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Abstract: This paper provides a closed-form solution for the health capital
model of health demand. The results are exploited in order to prove analytically
the comparative dynamics of the model. Results are derived for the so-called pure
investment model, the pure consumption model and a combination of both types
of models. Given the plausible assumptions that (i) health declines with age and
that (ii) the health capital stock at death is lower than the health capital stock
needed for eternal life, it is shown that the optimal solution implies eternal life.
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1. INTRODUCTION

This paper provides for the first time a closed-form solution of the health capital
model of health demand. The model is also known as the Grossman model, named
after the seminal paper of Grossman (1972), which developed its main ingredients.
In its long history the Grossman model has been criticized for various shortcomings
and counterfactual predictions. Several of these (alleged) shortcomings have been
addressed by further developments of the original model. The core mechanics
of the Grossman model remained, until recently, basically unchallenged by the
development of an alternative theory. Empirically, the Grossman model is the
inspiration if not the foundation of many reduced-form and structural models of
health demand.

The core mechanics of the Grossman model arise from the assumption that
individuals accumulate health capital H in a similar fashion as they accumulate
human capital in form of education. In any period or, in continuous time, in any
instant of time, health capital depreciates and is potentially augmented by health
investment. The health capital stock of an individual of age t thus evolves, in con-
tinuous time, according to Ḣ (t) = f (I (t)) − δ(t)H (t), in which I is investment,
f is a positive function, and δ is the depreciation rate. The key assumption is
that the loss of health capital through depreciation is an increasing function of
its stock. This means that of two individuals of the same age t , the one in better
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health, i.e. the one with the greater health stock H (t) loses more health capital in
the next instant, since health depreciation δ(t)H (t) is increasing in H (t). Notice
that this basic assumption is imposed independently from whether δ is considered
to be constant or age-dependent.1

Evidence from gerontology supports the reverse of the Grossman assumption.
The accumulation of health deficits is found to be a positive function of the
health deficits that are already present in an individual. Of two individuals of the
same age the unhealthier one is predicted to lose more health (accumulate more
health deficits) in the next instant. This law of health deficit accumulation has a
micro-foundation in reliability theory and it is a very strong predictor of mortality
(Mitnitski et al., 2002a, 2002b, 2005, 2006).

Advocates of the health-capital model, however, could defend the approach
based on Friedman’s (1953) methodology of economic modeling, stating that a
theory’s assumptions should not matter as long as its predictive quality is good.
Generating testable predictions from the Grossman model, however, is a tough
task. In order to appreciate this fact, notice that even the simplest version of
the Grossman model generates two differential equations (or in discrete time
two difference equations): one equation of motion for the health capital stock
and one equation of motion generated from the first-order conditions for optimal
health investment. The latter could be expressed as equation of motion for the
shadow price of health, or health investment, or consumption. The solution is thus
expressed as a trajectory in a two-dimensional phase space. The problem is that
there are infinitely many trajectories fulfilling the first-order conditions, usually
pointing in all possible directions in the phase space. In other words, based solely
on the first-order conditions and the equation of motion for the state variable (i.e.
health capital), the solution is indeterminate. The unique optimal solution of the
Grossman model is identified by the transversality condition. This unique optimal
solution allows to derive testable predictions of the model.

It is perhaps fair to say that most of the problems that the literature had with
solving the Grossman model originated from an inappropriate use of the first-
order conditions. Grossman (1972) and some followers (e.g. Jacobson, 2000) just
ignored the transversality condition, others had problems of applying it appro-
priately because they stated the health demand problem in discrete time (Ried,
1998). Many empirical applications derived reduced-form or structural equations
for health care demand from solving simplified versions of the first-order condi-
tions and the equation of motion (Muurinen, 1982; Wagstaff, 1986; Grossman,
2000). But since there are infinitely many trajectories fulfilling the first-order
conditions, any structural form obtained by ignoring the transversality condition
is a result from (unwarranted) simplifications.2

