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The problem of controlling transmission rate over a randomly varying channel is
cast as a Markov decision process wherein the channel is modeled as a Markov
chain The objective is to minimize a cost that penalizes both buffer occupancy
(equivalently delay and powerThe nature of the optimal policy is characterized
using techniques adapted from classical inventory control

1. INTRODUCTION

In a recent articleGoyal Kumar, and Sharm#4] considered the problem of opti-

mal transmission over a fading channel to minimize mean delays subject to a power
constraintBy casting the problem as a constrained Markov decision prolitesy
obtained structural results for the optimal polisyproving upon the earlier results

of Berry and Gallagefrl]. They consider an additive Gaussian noise model for the
channel and explicitly use the Shannon formula for its information-theoretic capac-
ity in their analysisOur aim here is to view the problem in a more abstract frame-
work, with the effect of the randomly varying channel on the power required being
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modeled as a Markov chai®ur key observation is the similarity of this problem
with classical inventory contrdl2,3]. Based on this observatipwe are able to
recover some structural results for the optimal policy through a fairly simple analysis
The precise model is descrihélthe finite horizon control problem is analyzed
in the next section and the infinite horizon discounted problem is analyzed in
Section 3
Consider buffered packet traffic with the evolution of buffer occupancy de-
noted by

Xir1 = X T U — W, k=0. (1)

Herg u, denotes the number of arriving packets amde [0,K], K > 0, is the
number of packets transmitted in time skptwith the constraint thatv, = x, Ok.
(Note that we treat, andwy as continuous valued variabjesfairly common approx-
imation) Under the reasonable condition thgt= 0, this then ensures théx,} is
anR*-valued processThe arrivals{u,} are assumed to be independent and iden-
tically distributed(i.i.d.) with law ¢ supported ofi0, M ] for a large finit¢ M > 0,
and the transmissior{sy,} are required to satisfy the natural “admissibility condi-
tion”: wy is independent ofi;, j = k, and for{c(m)} defined belowit is condition-
ally independent o( j), j > k, givenc(k) for all k.

The cost at time will be

h(xe) + c(k)w, — Cw.. )

Here h(-) is a continuously differentiable convex increasing function fi#)} is
an ergodic Markov chain of0, C] for someC > 0. The first term penalizes high
buffer occupancy andherefore mean delayAs an examplgconsiderh(-), which
takes small values for & x =< B — 6 and rapidly increases thereaftethereB > 0
is the intended buffer capacity aidd> 0 is a small numbeifThis is a “soft” con-
straint on buffer capacity that approximates the “hard” constraint

h(x) = 0l {x € [0, B]} + ool {x > B}.

The second term in the cost is proportional to the number of packets transmitted in
thekth time slot and captures the power cddte random coefficient(k) captures

the dependence of this cost on the randomly varying channel conditieis x, dy)
denote the transition kernel of the Markov chéirtk)}.

The third term in(2) is the negative of the “reward” for successful transmis-
sion with C > C. The latter requirement ensures that at least for sufficiently high
buffer occupancythere will be incentive to transmitVe will simplify (2) by com-
bining the second and the third terms and repl@iéy

h(Xk) + C(k)Wk7

with c(k) now taking values ir[—(f,p — CJ, instead of[0,C], and p(x,dy) is
redefined accordinglyNote thatC — C < 0.

1z supported orR* can be allowed under mild technical conditions
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Leta € (0,1] denote the “discount factor” afd= 1. Our objectives will be to
minimize the finite horizon cost

Hj(X’ C’{Wk}) = E|: i a'k_j(h(xk) + C(k)Wk)|Xj = X’ C( J) = C:|’ (3)
k=]

for j = 0 or the infinite horizon discounted codor « € (0,1)),

H(x, c,{w}) = E[i a*(h(x) + c(k)wi)[ %o = X, c(0) = C}, (4)

over the admissible contro{sy}. We correspondingly define the “value functions
J(x,¢) = inf H;(x, c,{wi}), 0=j <N,
J(X’ C) = Inf H (X’ Cv{Wk})’

where the infima are over admissible controls

2. THE FINITE HORIZON PROBLEM

Consider the cosf3). For this costthe dynamic programming equation is

J(x,c) = min KE[h(xk) + c(k)wy

O=w,=x0

+ adir 1 (X + U — W, (K + 1)) [ %, = X, ¢(K) = C]

