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Background. Commonly observed distortions in decision-making among patients with major depressive disorder
(MDD) may emerge from impaired reward processing and cognitive biases toward negative events. There is substantial
theoretical support for the hypothesis that MDD patients overweight potential losses compared with gains, though the
neurobiological underpinnings of this bias are uncertain.

Methods. Twenty-one unmedicated patients with MDD were compared with 25 healthy controls (HC) using functional
magnetic resonance imaging (fMRI) together with an economic decision-making task over mixed lotteries involving
probabilistic gains and losses. Region-of-interest analyses evaluated neural signatures of gain and loss coding within
a core network of brain areas known to be involved in valuation (anterior insula, caudate nucleus, ventromedial pre-
frontal cortex).

Results. Usable fMRI data were available for 19 MDD and 23 HC subjects. Anterior insula signal showed negative cod-
ing of losses (gain > loss) in HC subjects consistent with previous findings, whereas MDD subjects demonstrated sign-
ificant reversals in these associations (loss > gain). Moreover, depression severity further enhanced the positive coding
of losses in anterior insula, ventromedial prefrontal cortex, and caudate nucleus. The hyper-responsivity to losses dis-
played by the anterior insula of MDD patients was paralleled by a reduced influence of gain, but not loss, stake size
on choice latencies.

Conclusions. Patients with MDD demonstrate a significant shift from negative to positive coding of losses in the anterior
insula, revealing the importance of this structure in value-based decision-making in the context of emotional
disturbances.
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Introduction

Difficulty in making decisions is one of the more dis-
tressing symptoms of major depressive disorder
(MDD) (Trivedi & Greer, 2014), and distortions in
decision-making have been found in clinical (Leahy,
2001) and experimental settings (Harlé et al. 2010;
Engelmann et al. 2013; Gradin et al. 2015). Such abnor-
mal decision-making in patients with MDD may be
due to emotional disturbances and cognitive biases.
Specifically, depression-related emotional distur-
bances, such as anhedonia and deficits in reward

processing, can lead to underweighting the rewarding
outcomes of decisions (Treadway & Zald, 2011; Der-
Avakian & Markou, 2012; Paulus & Yu, 2012).
Moreover, cognitive disturbances commonly reported
in MDD (Peckham et al. 2010; Armstrong & Olatunji,
2012) are thought to arise from biases in information
processing and can manifest as selective attention to
negative aspects of situations, thereby distorting choice
behaviors (Beck, 2008; Disner et al. 2011).

From a clinical perspective, the consequences of dis-
torted choice behavior can be highly impactful in
patients with MDD. In the realm of employment, nega-
tively biased decision-making can lead to reduced
earning potential and promotion (Whooley et al.
2002). Interpersonal relationships are also threatened
by impaired choice behavior (Thompson & Heller,
1993), as are physical and psychological health
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outcomes, perhaps related to reduced treatment adher-
ence or decisional passivity (DiMatteo et al. 2000).
Finally, distortions in valuation and expectation may
contribute to the risk for suicide attempts (Richard-
Devantoy et al. 2016).

Neurobiologically, little is known about how the
presence of affective biases distorts choice behavior
and influences the core cognitive processes that sup-
port decision-making and its underlying neural
circuitry (Knutson et al. 2008; Harlé et al. 2012;
Engelmann et al. 2015). Understanding the neural
mechanisms of abnormal decision-making caused by
emotional disturbances may support the development
of interventions targeted to improve the choices, and
thereby the quality of life, of depressed individuals
(Sharp et al. 2012).

Making choices requires determining the subjective
value of potential outcomes of decisions, which
involves consideration of an outcome’s valence, mag-
nitude, and likelihood (Rangel et al. 2008). Studies of
healthy adults have identified the neural underpin-
nings of valuation of choice options (Rangel et al.
2008; Levy & Glimcher, 2012) that have recently been
integrated into a coordinate-based meta-analysis of
neuroimaging studies (Bartra et al. 2013). Specifically,
Bartra et al. (2013) identified a core neural network
that is involved in the neural coding of subjective
value and includes ventral (VS) and dorsal striatum
(DS), ventromedial prefrontal cortex (VMPFC), and
anterior insula (AI). Importantly, these brain regions
differentially encode the valence (gains v. losses) of
the choice alternatives (Seymour et al. 2007; Knutson
& Greer, 2008). Signal in the VS and VMPFC responds
more strongly to gains, consistent with the literature on
reward processing (McClure et al. 2004). In contrast,
regions modulating responses to both losses and
gains likely contribute to the computations involved
in mixed valence scenarios that involve both costs
and benefits, and include the AI and DS (Tom et al.
2007; Bartra et al. 2013). Others have found that loss
magnitude is correlated with activation in the amyg-
dala and insula (Weber et al. 2007; Canessa et al.
2013; Sokol-Hessner et al. 2013), consistent with the
theory that negative emotions may increase sensitivity
to losses (Camerer, 2005; Cohn et al. 2015).