Some other studies suggested to reformulate the original Grossman model in
order to reduce the difficulties involved with identification. The original Grossman
model assumes that death is a free terminal condition. Death occurs when a
minimum state of health is reached and health investment and the state of health
influence the decline of health and thus the age at death T . For this problem,
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identification requires to solve the associated Hamiltonian function at the yet to
be determined time of death. This difficult task is circumvented by assuming
alternatively that individuals face a predetermined time of death, which occurs
irrespective of their health, and then optimally chose the state of health H (T ) that
they want to experience when they die (e.g. Eisenring, 1999; Kuhn et al., 2012; van
Kippersluis and Galama, 2014). Clearly, an approach based on a predetermined
time of death cannot lead to an informative reasoning about human aging and
longevity. A rigorous analysis and critique of the effects of the different treatments
of the transversality condition is provided by Forster (2001). Yet, even studies
investigating the original Grossman model and stating one potentially appropriate
transversality condition tend to ignore the full solution space because they assume
at the outset that life ends at a finite T (Ehrlich and Chuma, 1990; Forster, 2001).
As will be discussed below, the Grossman model usually allows for eternal life.
This requires a different transversality condition to hold, which is usually fulfilled
by the Grossman model.3

So far, comparative statics of the Grossman model have been derived by phase
diagram analysis or numerical methods. Clearly it is not possible to use these
methods in order to derive (structural) equations for an estimation of the model.
This paper proposes a different approach. It obtains a closed-form solution by
imposing certain (iso-elastic) functional forms and a particular parametrization of
the model. This provides non-simplified structural equations for empirical testing
and allows to prove analytically not only the comparative statics but also the
comparative dynamics of the model. Because the closed-form solution allows for
an explicit verification of the transversality condition, it provides a theoretical
identification of the optimal health-for-age trajectory and its determinants.

The closed-form solution is obtained for a particular value of the curvature
parameter of the utility function σ , where 1/σ is known as the elasticity of
intertemporal substitution. Given a plausible parametrization of the model, σ is
between 1.5 and 2.5, depending on how much health matters for utility and for
productivity. A value of σ in this range is supported by many empirical studies. A
recent meta-analysis of 2,735 published estimates of the intertemporal elasticity
of substitution found the world average of σ at 2.0 (Havranek et al., 2013).

Nevertheless, the question may arise how general the obtained results are. In
order to address this problem, I show in the associated discussion paper (Strulik,
2014) that the steady state for health capital is generally independent of σ . This
means that for any value of σ individual health behavior becomes more and more
similar to the closed form solution as individuals age and their health approaches
the steady state. The closed-form value of σ provides a threshold value that
identifies whether health care investment increases or declines as individuals age
and their health capital deteriorates. Health care expenditure increases if and only
if the “true” σ lies below the threshold value. Moreover, extensive discussion of
the general features of the health capital model confirm that, aside from the slope
of the health expenditure trajectory, nothing is “special” about the threshold σ and
the closed-form solution (Dalgaard and Strulik, 2015).
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The paper also provides an identification of the cause of the potentially trou-
bling implication of eternal life. It is the core mechanism assuming that health
depreciation δ(t)H (t) is large when the state of health H (t) is good and small
when the state of health is bad. This creates an equilibrating force that allows
individuals to use health investments in order to converge towards a fixed point of
constant health.

The only possibility to choke off convergence to immortality is to assume that
individuals die at a level of the health capital stock that is higher than the health
level needed to live forever. While this ad hoc assumption seems to “solve” the
troublesome prediction of global convergence towards immortality, it leaves a
lingering feeling of logical inconsistency. An analogous assumption in economics
would be that firms go bankrupt at an equity level that is higher than the equity level
needed for their perpetual viability. Moreover, the assumption does not eliminate
the feature of eternal life since there exists always (i.e. at for any initial state of
health and for any medical technology) a level of income high enough such that
immortality is a stable steady state irrespective of the specification of the minimum
health level needed for survival.

In the conclusion, I briefly discuss an alternative way out of this dilemma. It
consists of the replacement of the core mechanism of the Grossman model by a
physiologically founded mechanism of health deficit accumulation.