O=w=x[K

min (h(x) +cw+ affp(c,dc’)g(du)JkH(XJr u—W,c’)). (5)

Lety = x — w. Then the above can be rewritten as

Ji(X,C)

O(x—K)=y=x

min (h(x) +c(x—y)+ aﬂ‘p(c,dc’)g“(du)JkH(ynL u,c’))

= min (—cy+af p(c,dc’)Z (du) Je,q(y + u,C'))

O(x—K)=y=x
+ (h(x) + cx). (6)

We claim that the)(-,c)’s are convex folk < N, a fact that will be proved
later Assuming thiswe now derive the structural properties of the optimal policy
Let S = S(c) be the least element of the connected set of unconstrained minimiz-
ers of

(—cy+ aJ p(c,dc’){ (du) Je1(y + u,C’)>

overy € [—oo,00], with +00 and—oo being admissible valueSince 00 (x — K) =
y = X, we have the following
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forS =0,
X if x=S§
y=1% if S <x<S+K
x—K ifx=§+K
for S < 0,

y = (x—K)0OO0.

An optimal policy can therefore be determined by the sequence of extended real-
valued numbers$S,, S,,...,Sy_1) and is of the form

for ;= 0,
0 if x=S,
Hi(x,c) = 1Xx— S if S <x<S+K
K if x=8 +K
for S < 0,

Mi(x,c) = KOx.
We now establish the convexity claim
LemMmA 1: J(-,c), k < N, are convex.

Proor: The proof is by backward inductio®etJy(-,-) = 0 in what follows Con-
sider the policy ak = N — 1. Note thatS_; = —oo; thus

HR-1(Xn-1,€) = K OXy-1
and
In-1(Xn-1,€) = h(Xn—1) + C(K OXn_1).

Thus sincec < 0, we have thafly_4(-, ¢) is convex Now, suppose thai, 1(-,c) is
convex Then we have the following

forS.= 0,

I:'h(x) +affp(c,dc’)§(du)\]k+1(x+ uc') ifx=8g

h(x) + c(x—S) + af p(c,dc’){ (du) Je1(Sc+ u,c’)

J(x,¢) = 1] if S;<x<S +K

h(x) + cK + affp(C,dC')Z(du)Jk+l(X+ u—K,c)

| if x=S§ +K,
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for S, < 0,
J(x,¢) = h(x) + c(KOx) + af p(c,dc’ ) (du)Jy 1 (x+u— (KOx),c),
whereS, = S(c) minimizes
—cy+ af p(c,dc’)Z (du) Jei1(y + u,c’)

overy € [—oo,0]. J(-,C) is clearly continuous and separately conve{ /g ],
[S, S+ K], and[ S + K,c0) whenS, = 0, and on[0, K ] and[K,o0) whenS, < 0.
Taking the left derivative of the above expression at its minin&mand using the
property of its slope a§,,

—c+ ajfp(c, dc)(du)diia(Sc+u,¢’) = 0,
whereJ;” (-, c) denotes the left derivative df(-,c), 1 =i = N. Thus
c= af p(c,dc’){ (du)Je:1(Sc+ u,c’). (7)
Similarly, taking the right derivative &, we get
—c+ aﬂp(c, dc){(du)Jisa(Sc+u,¢’) =0,
whereJ;* (-,c) denotes the right derivative df(-,c), 1 =i = N. This leads to
c= af p(c,dc’ ) (du) I 1(Sc+ u,c’). (8)
For S, < 0, we can consider the right derivativeyat 0 to conclude
—c+ aﬂp(c, dc’ )¢ (dwdq(u,c’) =0,
implying
c= af p(c,dc’)Z (du)Jq1(u,c’). (9)

