it to have much

import for our missing data problem.

2 EM estimation of Hawkes process parameters

First we must discuss fitting the parameters of a Hawkes process to data. We take

a maximum-likelihood approach, using an expectation-maximisation (EM) numerical

method to combat the problem’s ill conditioning [36]. Finally, we give several examples

for different choices of the triggering function g. It is most common in the literature to

assume an exponential form for g [5, 11, 15, 22, 34], though other forms are also in use,

including power law [6, 27] and the exponential multiplied by a polynomial [28]. Our

comparison of exponential and power-law forms suggests that it does not matter which

is used, validating the frequent use of the exponential form.

The general problem is, given an interval [0, T ] and a point pattern {ti}n(T )
i=1 falling in

that interval, to produce statistical estimates μ̂ and ĝ for the μ and g of the Hawkes

process assumed to generate the data. Non-parametric methods of estimating g exist [18],

but our approach will be to assume a form for g (in statistical parlance, to adopt a model

for g) and instead estimate θ, the vector of parameters, together with μ using maximum

likelihood, yielding parameter estimates (μ̂, θ̂).

The likelihood that a point process with conditional intensity λ generated a history

{ti}n(T )
i=1 is

L = exp

(
−

∫ T

0

λ(t|{ti}n(T )
i=1 )dt

) n(T )∏
i=1

λ(ti|{tj}i−1
j=1). (2.1)

See [31] for a detailed discussion. It is standard to instead maximise the log-likelihood,
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which for a Hawkes process as in (1.1) has the form

logL(μ, θ) =

n(T )∑
i=1

(
log

(
μ +

i−1∑
j=1

g(ti − tj; θ)

)
−

∫ T−ti

0

g(t; θ)dt

)
− μT . (2.2)

Ozaki [29] treats maximum likelihood estimation of the parameters when g is exponential.

2.1 Generating Hawkes process point patterns

Throughout this section, and again in Section 4 when considering simulated networks, we

use Lewis’s thinning method [20,26] to generate artificial Hawkes process point patterns.

Briefly, given a history {ti}ni=1 at time t, we simulate an independent exponential random

variable s with rate parameter λ(t|{ti}ni=1). Were this process homogeneous, we would take

tn+1 = t + s, set t = t + s, and continue. However, because the intensity decays following

an event, we only do this with probability λ(t + s|{ti}ni=1)/λ(t|{ti}ni=1). If we do not, we set

t = t + s and generate a new s. The procedure continues until t > T .

2.2 The EM algorithm

Fox et al. [11] use the standard optimisation routines in the R software package to estimate

the parameters of a Hawkes process model by likelihood maximisation. However, they

model each agent as an independent Hawkes process, where we assign an independent

Hawkes process to each relationship between the agents. If we conceive of the IkeNet

social network as a graph, Fox et al. model the nodes, and we model the edges. This

places us in different parameter regimes where the conditioning may be different.

The condition number of maximising the smooth log-likelihood is

κ =
‖∇2 logL(μ̂, θ̂)‖‖(μ̂, θ̂)‖

‖∇ logL(μ̂, θ̂)‖
,

where ∇2 denotes the Hessian and μ̂ and θ̂ are the values of μ and θ maximising

L(μ, θ). (The notation does not show it explicitly, but κ also depends on T .) To

demonstrate the condition numbers we can expect to encounter in this work, we gen-

erated 50,000 realisations of a Hawkes process with the exponential triggering function

g(t; θ) = g(t; α, ω) = αωe−ωt, taking T = 361, μ = 0.05, α = 0.5, and ω = 6. (These values

were chosen to correspond with a typical edge in the IkeNet data.) We then used the

EM algorithm described below to compute μ̂ and θ̂ = (α̂, ω̂) for each realisation. The

condition numbers varied widely, but 95% of them fell in the interval (2.7×105, 1.4×109).

These are very high condition numbers, indicating that standard iterative methods may

converge unacceptably slowly for this problem.

Veen & Schoenberg [36] show how to use an expectation-maximisation algorithm to

counter the problem’s ill conditioning. The algorithm relies on the Hawkes process’s

branching structure. The linearity of the conditional intensity process (1.1) allows us to

calculate the probability that a given event was triggered by any previous event; otherwise

it is a background event. The probability that an event occurring at time ti is a background
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event is μ/λ(ti), and the probability that it was caused by an event that occurred at time

tj < ti is g(ti − tj)/λ(ti).

The EM algorithm alternates between an expectation step and a maximisation step. At

the kth iteration we have an estimate (μ(k), θ(k)) of the parameters. The expectation step

of the (k + 1)th iteration uses those parameters to calculate p
(k+1)
i,i and p

(k+1)
i,j , respectively

the probabilities that event i was a background event or was caused by event j:

p
(k+1)
i,i =

μ(k)

μ(k) +
∑i−1

j=1 g(ti − tj; θ(k))
,

p
(k+1)
i,j =

g(ti − tj; θ
(k))

μ(k) +
∑i−1

j=1 g(ti − tj; θ(k))
.

The maximisation step targets complete data likelihood of the branching structure. The

likelihood of a given structure can be decomposed into independent pieces:

• The number of background events. This is a Poisson random variable (call it b) with

expectation μT . Its likelihood is

L1(μ) = e−μT (μT )b

b!
.

• The number of immediate descendants of each event, both background and triggered,

given b. Let di be the number of descendants of event i. It is also Poisson, and its

expectation is
∫ T−ti

0
g(t; θ)dt. Lewis & Mohler [18] found that approximating this by

G(θ) =
∫ ∞

0 g(t; θ)dt had only a modest impact on the reliability of results, so we adopt

this approximation for simplicity. Because each di is independent of the others, their

joint likelihood is

L2(θ) =

n∏
i=1

e−G(θ)G(θ)di

di!
.

• The timing of the descendant events given b and all the di. Let j(i) be the event of which

i is the immediate descendant, with j(i) = i if i is a background event. The likelihood of

event i occurring at time ti is g(ti − tj(i); θ)/G(θ) (we again approximate a finite integral

of g by G(θ)), so the joint likelihood of all events’ timing is

L3(θ) =
∏

i:j(i)<i

g(ti − tj(i); θ)

G(θ)
.

The background events are distributed uniformly in [0, T ], so their timing does not

enter into the likelihood.

The likelihood of the overall branching structure is the product of L1(θ), L2(θ), and L3(θ).