2. THE MODEL

In order to derive a closed-form solution we need to assume that the utility function
and the production function are iso-elastic. Let the instantaneous utility from goods
consumption C and health capital H be given by

U (C,H ) =
(
CβH 1−β

)1−σ − 1

1 − σ
, (1)

with σ > 0 and σ �= 1. The parameter β reflects the relative weight of goods
consumption in utility. We assume that goods consumption provides always util-
ity and that health may or may not enter the utility function, 0 < β ≤ 1. The
parameter σ reflects the inverse of the elasticity of intertemporal substitution. We
assume that consumption is scaled appropriately in order to avoid negative utility,
which would lead to the degenerate outcome that life-time utility is decreasing in
the length of life such that individuals would prefer immediate death.4 Further-
more, U (C,H ) displays decreasing marginal utility, the usual assumption for a
meaningful maximization problem to exist.5

Additionally, health expenditure may exert a positive effect on productivity. In
Grossman’s original version productivity is a function of an individual’s production
of healthy time, which is a function of health capital. For simplicity we consider
here a “reduced form” approach according to which productivity, and thus income
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Y , is a strictly concave function of an individual’s health status

Y = θHα. (2)

The parameter α controls the return to health in terms of productivity, which is
assumed to be non-negative and strictly smaller than unity, 0 ≤ α < 1. We could
also introduce an upper bound above which health does not improve productivity.
These modifications would not change the mechanics of the model because the
first-order conditions are structurally identical in both cases.6

The model thus includes two special cases, which are frequently discussed in
isolation in the literature (see e.g. Grossman, 2000): the pure investment model
for α > 0 and β = 1 and the pure consumption model for α = 0 and β < 1. In
the latter case the individual receives a constant income stream θ .

Income is spent on goods consumption C and health investment (health
care) I :

Y = C + I. (3)

A limitation of the simple model is that there is no asset accumulation and thus no
consumption smoothing. Considering asset accumulation would clearly add more
realism but the involved introduction of a second state variable – aside from health
capital – would destroy the possibility of a closed-form solution.

The central assumption of the Grossman model is that individuals accumulate
health capital more or less in the same fashion as human capital in the form of ed-
ucation is accumulated in many economic models of human capital accumulation.
Specifically H evolves according to

Ḣ = AI − δH, (4)

in which δ is the rate of depreciation of health capital. The parameter A > 0
captures the state of medical technology. As most of the literature we focus
on linear returns to health investment. Allowing for decreasing returns would
add more realism to the model but would undo the possibility of a closed-form
solution and it would not change the qualitative features of the model. Specifically,
as demonstrated below, a linear function does not lead to a bang-bang solution,
a feature of which the original Grossman model has been criticized for.7 The
optimal solution is smooth and interior for the linear case as well. The original
Grossman model additionally assumes that the production of health needs also a
time input beyond health expenditure. This adds more realism but is unessential
for the model’s basic mechanics.

Individuals are endowed with an initial stock of health capital H (0) = H0

and survival requires that the health stock exceeds Hmin ≥ 0. In other words,
individuals die at age T when health deteriorates to the level H (T ) = Hmin. In order
to develop the solution, we begin with assuming a constant health depreciation
rate δ. Aging, defined as the deleterious loss of bodily function, is captured by the
model as loss of health capital. Since the loss of health capital, Ḣ (t) = −δH (t),
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is high when H (t) is large and H (t) is large when individuals are relatively young
(at low t), the implication is that young individual are aging fast. This behavior
is a distinctive feature of the Grossman model irrespective of whether health
depreciation is constant or increasing with age.

Individuals maximize life-time utility

V =
∫ T

0
U (C,H )e−ρtdt, (5)

in which t is age, ρ is the discount rate of future consumption, and T is the yet to
be determined age of death. In contrast to the available literature, we do not impose
a finite T . In principle, T = ∞. Of course, we expect from a plausible model of
human aging that it is capable of generating a finite life, for example because the
state of medical technological knowledge is not (yet) sufficiently advanced to life
forever. The model’s implication for eternal life are discussed in Section 5.

