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We study distance properties of a general class of random directed acyclic graphs (dags).

In a dag, many natural notions of distance are possible, for there exist multiple paths

between pairs of nodes. The distance of interest for circuits is the maximum length of a

path between two nodes. We give laws of large numbers for the typical depth (distance to

the root) and the minimum depth in a random dag. This completes the study of natural

distances in random dags initiated (in the uniform case) by Devroye and Janson. We also

obtain large deviation bounds for the minimum of a branching random walk with constant

branching, which can be seen as a simplified version of our main result.

AMS 2010 Mathematics subject classification: Primary 60C05; 05C05; 94D99

1. Introduction

Motivated by the circuit value problem, and the delay to evaluate the output, Diaz, Serna,

Spirakis, Toran and Tsukiji [21] initiated the study of depths in random circuits. The

model is that of uniform random circuits [19]: a random circuit is built by iterative

addition of gates, each gate randomly choosing k inputs among the outputs of the gates

already present. The model has been further studied by Arya, Golin and Mehlhorn [4]

and Tsukiji and Xhafa [36]. Writing Dx for the depth of the gate reached at step x, Tsukiji

and Xhafa [36] proved that the depth of a random circuit of n gates, max{Dx : x � n}, is

asymptotic to ke log n in probability (log denotes the natural logarithm).

In fact, in a random circuit, many distinct directed paths may link two gates, and one

can define different notions of distances. Devroye and Janson [18] started the systematic

analysis of these distances. Among those, the distances defined by paths that are only

allowed to look one step ahead (‘greedy’ distances) were studied by Mahmoud [29] and

Devroye, Fawzi and Fraiman [20]. These greedy distances have permitted us to quantify

the effect of the ‘power of choice’ for depths in random trees: like a gate, each node has

k potential contacts, but only attaches to the most desirable according to a measure of
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optimality. The models in which the choice of each node is made only according to the

labels of its potential contacts has been studied by Mahmoud [29] and Devroye, Fawzi

and Fraiman [20]. D’Souza, Krapivsky and Moore [23] studied more general rules of

growing trees, where the choice of each node might depend on the degree or the distance

to the root of the potential ancestors.

Unfortunately, the distance that has the most meaning in terms of performance of

circuits cannot be defined in a greedy way: the number of layers of a circuit depends on

the maximum length of a path between an output and an input. In this paper, we study this

distance, and hence the number of layers required to evaluate the random circuit. Aside

from the depth of the entire circuit studied by Arya, Golin and Mehlhorn [4] and Tsukiji

and Xhafa [36], the typical depth Dn and the minimum depth of a gate are also of interest.

For the latter quantity, since min{Dx : 0 � x � n} = 0, we study min{Dx : x � n/2} to

estimate the concentration of the depths in the circuits. Our main results are laws of large

numbers for Dn (Theorem 4.1) and min{Dx : x � n/2} (Theorem 5.1). In particular, for

the model of uniform random circuits of [36] and k = 2, we show that

Dn

log n
→ λ and

minn/2�x�n Dx

log n
→ λmin =

λ

2
(1.1)

in probability, where λ = 4.31107 . . . is the only solution to the equation λ log(2e/λ) = 1

that is greater than one. In doing so, we prove a conjecture of Devroye and Janson [18]

about the value of λ, and we also identify λmin for which they did not make a guess. This

completes the study of some natural distances in uniform random circuits started in [36]

and [18]. In fact, our results apply to a more general class of random dags where the

parent nodes of x are not necessarily chosen uniformly from {0, . . . , x − 1} [20] (we will

be more precise below). In general, the limit constants are characterized uniquely as the

root of some (often implicit) equation that depends on the precise model of attachment.

The problem of distances in random dags is related to minima in branching random

walks. The relation between distances in random trees such as random recursive trees, or

binary search trees and minima in branching random walks, has been shown by Pittel

[32] and Devroye [16]. Distances in random circuits can also be studied using the simpler

setting of branching random walks, but the relation is much more intricate because the

circuits do not have a real tree structure. Although we do not use the results for branching

random walks directly, we think that the reader may find it useful to warm up with this

simpler model. Moreover, the ideas leading to the tail bounds for minima in branching

random walks presented in Theorem 3.2 also underlie the main argument behind our

analysis of the behaviour of minn/2�x�n Dx.

Further bibliographical remarks. For a slightly different random circuit model, Mahmoud

and Tsukiji have investigated the asymptotic behaviour of the number of outputs, that

is, gates that do not feed into any other gate [35, 30]. The profile of the related model of

k-trees has been studied by Darrasse, Hwang, Bodini and Soria [14]. Depths in random

circuits are also used by Codenotti, Gemmell and Simon [13] in relation to parallel

computation time.
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Outline of the paper. The model of a random dag is formally introduced in Section 2.

In Section 3, we study tail bounds for minima of branching random walks. The results

presented there help us understand why the values for the limiting constants in the law of

large numbers in (1.1) are what they are. To the best of our knowledge, the exponential

rates in the tail estimates we derive for the branching random walk were not previously

known. Section 4 is then devoted to the study of the typical number of edges Dn on

the longest path between n and the root of a random dag. Finally, the minimal distance

between a node (with sufficiently large label) and the root is analysed in Section 5.

Although we do not think that the results for branching random walks are obvious,

the main difficulty consists, in the dag model, in dealing with the intricate dependence

between the different paths up the root that originate not only from a single node, but

also from different nodes.

2. Definitions and notation

We consider the more general model of scaled attachment random recursive dags (k-

sarrd) introduced in Devroye, Fawzi and Fraiman [20]. We are given a random variable

X, with support in [0, 1). In a k-sarrd with attachment X (or (X, k)-sarrd), every node x

chooses k parents: �xXx,1�, �xXx,2�, . . . , �xXx,k�, where X0,1, . . . , X0,k , . . . , Xn,1, . . . , Xn,k are

independent copies of X. In other words, the random variable Xx,p determines the pth

parent of node x. A random dag of size n is then composed of the root 0 and the nodes

1, . . . , n and the edge set binding each node to its k parents. When X is uniform, one

obtains the uniform recursive circuit (k-urrd) that is the subject of Tsukiji and Xhafa

[36], Devroye and Janson [18] and Arya, Golin and Mehlhorn [4].1

In the following, we always reserve k for the number of parents in the dag. We let Dn

represent the length of the longest path from node n to node 0.

We now introduce some notation to describe the dag. The set of finite words on the

alphabet A = [k] = {1, . . . , k} is denoted by

U :=
⋃
m�0

Am.

The set U is naturally endowed with a partial order: we write v � u if v is a prefix of u.

We will also think of U as a k-ary tree, where v � u if v is an ancestor of u.

For a node x and a string s ∈ U , L(x, s) is the label of the ancestor of x obtained

by following the path labelled by s. For example, L(x, 1) is the first parent of node x.

Concatenation of strings (corresponding to paths) is denoted by · . Note that in our model

we have L(x, s · p) = �L(x, s)XL(x,s),p�. For a string s and i � 0, let si be the string composed

of the first i letters of s. In the special case where i = |s| − 1, we write s− := s|s|−1 for the

string where the last letter is dropped. The last letter of the word s is denoted by s so that

s = s− · s.
Of course, the paths up the root corresponding to two strings s and s′ might intersect, so

that even when s and s′ have no non-trivial common prefix, the random variables L(n, s)

1 One can also consider close variants of the model where the parents are chosen without replacement and the

dag has k roots [19].
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Figure 1. A binary dag on {0, 1, . . . , 6} and the corresponding exploration tree from node 6.

and L(n, s′) are not independent in general (see Figure 1). However, the dependence of

random variables L(n, s), s ∈ U is ‘essentially caused’ by common prefixes of the strings s.