The maximisation step is sometimes said to maximise this likelihood. In fact, it maximises

the expectation of the log-likelihood under the probability measure implied by the p(k+1)

computed in the expectation step [23, pp. 18–20]. This suffices to maximise the likelihood
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over the course of the algorithm [39]. The log-likelihood is

�c(μ, θ) = −μT + b log μ + b logT − log(b!) +

n∑
i=1

(−G(θ) + di logG(θ) − log(di!))

+
∑
i:j(i)<i

(log g(ti − tj(i); θ) − logG(θ)).

The parameters (μ, θ) are exogenous to the probability measure implied by the p(k+1), so

additive terms that do not depend explicitly on (μ, θ) are constants under expectation.

Thus it is equivalent to maximise the function

E(k+1)(μ, θ) = −μT + (log μ)

n∑
i=1

p
(k+1)
i,i − nG(θ) +

n∑
i=1

i−1∑
j=1

p
(k+1)
i,j log g(ti − tj; θ).

Regardless of the model for g, the maximising value of μ is

μ̂(k+1) =

∑n
i=1 p

(k+1)
i,i

T
.

The maximising θ satisfies

∇G(θ̂(k+1)) =
1

n

n∑
i=1

i−1∑
j=1

p
(k+1)
i,j

∇θg(ti − tj; θ̂
(k+1))

g(ti − tj; θ̂(k+1))
. (2.3)

Fortunately, for both the models we choose for g, (2.3) reduces to tractable algebraic

expressions for each component of θ̂(k+1).

2.3 Example: exponential triggering

First, we choose g(t; α, ω) = αωe−ωt. The L1 condition on g is equivalent to ω > 0 and

0 � α < 1. The θ condition (2.3) reduces to

α̂(k+1) =

∑n
i=1

∑i−1
j=1 p

(k)
i,j

n
, ω̂(k+1) =

∑n
i=1

∑i−1
j=1 p

(k)
i,j∑n

i=1

∑i−1
j=1 p

(k)
i,j (ti − tj)

.

We generated 50,000 realisations of a Hawkes process with this triggering function,

taking T = 361, μ = 0.05, α = 0.5, and ω = 6 as in Section 2.2. We then estimated the

parameters using the EM algorithm. The results are presented in Table 2 and Figure 4(a).

The estimates for the parameters are distributed about their ground-truth values, with a

slight rightward skew for μ and more pronounced leftward and rightward skews for α

and ω, respectively. Of the 50,000 estimates for ω, 504 or about 1% were greater than

18; these are omitted from the histogram.

Given the opposite skews of μ and α and the roles they play in the formula for the

conditional intensity, one may be tempted to speculate that underestimates of μ are

associated with overestimates of α, and vice-versa. We find that the sample values of μ

and α have a real but weak relationship: they have a slightly negative Spearman rank
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Table 2. EM estimation results

Model Parameter Ground truth Mean

μ 0.05 0.05002

Exponential α 0.5 0.4733

ω 6 6.753

μ 0.05 0.05095

Power law α 0.5 0.4641

q 3 3.590

0 0.05 0.12
0

12.5%

25%
(a) Exponential

μ

0 0.5 1
0

12.5%

25%

α

0 6 12 18
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25%
(b) Power law

μ
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α

1 3 7 11
0

12.5%

25%

q

Figure 4. Histograms showing the results of EM estimation of model parameters for (a) exponential

and (b) power law triggering functions. For each model 50,000 point patterns were generated. About

1% of the results for ω and q are omitted because they are outliers that exceed the right limit of

the graph.

correlation (ρ = −9.46 × 10−3, p = 0.034). The Pearson correlation is r = 2.65 × 10−3

(p = 0.554), so this relationship is likely non-linear.

2.4 Example: power-law triggering

Many human behaviour patterns exhibit power-law scaling in inter-event times [1].

Therefore, we now choose g(t; α, q) = α(q − 1)(1 + t)−q . This has the same number of

parameters as the previous section’s exponential model. The L1 condition on g is equivalent
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Figure 5. Triggering functions. Exponential: g(t) = 3e−6t. Power law: g(t) = (1 + t)−3.

to q > 1 and 0 � α < 1. The θ condition (2.3) reduces to

α̂(k+1) =

∑n
i=1

∑i−1
j=1 p

(k)
i,j

n
, q̂(k+1) = 1 +

∑n
i=1

∑i−1
j=1 p

(k)
i,j∑n

i=1

∑i−1
j=1 p

(k)
i,j log(1 + ti − tj)

.

Again, we generated 50,000 realisations with T , μ, and α as above, and q = 3. The

results are presented in Table 2 and Figure 4(b). As with the exponential triggering

function, estimates for μ and α are overall close to their ground truths with, respectively,

a slight rightward skew and a more pronounced leftward skew. The estimates of q clearly

peak around 3 but skew rightward. Of the 50,000 estimates for q, 446 or about 0.9% were

greater than 11; these are omitted from the histogram.

2.5 Comparison of exponential and power-law

In practice we may not know the best form of the triggering function to use when

modelling a point process. Non-parametric methods are one solution [18]; however, these

can be cumbersome, and without enough data they invite overfitting. Instead we ask

whether point patterns generated by the two triggering functions discussed in Sections

2.3 and 2.4 can be told apart. The triggering functions are plotted together in Figure 5.

They have the same integral, but the power-law triggering function has a longer tail. One

might reasonably expect these two triggering functions to produce different behaviours.

Most of the time we consider the likelihood only in the context of maximising it with

respect to the parameters or the model, given a history. But the likelihood has comparative

value, as well. Comparing the likelihoods of models or sets of parameters to the maximum

likelihood value reveals how much likelihood we lose by adopting suboptimal assumptions.