Individuals are assumed to chose optimal health expenditure over the life course
by maximizing (5) subject to (1)–(4) given initial health H0 and the boundary con-
dition H ≥ Hmin. Using (3) we can eliminate either C or I . It turns out, however,
that it is more convenient to formulate the problem in the health-consumption-
space. Eliminating I , the associated current value Hamiltonian is given by

J =
(
CβH 1−β

)1−σ − 1

1 − σ
+ λ

[
A (θHα − C) − δH

]
, (6)

in which λ denotes the costate variable, i.e. the shadow price of health. The
associated first-order condition and costate equation are

∂J

∂C
= β

(
CβH 1−β

)1−σ

C
− λA = 0 (7)

∂J

∂H
= (1 − β)

(
CβH 1−β

)1−σ

H
+ λ

[
AθαHα−1 − δ

] = λρ − λ̇. (8)

The optimal solution moreover fulfills the transversality condition (see e.g.
Acemoglu (2009, Theorem 7.1):

J (C(T ),H (T ), λ(T )) = 0 for finite T (9a)

lim
T →∞

J (C(T ),H (T ), λ(T ))e−ρT = 0 otherwise. (9b)

If a fixed point H ∗ exists such that limT →∞ H (T ) = H ∗, condition (9b) sim-
plifies to

lim
T →∞

λ(T )H (T )e−ρT = 0. (9c)

As discussed in the Introduction, many studies neglect (9b) and (9c). However,
the reasoning that the economic and technical constraints of the Grossman model
already exclude an infinite life is not well-founded, as shown in Section 5.
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3. THE SOLUTION

Equations (7) and (8) can be condensed in one equation of motion for optimal
consumption (10) and using (2) and (3) the equation of motion for health is given
by (11).

Ċ

C
= 1

1 − β(1 − σ )

×
{

(1 − β)A

β

C

H
+ AθαHα−1 − (δ + ρ) + (1 − β)(1 − σ )

Ḣ

H

}
(10)

Ḣ = A(θHα − C) − δH. (11)

The system (10) and (11) and the transversality (9) condition determine the
optimal solution.

In order to derive the closed-form solution consider the expenditure share
of consumption x ≡ C/Y . It evolves according to (ẋ/x) = (Ċ/C) − (Ẏ /Y ) =
(Ċ/C) − α(Ḣ /H ). Using (10) and (11) and noting that Y/H = θHα−1 this can
be written as

ẋ

x
= 1

1 − β(1 − σ )

{
(1 − β)A

β
xθHα−1 + AθαHα−1 − (δ + ρ)

}

+
[

(1 + β)(1 − σ )

1 − β(1 − σ )
− α

] [
AθHα−1 − AxθHα−1 − δ

]
. (12)

The expression looks cumbersome but for a special constellation of parameters it
reduces to a neat solution. To see this solve (12) for ẋ/x = 0, that is

0 = [(1 − β)/β − (1 − σ )(1 − β + αβ) + α] x + (1 − σ )(1 − β + αβ)

− {δ + ρ + δ [(1 − σ )(1 − β − αβ)] − α} H 1−α

θA
. (13)

Now consider the case where

σ = σ̃ ≡ ρ + δ [2 − α − β + αβ]

[1 − (1 − α)β] δ
. (14)

In this case the last term in (13) disappears and we get a simple solution for the
expenditure share:

x = β [ρ + δ(1 − α)]

δ + βρ
. (15)

In other words, given (14), individuals prefer a constant consumption share and
thus a constant share of health care expenditure throughout their life. Notice from
(14) that σ̃ > 1. As mentioned in the Introduction, many empirical studies suggest
a value of σ around 2. In the present case we have, for example, σ̃ = 2.37 for
α = 1/3, β = 1/2, ρ = 0.02 and δ = 0.08. For α = 2/3 and β = 1, we obtain
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σ̃ = 1.87. This means that the explicit solution does not require an implausible
assumption about the value of σ . For later purpose notice that σ̃ depends negatively
on the rate of health depreciation δ and that it converges towards a positive
lower bound for δ → ∞. For example σ converges to 1.5 for α = 2/3 and β = 1
(a pure investment model) and it converges to 2.25 for α = 0 and β = 0.2 (a
pure consumption model). Likewise, optimal consumption expenditure depends
negatively on δ. As shown in (15), x converges towards α(1 − β) for δ → ∞.
In other words, the optimal solution remains interior when the rate of health
depreciation increases.