We will justify this informal fact below, when we prove our main results in Sections 4 and 5.

Understanding the lengths of the paths originating from a node n hence somewhat reduces

to the analysis of the evolutions of the labels L(n, s) in the k-ary tree U . Furthermore, the

reader should be intuitively convinced that the labels should satisfy the approximation

L(n, s) ≈ n
∏
u�s

Xu,

where Xu, u ∈ U are i.i.d. copies of X, which makes the connection between paths in

X-dags and a branching random walk with step distribution Y = − logX. Since we are

interested in maximum lengths of paths, we should naturally study paths along which the

L(x, s) stays large; along these paths, the branching random walk should be small. This

leads us to the study of asymptotics for minima in a branching random walk.

3. Large deviations for extremes of a branching random walk

In this section, we consider branching random walks with constant branching factor k

and step distribution Y . Let Yu, u ∈ U \ ∅ be independent and identically distributed

random variables distributed as Y . It is convenient to assume that Y∅ = 0. Then, define

the position of a word u ∈ U by Su =
∑

v�u Yv . We are interested in the minimum label

over the km nodes at distance m from the root, Mm = min{Su : u ∈ Am}.
Asymptotics for Mm depend on rate functions associated with the step distribution Y .

Let Λ be the cumulant generating function for the step distribution Y and define its

convex dual Λ� [15, 34] by

Λ(λ) = log E[eλY ] and Λ�(z) = sup
λ∈R

{λz − Λ(λ)},

where log denotes the natural logarithm. The following classical theorem describes the

first-order asymptotics of Mm. In the entire document, we will always have Y � 0, so that

the moment condition Λ(λ) < ∞ for some λ < 0 will always be satisfied.
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Theorem 3.1 ([26, 28, 7]). Suppose Y is such that Λ(λ) < ∞ for some λ < 0. Let γ =

inf{z � E[Y ] : Λ�(z) < log k}. Then, γ is finite and with probability 1,

lim
m→∞

Mm

m
= γ.

Moreover, if E[Y ] < ∞, by the dominated convergence theorem, we have

lim
m→∞

E[Mm]

m
= γ.

Results on the minima in branching random walks have many applications in the study

of random trees; see Devroye [17] for a survey. Here, we are interested in tail bounds for

the distribution of Mm/m. McDiarmid [31] and Addario-Berry and Reed [1] have proved

general exponential tail bounds for the deviations of Mm/m; however, the exponential

rates in the bounds there are not optimal, and our setting requires us to identify them.

In the following, we assume that Y is asymptotically exponential in the following sense:

there exists a constant α ∈ (0,∞) such that

log P{Y � x}
x

→ −α, (3.1)

as x → ∞.

The two sides of the distribution of Mm/m have in general very different behaviour.

Quite intuitively, if one wants to make the minimum value at level m smaller, it suffices to

modify the random variables Yu on a single path of length m, so one expects that the tail

should have exponential tails with a scale of m on the left. On the other hand, to make

Mm larger, one needs to modify all km paths of length m, and it is not immediately clear

how one should do this in order to optimize the probability. We will show that when

the random variable Y has exponential tails in the sense of (3.1), it is essentially best to

modify the random variables on the first level of the tree by a huge amount. We now turn

to formalizing this intuition.

Theorem 3.2 (Right tail). Suppose that Y � 0, log P{Y � x} = −αx + o(x), as x → ∞, for

α ∈ (0,∞). Let ε, δ > 0. Then there exist constants c, c′ ∈ (0,∞) such that, for all m large

enough,

c · e−kαε(1+δ)m � P{Mm � (γ + ε)m} � c′ · e−kαε(1−δ)m.

Proof. We start with the lower bound. Consider the k nodes connected to the root. Each

one of these nodes is the root of a tree of depth m − 1. In order to have Mm � (γ + ε)m,

it suffices that all k (independent) trees have a minimum Mm−1 � (γ − εδ
2
)m and all the

steps between the root and its children are such that Y1, . . . , Yk � (ε + εδ
2
)m. Therefore,

P{Mm � (γ + ε)m} � P{Mm−1 � (γ − εδ/2)m}k · P{Y � (ε + εδ/2)m}k

� c · e−kα(ε+ εδ
2 )m+o(m)

� c · e−kαε(1+δ)m,

for m large enough, by Theorem 3.1 and our assumption on the tail of Y .
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We now prove the upper bound. Let h = �10 logk m�. We start by proving an exponential

tail bound for Su where u ∈ Ah. Notice first that

E[eα(1−δ)Y ] =

∫ ∞

0

P{eα(1−δ)Y � t}dt =

∫ ∞

0

t−1/(1−δ)+o(1)dt < ∞.

Thus, by Markov’s inequality, we obtain

P{Su � (1 − δ)εm} � E[eα(1−δ)Y ]he−α(1−δ)·(1−δ)εm � e−(1−δ)3αεm,

for m large enough. We can now prove exponential tails for Mm. Using a decomposition

according to the values of some nodes at level h + 1, we obtain

P{Mm � (γ + ε)m} � P{∀p ∈ [k], ∃u ∈ Ah : Sp·u > (1 − δ)εm}
+ P{∃p ∈ [k], ∀u ∈ Ah : Sp·u � (1 − δ)εm and Mm � (γ + ε)m}. (3.2)

For the first event in (3.2) to hold, there must be k paths u1, . . . , uk such that, for the k

disjoint paths p · uk at level h + 1, the values are rather large:

P{∀p ∈ [k], ∃u ∈ Ah : Sp·u > (1 − δ)εm} � P{∀p ∈ [k], ∃u ∈ Ah : Sp·u > (1 − δ)εm}

� k · kkhe−k(1−δ)3αεm. (3.3)

On the other hand,

P{∃p ∈ [k], ∀u ∈ Ah : Sp·u � (1 − δ)εm and Mm � (γ + ε)m}
= P{∃p ∈ [k], ∀u ∈ Ah :

[
Sp·u � (1 − δ)εm and ∀v ∈ Am−h−1 : Sp·u·v � (γ + ε)m

]
}

� P{Mm−h−1 � (γ + δε)m}k
h

� ck
h

0 ,

for m large enough and some constant c0 < 1 (using Theorem 3.1). As a consequence, for

fixed δ, ε > 0, we have for all m large enough

P{Mm � (γ + ε)m} � kkh+1e−k(1−δ)3αεm + ck
h

0 .

By our choice of h = �10 logk m� we have kh � m10/k. Finally, since δ > 0 was arbitrary,

the desired upper bound follows.

At this point, we should comment on tail bounds for minima in branching random

walks. Although the estimates for the upper tail of Mm in Theorem 3.2 are tight, we must

mention that the strength of the result does not really compare to recent results on the

precise location of minima in branching random walks. Indeed, Theorem 3.2 only provides

decent estimates for P{Mm � γm + t} for positive t, while E[Mm] = γm − β logm + O(1)

[1]; for the study of branching random walks the tail bounds of interest are in fact those

for P{Mm � E[Mm] + t} or P{Mm � γm − β logm + t}. See also the related results about

tightness and weak convergence for Mm [8, 27, 6, 2, 9]. Equivalent results for the height

of random trees (binary search trees and m-ary search trees) were proved in Reed [33],

Drmota [22] and Chauvin and Drmota [10]. Similar comments apply to our estimates on

the left tail which follow.

https://doi.org/10.1017/S0963548312000260 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548312000260


862 N. Broutin and O. Fawzi

The left tail for the minimum at level m in a branching random walk is essentially

governed by the level m: to change the minimum Mm, it suffices to change any single one

of the km paths of length m, and this way of proceeding is essentially optimal.