To wit, we calculate different likelihood values given the 50,000 Hawkes process real-

isations we generated for each triggering function in Sections 2.3 and 2.4. For each

exponential history H = {ti}ni=1, we compute the log-likelihood (2.2) of the EM paramet-

ers (μ̂exp(H), θ̂exp(H)) and the exponential ground-truth parameters (0.05, 0.5, 6). We also

calculate (μ̂pow(H), θ̂pow(H)), the parameters maximising the likelihood under a power law

model, and compute their likelihood. For comparison we also compute the likelihood for

the power-law ground-truth parameters (0.05, 0.5, 3). We then repeat the process mutatis

mutandis for each power-law history. In this way we hope to quantify the loss incurred
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Table 3. Mean log-loss versus correct EM, fit and validated on same dataset

Model Correct Incorrect Correct Incorrect

Parameters EM EM Ground truth “Ground truth”

Exponential 0 −0.11 −1.51 −7.47

Power-law 0 −0.05 −1.50 −7.66

Table 4. Percent of Monte Carlo trials in Table 3 in which correct ground truth

outperformed the given choice of model and parameters

Model Correct Incorrect Correct Incorrect

Parameters EM EM Ground truth “Ground truth”

Exponential 0.0% 13.1% – 99.6%

Power-law 0.0% 24.0% – 99.6%

by using the “wrong” model for the triggering function, as compared to the loss incurred

by using the “right” model with the “wrong” parameters. Because both models have

the same number of parameters, the penalty term of the Akaike information criterion is

unnecessary.

Table 3 summarises the results. The rows indicate whether we used the exponential

or power-law histories. Each column corresponds to a choice of model and a choice

of parameters with which to equip it. Each entry is the average difference across all

realisations in log-likelihood (“log-loss”) between its column’s given model–parameter

combination and the “correct” model equipped with the EM parameters. The combination

in the first column is the “correct” model and the EM parameters; the entries are zero by

construction. The second column adopts the “incorrect” model but uses the likelihood-

maximising parameters given that model. The third column uses the “correct” model’s

ground-truth parameters rather than the likelihood-maximising parameters. The fourth

column uses the “incorrect” model’s ground-truth parameters. We have no reason to

expect this last category to perform well; we include it for a sense of scaling.

In both cases, the loss from using the EM parameters assuming the wrong model

is substantially less than the loss from using the right model with the ground-truth

parameters. To emphasise, these are the parameters that actually generated the histories,

yet they do not fit the data as well as a certain set of parameters attached to the wrong

model (though not every set, as the fourth column makes clear). The clear moral is

that, when maximising likelihood to fit Hawkes process models to data in our particular

parameter regimes, selecting the “correct” model is not as important as finding the

likelihood-maximising parameters once a model has been selected. More study is needed

to discover how far this moral applies outside this specific context.

Finally, we note that this analysis is conducted with maximum-likelihood parameters

applied to the same point pattern used to estimate the parameters. If the parameter

estimation is performed on one point pattern and the results are assessed using another,
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Table 5. Mean log-loss versus correct ground truth, fit and validated on different data sets

Model Correct Incorrect Correct Incorrect

Parameters EM EM Ground truth “Ground truth”

Exponential −2.04 −2.01 0 −5.93

Power-law −1.95 −2.53 0 −6.13

Table 6. Percent of Monte Carlo trials in Table 5 in which correct ground truth

outperformed the given choice of model and parameters

Model Correct Incorrect Correct Incorrect

Parameters EM EM Ground truth “Ground truth”

Exponential 53.3% 53.3% – 60.9%

Power-law 76.8% 79.8% – 93.9%

separate realisation of the same point process, then the correct model with ground truth

parameters will of course on average outperform the incorrect model or the correct model

with fitted parameters. To illustrate, we generated 100,000 point patterns and randomly

divided them into 50,000 training samples and 50,000 testing samples. Each training sample

was randomly paired with a testing sample, and the log-likelihood on the test sample

was calculated using both ground-truth parameters and maximum-likelihood parameters

trained on the corresponding training sample. Table 5 shows the results of this Monte

Carlo experiment; the values are mean log-losses relative to the log-likelihood of the

correct model with ground truth parameters. The results make clear that the improvement

in log-likelihood obtained by fitting the parameters by MLE does not apply to external

data sets but only to the data set on which the fitting was performed. In what follows,

when our methods are applied to the IkeNet point patterns, we may conclude that the

fitted exponential triggering function offers sufficiently good fit to this data set, though

this of course would not necessarily imply satisfactory fit to other data sets obtained in

the future.

3 The missing data problem

In this section, we state the missing data problem and discuss its numerical solution.

We take a variational approach, maximising a discriminant function subject to certain

constraints. For the numerics we adapt the curvilinear method of Wen & Yin [38].

3.1 Objective functions

Suppose that we have records of N emails sent among a social network of V members, as

in the IkeNet data set. But suppose that for some subset of the emails, we do not know

who sent or received them. More generally, we want to identify which of the M edges
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each email in the subset was drawn from. Because M scales with V 2, a direct approach

enumerating all possibilities and checking them is not scalable . Instead, we relax the

problem as in [34].

Number the M connections from 1 to M. (The order does not matter.) The history of

events is H = {ti}Ni=1. This history is partitioned into C , the events for which we know

which connection the event happened on, and I , the incomplete-information events. The

complete set has the obvious partition C =
⋃M

m=1 Cm into the histories associated to each

connection.

We present four methods for classifying the incomplete events. The first two are simple,

model-free methods based on basic statistics of H . The other two are variational methods

maximising a sort of score function. In each case we have what amounts to a family of

discriminant functions, one for each of the M connections. The value of the discriminant

function for ti ∈ I on connection m is xi,m. We speak of xi as the vector of weights

associated to ti ∈ I . Not every xi need belong to the same space, or even have the same

dimension, as the others. We need define xi,m only for those edges m to which ti could

belong. For example, if we know that one of the parties to an email was officer 1, we need

not consider the weight on the connection between officers 2 and 3.

The first classification method is a method of modes, which sets xi,m = |Cm|. The only

dependence on i comes from the fact that we do not set xi,m if message i could not have

been sent on connection m. The second method is a nearest-neighbour weighting, which

weights depending on the proximity in time (forward or backward) of the nearest known

event: xi,m = max{|ti − tj |−1 : tj ∈ Cm}.1 These two methods are in a sense dual to one

another: the method of modes is a simple, model-free, global method, and the nearest-

neighbour method is a simple, model-free, local method. They can serve as benchmarks

for the other methods, which assume a Hawkes process model and in so doing incorporate

both global and local information.

The third method for xi,m is a relaxed maximum likelihood method. The likelihood of

a given history and parameter set is

L =

( ∏
ti∈I

λmi
(ti)

) M∏
m=1

( ∏
ti∈Cm

λm(ti)

)
e−

∫ T

0 λm(t)dt.