Proposition 1 (Comparative Statics) The consumption share x rises (the health
expenditure share declines) when the time preference ρ rises, the health depreci-
ation rate δ declines, the income elasticity of health α, declines, and the weight of
consumption in utility β rises.

These results are verified by taking the derivatives of (15) with respect to α, β,
δ, and ρ. They are immediately intuitive.

Inserting x from (15) into (11), the equation of motion for health can be written
as

Ḣ

H
= (1 − x)θAHα−1 − δ, (16)

in which (1 − x) is the constant health expenditure share. Equation (16) is a
Bernoulli differential equation, a rare case of a nonlinear differential equation for
which there exists an exact solution. In order to obtain it, set z = H 1−α . We thus
have ż/z = (1 − α)Ḣ /H , that is

ż = (1 − α)(1 − x)θA − (1 − α)δz. (17)

Equation (17) is a linear differential equation, which can be solved straightfor-
wardly. Using the initial condition z(0) = z0 = H 1−α

0 and resubstituting x from
(15) we obtain

z(t) = a + (
H 1−α

0 − a
)
e−bt

a ≡ [1 − (1 − α)β] θA

δ + ρβ
, b ≡ (1 − α)δ, H (t) ≡ z(t)

1
1−α , (18)

in which the last expression results from a retransformation of variables. This
concludes the solution of the Grossman model.

4. COMPARATIVE DYNAMICS

Proposition 2 (Health and Health Care) Initially healthier people are healthier
at any given age t . Unless health has no effect on productivity, healthier people
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spend more on health care, implying that initially healthier people spend more on
health care throughout life.

For the proof notice from (18) that H (t) is a positive function of H0. From (2)
we see that healthier people are wealthier unless α = 0. Since the health care share
1 − x is constant, wealthier people spend more on health. Intuitively, comparing
two individuals of the same age t , both spend a fraction 1 − x of their income on
health care. Because the healthier individual – i.e. the individual with larger H (t)
– earns more income, health investment, I (t) = (1 − x)Y (t) = (1 − x)θH (t)α is
higher. This result has already been derived in other approaches to the Grossman
model and its counterfactual implications have been noted in the literature (see
e.g. Wagstaff, 1986; Case and Deaton, 2005).

Proposition 3 (Steady State) As people age, their health capital converges
towards the steady state

H ∗ =
{

[1 − (1 − α)β] θA

δ + ρβ

} 1
1−α

. (19)

For the proof notice from (18) that z(t) = a for t → ∞ and that H (t) = z(t)1/(1−α).
Since health is constant at the steady state, consumption is constant and thus the
shadow price of health λ is constant as well, see (7). For convergence towards the
steady state, transversality condition (9c) is the relevant one. Since H → H ∗ and
λ → λ∗, it simplifies to limT →∞ e−ρT = 0, which is true. Thus, if the steady state
is feasible, it is also optimal to converge to it.

Proposition 4 (Aging) The steady state is globally stable. As individuals get
older their health capital stock is declining if their initial health is larger than H ∗

and rising if their initial health is lower than H ∗.

For the proof notice from (18) that ∂z/∂t < 0 for H 1−α
0 > a that is for H0 > H ∗

and that ∂z/∂t ≥ 0 vice versa, implying global stability of the steady state. In
the following, we realistically assume that humans age, i.e. that health capital
declines with age, such that H0 > H ∗. The human life is then characterized by
a monotonous decline of health capital and convergence towards H ∗. Section 5
discusses the condition under which H ∗ is indeed asymptotically approached, i.e.
the condition for immortality.

Proposition 5 (Income and Medical Technology) Health improves at any age
with rising productivity θ and better medical technology A.

Proposition 6 (Indulgence and Time Preference) A larger weight of consump-
tion in utility β and a higher time preference rate ρ lead to lower health at any
age.
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Proposition 7 (Health Returns in Productivity) A larger return of health in
productivity leads to better health at any age.