The structures implicated in neural value coding
show substantial overlap with regions that display dif-
ferential activation patterns for MDD compared with
healthy controls (HC) in resting state and task-based
imaging studies. For example, the amygdala and AI
consistently show metabolic hyperactivation at rest in
patients with MDD (Price & Drevets, 2010; Sliz &
Hayley, 2012), while regions implicated in reward pro-
cessing, such as the caudate nucleus, demonstrate
hypoactivation (Pizzagalli et al. 2009). It has therefore

been suggested that the persistent negative affective
states associated with MDD may lead to long-term
changes in neural valuation processes (Paulus & Yu,
2012; Huys et al. 2013). Indeed, recent studies have
reported distorted choice-related activity in the AI
and DS in MDD subjects (Gradin et al. 2015; Pammi
et al. 2015).

Here, we used functional magnetic resonance
imaging (fMRI) to investigate how depression severity
modulates the neural coding of gains and losses during
risky economic decision-making in unmedicated
patients with MDD compared with HC. We hypothe-
sized that MDD patients would show alterations of
activity in core valuation regions relevant for decision-
making and that these alterations may be reflected in
differential choices between MDD and HC subjects.

Methods

Study design

We conducted a case–control study of HC and MDD
subjects. The Emory Institutional Review Board
reviewed and approved the study protocol.

Participants

Subjects were recruited through the Mood and Anxiety
Disorders Program of Emory University. All subjects
were English speakers between the ages of 18 and 60
years and signed a written informed consent form.

Eligible MDD subjects met criteria for MDD diag-
nosed using Structured Clinical Interview for Diagnos-
tic and Statistical Manual of Mental Disorders, Fourth
Edition (DSM-IV) (SCID) (First, 1995) and confirmed
by a study psychiatrist. The major depressive episode
had to be of at least 8 weeks’ duration and
subjects had to score 518 on the 17-item Hamilton
Depression Rating Scale (HAMD) (Hamilton, 1967) at
the screening visit. Eligibility criteria for HC included
an absence of any current Axis I psychiatric disorder,
absence of lifetime history of MDD, and a past week
HAMD score 47, reflecting minimal or absent depres-
sive symptoms. All participants had to be free of psy-
choactive medications for 4 weeks prior to the
scanning visit.

Exclusionary criteria for all subjects included a life-
time diagnosis of bipolar disorder, psychotic disorder,
obsessive compulsive disorder, tic disorder, eating dis-
order, cognitive disorder, substance abuse or depend-
ence in the previous 6 months or positive urine drug
screen, or clinically significant suicidal ideation.
Subjects were also excluded if they had uncontrolled
medical conditions, current or past central nervous
system-related disease, or were pregnant or breast
feeding.
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Visits

The study consisted of three visits.
The screening visit consisted of obtaining informed

consent, a psychiatric interview, and evaluation of sub-
jects using the SCID, HAMD, and the Hamilton
Anxiety Rating Scale (HAMA) (Hamilton, 1959). The
neuropsychological testing and endowment visit was con-
ducted 1 week prior to the scanning visit. Subjects
completed the Wechsler Abbreviated Scale of
Intelligence (WASI) (Wechsler, 1999), and were told
that this test, though challenging, was necessary for
the study. By completing the WASI, subjects ‘earned’
their endowment of $100 for the decision-making
task to be conducted the following week, thereby min-
imizing the ‘house money effect’, which may distort
decision-making by increasing tolerance of risk
(Thaler & Johnson, 1990). Finally, participants prac-
ticed the decision-making task in order to minimize
learning effects in the scanner. The scanning visit
involved completing the task in the scanner.

Task

The subjects’ $100 endowment served as a starting
balance for the decision-making task. Subjects were
told that their decisions during the scanning session
could lead to gains or losses to their endowment.
During fMRI, subjects made a total of 240 decisions
(six runs of 40 self-paced trials) about whether to
accept a mixed lottery offering of a 50% chance of
winning a cash amount X and a 50% probability of los-
ing a cash amount Y (Fig. 1a). In order to avoid income
effects and learning (Kahneman et al. 1990; Pessiglione
et al. 2006), subjects did not receive any feedback about
their decisions during scanning. Thus, the current task
allowed for analyses of the neural circuitry involved in
the computations involved in evaluating the costs and
benefits of accepting a lottery, without the potential
distortions induced by changing choice strategies due
to feedback about subjects’ decisions. Only after com-
pletion of the scanning session was the final payout
determined by choosing three of the lotteries at ran-
dom. For each of the three randomly selected lotteries,
if the subjects had accepted to play the lottery, a com-
puterized coin was flipped providing a 50% chance of
additional winnings or losses, as specified by the lot-
tery amounts. If the subject rejected the lottery, the lot-
tery was not played, and their endowment remained
unchanged. Gain amounts varied between $0 and
$40 that incremented in steps of $4 and loss amounts
varied between $0 and $20 that incremented in steps
of $2. Figure 1b shows the distribution of expected
values. Every lottery was presented twice. Timing
and order of presentation was randomized and opti-
mized for fMRI using in-house software programmed