Theorem 3.3 (Left tail). Suppose that there exists λ < 0 such that E[eλY ] < ∞. Then, for

any δ > 0, there exist constants c, c′ such that

ckme−m(Λ�(γ−ε)+δ) � P{Mm � (γ − ε)m} � c′kme−mΛ�(γ−ε).

Proof. The upper bound follows easily from the union and Chernoff’s bound [11, 15]:

P{Mm � (γ − ε)m} � kmP

{ m∑
i=1

Yi � (γ − ε)n

}

� kme−nΛ�(γ−ε).

The lower bound is proved using a branching process argument. Let L � 1 be an

arbitrary integer to be chosen later. The potential individuals of our branching process

are the nodes of U at levels iL, i � 0. A node u is called good if it is either the root (i.e.,

it lies at level 0) or it lies at level (i + 1)L for some i � 0, its ancestor v at level iL is good

and Su − Sv � (γ − ε)L. Let Zi denote the number of good nodes at level iL in the tree

; {Zi, i � 0} is a Galton–Watson process. Clearly, if there is a good node at level iL, i.e.,

Zi > 0 then MiL � (γ − ε)iL. As a consequence,

P{MiL � (γ − ε)iL} � P{Zi > 0}. (3.4)

By the second moment method [3], more precisely the Chung–Erdős inequality [12], we

have

P{Zi > 0} � E[Zi]
2

E[Z2
i ]

=
E[Zi]

2

Var(Zi) + E[Zi]2
. (3.5)

For the Galton–Watson process {Zi, i � 0}, we have

E[Zi] = µi and Var(Zi) = σ2 1 − µi

1 − µ
µi−1,

where µ := E[Z1] and σ2 := Var(Z1) [5]. We now move on to choosing L to obtain a

good lower bound on the right-hand side in (3.5). The mean number of children of an

individual is

µ = E[Z1] = kLP

{ L∑
j=1

Yj � (γ − ε)L

}
= kLe−LΛ�(γ−ε)+o(L),

as L → ∞. Note that since ε > 0, we have µ < 1 for any L � 1. So, for any δ > 0 there

exist L large enough that

µ � kL · e−L(Λ�(γ−ε)+δ). (3.6)
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Fixing this value for L, and since µ < 1, (3.5) yields P{Zi > 0} � Cµi, for some fixed

constant C > 0 independent of i. More precisely, together with (3.4), we obtain

P{MiL � (γ − ε)iL} � CkiLe−iL(Λ�(γ−ε)+δ),

which proves the lower bound for all m = iL, for some i � 0. Finally, when m = iL + r for

r ∈ {1, . . . , L − 1} it suffices that MiL � (γ − ε)iL and
∑r

j=1 Yj � (γ − ε)r, where Yj , j � 1

are i.i.d. copies of Y . Since

inf
1�r<L

P

{ r∑
i=1

Yi � (γ − ε)r

}
> 0,

the result follows easily for general integers m.

On the limiting constants for the DAG model. Before proceeding to the analysis of the

circuit model, we use the tail bounds we have just devised to provide rough arguments

that explain the values of the constants in our laws of large numbers. (The symbol ≈ is

used in a very informal way.) The first main idea is that the dependence is small enough

that the upper bound given by the union bound essentially yields the correct constant. By

Theorem 3.3 we (should) have

P{Dn � c log n} ≈ P{M�c log n� � log n}

≈ kc log n · e−c log nΛ�(1/c)

≈ nc(log k−Λ�(1/x)).

In particular, we have limn→∞ P{Dn � c log n} = 0 for every c such that Λ�(1/c) > log k.

This suggests that we might have Dn ∼ λk log n in probability for λk = sup{x : Λ�(1/c) <

log k}. The proof of this fact is the topic of Section 4. Similarly, using Theorem 3.2 we

obtain

P

{
min
x�n/2

Dx � c log n
}

� nP{Dn/2 � c log n}

≈ P{M�c log n� � log(n/2)}
≈ ne−kαc log n(1/c−γ)

≈ n1−kα(1−cγ),

so it should be the case that

minn/2�x�n Dx

log n
→

(
1 − 1

kα

)
λk in probability.

We prove this formally (when the limit constant above is non-negative, minx Dx is non-

negative) in Section 5. Similarly, we can see that Theorem 3.3 leads to a correct guess that

maxx�n
Dx

log n
→ ke in probability when the attachment distribution is uniform [36].

4. Longest paths in random k-DAGs: typical distance Dn

We start by studying the length Dn of the longest path from node n to the root of the

tree. The typical distance Dn is studied using methods similar to the study of the typical
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Table 1. Some numerical values for the constant λk for the case of uniform recursive circuits.

k 2 3 4 5 10

λk 4.311070407. . . 7.080786915. . . 9.820440021. . . 12.55049054. . . 26.16346184. . .

shortest path distance in [18]. Let Λ� denote the rate function associated with the random

variable Y = − logX. Define

λk = sup{z � 1/E[− logX] : Λ�(1/z) � log k}. (4.1)

Note that we will consider attachment distributions with bounded density f and thus

E[− logX] = −
∫ 1

0

(log x)f(x)dx < ∞.

Moreover, as X < 1, E[− logX] > 0.

Theorem 4.1. Let k � 1. Suppose X ∈ (0, 1) has a bounded density. Then, the longest path

from node n to the root in a k-sarrd with attachment X satisfies, as n → ∞,

Dn

log n
→ λk

in probability.

The theorem follows from Lemma 4.2 and Lemma 4.3 below. From Theorem 4.1,

we easily obtain the asymptotics for the typical distance in the uniform circuit model

discussed by Arya, Golin and Mehlhorn [4] and Tsukiji and Xhafa [36]. Indeed, if X is

uniform (0, 1), then the parents of a node i are i.i.d. uniform in {0, 1, . . . , i − 1}. In this

case, − logX ∼ Exponential(1) and Λ�(z) = z − 1 − log z. Then λk is the only solution of

the equation in z (
ke

z

)z

= e

that is at least 1. Numerical values are presented in Table 1.

4.1. Upper bound on Dn

Lemma 4.2. For any c > λk , there exist C and η > 0 such that, for all n large enough, we

have

P{Dn � c log n} � Cn−η.

Proof. To simplify the notation, we prove P{Dn � c log n + 2} � Cn−η for all c > λk ,

which is an equivalent statement. Let Rn denote the number of hops to the root for a

random path from n, i.e., a path that chooses a uniformly random edge at every step. By

the union bound, we get

P{Dn � c log n + 2} � kc log n+2 · P{Rn � c log n + 2}. (4.2)
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Let X1, X2, . . . be i.i.d. copies of X. Then, to bound the right-hand side, we let t = c log n�
and apply Markov’s inequality:

P{Rn � c log n + 2} � P{Rn > t}
� P{nX1 . . . Xt � 1}
� inf

λ�0
nλE[Xλ

1 . . . X
λ
t ]

= inf
λ�0

nλE[Xλ]t

= inf
λ�0

exp
(
λ log n + Λ(−λ)t

)
� inf

λ�0
exp

(
λ log n + Λ(−λ)c log n

)
(as Λ(−λ) � 0)

� exp

(
− sup

λ�0

{
−λ

c
− Λ(−λ)

}
c log n

)

= exp
(
−cΛ�(1/c) log n

)
. (4.3)

Combining (4.2) and (4.3), we get

P{Dn � c log n + 2} � k2 exp
(
c log n(log k − Λ�(1/c))

)
= k2nc(log k−Λ�(1/c)).

