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Abstract

If plasmas are considered fully ionized, the electronic stopping of a charged particle that traverses them will only be due to
free electrons. This stopping can be obtained in a first view through the random phase approximation (RPA). But free
electrons interact between them affecting the stopping. These interactions can be taken into account in the dielectric
formalism by means of two different ways: the Mermin function or the local field corrections (LFCs). LFCs produce
an enhancement in stopping before the maximum and recover the RPA values just after it. Mermin method also
produces firstly a high increase at very low energies, then a small enhancement at low energies and finally decreases
below RPA values before and after the maximum. Differences between the two methods are very important at very low
energies and by 30% around the stopping maximum.
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1. INTRODUCTION

The energy loss of charged particles in a free electron gas is
of considerable interest to actual slowing-down problems.
This is a topic of relevance to understand the beam-target
interaction in the contexts of particle driven fusion
(Deutsch, 1984; Hoffmann et al., 1990; Roth et al., 2001;
Deutsch & Popoff, 2006; Nardi et al., 2006; Nardi et al.,
2007). Energy losses of ions moving in an electron gas can
be studied through the stopping power of the medium
(Eisenbarth et al., 2007). Dielectric formalism has become
one of the most used methods to describe this stopping
power. The use of this formalism was introduced by Fermi
(1940). Subsequent developments made it possible to
extend the dielectric formalism to provide a more compre-
hensive description of the stopping of ions in matter
(Lindhard, 1954; Lindhard & Winther, 1964). For dilute
plasmas, the dielectric formulation of the energy-loss rate
was first studied by Pines and Bohm (1952), Akhiezer and
Sitenko (1952), and other scientists. Large number of calcu-
lations of electronic stopping forces of ions and electrons in
plasmas has been carried out since then using the random
phase approximation (RPA) (see Zwicknagel et al., (1999)
for a complete list). The RPA is usually valid for

high-velocity projectiles and in the weak coupling limit of
an electron gas. But for partially coupled plasmas, which
are subject of much interest for current studies of inertial con-
finement fusion (ICF), RPA it is not sufficient and the elec-
tronic interactions have to be taken into account. The
coupling parameter, G, is a measure of target electron inter-
actions. It is defined, in a degenerate electron gas, as the
ratio between potential and kinetic energies of the electrons,
G ; e2/rsmvF

2, where rs is the Wigner-Seitz radius and vF is
the Fermi velocity. In this article, the coupling will be treated
through two different ways: the Mermin function or the local
field corrections (LFCs).

Mermin (1970), and later Das (1975), derived an
expression for the dielectric function taking into account
the target electron interactions and also preserving the local
particle density. Recently, extended dielectric function has
been considered which conserves momentum and energy
(Selchow et al., 2000; Morawetz & Fuhrmann, 2000;
Atwal & Ashcroft, 2002), but it is somewhat involved and
it has only small differences with Mermin dielectric function.
Mermin dielectric function has been successfully applied to
solids (Barriga-Carrasco & Garcia-Molina, 2003, 2004)
and to plasmas (Barriga-Carrasco, 2006a, 2006b, 2007;
Barriga-Carrasco & Maynard, 2006; Barriga-Carrasco &
Deutsch, 2006).

On the other hand, some authors (Hubbard, 1957; Singwi
et al., 1968; Vashishta & Singwi, 1972; Vaishya & Gupta,
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1973; Pathak & Vashishta, 1973; Ichimaru & Utsumi, 1980)
have introduced the local field corrections to improve pre-
vious results based on the RPA theory. Mostly static approxi-
mations have been proposed (SLFC), as it was considered
that greater part of the local field corrections will succeed
for the static limit. Hubbard obtained an explicit expression
for the static local field correction, which takes into
account the exchange effects but neglects correlations
(Hubbard, 1957). Next step was made by Singwi et al.
(1968) which related the local field corrections with the
static structure function. This last result had some
deficiencies, as it violates the compressibility sum rule.
Latter deficiency was removed by Vashishta and Singwi
(1972), and improved by Pathak and Vashishta (1973)
demanding that the response function fulfills the third-order
frequency sum rule. Ichimaru and Utsumi (1980) present a
simple fitting formula for the static local field correction of
coupled electron gas. But in Vaishya and Gupta (1973) it
was shown that one cannot construct a SLFC which fulfills
both limits, the compressibility and the third-order sum
rule. Therefore the concentration was mostly focused on
the construction of dynamical local field corrections
(DLFC). Then Yan et al. (1985) proposed a parametrization
of the DLFC that takes into account the asymptotic behaviors
in their frequency dependence. We will use in this work the
Ichimaru and Utsumi, and the Yan et al. parametrizations for
SLFC and DLFC functions, respectively.