The proof for Propositions 5–7 inspects in (18) the derivatives of a with respect
to k, k ∈ {θ,A, β, ρ, α} and notices that ∂z(t)/∂a > 0. Let b, the speed at which
health capital adjusts towards its steady state, be called the rate of aging.

Proposition 8 (Rate of Aging) The rate of aging is independent from produc-
tivity, medical technology, time preference, and the weight of health in utility. It
declines with increasing rate of depreciation δ.

The proof notices from (18) that b is independent of θ,A, ρ, and β and that it
depends negatively on δ.

5. ETERNAL LIFE

The results from Proposition 5–8 are intuitive and empirically plausible. However,
the Grossman model has also a dark side. It originates from the counterfactual
assumption that the loss of health at any age declines in the state of health, i.e.
that health depreciation −δH (t) is low for individuals with small capital stock
H (t). This feature creates an equilibrating force such that any time path converges
towards the steady state of constant health H ∗. At the steady state the loss of health
is small enough such that it can be compensated by health investments. Recall that
H0 > H ∗ is necessary in order to produce the results that health is declining with
age, i.e. that individuals are aging in the sense that they get unhealthier with age.
Eternal life then follows from a plausible size ordering of health capital stocks.

Assumption 1 The health capital stock at death Hmin is smaller than the health
capital stock that would guarantee eternal life H ∗, Hmin < H ∗.

Proposition 9 (Eternal Life) Given Assumption 1, eternal life is the optimal
solution and it is approached from everywhere, i.e. for any initial state of health,
H0 > Hmin, and irrespective of the weight of health in utility and the power of
medical technology.

The proof starts with the observation that the health capital stock is constant at
the steady state H ∗. Since health does not deteriorate, individuals live forever. As
shown in conjunction with Proposition 1, the steady state fulfills the transversality
condition. By Assumption 1 individuals do not die at a state of health that is better
than the one needed for eternal life. But individuals could want to let their health
erode below H ∗. In the Appendix A, I show that it is not optimal to let health
erode thus far. The only remaining optimal solution is to live forever.

The striking finding of Proposition 9 is not so much that eternal life is a possi-
bility. It is rather that immortality is inescapable. It is approached independently
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from the initial state of health and the power of medical technology A. Individ-
uals simply refuse to die. A reasonable model of aging would allow for death
at least at some low levels of initial health and at some low states of medical
technology A.

Grossman (1972) and a number of followers have suggested to let health depre-
ciation increase with age. An undesirable side-effect of age-dependent health de-
preciation is that the comparative dynamics can no longer be assessed qualitatively.
Qualitative phase diagram analysis is basically impossible in three dimensional
space and Oniki’s (1973) method of comparative dynamics can no longer be
applied. Consequently, the available discussion of the comparative dynamics of
the Grossman model has focussed on models with constant δ (Eisenring, 1999;
Meier, 2000; Forster, 2001).8

More importantly the introduction of age-dependent health depreciation only
seemingly solves the problem of inescapable eternal life. In order to see this
conveniently, it is helpful to imagine the increase of δ in discrete steps (say, a
yearly deterioration of the depreciation rate). This means that as the individual ages
the fixed point H ∗ declines. As long as health depreciation is finite, however, the
fixed point continues to exist. Only an infinite depreciation rate would “solve” the
problem, as shown by Ehrlich and Chuma (1990). It appears, however, debatable
whether the assumption of infinite health depreciation can lead to a meaningful
understanding of human aging and longevity.9

Assumption 1 may be contested by some advocates of the Grossman model.
These scholars may then invoke death by assuming the opposite, i.e. H ∗ < Hmin.
Ignoring Assumption 1, however, only seemingly solves the problem of immor-
tality because the steady state H ∗ is parameter-dependent. This means that for any
parameter constellation that guarantees H ∗ < Hmin, a modification of parameters
can be found for which H ∗ > Hmin. Consider, for example, income. Suppose that
H ∗ < Hmin for some income level θ1. Then one can always find an income level
θ2 > θ1 such that H ∗ > Hmin. In other words, for any set of preferences, any Hmin,
and any level of medical technology there exists an income level that guarantees
eternal life.