in Matlab. The task used in the current study was mod-
ified from a previous fMRI study of decision-making in
HC (Tom et al. 2007).

Functional magnetic resonance imaging

Neuroimaging data were collected using a 3-Tesla
Siemens Magnetron Trio whole-body scanner (Siemens
Medical Systems, Erlangen, Germany). A three-
dimensional, high-resolution anatomical dataset was
acquired using Siemens’ magnetization prepared
rapid acquisition gradient echo sequence (TR = 2300
ms, TE = 3.93 ms, TI = 1100 ms, 1 mm isotropic voxels
and a 256 mm FOV). fMRI data consisted of 35 axial
slices that were sampled with a thickness of 3 mm
and encompassing a field of view of 192 mm with
an in-plane resolution of 64 × 64 (T2*weighted, TR =
2500 ms, TE = 31 ms). The task was presented with
Presentation software (Neurobehavioral Systems,
Albany, California, USA).

fMRI preprocessing

Image analysis was performed using SPM8
(Wellcome Department of Imaging Neuroscience).
Data underwent motion correction and slice-time
acquisition correction. Anatomical and mean func-
tional datasets were co-registered and co-registration
success was confirmed visually for all subjects.
Individual gray matter tissue probability maps were
computed from anatomical datasets and spatially
warped to standard MNI space. Functional images
were subsequently normalized to standard MNI
space by applying the transformation matrix obtained
from normalizing the anatomical datasets. Functional
data then underwent spatial smoothing using an iso-
tropic Gaussian kernel of 8 mm full width at half
maximum.

Behavioral analysis

Behavioral data analysis was conducted using the R
statistical package (www.r-project.org). Robust regres-
sions correcting for heteroscedasticity and correlated
responses from each subject were conducted using
the Huber–White method. Regression analyses ana-
lyzed the effect of both gain and loss amounts on deci-
sions to accept or reject the lottery (logistic regression)
and choice latencies (ordinary least square regression).
A dummy variable was used to reflect group (HC,
MDD), and, additionally, all results were subsequently
confirmed using subjects’ HAMD scores (online
Supplementary Table S1). For the choice latency ana-
lyses, we excluded outlier trials, defined as response
latencies > 3S.D. from the subject-specific mean. We
tested whether gains and losses affected decision-
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making differentially in MDD patients compared with
HC subjects via the two- and three-way interactions
between group and gain/loss amounts. Additionally,
age, gender, past year income, and WASI score were
identified a priori as potential confounders and
included in all behavioral analyses.

Finally, to enable investigations of brain–behavior
relationships based on individual differences in choice
behaviors in the context of varying gain and loss
amounts, we estimated each participant’s sensitivity
towards losses relative to gains using the unstandar-
dized coefficient estimates from regression analyses
for losses (βlosses) and gains (βgains) as λ = βlosses/βgains.
This approach assumes linear utility and probability
weighting functions (Tom et al. 2007). Individual loss
sensitivity parameters were then square root trans-
formed (√λ) to reduce skewness and kurtosis of the
distribution. Finally, transformed loss sensitivity para-
meters were regressed against neural gain–loss coding
to identify brain regions that show modulation of
neural value coding by the level of behavioral loss sen-
sitivity. The robustness of our behavioral results was
confirmed with several regression analyses showing
that controlling for choice difficulty, income, and anx-
iety does not significantly influence the reported
results (data not shown).

fMRI data analysis

The fMRI data were analyzed using a standard regres-
sion model at the single-subject level implemented in
SPM8. Regressors were modeled using a canonical
hemodynamic response function with time and disper-
sion derivatives (Henson et al. 2002). First-level models
included the decision event (modeled as a function of
the response time on each trial) with two parametric
modulators reflective of gain (ranging from $0 to $40 in
increments of $4) and loss amounts (ranging from $0 to
$20 in increments of $2), as well as motion parameters
estimated by the realignment procedure. Parametric
modulators for gain and loss amounts directly reflect
trial-by-trial fluctuations in the value of the choice
options, and are therefore a central feature, underlying
value computations. We employed a variable epoch
model, which minimizes distortions due to time-on-task
effects (Grinband et al. 2008; Yarkoni et al. 2009).