Mermin dielectric function is derived in Section 2 while
local field corrections are in Section 3. This two methods
are compared in Section 4 for the electronic stopping of a
proton traversing a degenerate plasma.

2. MERMIN DIELECTRIC FUNCTION

In this section, we are going to develop the Mermin dielectric
function 1M(k, v) in terms of the wave number k and of the
frequency v provided by a consistent quantum mechanical
analysis. First the dielectric response of the electronic
medium is calculated in the random phase approximation
(RPA). We use atomic units (a.u.), e ¼ � ¼ me ¼ 1, to sim-
plify formulas. The RPA analysis yields to the expression
(Lindhard, 1954)

1(k,v) ¼ 1þ
1

p2k2

ð
d3k0

f (~k þ ~k0)� f (~k0)
vþ in� (E~kþ~k0 � E~k0 )

, (1)

where E~k ¼ k2=2. For degenerate plasmas, the distribution
function is f (~k) ¼ 0 for k . kF and f (~k) ¼ 1 for k , kF,
where kF is the Fermi wave number. In this part of the analy-
sis, we assume the absence of collisions so the damping con-
stant approaches zero, n! 0þ.

Dielectric function can be separated into its real and ima-
ginary parts

1(k,v) ¼ 1r(k,v)þ i1i(k,v): (2)

1r(k, v) can be directly obtained from Eq. (1), (Arista &
Brandt, 1984)

1r(k,v) ¼ 1þ
1

4z3pkF
[g(uþ z)� g(u� z)], (3)

where g(x) corresponds to

g(x) ¼ xþ
1
2

(1� x2) ln
1þ x

1� x

����
����, (4)

and u ¼ v/kvF and z ¼ k/2kF are the common dimension-
less variables (Lindhard, 1954). vF ¼ kF ¼

ffiffiffiffiffiffiffiffi
2EF
p

is Fermi
velocity in a.u.

The function 1i(k, v) also follows from Eq. (1), (Arista &
Brandt, 1984)

1i(k,v) ¼

1
8z3kF

v

EF
, (u + z)2 , 1

1
8z3kF

[1� (u� z)2], (u� z)2 , 1 , (uþ z)2

0, 1 , (u� z)2

8>>>><
>>>>:

(5)

We will see in Section 4 that for ion stopping consider-
ations, it is worth defining the energy loss function (ELF)

ELF ; Im
�1

1(k,v)

� �
: (6)

As mentioned in the introduction, the RPA it is not suffi-
cient for partially coupled plasmas and the target electron
interactions have to be taken into account. Mermin dielectric
function (1970) is derived taking care of these interactions
and also preserving the local particle density

1M(k, v) ¼ 1þ
(vþ in)[1(k, vþ in)� 1]

vþ in[1(k, vþ in)� 1]=[1(k, 0)� 1]
, (7)

where 1(k, v) is the RPA dielectric function from Eq. (2).
Electron collisions are considered through their collision fre-
quency, n. It is easy to see that when n! 0, the Mermin
function reproduces the RPA one.

The collision frequency n in solids can be determined
experimentally, but in plasmas, nowadays, it must be calcu-
lated theoretically (Barriga-Carrasco, 2008). It is known
that in a fully ionized plasma, the collision frequency is
determined by electron-electron (e-e) and electron-ion (e-i)
Coulomb collisions (if we do not consider impurities). We
can assert that the total effective frequency can be obtained
as the sum of these collisions n ¼ nee þ nei (this is an exten-
sion of the Matthiessen rule to partially degenerate plasmas,
Cassisi et al., 2007). Then n can be easily divided into e-e
collisions and e-i collisions to study their effects separately.