This argument can be best illustrated by the extreme case of perpet-
ual youth, in which eternal life is completely independent from the choice
of Hmin.

Proposition 10 (Eternal Life and Perpetual Youth) Irrespective of Assumption
1 there exists for any level of medical technology an income level θ that guarantees
eternal life and perpetual youth. It is given by

θ = θ̃ ≡ (δ + ρβ)H 1−α
0

[1 − (1 − α)β]A
. (20)

For the proof notice that a = H 1−α
0 for θ̃ such that H (t) = H ∗ = H0 for all t .

This result means that the model requires to consider eternal life conceivable at
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the current state of medical technology for sufficiently high income. The reality,
however, seems to be better described by the notion that no level of income can
buy immortality at the current state of medical technology. More troublesome
than the mere existence of a state of perpetual youth is its stability. Stability means
that negative health shocks would be repaired by health investments such that
the individual returns to its initial state of health. The feature of stability, again,
follows from the central assumption that individuals with a low level of health
capital experience little loss from health deprecation at any given age (for any
given rate of depreciation).

6. CONCLUSION

This paper has provided an analytical closed-form solution of the Grossman model.
The results turned out to be useful to reconsider earlier conclusions from the
Grossman model, particularly with respect to their application of the transversality
condition. One key result is that the Grossman model generally predicts immor-
tality. It exhibits a unique saddlepath-stable fixed point at which health does not
deteriorate. Global convergence towards immortality is a troubling prediction. It
questions the suitability of the model to address real problems of aging, longevity,
and the demand for health. Since a closed-form solution exists only for a special
parametrization the question naturally occurs how general these results are. In
the discussion paper version of this study (Strulik, 2014), I show by means of
phase diagram analysis that the qualitative features regarding the steady state of
immortality are not a knife-edge case. They are universal.

An ad hoc solution within the “Grossman paradigm” seems to be to require that
individuals die at a level of health capital higher than the one needed for eternal
life. However, even then one could still find for any level of medical technology
an income level that guarantees immortality such that the initial endowment with
health capital is a stable steady state. An alternative solution would be to abandon
the Grossman paradigm and search for an alternative core mechanism of human
aging that does not imply these counterfactual predictions. Such a mechanism
has been proposed by the Dalgaard and Strulik (2014) model of health deficit
accumulation. It turns the Grossman mechanism upside down by assuming that
unhealthy persons, ceteris paribus, develop more health deficits in the next period.
This assumption has a micro-foundation in modern gerontology up to the precise
estimation of its underlying parameters. With the present paper at hand it is easy
to see how it reverts the equilibrating forces of the Grossman model. Since health
depreciation is now greater for unhealthy individuals, the arrows of motion point
away from the situation of constant health deficits. A fixed point, if it exists at all,
would be globally unstable and could not be reached through health investments.
Individuals are predicted to age by developing health deficits at an increasing
speed and then to die in finite time when an upper boundary of viable health
deficits has been reached.
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HH(T ) H∗
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FIGURE A.1. The Curve f (H ).

A APPENDIX

A.1 Part 2 of Proposition 9

It remains to show that dying at a state of health below H ∗ is not optimal. When life is
finite, the transversality condition (9a) applies. Inserting λ from (7) into (6) we obtain

J =
(
CβH 1−β

)1−σ

1 − σ
+ 1

σ − 1
+ β

(
CβH 1−β

)1−σ

AC
[A (θHα − C) − δH ] . (21)

In the following, I show that J (T ) is positive for any H (T ) < H ∗. Since σ > 1 it is sufficient
to show that

J̃ = βCβ(1−σ )−1H (1−β)(1−σ )

(
C

β(1 − σ )
+ θHα − C − δ

A
H

)
, (22)

is positive. Since the first term is positive for positive health and positive consumption, it
sufficient to show that the second term is positive, i.e. that

J̄ = 1 − β(σ − 1)