As Λ� is a decreasing function on (−∞,E[− logX]) and c > λk , we have Λ�(1/c) > log k,

which completes the proof.

4.2. Lower bound on Dn

The objective of this section is to prove the following lemma.

Lemma 4.3. For any fixed ε > 0, we have

P{Dn < (1 − ε)λk log n} → 0,

as n → ∞. Furthermore, if there exists λ > 0 such that E[X−λ] < ∞, then there exist con-

stants C and η > 0 such that, for all n large enough,

P{Dn < (1 − ε)λk log n} � Cn−η. (4.4)

We start by describing the proof strategy and each subsection covers part of the proof.

Consider the set of ancestors of node n. These nodes form a directed acyclic graph where

each node has out-degree k except for the root. We start by considering the following

model for the ancestor dag. Define a family of independent random variables X ′
s for all

strings s on A = {1, . . . , k} that have the same distribution as X. For a string s of length

�, write s0, s1, s2 . . . , s� for the prefixes of s of length 0, 1, . . . , � respectively. The ancestor

of node n obtained by following the path s is labelled

L′(n, s) = �. . . ��nX ′
s1

�X ′
s2

� · · ·X ′
s�.
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This defines a tree (indexed by the strings s) where distinct nodes can share the same

label. In this ideal model, the length of the longest path that reaches a node labelled 0

can be obtained with little effort from Theorem 3.1.

In our sarrd, the labels actually correspond to nodes, and there is a unique node

labelled i, for i = 0, . . . , n. The tree of ancestors of a node is then a dag, as the in-degree of

a node can be more than one. In particular, this creates dependences between the random

variables X along different paths even if they have no common prefix.

In order to avoid having to deal with these dependences, we use the following strategy

to find a long path. Note that in our ideal setting, a path to the root corresponds to

a path to a node labelled 0. Starting at node V0 = n, we look at all the ancestors of n

of order � (i.e., � jumps away from n) for some well-chosen large constant �. From all

these possible paths, we pick the path (of length �) that reaches the node V1 with the

largest label. Then the same process is repeated for this node until a node with label 0

is reached. This strategy defines a path, and we show that the length of this path can be

made as large as (λk − ε) log n with high probability. The advantage of using this method

is that only a small portion of the tree is visited, so it is easier to bound the probability

of ‘collision’. The path constructed for the ideal model can then be shown to be exactly

the same in a real sarrd with high probability.

4.2.1. The ideal tree. In this section, the objective is to obtain a good lower bound on the

length of the longest path from node n to a node of label 0 in the ideal tree (Lemma 4.4).

More precisely, let Vj denote the label obtained after j steps (each one composed of �

jumps); the string defining the path from n to the corresponding node is denoted Sj ∈ Aj�.

We have V0 = n, S0 = ∅, and for j � 0,

Vj+1 = max
s∈A�

L′(n, Sj · s) and Sj+1 = Sj · arg max
s∈A�

L′(n, Sj · s). (4.5)

The objective is now to show that starting from n and after q = (1 − ε)λk log(n)/��
steps of � jumps, no node of label zero has been reached with probability going to 1. If

this happens, we clearly have a path of length at least q� � (1 − ε)λk log n between n and

a node labelled zero.

Lemma 4.4. Suppose E[− logX] < ∞. Let ε ∈ (0, 1). For q = (1 − ε)λk log(n)/��, we have

P{Vq � nε/4} → 0,

as n → ∞. Furthermore, if there exists λ > 0 such that E[X−λ] < ∞, then there exists η > 0

such that, for all n large enough, we have

P{Vq � nε/4} � n−η. (4.6)

Proof. Recall that for a string s, we write s0 = ∅, s1, s2, . . . for the prefixes of s of length

0, 1, 2, . . . , respectively. Thus, for j � 0, we have by definition

Vj+1 = max{��VjX
′
Sj ·s1� · · ·X ′

Sj ·s�� : s ∈ A�}

� Vj · max{X ′
Sj ·s1 × · · · × X ′

Sj ·s� : s ∈ A�} − �.
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Letting Z
(�)
j = max{X ′

Sj ·s1 × · · · × X ′
Sj ·s� : s ∈ A�}, we have

Vq �
(((

nZ
(�)
0 − �

)
Z

(�)
1 − �

)
· · ·Z (�)

q−1

)
− � � n

q−1∏
j=0

Z
(�)
j − q�.

It follows immediately that

P{Vq � nε/4} � P

{
n

q−1∏
j=0

Z
(�)
j − q� � nε/4

}

� P

{q−1∑
j=0

− logZ (�)
j �

(
1 − ε

3

)
log n

}
,

for all n large enough. Observe that − logZ�
0 is simply the minimum at generation � of

a branching random walk with increments distributed as − logX. As E[− logX] < ∞,

using Theorem 3.1, we get

lim
�→∞

E[− logZ (�)
0 ]

�
=

1

λk
. (4.7)

We pick �0 = �0(ε) so that for � � �0, we have (1 − ε
8
)λkE[− logZ (�)

0 ] � �. In the rest of

the proof, � = �0 is fixed and we let Z be a random variable having the same distribution

as Z
(�)
0 .

We can now use a limit theorem for renewal processes (see for example [24, Chapter

10.2, Theorem 1]; see also [25]). We have the convergence in probability

max{q : −
∑q−1

j=0 logZ (�)
j � (1 − ε

3
) log n}

(1 − ε
3
) log n

P→ 1

E[− logZ (�)
0 ]

�
(1 − ε

8
)λk

�
, (4.8)

where the last inequality follows by our choice of �. Thus, with probability going to one,

and for q = (1 − ε)λk log n/��, we have

lim
n→∞

P{Vq � nε/4} = 0. (4.9)

We now move on to the proof of the tail bound (4.6). Note that, in a stochastic sense,

we have Z
(�)
0 � X1 · X2 · · ·X�, where Xi are i.i.d. copies of X. Hence, since � is fixed, there

exists η > 0 such that E[Z−η] < ∞ so that, by Markov’s inequality,

P

{
n

q−1∏
j=0

Z
(�)
j � nε/3

}
�

(
E[e−η logZ ]

eη�(1−ε/3)/(1−ε/2)λk

)q

,

for all n large enough. To complete the proof, observe that, as η → 0, we have

E[e−η logZ ]

eη�(1−ε/3)/(1−ε/2)λk
= 1 + η

(
E[− logZ] − (1 − ε/3)�

(1 − ε/2)λk

)
+ o(η)

� 1 + η
�

λk

(
1

1 − ε
8

−
1 − ε

3

1 − ε
2

)
+ o(η) < 1,
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for η small enough by our choice of �; it is routine to verify that the second term

is indeed negative for any ε ∈ (0, 1). Since q = (1 − ε)λk log(n)/��, the tail bound (4.6)

follows readily.

We call the event studied in this section An(q(n)) := {Vq(n) > nε/4}. To make the notation

lighter, the dependence in n will be omitted.

4.2.2. The real DAG: handling collisions. Recall that the statement in Lemma 4.4 only

deals with the ideal tree model. In order to prove that a long enough path also exists

in the real dag, we couple the sarrd and the ideal tree in such a way that with high

probability, the path Sq that we exhibited in the ideal tree can also be found inside the

sarrd. What we mean here is the following: the path Sq defines a sequence of distinct

labels in the ideal tree; in the sarrd the nodes corresponding to these labels are also

along a path with high probability.