The e-e collision frequency of nonrelativistic degenerate
electrons was first analyzed by Lampe (1968a, 1968b)
using the formalism of the dynamic screening of the e-e
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interaction. After that, Flowers and Itoh (1976) obtained
the expression for the relativistic degenerate electrons.
Recently, Shternin and Yakovlev (2006) obtained an analyti-
cal formula for nonrelativistic and relativistic electrons at
high degeneracy

nee ¼
mec2

h�
6a3=2

p5=2
xy

ffiffiffiffiffi
br

p
I(br, y), (8)

where y ¼
ffiffiffi
3
p

v p=kBT , br ¼ x/(1 þ x2)1/2, x ¼ pF/mec is the
relativistic parameter of degenerate electrons, vp is the
plasma frequency, and a is the fine-structure constant. On
the other hand, I(br, y) function is

I(br , y) ¼
1
br

10
63
�

8=315
1þ 0:0435y

� �

� ln 1þ
128:56

37:1yþ 10:83y2 þ y3

� �

þ b3
r

2:404
B
þ

C � 2:404=B
1þ 0:1bry

� �

� ln 1þ
B

Abryþ (bry)2

� �

þ
br

1þ D
C þ

18:52b2
r D

B

� �

� ln 1þ
B

Ayþ 10:83(bry)2 þ (bry)8=3

� �
, (9)

where A ¼ 12.2 þ 25.2br
2, B ¼ Aexp[(0.123636 þ

0.016234br
2)/C ], C ¼ 8/105 þ 0.05714br

4, and D ¼
0.1558y120.75br.

The effective e-i collision frequency for degenerate
plasmas was also derived by Flowers and Itoh (1976) and
lately by Shternin and Yakovlev (2006)

nei ¼
4pZ2

i e4me(1þ x2)1=2

p3
F

niLei:

where ni is the ion density, Zi is the ion atomic number, and
Lei is the Coulomb logarithm. Then the total electron fre-
quency results from

n ¼ nee þ nei, (10)

Figure 1 shows RPA and Mermin energy loss function
dependence with v/vp when k/kF ¼ 1, for a ne ¼

1023 cm23 degenerate plasma. The collision frequency
used in Mermin case is n ¼ 3.6 fs21; it is obtained from
the last procedure. Solid line represents RPA ELF while
dashed line represents Mermin ELF. When collisions are
considered through Mermin dielectric function, the ELF
increases around v ¼ 0. Also its maximum and the edge at
v/vp ¼ 2 smooth in a great deal. In next sections, Mermin
method will be compared with the local field corrections.

3. LOCAL FIELD CORRECTIONS

If LFCs are considered the dielectric function reads

1LFC(k,v) ¼ 1�
[1� 1(k,v)]

1þ [1� 1(k,v)]G(k,v)
, (11)

where 1(k, v) is the RPA dielectric function and G(k, v) is
the local field corrections of the electron gas. Mostly static
approximations (SLFC), G(k) ¼ G(k, 0), have been proposed
in the past, as it is considered that greater part of the local
field corrections will succeed for the static limit, v ¼ 0. It
has started with the pioneering work of Hubbard (1957)
who first introduced the notation of local field corrections
and took into account the exchange contributions

GH(k) ¼
1
2

k2

k2 þ k2
F

: (12)

This expression has established a remarkable improvement of
the RPA but it was insufficient due to its self-inconsistency
which leads the pair correlation function still to unphysical
negative values. This has been repaired by Singwi et al.
(STLS) (1968) by using the correlation contribution

GSTLS(k) ¼ �
1
ne

ð
dq

(2p)3

qk

q2
(S(q� k)� 1), (13)

where the static structure factor is

S(k) ¼
ð

dv

nepV(k)
Im1�1

LFC(k,v), (14)

and V(k) ¼ 4p/k2 is the Coulomb potential. This provides a
self-consistent problem in solving the dielectric function and

Fig. 1. (Color online) RPA, Mermin, SLFC and DLFC energy loss function
dependence with v/vp when k/kF ¼ 1, for a ne ¼ 1023 cm23 degenerate
plasma.
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the static structure factor. Eq. (13) has been improved further
by Pathak and Vashista (1973) demanding that the response
function should fulfill the third-order frequency sum rule,
which resulted in

GPV (k) ¼ �
1
ne

ð
dq

(2p)3

(qk)2

q4

V(k)
V(q)

(S(q� k)� S(k)), (15)

leading to the improved small-distance limit. At the same
time, there have been different improvements to the deri-
vation of LFC from the virial formula (Vashishta &
Singwi, 1972; Vaishya & Gupta, 1973) which have resulted
in expressions known from density variations

GVS(k) ¼ 1þ ane
@

@ne

� �
GSTLS(k), (16)

for the degenerate electron liquids at metallic densities
a ¼ 2/3.