From the expression fal(x, c), we get the following
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forS =0,
rh’(x)+ozf p(c,dc’ ) (du)Jei1 (X + u,c’) if x=8
Jo(x,c)={h'(x)+c if S <x=S+K
kh/(x) + affp(c,dc/)g(du)%(x— K+uc) ifx>S+K,
rh’(x)-i-oszp(c,dc’)g’(du)‘]ktl(x+ u,c’) if x< S
Ji(x,c) = h'(x)+c if S;=x< S +K
Lh’(x) + af p(c,dc’ ) (du)Ji(x—K+u,c’) ifx=5+K
for S, < 0,

Jo (x,¢) = h'(x) + cl{x =K}
+ ozf p(c,dc’ ) (du)Je1(x — K+ u,c’) 1 {x > K},
Ji(x,c) = h'(x) + cl{x < K}
+ aﬂp(c,dc’){(du)‘]kil(x— K+uc)l{x=K}.
Recall thath is an increasing convex functioflence from (7) and (8) and the
above expressiongve havefor S, = 0,
J (S, 0) = I (S ¢) (10)
and
I (S+ K,c) = I (S + K,c). (1)
Similarly, for S, < 0, using(9),
Jo (K, c) =3 (K, c). (12)
This implies thatl(-) is convex which completes the induction step u
We summarize the results in the following theorem
THEOREM 1: The optimal policy is given bgi(-,-)}.

This leaves the issue of the nature of dependen&(oj onc. Unfortunately
not much can be said in generblut we make a few comments here that may help
give some handle on this in specific cagéste thatS(c) was the global minimizer
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of a function of the form-cy + g(c, y) overy € [—oo,0]. For simplicity, suppose
that it is unique and finite for eaah Consider the cross-derivative

2 2

—cy+ =-1+
acay( cy +g(c,y)) prp

g(c,y), (13)

assumed to exist and be continuolighis is greater than Qresp, less than @ it
implies “increasing differences(resp, “decreasing difference$’in the sense of
[6, Chap 10]. Note that

(—cy+gl(c,y) + (—cy +g(cy")
= (—c(ydy’) +g(c,ydy")) + (—c(yOdy") + g(c,y Oy")),

for y,y’ € R. Using this and by mimicking the arguments of Theorem716f
[6, p. 259, one then has th&(c) is increasingresp, decreasingin c in a neigh-
borhood of a point where the right-hand side(©8) is < 0 (resp, > 0).

3. THE INFINITE HORIZON PROBLEM

We now analyze the infinite horizon discounted cost problem by treating it as a
limiting case of the above d¢ — co. We will assume the following

(*) There is at least one control policy under which the cost is finite for any
initial condition

As an examplgconsider the case whé> [uZ (du) (i.e., the maximum per-
missible transmission rate exceeds the mean arriva). fElten it is easy to verify
that the foregoing will hold for the control choigg = x OK, k= 0. Under(*), one
has[5] the dynamic programming equation

J(x,c) = 0<minDK<h(x) +cw+ aﬂp(c,dc’){(du)J(XJr u-— W,c’)>. (14)

In addition we assume the following

(** ) The kernelp(x, dy) is strong Fellerthat is for any bounded measurable
f: R > R, [f(y)p(x,dy) is continuous irx.

We will also assume thdt(-) is Lipschitz continuous with Lipschitz constant
L > 0. (This could be relaxed at the expense of greatly enhanced technicalities
LetIN = J, JN £ J, so as to make the dependence on the time homizerplicit.
Define also

N—1

JN(x,c) =infE| 2, @I (h(x) + c(K)x, + CK)[xo=x,¢(0) =c|,

k=j
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forj < N, andJN = J. Then {J\} satisfies the dynamic programming equation

JN(x,c) = O<rvrv]<ir>]DK<h(X) +cx+ CK + affp(c, de)Z(duyJN ;(x+u— W,C’)).