Second-level analyses focused on the parametric
modulators reflecting the trial-by-trial correlations
between brain activity and lottery amounts (gains
and losses). This approach allowed us to identify
which brain regions track the value of gains and losses
by showing linear increases or decreases in BOLD sig-
nal as the value of the lottery amounts change on each

Fig. 1. Sequence and timing of fMRI task and distribution of mixed lottery values. (a) Subjects were presented with mixed
lotteries that offered a gain amount, shown on the left side of the pie chart (green in the scanner), and a loss amount, shown
on the right side of the pie chart (red in the scanner). Subjects repeatedly decided whether to play a lottery or whether to
reject it. If subjects chose to play a lottery on a payout-relevant trial (selected at random at the end of the experiment), an
even coin decided with a 50% probability whether the gain amount is added to their final payout, or whether the loss
amount is subtracted from the initial endowment of $100. Rejection to play the lottery on the payout-relevant trial led to no
change in the initial endowment. Gain and loss amounts of lotteries varied on each trial. (b) The matrix on the right of the
figure shows the distribution of gains and losses and expected value (EV) of corresponding lotteries. EV = (0.5 × gain amount)
– (0.5 × loss amount).
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trial (see also Tom et al. 2007; Engelmann et al. 2015).
To examine neural gain–loss coding during decision-
making, we contrasted the correlation magnitude for
gains to that for losses. First, we confirmed that
choice-related activity within our regions of interest
(ROIs) is relevant for behavior by regressing individual
behavioral loss sensitivity parameters against the con-
trast of gains v. losses. Next, we investigated the
impact of group on neural gain–loss coding. We tested
the two-way interaction between group (HC, MDD)
and neural gain–loss coding via two-sample t tests.
Finally, we investigated the modulatory influence of
depression and anxiety severity on neural loss sensitiv-
ity in the MDD subjects by regressing HAMD and
HAMA scores against the contrast of gains v. losses.

A priori ROIs were required to be both involved in
valuation (Bartra et al. 2013) and, at the same time, to
show differential activity in MDD v. HC subjects
(Price & Drevets, 2010; Sliz & Hayley, 2012). These
regions included the caudate nucleus, AI, and the
VMPFC. We created a combined mask that included
(1) bilateral AI, with peak voxels (mask sizes) at −36,
20, −6 (k = 335) in the left and at 40, 22, −6 (k = 359)
in the right AI; and (2) VMPFC with the peak voxel
at −2, 40, −8 (k = 701) and (3) a custom anatomical
mask for the caudate head, created by limiting the
Automated Anatomical Labeling (AAL) template for
the caudate nucleus provided by WFU-pickatlas to all
voxels below z = 20 (left: k = 238; right: k = 242, ventral–
dorsal extent z =−13 to 20), thereby excluding only
the caudate tail (shown in online Supplementary
Fig. S1). Small-volume familywise-error (SV FWE) cor-
rection for multiple comparisons (p < 0.05 at voxel level)
was employed for all analyses to identify significant
activation within the combined ROI mask. Brain–
behavior relationships were inspected by regressing
covariates of interest (√λ, HAMD, HAMA) against
the contrast reflecting neural gain–loss coding (gains
> losses). Note that the robustness of all brain–behavior
correlations was confirmed via Iteratively Reweighted
Least Squares (IRLS) robust regression analyses that
reduce the influence of potential outliers (Wager et al.
2005). Results from robust regression analyses confirm
results reported in the main paper and are reported
in online Supplementary Table S3 (√λ), 7 (HAMD)
and 8 (HAMA). Finally, whole-brain and exploratory
ROI analyses were conducted to explore whether add-
itional regions outside our a priori ROIs showed effects
of group on valuation-related signals and are reported
in online Supplementary Fig. S4 and Tables S4–S6.

Results

In total 46 subjects consented to participate, 21 MDD
and 25 HC. Four subjects (two per group) did not

return for the MRI or had unusable MRI data, resulting
in analyzable data for 19 MDD (nine females) and 23
HC (nine females). The overall mean age, income,
and WASI score did not significantly differ between
the groups. Online Supplementary Table S1 compares
the groups’ demographic and clinical characteristics.

Depression does not affect revealed preferences

Consistent with prior reports, we found that both gains
and losses have a highly significant effect on the
acceptance rates of mixed gambles (both p < 0.001;
online Supplementary Table S2). These effects were
not influenced by MDD, as indicated by a lack of
significant interactions between group and choice
parameters (Figs 2a, b and online Supplementary
Table S2). Results from an econometric model (Tom
et al. 2007), in which behavioral loss sensitivity (λ =
βlosses/βgains) was calculated separately for each group,
confirmed the absence of differences in revealed pre-
ferences between MDD and HC subjects (λHC:1.77;
λMDD:1.72, p = N.S.).