A true MLE approach would find the {mi : ti ∈ I} maximising the likelihood. However,

there are M |I | possible values, so this approach quickly becomes infeasible as M and |I |
grow. We instead consider a relaxed problem, in which we maximise the related quantity

L =

M∏
m=1

( ∏
ti∈Cm

λm(ti; x)

)( ∏
ti∈I

λm(ti; x)xi,m
)
e−

∫ T

0 λm(t;x)dt,

where

λm(t; x) = μm +
∑

ti∈Cm,ti<t

g(t − ti; θm) +
∑

ti∈I,ti<t

xi,mg(t − ti; θm).

If we restrict the vector xi to be a Kronecker delta, we recover the original maximum

1 The maximand can be replaced with (δ + |ti − tj |)−1 if some ti coincides with some tj .
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Table 7. Objective functions

Method F(x)

SSB
∑M

m=1

∑
ti∈I xi,mλm(ti; x)

MRL
∑M

m=1

( ∑
ti∈Cm

log λm(ti; x) +
∑

ti∈I xi,m log λm(ti; x) −
∑

ti∈I xi,mGm(T − ti)
)

likelihood. The relaxation is in the constraint on each xi: ‖xi‖2 = 1 and xi,m � 0 for all

m. In practice we will maximise not L directly but a quantity that is off by an additive

constant from its logarithm, namely

FMRL(x) =

M∑
m=1

( ∑
ti∈Cm

log λm(ti; x) +
∑
ti∈I

xi,m log λm(ti; x) −
∑
ti∈I

xi,mGm(T − ti)

)
,

where Gm(t) =
∫ t

0
g(s; θm)ds. (MRL here stands for maximum relaxed likelihood.)

The fourth method is the Stomakhin–Short–Bertozzi (SSB) method outlined in [34].

This essentially maximises FSSB defined by

FSSB(x) =

M∑
m=1

∑
ti∈I

xi,mλm(ti; x),

subject to similar constraints on each xi.

3.2 Numerical implementation

Computing x for the method of modes and nearest-neighbour method is straightforward.

Constrained maximisation of FSSB and FMRL requires more care. Both optimisations have

the form

maxF(x) s.t ‖xi‖2 = 1 ∀i and xi,m � 0 ∀i, m.

The forms of F are summarised in Table 7. This is a variational approach to the

classification problem. Variational methods have had success in various applications,

including image processing [3, 4, 32].

Though FSSB was created to approximate the behaviour of FMRL, the two functions

have different properties. For example, FSSB is a quadratic function with all positive

coefficients, so within the feasible set all its partial derivatives are positive. This means

that every component of the maximising x is positive. (See Appendix A for a proof.

Briefly, it makes sense to redistribute a little weight from a positive component to a zero

component, because the benefit scales linearly with the size of the redistribution, while

the cost scales quadratically.) Not so for FMRL:

∂FMRL

∂xi,m
= log λm(ti; x) +

∑
tj∈Cm; tj>ti

gm(tj − ti)

λm(tj; x)
+

∑
tj∈I; tj>ti

xi,mgm(tj − ti)

λm(tj; x)
− Gm(T − ti).
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The two sums are positive, but the logarithm need not be, and −Gm(T − ti) can easily be

the dominant term.

We used a modified version of the curvilinear search described in [38]. In particular, we

can handle inequality constraints, where the original algorithm’s constraints are equalities.

Also, acknowledging that the gradient may not vanish on our constraint set, we adopt a

new stopping criterion. We conclude with some details of our implementation. The whole

algorithm appears for reference in Appendix B.

3.2.1 Wen & Yin’s curvilinear search

Gradient ascent is the most basic and intuitive iterative method for smooth maximisation,

but it does not preserve norms. Wen & Yin [38] present a curvilinear adaptation that

preserves orthogonal constraints of the form XTX = I , of which our constraint ‖xi‖2 = 1

is a special case. Let Fxi(x) denote the gradient of F with respect to xi, evaluated at x.

Given x and a step size τ > 0, the method computes the update yi(τ, x) according to a

Crank–Nicolson-type scheme:

yi(τ, x) = xi +
τ
2
A(x, i)(xi + yi(τ, x)),

where

A(x, i) = Fxi(x)xT
i − xiFxi (x)T. (3.1)

By Lemma 4 in [38], yi(τ, x) can be written explicitly as

yi(τ, x) = (1 − β2)xi + β1Fxi(x), (3.2)

where

β1 =
τ

1 + ( τ
2
)2δi(x))

,

β2 = (Fxi(x)Txi +
τ
2
δi(x))β1,

δi(x) = ‖Fxi(x)‖2
2 − (Fxi(x)Txi)

2.

Because ‖xi‖2 = 1, the Cauchy–Schwarz inequality ensures that δi(x) � 0. Furthermore,
d
dτ
F(y(τ, x))|τ=0 = 1

2
δi(x), so yi(τ, x) is an ascent direction.

Classical Crank–Nicolson would use 1
2
(Fxi(x) + Fxi(y(τ, x))) as the step direction, where

y(τ, x) is x but with yi(τ, x) replacing xi. However, this does not guarantee the spherical

constraint. By contrast a straightforward calculation verifies that if ‖xi‖2 = 1, then

‖yi(τ, x)‖2 = 1 for all τ > 0. The form of A (3.1) is inspired by work on p-harmonic flows

with spherical constraints [12, 37].

3.2.2 Inequality constraints

The algorithm in [38] simply sets x
(k+1)
i = yi(τ, x

(k)
i ), with some adaptive time stepping

for τ. While this preserves ‖xi‖2, it does not preserve the signs of the components of xi.

Our family of inequality constraints (xi,m � 0 for each i and each m) forces us to concern

ourselves with the signs, altering the problem fundamentally.
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If each component of x(k) (the kth iterate) is positive but some component of yi(τ, x
(k)
i )

is negative, then there exists a largest σ ∈ (0, τ) so that yi(σ, x
(k)) has all non-negative

components. This σ is actually straightforward to compute, because each equation of

the form yi,m(σ, x(k)
i ) = 0 is quadratic in σ. However, we found that this technique was

slow in practice because it only allows one dimension of xi to reach 0 at a time. When

F = FSSB, many components of the maximiser x∗
i are close to 0, so we would like to allow

many of them to reach 0 at once so they can then turn around and find their correct

(small, positive) value. When F = FMRL, many dimensions will ultimately belong to the

active set, and we would like to identify several of them at a time if possible. Therefore,

we adopt the less elegant but faster method of setting z = max(0, yi(τ, x
(k)
i )), with the

max done componentwise, and then redistributing the mass to preserve the �2 norm, i.e.,

x̃
(k+1)
i = z/‖z‖2.