We use the random variables X ′
s that were used in the ideal tree, and new independent

random variables X ′′
x,p for x ∈ {0, . . . , n} and p ∈ A. We start by defining an ordering of

strings:

s � s′ if and only if |s| < |s′| or |s| = |s′| and s �lex s
′ (4.10)

where �lex is the lexicographic order on the strings on the alphabet A. This is the breadth-

first order in the k-ary tree. Then, if one of the paths from n has label x in the ideal tree,

let Tx denote the first (or breadth-first) such path,

Tx = min{s : L′(n, s) = x, |s| � n},

where the min is taken with respect to the order in (4.10) and we agree that min{∅} = ∞.

The labels in the ideal tree are not distinct, and the corresponding vertices cannot directly

represent nodes in the dag. We now ensure that a node x in the sarrd corresponds to

the first vertex in the ideal tree with label x (if such a vertex exists): for all p ∈ A let

Xx,p =

{
X ′

Tx·p if Tx �= ∞,

X ′′
x,p if Tx = ∞.

Clearly, the random variables Xx,p are independent and distributed as X, so that they

define a proper (X, k)-sarrd.

We now define the event that the sequence of labels along the path Sq is the same

in the dag generated by the variables (Xx,p : 0 � x � n, 1 � p � k) and in the ideal tree

generated by (X ′
x,p : 0 � x � n, 1 � p � k):

B(q) = {L′(n, s) = L(n, s) : s � Sq}.

In particular, if B(q) and A(q) both hold, then the path Sq does not reach the root since

its minimum label is at least nε/4, and since Sq is also a path in the dag we have Dn � q�.

Write Ec to denote the complement of an event E. Then, since q = (1 − ε)λk log(n)/��,
we have

P{Dn < (1 − ε)λk log n} � P{A(q)c ∪ B(q)c}
= P{A(q)c} + P{B(q)c ∩ A(q)}. (4.11)
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Lemma 4.4 bounds the probability that A(q) does not hold, so that to prove Lemma 4.3,

it suffices to bound the probability that B(q)c ∩ A(q) occurs.

Lemma 4.5. Let ε ∈ (0, 1) and let q = q(n) = (1 − ε)λk log(n)/��. Then, there exists η > 0

such that, for n large enough,

P{A(q) ∩ B(q)c} � n−η.

Proof. In the following, we write n1 = nε/4. Recall that s− denotes the prefix of s of

length |s| − 1. If the path Sq is a breadth-first path in the ideal tree (in the sense that each

of its vertices is the first with its label) then our coupling ensures that B(q) occurs. So for

B(q) to fail, there must be a node in Sq that is not the first with its label. We have

P{B(q)c ∩ A(q)} � P{∃j < q, |s| � � : TL′(Vj ,s) �= s, TL′(Vj ,s−) = s−, Vq � n1}

�
q−1∑
j=0

P{∃s : |s| � �, TL′(Vj ,s) �= s, TL′(Vj ,s−) = s−, Vq � n1}. (4.12)

For any fixed j < q, we have by the union bound

P{∃s, |s| � � : TL′(Vj ,s) �= s, TL′(Vj ,s−) = s−, Vq � n1}

�
∑
|s|��

P{∃s0 < s : L′(Vj, s0) = L′(Vj, s), TL′(Vj ,s−) = s−, Vq � n1}

�
∑
|s|��

∑
s0<s

P{L′(Vj, s0) = �X ′
sL

′(Vj, s
−)�, TL′(Vj ,s−) = s−, Vq � n1}. (4.13)

We now condition on L′(Vj, s
−) and on L′(Vj, s0) and use the independence between the

random variable Xs and (L′(Vj, s
−), L′(Vj, s0)):

P{L′(Vj, s0) = �X ′
sL

′(Vj, s
−)�, TL′(Vj ,s−) = s−, Vq � n1}

�
∑
u,v�n

P{v = �uX ′
s�, L′(Vj, s

−) = u, L′(Vj, s0) = v, L′(Vj, s
−) � n1}

� sup
u�n1 ,v�n

P{v = �uX ′
s�}.

Since X ′
s has a density bounded by b, we have, for any v � n and u � n1,

P{v = �uX ′
s�} = P{v � uX ′

s < v + 1} � b

u
� b

n1
.

Thus, going back to equations (4.12) and (4.13), since there are at most qk2(�+1) terms,

each one at most b/n1, we obtain

P{B(q)c ∩ A(q)} � bqk2(�+1)

n1
,

which readily yields the result since n1 = nε/4, q = (1 − ε)λk log(n)/�� and b, k, � are fixed

constants.
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Thus, recalling Lemma 4.4 and (4.11), we have

lim
n→∞

P{Dn < (1 − ε)λk log n} = 0.

In the case when the attachment distribution X is such that E[X−λ] < ∞ for some λ > 0,

there exists η > 0 such that, for all n large enough, the stronger bound

P{Dn < (1 − ε)λk log n} � n−η

holds, which finishes the proof of Lemma 4.3.

5. Longest paths in random k-DAGs: minimum distance minn/2�x�n Dx

In this section, we assume that the attachment distribution X has a bounded density and

satisfies

P{X � t} = tα+o(1), (5.1)

as t → 0, for some α ∈ (0,∞). Note that this implies that

E[X−α/2] =

∫ ∞

0

P{X−α/2 � t}dt < ∞.

The lower tails of the step size should clearly influence the distances; the present setting

with an underlying branching structure points towards dependence in (5.1). The value of α

determines the value of the minimum distance for a random recursive (k, X)-dag. Define

the constant

β := max

(
1 − 1

kα
, 0

)
. (5.2)

Theorem 5.1. Let k � 2 and X be as above. The minimum longest path distance in a random

recursive (k, X)-dag satisfies

minn/2�x�n Dx

log n
→ βλk,

in probability, where λk = sup{z : Λ�(1/z) � log k} is the constant defined in (4.1).

In the case where P{X � t} � tα+o(1) for any α > 0, we obtain a limit of 0. In fact,

the upper bound in Lemma 5.2 only uses a lower bound on P{X � t} for t in the

neighbourhood of 0. Similarly, if P{X � t} � tα+o(1) for any α > 0, the limit becomes λk
as the lower bound of Lemma 5.3 only uses an upper bound on P{X � t} for t in the

neighbourhood of 0.

For X ∼ uniform[0, 1), we have α = 1 and β = 1 − 1/k. This yields minn/2�x�n Dx =

(k − 1)/k · λk log n) for uniform random recursive dags. In particular, for k = 2, we obtain

Dn

log n
→ λ2 and

minn/2�x�n Dx

log n
→ λ2

2
,

where λ2 = 4.31107 . . . . This completes the table of asymptotic properties of different

natural distances in uniform random dags [18, Table 1].
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The reader will easily be convinced when reading the proof that the result remains

unchanged if one considers min{Di : δn � i � n}, for some δ > 0. We keep the current

statement for simplicity.

5.1. Upper bound on minn/2�x�n Dx

Lemma 5.2. For any ε > 0, there exists η > 0 such that, for all n large enough,

P

{
min

n/2�x�n
Dx � (β + ε)λk log n

}
� n−η.