Depression eliminates the association between stake
size and choice latency in the domain of gains

MDD significantly modulated response latencies in the
domain of gains as shown in Figs 2c, d and online
Supplementary Table S2. Specifically, we observed
increasing choice latencies with increasing stakes for
both HC and MDD subjects in the domain of losses,
as indicated by a significant main effect of losses (p <
0.001) and a non-significant interaction between losses
and group (p = 0.243). These results demonstrate that
both groups’ choice latencies increased as potential
losses increased. In contrast, a significant interaction
between gains and group (p = 0.016) indicates that
MDD subjects did not show changes in choice latencies
with increasing stake sizes in the domain of gains, an
effect that choice latencies of HC clearly displayed.
Follow-up analyses for each group separately confirm
these results, showing significant effects of both losses
(coefficient =−11.735, p < 0.001) and gains (coefficient
= 4.391, p = 0.022) in HC subjects; while in MDD sub-
jects, only losses (coefficient =−15.214, p < 0.001), not
gains (coefficient = 0.995, p = 0.692) showed this effect.
These effects are also visible in a model-free represen-
tation of the data shown in online Supplementary
Fig. S2. However, given that the three-way interaction
between gains, losses, and group did not reach signifi-
cance (p = 0.198, online Supplementary Table S2),
behavioral differences between depressed and HC
may not be specific for the gain domain. To test
whether choice difficulty contributed to choice latency
(Krajbich et al. 2015), we examined whether expected
value influenced choice latency, but found no effect
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(see online Supplementary Text S1). Finally, we report
results from additional regression analyses showing
that anxiety (HAMA) does not influence decisions
and choice latency (see online Supplementary Text S2).

Behavioral loss sensitivity correlates with neural
gain–loss coding across all subjects

First, we confirmed that choice-related activity within
our ROIs is relevant for economic decision-making by
regressing individual loss sensitivity parameters
against neural gain–loss coding. Group-independent

regression analyses in a priori ROIs identified a network
of regions that show correlations between behavioral
loss sensitivity (√λ) and neural gain–loss coding
(Fig. 3a). Regions included bilateral areas within the
caudate nucleus (Figs 3b, c; left: −12, 14, 10, k = 129,
t = 5.8; right: 12, 11, 4, k = 155, t = 5.55, both SV
FWE-corrected peak p < 0.002) and AI (Figs 3d, e; left:
−30, 23, 1, k = 161, t = 5.46; right: 33, 17, −2, k = 201,
t = 6.08, both SV FWE-corrected peak p < 0.002), and
dorsomedial PFC (−3, 32, 37, k = 23, t = 4.49, SV
FWE-corrected peak p = 0.032). Regions in this network
exhibited a positive relationship between behavioral

Fig. 2. Depression influences choice latency but not revealed preferences. (a, b) Gains and losses significantly influence
acceptance rates of mixed lotteries in a manner consistent with a greater sensitivity to losses than gains, as illustrated via a
6 × 6 color-shaded heatmap that collapses over the lotteries with similar EV illustrated in Fig. 1 (see Supplementary Table S1,
columns 1 and 2 for regression results). Color shading depicts the probability of mixed lottery acceptance, with brighter colors
reflecting high probabilities and darker colors reflecting low probabilities. The influence of depression on mixed lottery
acceptance rates is minimal. (c, d) Depression has a significant and specific impact on choice latencies. Specifically, gain
magnitude does not affect choice latencies of depressed subjects to the same extent as HC (gains × depression, p = 0.011, see
Supplementary Table S2 columns 3 and 4 for regression results). Depressed subjects show significantly increasing choice
latencies as a function of increasing losses. These results indicate that valuation processes are more heavily influenced by
losses in depressed subjects. Predicted choice latencies for gains and losses were estimated using the regression model
reported in Supplementary Table S2 by holding all other variables (e.g. a priori confounders) at their mean. Plots show
regression lines with bounds reflecting robust and clustered standard errors.
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loss sensitivity and neural gain–loss coding. The
decomposition of the contrast effect into separate gain
and loss components using robust and clustered regres-
sion analysis is illustrated in Fig. 3, which shows that
larger levels of behavioral sensitivity for losses were
associated with increasingly negative coding of losses
(but not gains) in core valuation regions. ROI analyses

using IRLS robust regression confirm these results and
are reported in online Supplementary Table S3.