If we adopt x
(k+1)
i = x̃

(k+1)
i , then it may have components that are zero and that will

become negative after another iteration of the curvilinear search. If we continue with

these components, the algorithm may hang because the projection back to the sphere may

become parallel to the curvilinear search direction. We can prevent this if we acknowledge

that any dimensions m for which yi,m(τ, x̃(k+1)
i ) < 0 belong to the active set of inequality

constraints. Noting from (3.2) that yi,m(τ, x) and Fxi(x) have the same sign when xi,m = 0,

we set x(k+1)
i = P (x, x̃(k+1)

i )x̃(k+1)
i , where P (x, x̃(k+1)

i ) is the projection onto the subspace of

those dimensions m for which x̃
(k+1)
i,m > 0 or Fxi > 0, with the derivative evaluated at x

except with xi replaced with x̃
(k+1)
i . (As we iterate, we also remove dimensions from F

and ∇F so that dot products with xi still make sense and so that we are not calculating

derivatives unnecessarily.)

When F = FSSB the solution can have many small positive components. It is possible

that at x
(1)
i many components x

(1)
i,m are small and positive but have yi,m(τ, x(1)) < 0, and

many others are zero but have yi,m(τ, x(1)) > 0. These sets of components trade places in

x
(2)
i , and the next iteration will send it back to very close to x

(1)
i . If enough components

keep “trading places” like this it can cause the algorithm to hang without reaching

the stopping criterion. We found that when |I | was large this happened a small but

non-trivial percentage of the time. We also found that we could eliminate the problem

by checking the signs of the components of xi versus yi(τ, x). If most were different,

we tried yi(τ/2, x), and then yi(τ/4, x), and so on until a majority of the signs were

preserved.

Once the iteration completes, we need to check that the dimensions we have projected

away still correspond to active constraints. If they do not, we project x(k) into a larger

space including the inactivated dimensions and resume iterating.

3.2.3 Stopping criterion

Wen & Yin [38] give a stopping criterion of ‖∇F‖2 < ε. Our stopping criterion must

be different, because we do not expect ‖∇F‖2 to decrease to 0 as we iterate. (Indeed,

as noted above, the components of ∇FSSB are always positive.) Instead we look for ∇F
to be normal to the constraint surface. Since the constraint surface is a sphere, this

means we want ∇F · x to be large relative to the size of ∇F . Specifically, our stopping

https://doi.org/10.1017/S0956792515000492 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000492


518 J. R. Zipkin et al.

criterion is

min
ti∈I

|Fxi (x
(k)
i ) · x(k)

i |
‖Fxi(x

(k)
i )‖2

> 1 − ε.

The absolute value in the numerator is necessary only if every Fxi(x
(k)
i ) is negative. This

can happen when F = FMRL but not when F = FSSB.

3.2.4 Practical computing considerations

The most computationally expensive part of our C++ implementation of the algorithm

is the computation of the derivative Fxi . Care must be taken to minimise this expense.

For reference, its components for our two choices of F are

∂FSSB

∂xi,m
= μm +

∑
tj∈Cm

gm(|ti − tj |) +
∑

tj∈I; tj�ti

xj,mgm(|ti − tj |), (3.3)

and

∂FMRL

∂xi,m
= log λm(ti; x) +

∑
tj∈Cm; tj>ti

gm(tj − ti)

λm(tj; x)
+

∑
tj∈I; tj>ti

xi,mgm(tj − ti)

λm(tj; x)
− Gm(T − ti).

Values of gm should never be computed “on the fly”; each should be pre-computed

and stored. Most of these values will be so small that treating them as zero will have

a de minimis impact on the results, but avoiding computing them (and computing with

them) saves tremendous time. Set a small threshold η > 0, and compute gm(ti − tj) only if

it will exceed ημm/|Cm|, i.e., if |ti − tj | < g−1
m (ημm/|Cm|). This adds a layer of dependency

tracking, but the savings in floating point operations are well worth it.

When F = FSSB, the update formula

∂FSSB

∂xi,m
(x(1)) =

∂FSSB

∂xi,m
(x(0)) +

∑
tj∈I; tj�ti

gm(|ti − tj |)(x(1)
j,m − x

(0)
j,m),

can save time when recomputing Fxi . When F = FMRL, a corresponding update formula

applies for λm(tj; x). The λ values should be tracked, while the logarithm should be

computed only when it is needed.

4 Results

Here, we present results for different configurations of missing data. First, we present

results from the IkeNet data set. Then, we test the methods on simulated point patterns

on artificial social networks, including some toy networks and some meant to resemble

IkeNet. We conclude the section by discussing the results in detail.

In each of our tests we begin with a complete data set, whether it is real (IkeNet) or

simulated. Then, we knock out some of the information to see whether we can recover

it from the rest of the corpus. The information might be a particular email’s sender or

receiver, an email’s sender and receiver, or the senders and receivers of several emails.

When deleting one record at a time we repeat this for each record in the corpus. When
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Table 8. IkeNet: Predictive power for missing sender by method (|I | = 1)

Method Top 1 Top 2 Top 3 Top 5 Top 10

Modes 27.8% 41.1% 50.0% 62.9% 82.0%

NN 62.9% 75.1% 79.8% 85.3% 92.6%

SSB 63.1% 74.7% 80.0% 85.8% 93.3%

MRL 61.1% 70.0% 72.4% 73.3% 73.6%

Table 9. IkeNet: Predictive power for missing receiver by method (|I | = 1)

Method Top 1 Top 2 Top 3 Top 5 Top 10

Modes 30.4% 43.5% 52.1% 64.4% 82.7%

NN 58.0% 73.3% 80.1% 86.6% 93.9%

SSB 59.2% 73.9% 80.6% 87.1% 93.7%

MRL 58.9% 69.0% 71.7% 72.6% 72.8%

deleting more than one record, exhausting the space of combinations is infeasible, so we

take a Monte Carlo approach.

We consider a data recovery method successful when the correct component xi,m has a

high weight relative to other components. In particular, we want xi,m to be the greatest

component, or perhaps the second or third greatest. This metric was considered previously

in [34] based on input from the LAPD. (The context there was solving gang crimes, where

narrowing down the list of suspect gangs to three can help detectives.) We also present

the results for top 5 and top 10 to showcase a property of the MRL optimiser.