Proof. The strategy is to show that there exists a node x ∈ {n/2�, . . . , n} such that all its

parents have label at most nβ+ε. We then conclude using Theorem 4.1. For n/2 � x � n,

we look at the k parents L(x, 1), . . . , L(x, k) of x in the dag. Since β � 1 − 1
kα

and x � n,

we have

P{max{L(x, 1), . . . , L(x, k)} � nβ+ε} = P{xX � nβ+ε}k

� P{X � n−1/(kα)+ε}k

� n−1+kαε/2

for all n large enough, as X satisfies (5.1). Define

N =
∣∣∣{x : n/2� � x � n, max

1�i�k
L(x, i) � nβ+ε

}∣∣∣.
We have

E[N] �
(
n −

⌈
n

2

⌉
+ 1

)
· n−1+kαε/2 � nkαε/2

2
. (5.3)

Observe that the events {max(L(x, 1), . . . , L(x, 1)) � n1−1/(kα)+ε} are independent for differ-

ent nodes x. So we can also compute the variance of N:

Var(N) �
n∑

x=n/2�

P{max{L(x, 1), . . . , L(x, k)} � nβ+ε} = E[N].

Thus, using the second moment inequality, sometimes called Chung–Erdős inequality [12],

and since E[N] → ∞ by (5.3), we obtain

P{N = 0} � Var(N)

Var(N) + E[N]2
� 1

1 + E[N]
= O(n−kαε/2). (5.4)

Now, define the random node

V = max{{0} ∪ {x : n/2� � x � n,max(L(x, 1), . . . , L(x, k)) � nβ+ε}}.

It only remains to show that such a node V has a small longest path to the root. It is

sufficient to bound the following probability, with ε < 1. We have

P

{
min

n/2�x�n
Dx � (β + 3ε)λk log n + 1

}
� P{DV � (β + 3ε)λk log n + 1, N > 0} + P{N = 0}
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�
k∑

s=1

P{DL(V ,s) � (β + 3ε)λk log n,N > 0} + P{N = 0}

�
k∑

s=1

P{DL(V ,s) � (β + 3ε)λk log n, L(V , s) � nβ+ε} + P{N = 0}

� kP{D�nβ+ε� � (1 + ε)(β + ε)λk log n} + P{N = 0} for ε < 1.

The last inequality holds because we can condition on L(V , s) and use the independence of

the events {L(V , s) = v} and {Dv � (1 + ε)(β + ε)λk log n} for any v. We can then conclude

using Lemma 4.2 and (5.4).

5.2. Lower bound on minn/2�x�n Dx

The objective of this section is to prove the following lower bound. Note that when β = 0,

no lower bound is needed to prove Theorem 5.1, so that we can safely assume here that

β > 0. In particular, we have β = 1 − 1
kα

.

Lemma 5.3. Suppose that β > 0. For any ε > 0, there exists η > 0 such that

P

{
min

n/2�x�n
Dx � (β − ε)λk log n

}
= O(n−η).

Clearly, it is sufficient to consider ε < β; we do so until the end of the proof. By the

union bound, we have

P

{
min

n/2�x�n
Dx � (β − ε)λk log n

}
�

n∑
x=n/2�

P{Dx � (β − ε)λk log n}

� n · sup
n/2�x�n

P{Dx � (β − ε)λk log n}.

It suffices to show P{Dx � (β − ε)λk log n} = o(1/n) uniformly for all x ∈ {n/2�, . . . , n}. In

the rest of the proof we fix x ∈ {n/2�, . . . , n}.
If Dx � (β − ε)λk log n, this means that all the ancestors a of x of order h (think of

h = �10 log log n�) have depth Da � (β − ε)λk log n − h. To bound the probability of such

an event, we show that there are many distinct ancestors of order h that have labels at

least nβ−δ (Proposition 5.8, which is based on Lemma 5.7 and 5.5). Then, using the explicit

bound in Lemma 4.3, we prove that the probability that none of these ancestors have

direct parents that have typical depth is small.

More precisely, we build a small dag of ancestors of x up to h = �10 log log n�
generations. We start by showing that many of the ancestors of order h have labels

at least nβ−δ . As a warm-up, we first bound the probability that a single ancestor h levels

away from x has a low label.
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Lemma 5.4. Let x � n/2 be fixed. Let s ∈ [k]h, where h = �10 log log n� and u � h. For

any η > 0 and n large enough,

P{L(x, s) � u} �
(
u

n

)α−η

.

In particular, for δ ∈ (0, β) and u = nβ−δ , we get

P{L(x, s) � nβ−δ} � n−1/k−αδ/2. (5.5)

Proof. We have the following bound:

P{L(x, s) � u} � P{nX1 . . . Xh − h � u}

� P

{
X1 . . . Xh � 2u

n

}
= P{(X1 . . . Xh)

γ > (2u/n)γ},

for all sufficiently large n and any γ < 0. By Markov’s inequality and the independence of

X1, . . . , Xh, it follows that

P{L(x, s) � nβ−δ} � (2u/n)−γ · E[Xγ
1 . . . X

γ
h]

= (2u/n)−γ · E[Xγ]h.

Now observe that, for any ε > 0, we have

E[X−α+ε] =

∫ ∞

0

P{X−α+ε > t}dt < ∞,

by our assumption on the tail of X in (5.1). Choosing γ = −α + ε for small enough ε, we

obtain

P{L(x, s) � u} � (2u/n)α−η/2 � (u/n)α−η

for n large enough. We obtain (5.5) by choosing η small enough.

In order to handle the dependence between different paths of the dag, we bound

the number of path intersections far from the root. More precisely, order the strings s

according to the order defined in (4.10) (breadth-first order). Define the set of nodes

that are ancestors of x along paths indexed by the words s′ < s: V(x, s) = {L(x, s′), s′ < s}.
Then we say that a path labelled by s collides if

L(x, s) ∈ V(x, s) and L(x, st) /∈ V(x, st), 1 � t < |s|,

where si is the prefix of s of length i. Of course, the chance of colliding is greater if the

labels are small; for us it will be sufficient to consider the nodes with label at least nβ−δ .

Define the number of paths of length at most h colliding at nodes with label at least nβ−δ:

Nc = |{s : |s| � h, L(x, s) � nβ−δ and s collides}|.
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Lemma 5.5. Let δ > 0. For all n � 1 and all i � 0, we have

P{Nc � i} � k2i(h+1)bin−i(β−δ).

Proof. Let i � 0. By definition, we have

P{Nc � i} = P{∃s1 < · · · < si : s1, . . . , si collide}
� ki(h+1) sup

s1<···<si

P{s1, . . . , si collide}. (5.6)

We prove by induction that for all i � 0

sup
s1<···<si

P{s1, . . . , si collide} �
(
bkh+1nδ−β

)i
. (5.7)

Clearly, (5.6) and (5.7) together imply the result. The base case, i = 0, is clear. Suppose

now that i � 1. Let s1 < s2 < · · · < si. Write Si = {s1, . . . , si} and Si−1 = Si \ {si}. Note that

Si−1 is empty if i = 1. We say that a set S collides if all its elements collide. Recall that s

denotes the last symbol of the word s. Then

P{s1, . . . , si collide}
= P{Si collides}
= P{Si−1 collides, L(x, si) � n1−1/k−δ , L(x, s−

i ) /∈ V(x, s−
i ), L(x, si) ∈ V(x, si)}

=
∑
u,W

P{Si−1 collides, L(x, s−
i ) = u,V(x, si) = W, u /∈ V(x, s−

i ), �uXu,si� ∈ W },

where the sum in the last line ranges on u � n1−1/(kα)−δ and W ⊆ {0, . . . , n}. In the rest of

the proof, W will always be a subset of {0, . . . , n} and, to avoid cumbersome notation, we

do not always include it.