Depression reverses neural gain–loss coding in AI

Figure 4 shows a significant effect of MDD on neural
gain–loss coding present in left AI (Fig. 4a; −33, 29,

Fig. 3. Behavioral loss sensitivity correlates with neural gain–loss coding across all subjects. Group-independent ROI analyses
identified bilateral areas within caudate nucleus and AI (shown in a) that show correlations between behavioral loss
sensitivity (√λ =√(βlosses/βgains) and neural gain–loss coding. Specifically, behavioral loss sensitivity correlated with gain–loss
coding in bilateral caudate nucleus (b shows left: −12, 14, 10, k = 129; c shows right: 12, 11, 4, k = 155, both SV FWE corrected
peak p < 0.002) and bilateral AI (d shows left: −30, 23, 1, k = 161; e shows right: 33, 17, −2, k = 201; both SV FWE corrected
peak p < 0.002) as well as dorsomedial PFC (−3, 32, 37, k = 23; SV FWE-corrected peak p = 0.032, not shown). As illustrated in
scatterplots, regions in this network exhibit a positive relationship between behavioral loss sensitivity and neural gain–loss
coding. The decomposition of the contrast effect into separate gain and loss components using robust regression (shown in
inserts) illustrates that these effects are driven primarily by the significant relationship between behavioral loss sensitivity and
negative coding of losses, such that a greater sensitivity to losses is associated with a stronger negative relationship between
regional signal and loss magnitude in core valuation regions. Individual data points and regression plots reflect separate β

values for gains and loses extracted from a 6 mm sphere around the activation peak.

Neural coding of losses in depression 2885

https://doi.org/10.1017/S0033291717001428 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291717001428


−17, k = 29, t = 4.48, SV FWE-corrected peak p = 0.032)
and a trend-level effect in right AI (Fig. 4b; 42, 20,
−14, k = 25, t = 4.04, SV FWE-corrected peak p = 0.098).
At a relaxed threshold of p < 0.005, uncorrected, add-
itional group differences in gain–loss coding were
observed in bilateral caudate nucleus (online
Supplementary Fig. S3; left caudate: −18, 23, −2, k =
13, t = 3.36; right caudate: 21, 26, −2, k = 23, t = 3.27).

To characterize these significant interaction effects,
we conducted tests of simple effects within SPM, test-
ing group differences between MDD and HC for gain
and loss coding separately. Only the simple effect for
MDD >HC during loss coding, showed significant
effects within our ROIs. Specifically, a region in left
AI showed greater positive coding of losses in MDD
relative to HC (−33, 29, −17, k = 27, t = 4.26, SV
FWE-corrected peak p = 0.059). At a relaxed threshold
(p < 0.005, uncorrected), additional group differences
were found within our ROIs in right insula (42, 23,
−14, k = 2, t = 3.06) and left caudate (left: −18, 23, −2,
k = 6, t = 3.22). No other tests of simple effects yielded
significant differences between MDD v. HC during
both loss and gain coding.

Moreover, no other ROIs showed this activation
pattern, but additional regions were identified via
the whole-brain analysis. Regions shown in online
Supplementary Fig. S4 and Supplementary Table S4
demonstrate similar reversals of encoding of losses in
MDD compared with HC and include the supplemen-
tal motor area (Fig. S4b; −6, 11, 64, k = 441) and inferior
frontal gyrus (Fig. S4c; −33, 29, −17, k = 330). Finally,
within-group effects tested separately for HC and

MDD subject via FWE-corrected whole-brain analyses
are reported in online Supplementary Table S5.

Depression severity increases neural coding of losses
in depressed subjects

Depression severity modulated neural coding of losses
in VMPFC, left AI, and right caudate nucleus (Fig. 5),
such that greater HAMD scores displayed a negative
relationship with neural gain–loss coding. Decompos-
ing the contrast effect into separate gain and loss com-
ponents using robust and clustered regression analysis
showed that increasing HAMD scores were associated
with greater neural coding of losses, but not gains, as
illustrated in Figs 5b–d (right column). This effect was
observed in left AI (Fig. 5b; −30, 32, −5, k = 31, t =
5.56, SV FWE-corrected peak p = 0.04), right caudate
nucleus (Fig. 5c; 18, 20, −8, k = 104, t = 5.42, SV
FWE-corrected peak p = 0.05), and VMPFC (Fig. 5d; 3,
47, −20, k = 327, t = 5.68, SV FWE-corrected peak p =
0.032). At a relaxed threshold of p < 0.005, uncorrected,
additional regions within the ROI mask showed
modulation of neural coding of losses by depression
severity. These are depicted in online Supplementary
Fig. S5 and include right AI (36, 29, 7, k = 23, t = 4.89)
and left caudate (−3, 5, −5, k = 92, t = 4.53). Whole-
brain analysis identified regions showing a relation-
ship between HAMD scores and altered neural coding
of losses outside our a priori ROIs (summarized in
online Supplementary Table S6). ROI analyses using
IRLS robust regression confirm these results and are
reported in online Supplementary Table S7.