We estimate the Hawkes process parameters using the techniques described in

Section 2. The SSB and MRL iterations are seeded with the solution from the nearest-

neighbour method.

4.1 IkeNet

4.1.1 Unidirectional identity loss, one at a time

First, we took each email in the corpus and saw whether we could determine who sent

it knowing its receiver and the rest of the corpus. Repeating this for each email in the

corpus meant 8,896 separate runs with |I | = 1 each time. The average performance is

shown in Table 8.

Table 8 shows that SSB, nearest-neighbour (NN), and MRL guess the correct sender

about 60% of the time. There is a clear ranking among them, with SSB outperforming

nearest-neighbour and nearest-neighbour outperforming MRL. MRL’s relative perform-

ance decreases left to right. The method of modes performs poorer than the other

methods.

Table 9 shows the results when we repeat the process but try to guess the receiver

knowing the sender. The numbers are slightly different, but the same patterns prevail.
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Table 10. IkeNet: Predictive power for unidirectional identity loss (|I | > 1)

|I |/N Method Top 1 Top 2 Top 3 Top 5 Top 10

5% Modes 29.1% 42.2% 50.9% 63.1% 82.1%

NN 59.9% 73.5% 79.3% 85.4% 93.0%

SSB 59.9% 73.5% 79.7% 86.0% 93.3%

MRL 59.4% 68.9% 71.4% 72.2% 72.4%

10% Modes 29.1% 42.2% 50.9% 63.1% 82.1%

NN 59.3% 72.8% 78.6% 84.7% 92.6%

SSB 58.8% 72.7% 79.0% 85.5% 93.1%

MRL 58.9% 68.3% 70.7% 71.5% 71.7%

15% Modes 29.1% 42.1% 50.9% 63.1% 82.1%

NN 58.7% 72.1% 77.8% 84.1% 92.3%

SSB 57.7% 71.9% 78.4% 85.1% 92.9%

MRL 58.3% 67.6% 69.9% 70.7% 70.8%

20% Modes 29.1% 42.1% 50.9% 63.1% 82.0%

NN 58.0% 71.2% 77.0% 83.4% 91.9%

SSB 56.7% 71.1% 77.7% 84.6% 92.6%

MRL 57.7% 66.8% 69.1% 69.9% 70.0%

4.1.2 Unidirectional identity loss, missing proportions

We now consider what happens when larger blocks of data are missing, which will be the

case in applications. We selected a percentage of the emails at random and removed the

sender or receiver information (chosen randomly for each email). We then attempted to

recover the missing data. We repeated this process for 10,000 Monte Carlo runs at each

missing percentage.

Table 10 shows the results. As expected, the performance decreases as the missing

proportion increases from 5% to 20%, but only by a few percentage points. This demon-

strates the methods’ robustness to larger missing blocks of data. Interestingly, MRL

overtakes SSB as the missing proportion increases, but only for top 1. The method of

modes experiences no degradation. This is not a surprise; it returns the same top pairs

shown in Table 1 until enough data is missing in the right places that the order statistics

change.

4.1.3 Bidirectional identity loss, one at a time

We repeated the one-at-a-time procedure with deleting both sender and receiver from each

email, resulting in bidirectional identity loss. Table 11 presents the results. The methods

do not perform as well as when only the sender or receiver is missing because instead

of choosing among the 22 edges connected to each nodes they must choose among the

253 edges in the complete graph.2 Nonetheless the local methods guessed the correct

2 Actually there are only 250 edges; as noted above, three pairs of agents exchanged no emails.
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Table 11. IkeNet: Predictive power for bidirectional identity loss (|I | = 1)

Method Top 1 Top 2 Top 3 Top 5 Top 10

Modes 11.7% 17.5% 20.9% 27.3% 36.7%

NN 37.9% 51.3% 58.5% 65.6% 73.2%

SSB 39.6% 51.1% 57.6% 65.3% 73.0%

MRL 36.4% 47.8% 55.0% 61.4% 66.1%

Table 12. IkeNet: Average energy values for bidirectional identity loss (|I | = 1)

Method FSSB FMRL

Modes 45.82 85.62

NN 122.39 99.37

SSB 141.39 99.47

MRL 118.09 101.01

Table 13. IkeNet: Predictive power for bidirectional identity loss (|I | > 1)

|I |/N Method Top 1 Top 2 Top 3 Top 5 Top 10

5% Modes 11.7% 17.5% 20.8% 27.3% 36.7%

NN 37.6% 50.8% 57.9% 64.9% 72.4%

SSB 38.6% 50.4% 56.9% 64.3% 72.2%

MRL 36.0% 47.4% 54.4% 60.9% 65.2%

10% Modes 11.7% 17.5% 20.8% 27.3% 36.7%

NN 37.3% 50.3% 57.2% 64.1% 71.5%

SSB 37.5% 49.3% 55.8% 63.2% 71.3%

MRL 35.6% 47.0% 53.8% 60.2% 64.4%

edge about 40% of the time and got in the top 3 about 55-60% of the time. MRL still

underperforms, but by less than with unidirectional loss. The method of modes continues

to underperform all other methods.

Table 12 presents average numerical values of FSSB and FMRL evaluated at the bi-

directional identity loss solutions in Table 11.3 Horizontal comparison of the values is

meaningless, but vertical comparison is not. The results verify that the SSB and MRL

solutions maximise FSSB and FMRL, respectively.

4.1.4 Bidirectional identity loss, missing proportions

Table 13 shows the results of the Monte Carlo approach for larger blocks of miss-

ing bidirectional data. Bidirectional is much more intensive computationally than

3 The values in Table 12 are actually of F(x) − Fmin to highlight the differences in scale.
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Table 14. IkeNet: Average energy values for bidirectional identity loss (|I |/N = 5%)

Method FSSB/|I | FMRL/|I |

Modes 49.12 84.08

NN 120.67 97.87

SSB 147.45 97.88

MRL 115.53 100.12

unidirectional, so we present proportions only up to 10% here. The degradation is

again modest (compare with Table 11), and the ranking of methods is consistent.

Table 14 shows average energy values, normalised by the size of the missing block for

comparison with Table 12. The values are close, and the same hierarchies are apparent.

4.2 Simulated point patterns

We simulate Hawkes processes on two classes of networks. First, we consider some toy

networks with simple structures. Then we simulate a faux IkeNet (FauxNet) using the

IkeNet parameters.