The self-consistent (Singwi et al., 1968; Pathak &
Vashishta, 1973) and the variational (Vashishta & Singwi,
1972; Vaishya & Gupta, 1973) formulations need of non-
linear integral equations and computer simulations to
obtain the SLFC. For coupled degenerate electron liquids it
will be useful to derive a parametrized expression which
accurately fits the results of the self-consistent formulation
as well as the variational calculations. On the suggestion of
their microscopic calculations, Ichimaru and Utsumi (IU)
(1980) adopted the formula

GIU (k) ¼
Ak4

k4
F

þ
Bk2

k2
F

þ C þ
Ak4

k4
F

þ Bþ
8
3

� �
k2

k2
F

� C

� �

�
4k2

F � k2

4kkF
ln

2kF þ k

2kF � k

����
����:

(17)

The parameters are A ¼ 0.029, B ¼ 9/16g023/64[12g0]
216/15A and C¼23/4g0 þ 9/16 [12g0]216/5A, where

g0 ¼
1
8

z

I(z)

� �
, (18)

and I(z) is the modified Bessel function of the first order
of z ¼ 4(ars/p)1/2, with a ¼ (4/9p)1/3 and rs ¼ (3/4pne)
me2/�2. Also g0 is defined as

g0 ¼
1
4
�
par5

s b0

24
d

drs

r�3
s þ b1r�2:5

s

1þ b1r0:5
s þ b2rs þ b3r1:5

s

� �
, (19)

where b0 ¼ 0.0621814, b1 ¼ 9.81379, b2 ¼ 2.82224, and
b3 ¼ 0.736411.

But in Vaishya and Gupta (1973) it was shown that one
cannot construct a SLFC which fulfills the compressibility
and the third-order sum rules. Therefore the concentration
was mostly focused on the construction of dynamical local
field corrections (DLFC), G(k, v). The formulation of the

DLFC for a coupled degenerate plasma is a difficult task,
then Yan et al. (1985) proposed a parametrization that
takes into account the asymptotic behaviors of the DLFC
in their frequency dependence

lim
v!0

G(k,v) ¼ GIU(k),

lim
v!1

G(k,v) ¼ GPV (k):

The proposed formula for G(k, v), satisfying these two
constraints, is

GY (k,v) ¼
vGPV (k)þ iv pGIU(k)

vþ iv p
: (20)

Figure 2 shows the LFC as a function of k/kF, for a
ne ¼ 1023 cm23 degenerate coupled plasma (G ¼ 0.686).
Solid lines represents IU parametrization, GIU (k), and PV
function, GPV (k). Other curves in Figure 2 represent Yan
et al. (1985) parametrization, GY (k, v), for different fre-
quency values; dashed line, v ¼ 0, dotted line, v ¼ vp,
and dashed-dotted line, v ¼ 10vp. As it is seen GY(k, v)
tends to GIU(k) for low frequencies while it tends to GPV(k)
for high frequencies.

The corresponding SLFC y DLFC energy loss functions
are drawn in Figure 1 with dotted and dashed-dotted lines,
respectively. The SLFC is based on the UI parametrization
and the DLFC is based on the Yan et al. one. When collisions
are considered in both cases, the ELF increases for low fre-
quencies up to the frequency at maximum, even with
higher values than in the Mermin case. Then it decreases sud-
denly at v/vp ¼ 2 as in the RPA case. Differences between
SLFC and DLFC corrections are minimal. This is because
our calculated DLFC function has a low frequency depen-
dence, as it can be seen in Figure 2; for enough high

Fig. 2. (Color online) GY (k, v) as a function of k/kF, for a ne ¼ 1023 cm23

degenerate coupled plasma (G ¼ 0.686). It tends to GIU (k) for low frequen-
cies while it tends to GPV (k) for high frequencies.
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k values it changes only by 15% along all frequency range,
0 � v , 1.

4. ELECTRONIC STOPPING

In the dielectric formalism, the formula to calculate the ion
electronic stopping in any target is very well known. The
electronic stopping for a swift pointlike ion with charge Z tra-
velling with constant velocity v through a target plasma
defined by its energy loss function is

Se(v) ¼
2Z2

pv2

ð1

0

dk

k

ðkv

0
dvv Im

�1
1x(k,v)

� �
, (21)

where Im[21/1x(k, v)] is the energy loss function of any
dielectric function stated before. Then it is easy to compare
the electronic stopping that results from the use of the
Mermin or the local field correction dielectric function.