Fig. 4. Reversal of neural gain–loss coding in MDD patients compared with HC subjects. Bilateral AI shows a reversal of
neural gain–loss coding as a function of depression. ROI analysis identified regions in (a) left AI (−33, 29, −17, k = 29, SV
FWE-corrected peak p = 0.032) and (b) right AI (42, 20, −14, k = 25, SV FWE-corrected peak p = 0.098) that show an interaction
between group and neural gain–loss coding. Results indicate that loss sensitivity is processed differentially by MDD
compared with HC subjects. Specifically, activation patterns within these regions show significantly greater activity due to
increasing losses (dark bars) relative to gains (light bars) in MDD participants, whereas in HC participants, the reverse
activation pattern is observed, with gains leading to significantly greater recruitment of these regions relative to losses. Bar
plots reflect parametric correlation with value (gain/loss) extracted from 6 mm spheres around peak voxels. Confidence
bounds are reflective of one standard error.
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Fig. 5. Depression severity (HAMD) in MDD subjects modulates the neural coding of losses, but not gains. ROI analyses
identified significant negative correlations between HAMD scores and the contrast gains v. losses in (a) the left AI (−30, 32,
−5, k = 31, SV FWE-corrected peak p = 0.04), (b) right caudate nucleus (18, 20, −8, k = 104, SV FWE-corrected peak p = 0.05),
and (c) VMPFC (3, 47, −20, k = 327, SV FWE-corrected peak p = 0.032). The decomposition of the contrast effect into separate
gain and loss components using robust regression analysis (right column) illustrates the influence of depression severity on
the differential neural coding of gains (light shading) v. losses (dark shading). These results show that increased levels of
HAMD scores are specifically associated with increased encoding of losses, but not gains, in these valuation regions.
Individual data points and regression plots reflect separate β values for gains and loses extracted from a 6 mm sphere around
the activation peak.
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Finally, the opposite pattern was observed for
HAMA scores, such that increasing scores are asso-
ciated with negative coding of losses in right AI (54,
23, 7, k = 282, t = 5.74; SV FWE-corrected peak p =
0.028; online Supplementary Fig. S6), confirming previ-
ous reports of the effects of anxiety on value coding in
the insula (Engelmann et al. 2015). ROI analyses using
IRLS robust regression confirm these results and are
reported in online Supplementary Table S8.

Discussion

The present study demonstrates distorted choice-
relevant neural activation in patients with MDD com-
pared with HC. We identified a network of regions
that is clearly involved in choice-relevant computa-
tions of mixed lotteries that offer both potential gains
and losses. This network consists of AI, VMPFC, and
striatum, and is significantly modulated during eco-
nomic decision-making by subjects’ behavioral sensi-
tivity to losses. Within this network of valuation
regions, we confirm previously demonstrated patterns
in HC subjects, with positive coding of gains and nega-
tive coding of losses in a network of regions that spans
VMPFC, striatum, inferior frontal gyrus, and dorsolat-
eral PFC (Tom et al. 2007). Importantly, this pattern
significantly reverses in MDD subjects. In MDD,
there is abnormally enhanced neural coding of losses
(relative to gains) in the AI, and greater depressive
severity enhances neural coding of losses (but not
gains) in this region. These results are consistent with
prior work demonstrating that sustained aversive
emotional states in healthy subjects can lead to differ-
ential coding of subjective value within core valuation
regions that include AI, caudate, and VMPFC
(Engelmann et al. 2015).

We did not find an effect of depression on actual
choices made in response to the mixed lotteries. As
noted by others (Callicott et al. 2003; McClure et al.
2007), such matched task performance across groups
reduces the possibility that confounding factors, e.g.
group differences in the ability to perform or comply
with the task, drive the observed neural activation dif-
ferences (Wilkinson & Halligan, 2004). However, our
results suggest a non-specific difference between the
HC and MDD groups in behavior at the level of choice
latency. HC demonstrated increasing choice latencies
with increasing stakes for bothgains and losses,whereas
choice latencies in MDD subjects only increased with
increasing potential loss amounts and were unaffected
by gain stake size. The increased latency in HC with
increasing stake size is expected, given the greater
potential impact of larger stakes on the final payout.
That MDD subjects do not show this increased latency
with increased stake sizes for gains supports the notion

that depressed patients focus on potential losses to the
possible neglect of gains.