4.2.1 Toy networks

We use three different configurations of toy networks. Like IkeNet they have 22 nodes,

but a known interaction structure. We assume that g is exponential with α = 0.5, ω = 6,

with the background rate μ varying to show different levels of interaction.

• Dense: All nodes are connected to each other (a complete graph), with a low rate of

interaction (μ = 0.03).

• Sparse: The nodes are arranged in a ring. Each node is connected to its two neighbours

and to the node opposite it in the ring, so that the graph looks like a wheel with spokes

(except there is no node at the axle). Interaction rates between connected nodes are

high (μ = 0.1). Unconnected nodes do not interact.

• Pseudosparse: A complete graph, with high interaction (μ = 0.1) between the nodes

connected in the sparse graph and low interaction (μ = 0.03) between other pairs.

Table 15 presents the results for Monte Carlo simulation. For each network, we adopted

bidirectional identity loss for each record in succession, and then averaged the results over

each Monte Carlo simulation. Table 15 compares with Table 11.

The method of modes performs very poorly here compared with IkeNet, because the

toy networks lack the heterogeneity in activity levels evident in Table 1 and Figure 3. NN,

SSB, and MRL perform similarly, as with IkeNet, but here MRL outperforms NN. SSB

still outperforms them both. Unsurprisingly, all methods perform better on the sparse

network than on the dense network, but the local methods perform very well compared to

the method of modes even on the dense network. Interestingly, though the performance

of the method of modes on the pseudosparse network is between its performances on the

dense and sparse networks, the local methods perform worst on the pseudosparse network.
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Table 15. Toy networks: Predictive power for bidirectional identity loss (|I | = 1)

Network Method Top 1 Top 2 Top 3 Top 5 Top 10

Dense Modes 1.0% 1.9% 2.7% 4.3% 7.9%

NN 21.4% 36.5% 47.0% 59.3% 69.0%

SSB 27.4% 41.6% 50.6% 61.0% 69.7%

MRL 26.4% 40.9% 49.6% 57.9% 61.9%

Sparse Modes 4.5% 8.6% 12.4% 20.1% 37.7%

NN 36.9% 55.5% 65.0% 72.6% 78.8%

SSB 40.8% 57.5% 65.8% 73.0% 79.6%

MRL 39.8% 55.9% 62.0% 63.6% 64.9%

Pseudosparse Modes 1.5% 2.8% 4.2% 6.7% 12.5%

NN 17.9% 31.4% 41.5% 54.7% 67.6%

SSB 23.7% 36.8% 45.8% 57.0% 68.3%

MRL 23.0% 36.2% 45.1% 54.9% 61.5%

Table 16. FauxNet: Predictive power for bidirectional identity loss (|I | = 1)

Method Top 1 Top 2 Top 3 Top 5 Top 10

Modes 11.7% 17.5% 21.1% 27.5% 37.0%

NN 49.4% 60.2% 63.9% 66.8% 70.3%

SSB 53.6% 63.2% 66.8% 70.1% 74.3%

MRL 48.5% 60.6% 64.5% 65.9% 66.0%

Table 17. FauxNet: Predictive power for bidirectional identity loss (|I |/N = 5%)

Method Top 1 Top 2 Top 3 Top 5 Top 10

Modes 11.7% 17.4% 21.0% 27.3% 36.8%

NN 48.9% 59.4% 63.0% 66.0% 69.4%

SSB 52.4% 62.0% 65.7% 69.1% 73.4%

MRL 47.9% 59.8% 63.6% 65.0% 65.1%

This is because the local methods perform poorer as the number of pairs experiencing a

burst of activity at any given time increases. This strength of this effect decreases as we

move from top 1 to top 10, and indeed this is reflected in Table 15.

4.2.2 FauxNet

As with the toy networks, we took a Monte Carlo approach to FauxNet, the simulated

IkeNet, and present results for bidirectional identity loss in Tables 16 and 17. The method
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Figure 6. Histogram of ‖xMRL‖0 for bidirectional identity loss, |I | = 1, for all 8,896 cases.

of modes performs almost the same as in IkeNet (see Tables 11 and 13). The other

methods perform better here by several percentage points.

4.3 Discussion

In all our results, the local methods (nearest-neighbour, SSB, and MRL) strongly outper-

form the purely global method of modes. This suggests that most of the information in

these sorts of records is local. Meanwhile, with IkeNet the model-free nearest-neighbour

method performs comparably to the variational methods (SSB and MRL) developed in

Section 3. With the simulated Hawkes process data, it underperforms SSB and, in some

places, MRL, but not by nearly the margin that the method of modes does. This suggests

that the Hawkes process is an imperfect model for real human communication like the

IkeNet data, but the loss incurred from these assumptions is modest. On the other hand,

the loss in assuming no model at all (i.e., using nearest-neighbour) is also modest and has

the virtue of being simpler to implement, understand, and communicate outside technical

literature.

The improvement in MRL’s performance as it moves from top 5 to top 10 is considerably

lower than it is for the other methods. Figure 6 reveals why. It shows a histogram of

‖xMRL‖0, the number of non-zero components of xMRL, for each bidirectional |I | = 1

case. The median is 6, and ‖xMRL‖0 � 5 in about 44% of cases. In these cases, if the

correct pair is not in the top 5 then it will not be in the top 10, either. SSB, by contrast,

always has full �0 norm (see Appendix A for a proof), and even if the correct pair has

only a small positive weight it is often larger enough than the other small positive weights

to make it to the top 10. Of course, MRL has even fewer positive components in the

unidirectional case, explaining why it underperforms less in bidirectional identity loss.

Thus, SSB’s density is capturing some faint information that MRL misses by being so

sparse. If a likelihood approach like MRL is to beat SSB it will likely have to mimic this

ability.

All the methods except the method of modes perform better on FauxNet than on

IkeNet. Furthermore, SSB and MRL perform better relative to nearest-neighbour on the

simulated point patterns than they do on IkeNet data. Both these observations suggest

that the Hawkes process is an imperfect model for the behaviour driving IkeNet.
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5 Conclusion

We demonstrated that, when estimating the parameters of a Hawkes process from the

IkeNet data, choosing a parameterisation for the triggering function is less important

than using the correct values of the parameters. We then developed a method for filling in

missing data for interactions within social networks and presented some results from the

IkeNet data set. The method’s power even when the proportion of missing data increases

has implications for security, surveillance, and privacy. In particular, it suggests that access

to even a fraction of a complete record can reveal a great deal of information about the

remainder, emphasising the need for robust access controls.