β(σ − 1)
C + β

[
θHα − δ

A
H

]
, (23)

is positive. Notice that the first term is positive since σ > 1. A sufficient, not necessary
condition for the Hamiltonian to be positive is thus that f (H ) = θHα − (δ/A)H is positive
at the time of death. The function f comes out of the origin, is concave and has another
root at HR , as depicted in Figure A.1. The root is found at HR = (θA/δ)1/(1−α). Since
δ + ρβ > δ − δ(1 − α)β, we have

(
θA

δ

) 1
1−α

>

(
[1 − (1 − α)β]θA

δ + ρβ

) 1
1−α

⇒ HR > H ∗. (24)

This implies f (H ∗) > 0 and thus f (H (T )) > 0 for any H (T ) < H ∗. A positive Hamil-
tonian at death means that the transversality condition is violated. It is not optimal to
die.

NOTES

1 This paper is not the first one that observes this potentially problematic assumption of the
Grossman model, see, for example, Case and Deaton (2005), McFadden (2008).
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2 For example, Muurinen (1982) assumes that Ḣ /H is constant, i.e. an exponential decline (or
increase) of health with age is assumed rather than derived. Muurinen actually states the transversality
condition but then ignores it in the derivation of health care demand. Similarly, Wagstaff (1986)
accurately states a problem of free terminal time but never invokes the transversality condition when
solving for the structural form. Instead he records carefully the steps of simplifying assumption which
distil from the infinitely many solution of the first-order conditions one particular set of estimation
equations.

3 Ehrlich and Chuma (1990) briefly discuss infinite life but then dismiss it for being unfeasible.
Similarly, Laporte and Ferguson (2007), identify convergence toward eternal life as the optimal solution
but then dismiss it by imposing a predetermined finite life. An early study coming to the same conclusion
as the present paper is Cropper (1977). However, after acknowledging that a finite life requires that the
fixed point for health capital lies below the minimum health needed for survival, the paper continues
without debating the potential logical inconsistency involved in this assumption.

4 See Hall and Jones, 2007, for an extensive discussion of this property. In the present context,
utility may get negative not only if income and thus consumption is too low, as discussed by Hall and
Jones, but also, perhaps more realistically, if health capital deteriorates towards a sufficiently low level.
Notice, however, that negative utility (i.e. optimal suicide) is never an issue for σ ≤ 1 and that it can
be avoided in case of σ > 1 by scaling the variables appropriately.

5 For later purpose, we note that a negative second derivative, UCC =
−β [1 − β(1 − σ )] Cβ(1−σ )−2H (1−β)(1−σ ), requires 1 − β(1 − σ ) > 0, which is always true
under the parameter restrictions made. As will become apparent below, the sign of cross derivative
UCH is not decisive for the closed-form solution. For a general discussion of the impact of the cross
derivative in the health capital model, see Dalgaard and Strulik (2015).

6 To see this explicitly, suppose income is a function of exogenous productivity and healthy time
h spent at work, Y = θh. Assume that individuals have at most H̄ healthy time at their proposal (i.e.
a working life without any illness). Assume that healthy time is produced via a concave function from
health capital, such that h = min

{
H̄ , φHε

}
. Then the interior solution is structurally identical to the

one obtained below.
7 See Ehrlich and Chuma (1990), Galama and Kapteyn (2011), Galama et al. (2012). The present

paper is not the first one that disputes the bang-bang solution, see Ried (1998) and Grossman (1998).
8 Ehrlich and Chuma (1990) did not mention that they made this simplifying assumption in order to

derive the comparative dynamics of their model (Table 3). But Oniki’s method, which they apparently
apply, requires the reduction to a two-dimensional system; see also Eisenring (1999).

9 From the perspective of gerontology an age at which individuals die at an infinite rate makes no
sense. Formally, age-dependent mortality is well described by the Gompertz–Makeham law, the slope
of which turns never infinite and, if anything, it declines for very old ages (Arking, 2006; Gavrilov and
Gavrilova, 1991). In words, “no matter how old one is, the probability to die on the next day is never
equal to one” (Jacquard, 1982).
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