Reduced attention to gains during economic deci-
sion-making in MDD may be caused by the interfer-
ence of depressive symptoms at various stages of the
decision-making cascade outlined by Rangel et al.
(2008): at the representational stage, by biasing atten-
tion to negative potential outcomes; at the valuation
stage, by diminishing the influences of rewarding
outcomes on value computations; and, finally, by
blunting reinforcement learning about the outcomes
of decisions as shown previously (Gradin et al. 2011;
Ubl et al. 2015). In the current study, no direct feed-
back about decisions was given, thereby precluding
reinforcement learning. Our behavioral and neural
results therefore suggest the impact of depression
emerges in the representational or valuation stages.

In light of the established attentional biases towards
negatively valenced stimuli (Peckham et al. 2010) and
difficulties disengaging from negative material in
MDD subjects (Armstrong & Olatunji, 2012), our
results agree well with the interpretation that cognitive
models of depression extend to the domain of value-
based choice (Disner et al. 2011). This notion finds sup-
port in recent neuroeconomic research on the role of
attention in decision-making (Armel et al. 2008;
Krajbich et al. 2010; Lim et al. 2011; Krajbich et al.
2012). Specifically, attentional guidance of visual
fixations on specific choice options can lead to biased
decisions in favor of the option that is being fixated
upon (Armel et al. 2008; Krajbich et al. 2010, 2012).
Abnormal fixation patterns on choice options with
negative valence therefore offer a likely explanation
for our behavioral and imaging results.

This conjecture is supported by our neuroimaging
results. Recent reports that VMPFC and VS encode
fixation-dependent relative value signals during
decision-making in the domain of gains (Lim et al.
2011) postulate the AI as a likely counterpart in the
domain of losses. The abnormal neural coding of losses
in AI of MDD patients is consistent with prior results
implicating the AI in subjective value coding on the
one hand, and showing abnormal activation patterns
as a function of emotional disturbances on the other.
Specifically, a recent meta-analysis has implicated the
insula in both positive and negative subjective value
coding (Bartra et al. 2013). This interpretation is further
strengthened by recent results in HC demonstrating
negative subjective value coding in the insula, but
only in the context of sustained aversive affect
(Engelmann et al. 2015). Moreover, heightened activity
in AI has been implicated in harm avoidance and neur-
oticism during risky decision-making (Paulus et al.
2003) and linked to anxiety (Paulus & Stein, 2006).
Furthermore, resting state metabolism of the AI
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(McGrath et al. 2013; Dunlop et al. 2015), and its func-
tional connectivity with the subcallosal cingulate cor-
tex (Dunlop et al. 2017), has been identified as a
potential biomarker for treatment selection in patients
with MDD. In light of these prior findings, our
imaging results call for an integration of the AI as an
important node for processing salient aversive infor-
mation in cognitive–biological models of MDD
(Disner et al. 2011). The emerging literature on salience
processing and neuroimaging predictors of treatment
outcome may provide the opportunity to develop non-
imaging surrogates for aberrant information process-
ing in MDD; such tests could be employed in the clinic
to enhance precision medicine approaches to MDD
(Dunlop, 2015). For example, employing eye tracking
to directly assess the attentional focus during decision-
making in MDD could shed further light on how atten-
tional processes influence subsequent reward and loss
processing in depressed subjects within the insula, and
may predict likely response to psychotherapy or medi-
cation treatments for MDD (Treadway & Zald, 2011;
Der-Avakian & Markou, 2012; Paulus & Yu, 2012).

Although our results integrate well with those of
prior studies, the relatively modest sample size is a
limitation to this study. Another potential limitation
is that, contrary to our hypothesis based on our prior
results showing significant effects of depression on
economic decision-making (Engelmann et al. 2013),
we did not detect higher levels of behavioral loss aver-
sion in MDD subjects. This may have occurred because
our design was tailored to previously reported levels of
loss aversion in HC. To improve the task’s sensitivity
to loss aversion in MDD, future studies could employ
more gambles around subjects’ indifference points.
Finally, the finding that choice latency did not increase
with increasing stake size in the domain of gains
among MDD subjects, in contrast to HC, did not
achieve statistical significance in testing the three-way
interaction between gains, losses, and group. This pre-
cludes the interpretation that results from the two-way
interaction indicating a relative absence of modulation
of choice latency by gain amounts in MDD compared
with HC subjects are specific for the gain domain
(online Supplementary Table S2). Nonetheless, these
results are relevant as they suggest the presence of sub-
tle behavioral differences that are consistent with the
distortionary effects of depression on the neural corre-
lates underlying gain and loss coding.

In conclusion, our behavioral and fMRI results
jointly indicate that during economic decision-making,
MDD subjects show neural overweighting of losses in
AI cortex that may be accompanied by relatively subtle
choice latency effects in the domain of gains and
reduced recruitment and functional coupling of atten-
tional and cognitive control networks.

Supplementary Material

The supplementary material for this article can be
found at https://doi.org/10.1017/S0033291717001428.
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