Figure 3 represents the proton electronic stopping as a
function of the proton energy in a ne ¼ 1023 cm23 degenerate
plasma normalized to S0 ¼ (ZkF)2. The coupling parameter
value is obtained from plasma electron density G ¼ 0.686
. 1 which indicates that we are in the limit of coupled
plasmas. The electronic stoppings are contrasted with
Bethe formula at high energies. Solid line corresponds to
the calculation with the RPA dielectric function, i.e., not con-
sidering collisions. Dashed line is the calculation with the
Mermin dielectric function, Eq. (7), where the collision fre-
quency is n ¼ 3.6 fs21. Dotted line is the calculation with
the LFC dielectric function, Eq. (11), with the static IU para-
metrization, Eq. (17). Finally, dashed-dotted line is the elec-
tronic stopping obtained with the LFC dielectric function,
Eq. (11), but with the Yan et al. (1985) DLFC function,
Eq. (20). Also relative deviations, (Sx 2 SRPA)/SRPA, are

shown to see clearly the differences between methods.
Both kinds of LFC, static and dynamic, produce an enhance-
ment in the stopping at low energies. But for the static case,
this enhancement arrives at the maximum while for the
dynamic case, this enhancement disappears before the
maximum. After the maximum, both LFC cases recover
the RPA values tending to the Bethe limit at high energies.
Mermin method produces a high increase at very low ener-
gies, higher than the one produced by the LFC ones, but
this increase is less significant than the LFC one at lower
energies than the energy at maximum. Around and just
after the maximum, Mermin values drop below RPA
values. Finally, they also tend to Bethe limit at high energies.
We see important differences between Mermin and LFC
methods; they are very important at very low energies and
by 30% around the maximum. Similar results for LFC
approach have been recognized for nondegenerate cases
(Yan et al., 1985).

5. CONCLUSIONS

In this work, the effects of target electron collisions on the
electronic stopping of protons in degenerate plasmas have
been examined by means of two methods: the Mermin
dielectric function or the local field corrections. The elec-
tronic stopping is due to the free electrons as the plasma
target is considered fully ionized. Its electronic density is
around solid values ne ’ 1023 cm23, which are very interest-
ing for ICF studies. To calculate the electronic stopping, we
have used the random phase approximation for degenerate
plasmas, i.e., the Lindhard dielectric function. Then we
have considered electron collisions through two methods:
the Mermin dielectric function and the local field corrections.
The LFC methods produce an enhancement in stopping
before the maximum. But for the static case, this enhance-
ment arrives at the maximum while for the dynamic case,
this enhancement disappears before the maximum. On the
other hand, Mermin method produces a high increase at
very low energies, higher than the one produced by the
LFC, but this increase is less significant than the LFC at
lower energies than the energy at maximum. Around and
just after the maximum, Mermin values are damped below
RPA values. Finally, all of them tend to Bethe limit at high
energies. Differences between Mermin and LFC methods
are very important at very low energies and by 30% around
the maximum.

But it is not easy to decide which method is better. LFC
methods usually fulfil the sum rules as LFC functions are
defined in order to fulfil them. But it was demonstrated that
one cannot construct a SLFC which fulfills the compressibil-
ity and the third-order sum rules. That is why we propose to
use a DLFC which is parameterized between one SLFC,
which takes into account the compressibility sum rule, and
another SLFC, which takes into account the third-order
sum rule. On the other hand, Selchow and Morawetz
(1999) showed that Mermin dielectric function carries out

Fig. 3. (Color online) Proton electronic stopping as a function of its energy,
in a ne ¼ 1023 cm23 degenerate plasma, normalized to S0 ¼ (ZkF)2. Solid
line corresponds to RPA calculation, dashed line to Mermin calculation,
dotted line to SLFC calculation and dashed-dotted line to the DLFC one.
Relative deviations, respect to the RPA calculation, are also shown.
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the strongest sum rules; the longitudinal frequency, the con-
ductivity, the compressibility and the screening sum rules,
and recovers Drude formula for long-wavelength limit.
Then it is not easy to manifest which method is better from
this point of view. Difference between the Mermin approach
and the LFC approach has been tested for nondegenerate,
classical plasmas by comparing with computer simulations
(Pschiwul & Zwicknagel, 2003). They found that LFC
method works only for low coupling but fails for strong
one, while Mermin method works also for strong coupling
if an appropriate collision frequency is applied. One can
thought that it will be the same for degenerate plasmas, but
the comparison of our results with computer simulations is
out of our possibilities.
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