(15)
Clearly,

N

~

CK. (16)

R 1
JN =N+
—
{INY are monotone increasingnder(*), they are also pointwise boundethus
J=limy_,..JV is well defined

Lemma 2: {JN(-,c), J:iN(-,c)} satisfies the Lipschitz condition with a common Lip-
schitz constantL + C)/(1 — «).

Proor: We will prove that for each, JN(-,c) andJN(-,c) satisfy the Lipschitz
condition with a common Lipschitz constait+ C)(1— aN1)/(1— «), which, in
turn, implies the lemmaThis is trivially true fori = N. The claim forJN,i < N,
follows by a simple backward inductipnsing the fact that

[3N(x,¢) = IN(y, o) = [h(x) —h(y)| + [c(x —y)]

+a sup[Ji(x+u—w,c') = I (y+u—wc)|

c/,w,u

=Llx—yl+C|x—y|

L [1—aN?
I )
l1-«a
where the last inequality follows from the induction hypothegtee claim for{ JN}
is immediate from(16). u

CoroLLARY 1: The convergencé™ — J is uniform on compacts. Furthermor@,
satisfies

J(x,c) = ,min [h(x) +cw+ CK + aj p(c,dc)Z (duyJ(x+u—w,c)|.
=w=x[K

(17)
Proor: As an increasing limit of continuous functignkis at least lower semicon-
tinuous (In fact, it is convex being the pointwise limit of convex functions and
hence continuous on theterior of its domain) Lemma 2 implies thafJN(-,c)}
andJ(-,c) will be Lipschitz with a common Lipschitz constats earlierin par-
tjcular, they are equicontinuous antence for each fixedc, the convergence
JN(-,c) — J(-,c) is uniform on compactsThe monotone convergence theorem
leads to
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affp(c,dc’){(du)j“‘(x+ u—w,c') eaffp(c,dc'){(du)i(er u—w,c’),

where the convergence in tlk@ndw variables is uniform on compacts for fixed
in view of the foregoing remarks$n particulay this implies that the corresponding
minima overw € [0, x (1K ] convergeThus we can letN — o in (5) to conclude
that J satisfies(17). By the uniform Lipschitz continuity ofi(-,c) and (**), the
expression in square brackets on the right-hand sid&®fis uniformly continu-
ous wr.t. (x,¢) on compactsThus the claim follows from Dini’s theorem |

COROLLARY 2: J(X,¢) = J(x,c) — fiK/(l — a). It is convex in x, uniformly con-
tinuous in(x,c), and the leasf—CK/(1 — «a),o0)-valued continuous solution to
(14).

Proor: Uniform continuity of J and the fact that it satisfie€l7) are proved in
Corollary 1 FurthermoreCorollary 1 also implies that

oo

J(x,c) =infE| > aX(h(x) + c(k)x, + CK)|xo = x,c(0) = ¢

k=0
=J(x,¢) + CK/(1— a).
Then Jis a uniformly continuous solution td.4), with J = limy_.J", the I[mit
being uniform on compactSince theJ’:"s are convexso isJ. Supposd* = —CK/
(1— ) satisfies(14). Then J’ = J* + CK/(1— a) = 0 satisfieq17). Iterating(17)
N times and using the nonnegativity &f we getd’ = J)'. LettingN — o, we have
J' = J; hence J* = J. This completes the proof u

Let S= S(c) be the least element of the connected set of unconstrained mini-
mizers of

—cy+ affp(c,dc’)g(du)J(y+ u,c),

over[—oo,00]. One argues as in the preceding section to conclude the following
theorem

THEOREM 2: The optimal policy is given by

0 ifx=S
P (x,c) = {X—S ifS<x<S+K.
K if x =S+ K.

Regarding the dependence arremarks analogous to those at the end of the
preceding section apply
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