We claim that for any fixed W ⊆ {0, . . . , n} and any u, the events

{Si−1 collides, L(x, s−
i ) = u,V(x, si) = W, u /∈ V(x, s−

i )} and {�uXu,si� ∈ W }

are independent. The latter event is clearly determined by Xu,p, 1 � p � k. Now consider

the other event. In order to determine whether it occurs, it suffices to look at the ancestors

L(x, s′) of x for s′ < si. If the value of Xu,si is needed to compute one of these ancestors,

then the event does not hold because we would then have u ∈ V(x, s−). Otherwise, we can

determine whether the event holds without looking at Xu,si .

For |s| � h, we have |V(x, s)| � kh+1 and we can then write

P{Si collides} � P{Si−1 collides} sup
u�nβ−δ ,|W |�kh+1

P{�uX� ∈ W }

� P{Si−1 collides} · kh+1bn−β+δ

�
(
kh+1bn−β+δ

)i
,

by the induction hypothesis. This completes the proof.

Recall that our aim is to prove that, with probability at least 1 − o(1/n), x has many

distinct ancestors of order h, all of which should have a large enough label. To make this
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precise, define the event

Ex = {x has at least kh−3 distinct ancestors of order h with labels at least nβ−δ}.

We want to prove that P{Ex} = 1 − o(1/n). We first show the following decomposition

for Ex. We have already proved that P{Nc � 3} = o(1/n), and it will then suffice to bound

the probability that the first event in (5.8) below does not occur.

Lemma 5.6. For every x � n/2 we have

{∃p ∈ [k], ∀sp ∈ [k]h : sp[1] = p and L(x, sp) > nβ−δ} ∩ {Nc � 2} ⊆ Ex. (5.8)

Proof. The first event in (5.8) ensures that all the ancestors of L(x, p) of order h − 1 have

labels greater than nβ−δ for some p ∈ [k]. These kh−1 nodes need not be distinct. Consider

the paths in the order defined by (4.10). By definition, if a path does not collide and has

no prefix that collides, then its label is distinct from all the previous ones. It follows that

only the paths that do have a prefix counted by Nc might not have distinct labels. Here

Nc � 2, and it is simple to see that a pair of paths whose collision maximizes the number

of potential duplicates is p · 2 and p · 3 if k � 3 and p · 2 and p · 12 if k = 2. In any case,

of the kh−1, there are at least kh−3 nodes with distinct labels.

To complete the proof that P{Ex} = 1 − o(1/n), it only suffices to bound the probability

of the first event in (5.8) not occurring.

Lemma 5.7. Let δ ∈ (0, β/4). For n large enough,

P{∃s1, . . . , sk ∈ [k]h−1 : ∀p ∈ [k], L(x, p · sp) � nβ−δ} � n−1−δ/4.

Proof. Let Ai be the event that L(x, sj) � nβ−δ for j � i. We prove by induction on i � 1,

for n large enough,

P{Ai} � n−i/k−δ/8. (5.9)

The base case, for i = 1, follows from Lemma 5.4. Suppose now that i � 2. The difficulty

in proving the induction step relies on the dependence between the events Ai−1 and

L(x, si) � nβ−δ . We introduce the following notation for the paths from node x:

P (x, s) = {L(x, s1), L(x, s2), . . . , L(x, s)} and Pi−1 =
⋃

1�j<i

P (x, sj).

Note that x is not included in the paths. To upper-bound the left-hand side in (5.9), we

condition on the first time that the path P (x, si) reaches the set Pi−1:

P{Ai} = P{Ai, P (x, si) ∩ Pi−1 = ∅} +
∑

1�t�h

P{Ai, L(x, sit−1) /∈ Pi−1, L(x, sit) ∈ Pi−1}. (5.10)

In the following, W and Q will always denote a subset of {0, . . . , n}; we do not always

include it.
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(i) Path P(x, si) does not collide. The first term in (5.10), on the event P (x, si) ∩ Pi−1 �= ∅,

is the easiest to deal with:

P{Ai, P (x, si) ∩ Pi−1 = ∅} =
∑

W,Q:W∩Q=∅

P{Ai, P (x, si) = Q, Pi−1 = W }.

As Q ∩ W = ∅, the events

{L(x, si) � nβ−δ , P (x, si) = Q} and {L(x, sj) � nβ−δ for j < i, Pi−1 = W }

are independent. In fact, the first event is in the sigma-algebra generated by {Xv,p : v ∈
Q, p ∈ [k]} and the second in the one generated by {Xv,p : v ∈ W, p ∈ [k]}. Thus, we obtain

P{Ai, P (x, si) ∩ Pi−1 = ∅} � P{Ai−1} · P{L(x, si) � nβ−δ}
� P{Ai−1} · n−1/k−αδ/2, (5.11)

where the last inequality follows from Lemma 5.4.

(ii) Path P(x, si) collides. We next look at the terms (5.10) that correspond to cases

when there are some collisions, i.e., P (x, si) ∩ Pi−1 �= ∅. Recall that t is the location of

the first collision on P (x, si). In the following, we write ait for the tth symbol of si (so

si = a1
1a

i
2 . . . a

i
|si|). For t ∈ {1, . . . , h}, we have

P{Ai, L(x, sit−1) /∈ Pi−1, L(x, sit) ∈ Pi−1}

=
∑

|W |�kh

∑
u�∈W

P{Ai, Pi−1 = W,L(x, sit−1) = u, �uXu,ait
� ∈ W }.

We separate this sum into two terms depending on whether u � nβ−δ or u > nβ−δ . The

sum over u � nβ−δ can be bounded as in (5.11): since si|t is the first path that hits Pi−1,

we have P (x, sit−1) ∩ Pi−1 = ∅. It follows that∑
|W |�kh

∑
u�nβ−δ ,u/∈W

P{Ai, Pi−1 = W,L(x, sit−1) = u, �uXu,ait
� ∈ W }

� P{Ai−1} · P{L(x, sit) � nβ−δ}
� P{Ai−1} · n−1/k−αδ/2, (5.12)

by Lemma 5.4. We now look at the sum over u > nβ−δ:∑
|W |�kh

∑
u>nβ−δ ,u/∈W

P{Ai, Pi−1 = W,L(x, sit−1) = u, �uXu,ait
� ∈ W }

�
∑

u>nβ−δ

∑
|W |�kh,W ��u

∑
Q∩W=∅

(5.13)

P{Ai−1, Pi−1 = W,L(x, sit−1) = u, P (x, sit−1) = Q, �uXu,ait
� ∈ W }

=
∑

u>nβ−δ

∑
|W |�kh,W ��u

∑
Q∩W=∅

(5.14)

P{Ai−1, Pi−1 = W } · P{L(x, sit−1) = u, P (x, sit−1) = Q} · P{�uX� ∈ W }

�
∑

u>nβ−δ

(
sup

|W |�kh

P{�uX� ∈ W }
)

· P{L(x, sit−1) = u} · P{Ai−1}. (5.15)
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In the first equality, we used the independence of the events {Ai−1, Pi−1 = W }, {L(x, sit−1) =

u, P (x, sit−1) = Q} and {Xu,ait
∈ W } if u /∈ W and Q ∩ W = ∅. Using the fact that X has a

density bounded by b, we have for any W of size at most kh

P{�uX� ∈ W } � bkh

u
.