Future work should address how network structure impacts the ability to fill in missing

data. Exogenous information (for example, the leadership relationships among the IkeNet

officers) may also be able to boost the method’s power. Future work might also seek an

objective function combining MRL’s fidelity to the original likelihood with SSB’s solution

density.

This work also leaves open several interesting avenues for research on self-exciting

point processes. To the extent that our finding on the impact of model selection versus

parameter selection can be extended to other model classes and parameter regimes, it will

justify the common practice of assuming an exponential form for the triggering function

without a specific justification for the choice. However, as noted, modelling IkeNet’s email

behaviours with Hawkes processes has its limits, so consideration of other classes of

self-exciting point processes for this and other human communication data sets may be

warranted.
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Appendix A Geometry of SSB maximisation

We prove that the SSB weight vector always has all positive components, as a corollary

of the following. Intuitively, it makes sense to redistribute a little weight from a positive

component to a zero component, because the benefit scales linearly with the size of the

redistribution, while the cost scales quadratically.

Proposition Let n � 2, and let D be the portion of the unit sphere in the non-negative

orthant of Rn, i.e., D = {x ∈ Rn : ‖x‖2 = 1, xi � 0 ∀i}. Let f : Rn → R be differentiable

with all positive partial derivatives on the non-negative orthant. Then there exists x∗ ∈ D

maximising f on D, and ‖x∗‖0 = n, i.e., every component of x∗ is non-zero.

Proof x∗ exists because f is continuous and D is compact. Suppose by way of contradiction

that ‖x∗‖0 < n. Without loss of generality, x∗
1 = 0. By assumption ‖x∗‖2 = 1, so without

loss of generality x∗
2 > 0. Define ξ : [0, x∗

2] → Rn by

ξi(t) =

⎧⎪⎪⎨
⎪⎪⎩
t if i = 1,√

(x∗
2)

2 − t2 if i = 2,

x∗
i if 3 � i � n.

Then, ξ(t) ∈ D for every t. Because f is differentiable there exist t0 > 0 and h : (0, t0) → R

such that h(t) = o(t) as t → 0, and if 0 < t < t0 then

f(ξ(t)) = f(x∗) + t∇f(x∗)Tξ′(0) + h(t).

Easy computations show that ξ′
1(0) = 1, ξ′

2(0) = 0, and ξ′
i(0) = 0 if 3 � i � n, so

f(ξ(t)) = f(x∗) + t
∂f

∂x1
(x∗) + h(t).
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(a) (b) (c)

Figure A 1. Diagrams of �p constraints (bold) with level sets of a function f. The dot indicates the

point maximising f subject to the constraint. It occurs at the intersection between the constraint and

the maximal level set that intersects it. (a) p = 2, ∂f/∂x1 > 0, ∂f/∂x2 > 0. (b) p = 1, ∂f/∂x1 > 0,

∂f/∂x2 > 0. (c) p = 2, ∂f/∂x1 < 0, ∂f/∂x2 > 0.

By assumption ∂f
∂x1

(x∗) > 0, so there exists t1 ∈ (0, t0] such that if 0 < t < t1 then

|h(t)|/t < 1
2

∂f
∂x1

(x∗), in which case

f(ξ(t)) > f(x∗) + t
∂f

∂x1
(x∗) − t

2

∂f

∂x1
(x∗) > f(x∗),

contradicting the assumption that x∗ maximises f on D. Thus in fact ‖x∗‖0 = n. �

This result recalls a familiar observation about the geometry of �2 optimisation, presen-

ted in two dimensions in Figure A 1. When all partial derivatives are positive, the geometry

is as in Figure A1(a). If at some point a level set lies tangent to the constraint, or equival-

ently the gradient is normal to the constraint, then this point is an optimiser. (This is the

basis for the theory of Lagrange multipliers.) The partial derivatives are positive, so the

level sets have negative slope. In the non-negative quadrant the �2 constraint takes every

negative number as a slope, so a point of tangency is guaranteed to exist. This is often

contrasted with the �1 case, where the constraint takes only one slope and tangency may

not occur, as in Figure A 1(b). (This is why �1 optimisers are often sparse, for example

as in [2, 8, 9, 32].) However, one can just as easily contrast Figure A1(a) with Figure

A1(c), where the negative sign of one of the partial derivatives produces positively sloped

level sets. Because we are not permitted outside the non-negative orthant, we must settle

for the solution on the boundary. Figure A 1(a) corresponds to FSSB, and Figure A 1(c)

corresponds to FMRL.

Nonetheless, the assumptions that all partial derivatives of f on the non-negative

orthant be positive was stronger than necessary. It would have sufficed if, for every y ∈ D

with a zero component yi = 0, ∂f
∂xi

(y) > 0. However, it is clear from (3.3) that FSSB satisfies

the stronger assumption stated in the proposition except in the trivial, degenerative case

when some μm = 0.

Appendix B Curvilinear search algorithm

while maxti∈I |Fxi (xi) · xi|/‖Fxi (xi)‖2 > ε do

for i = 1 : |I | do
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v = Fxi(x)

δ = ‖v‖2
2 − (vTxi)

2

β1 = τ/(1 + ( τ
2
)2δ)

β2 = (vTxi +
τ
2
δ)β1

y = (1 − β2)xi + β1Fxi (x)

τ = τ

while most components of y have different signs than xi do

τ = τ/2

β1 = τ/(1 + ( τ
2
)2δ)

β2 = (vTxi +
τ
2
δ)β1

y = (1 − β2)xi + β1Fxi(x)

end while

z = max(0, y) componentwise

x̃ = x

x̃i = z/‖z‖2

v = Fxi(x̃)

Let P project the space of xi to the subspace where x̃i,m > 0 or vm > 0

xi = P x̃i
Fxi = PFxi

end for

end while

for i = 1 : |I | do

Let Q project the space of xi into its original, full space

wi = Qxi
Fxi = QFxi

end for

startover = false

for i = 1 : |I | do

v = Fxi (w)

for all m in the space of wi do

if m is not in the space of xi and vi > 0 then

Project xi into its own space augmented with dimension m

startover = true

end if

end for

end for

if startover then

for i = 1 : |I | do

Project Fxi into the space of xi
end for

Return to the start

end if
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