The next step is to bound the sum in equation (5.15) by considering groups of nodes in

the intervals
(
2��nβ−δ�, 2�+1�nβ−δ�

]
for non-negative integers �. For any integer � and any

η ∈ (0, α), we have

2�+1�nβ−δ�∑
u=2��nβ−δ�+1

(
sup

|W |�kh

P{�uX� ∈ W }
)

· P{L(x, sit−1) = u}

� P{L(x, sit−1) � 2�+1nβ−δ} · bkh

2�nβ−δ

�
(

2�+1nβ−δ

n

)α−η
bkh

2�nβ−δ

� 2αbkh · (2�nβ−δ)α−η−1n−α+η,

for sufficiently large n. For the second inequality, we used Lemma 5.4. Now if α � 1,

recalling that β = 1 − 1/(kα), we can bound

n−α+η · (2�nβ−δ)α−η−1 � n−α+η(nβ−δ)α−1

� n−α+ηnα−1/k−αδ−β+δ

� n−1/k−δ

for sufficiently small η and sufficiently large n. For the case α > 1, we get

n−α+η · (2�nβ−δ)α−η−1 � n−α+η · (2�nβ−δ)α−1 � 2α−1n−1,

provided 2�nβ−δ � 2n. This shows that total weight of an interval can be bounded by

sup
�

2�+1�nβ−δ�∑
u=2��nβ−δ�+1

(
sup

|W |�kh

P{�uX� ∈ W }
)

· P{L(x, sit−1) = u} � n−1/k−δ/3

for n large enough, where the supremum is taken over non-negative integers � such that

2�nβ−δ � n. This allows us to bound the expression in (5.15) by P{Ai−1}n−1/k−δ/2, as there

are at most log2 n intervals. By summing this term with the term corresponding to the

sum for u � nβ−δ , we obtain

P{Ai, L(x, sit−1) /∈ Pi−1, L(x, sit) ∈ Pi−1} � P{Ai−1}n−1/k−min(α,1)δ (5.16)

for any t ∈ {1, . . . , h}. Now it only remains to bound the sum (5.10) over the different

values of t using (5.11) and (5.16). Using the induction hypothesis to bound P{Ai−1}, we

obtain the desired induction step (5.9).

Putting these results together, we obtain the following.
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Proposition 5.8. Let x ∈ {�n/2�, . . . , n}. Let δ > 0. For n large enough,

P{Ex} � 1 − n−1−δ/4 + n−3/2+4δ .

We are now in a position to prove the lower bound claimed in Lemma 5.3. Fix

ε, δ ∈ (0, 1/10) and h = �10 log log n�. First, using the lower bound on the typical distance,

we can say that most of the nodes in the tree have Dy � (1 − ε)λk log n. We want to show

that, with high probability, for every y such that n/2 � y � n, we have Dy � (β − η)λk log n

for arbitrarily small η. Define the set of ‘bad nodes’ that violate the property

B = {y : y � n/2, Dy < (1 − ε)(β − 2δ)λk log n},

which we decompose in a dyadic fashion: for any positive integer r, define

Br = {y : 2r � y < 2r+1, Dy < (1 − ε)(β − 2δ)λk log n}.

Using Lemma 4.3 and Markov’s inequality, we have for every r such that (β − 2δ) log2 n �
r � log2 n

P

{
|Br| � 2r

100 · b

}
� 100b · 2−r

E[|Br|] � Cn−η,

for some C and η > 0 independent of r. Recall that b is a bound on the density of X. As

a result the event

A = {|Br| < 2r/(100b) for (β − 2δ) log2 n � r � log2 n} (5.17)

is such that P{A} = 1 − O(n−η/2) for all n large enough.

Thus,

P

{
min

n/2�x�n
Dx < (1 − ε)(β − 2δ)λk log n + h + 1

}

� P{Ac} +

n∑
x=n/2�

P{A,Dx < (1 − ε)(β − 2δ)λk log n + h + 1}

� P{Ac} +

n∑
x=n/2�

P{A, ∀s ∈ [k]h : DL(x,s) < (1 − ε)(β − 2δ)λk log n + 1}. (5.18)

We now bound the term P{A, ∀s ∈ [k]h : DL(x,s) < (1 − ε)(β − 2δ)λk log n + 1} by condi-

tioning on the event Ex. Let S1, . . . , Skh−3 denote, when Ex holds, a set of paths that lead

(when starting at x) to distinct nodes:

P{A, ∀s ∈ Ah : DL(x,s) < (1 − ε)(β − 2δ)λk log n + 1}
� P{Ec

x} + P{A,Ex, ∀s ∈ Ah : DL(x,s) < (1 − ε)
(
β − 2δ

)
λk log n + 1}

� P{Ec
x} + P{A,Ex, ∀i ∈ {1, . . . , kh−3} : DL(x,Si) < (1 − ε)

(
β − 2δ

)
λk log n + 1}

� P{Ec
x} + P{A,Ex, ∀i ∈ {1, . . . , kh−3}, p ∈ A : �L(x, Si)XL(x,Si),p� ∈ B}.
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By taking the worst possible set B (compatible with the event A), we obtain the bound

P{A,Ex, ∀i ∈ {1, . . . , kh−3}, p ∈ A : �L(x, Si)XL(x,Si),p� ∈ B}

�
(

sup
B,u�nβ−δ

P{�uX� ∈ B}
)k·kh−3

, (5.19)

where the maximization is taken over all sets B such that |B ∩ [2r, 2r+1)| < 2r/(100b) for

all r. Note that a key point here is that the nodes L(x, Si) for i ∈ {1, . . . , kh−3} are distinct

and all have labels at least nβ−δ . It now suffices to bound the right-hand side of (5.19).

Lemma 5.9. Suppose B ⊆ {0, . . . , n} such that, for all r satisfying (β − 2δ) log2 n � r �
log2 n, we have

|B ∩ [2r, 2r+1)| < 2r/(100b).

Then, for any y � nβ−δ , we have for n large enough

P{�yX� ∈ B} � 1/2.

Proof. Let rmax be the largest integer such that 2rmax � y and let rmin be the smallest

integer at least as large as (β − 2δ) log2 n. We then have

P{�yX� ∈ B} � P{�yX� � 2rmin} +

rmax∑
r=rmin

P{�yX� ∈ B ∩ [2r, 2r+1)}

� P{yX � 2nβ−2δ + 1} +
b

y
· 1

100b

(
2rmax+1 + 2rmax + · · · + 2rmin

)
� 3bn−δ +

2rmax+2

100y

� 1/2

for sufficiently large n.

Getting back to equation (5.18), we obtain

P

{
min

n/2�x�n
Dx < (1 − ε) (β − 2δ)λk log n + h + 1

}

� P{Ac} +

n∑
x=n/2�

(
P{Ec

x} + (1/2)k
h−2)

= O(n−η)

for sufficiently small η, using Proposition 5.8. This concludes the proofs of Lemma 5.3

and Theorem 5.1.

6. Concluding remarks

We studied the longest path distance in a general class of random recursive dags. The

parents of node x are chosen independently and distributed as �xX� for some random
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variable X ∈ [0, 1). When X has a bounded density, we proved laws of large numbers for

the typical and minimum distance. For both of these results, the upper bounds do not

make any assumption on the attachment distribution X. We use the condition of bounded

density for the lower bound when bounding the dependences between the different paths

up to the root. It would be interesting to extend these results to more general distributions.

More generally, under which conditions is it possible to translate a result in an ideal model

like the branching random walk considered in Section 3 into a result about a real model

that exhibits limited dependences?
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