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The problem of controlling transmission rate over a randomly varying channel is
cast as a Markov decision process wherein the channel is modeled as a Markov
chain+ The objective is to minimize a cost that penalizes both buffer occupancy
~equivalently, delay! and power+ The nature of the optimal policy is characterized
using techniques adapted from classical inventory control+

1. INTRODUCTION

In a recent article, Goyal, Kumar, and Sharma@4# considered the problem of opti-
mal transmission over a fading channel to minimize mean delays subject to a power
constraint+ By casting the problem as a constrained Markov decision problem, they
obtained structural results for the optimal policy, improving upon the earlier results
of Berry and Gallager@1# + They consider an additive Gaussian noise model for the
channel and explicitly use the Shannon formula for its information-theoretic capac-
ity in their analysis+ Our aim here is to view the problem in a more abstract frame-
work, with the effect of the randomly varying channel on the power required being
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modeled as a Markov chain+ Our key observation is the similarity of this problem
with classical inventory control@2,3# + Based on this observation, we are able to
recover some structural results for the optimal policy through a fairly simple analysis+

The precise model is described+ The finite horizon control problem is analyzed
in the next section and the infinite horizon discounted problem is analyzed in
Section 3+

Consider buffered packet traffic with the evolution of buffer occupancy de-
noted by

xk11 5 xk 1 uk 2 wk, k $ 0+ (1)

Here, uk denotes the number of arriving packets andwk [ @0,K # , K . 0, is the
number of packets transmitted in time slotk, with the constraint thatwk # xk ∀k+
~Note that we treatxk andwk as continuous valued variables, a fairly common approx-
imation+! Under the reasonable condition thatx0 $ 0, this then ensures that$xk% is
anR1-valued process+ The arrivals$uk% are assumed to be independent and iden-
tically distributed~i+i+d+! with law z supported on@0,M # for a large finite1 M . 0,
and the transmissions$wk% are required to satisfy the natural “admissibility condi-
tion”: wk is independent ofuj , j $ k, and for$c~m!% defined below, it is condition-
ally independent ofc~ j !, j . k, givenc~k! for all k+

The cost at timek will be

h~xk! 1 c~k!wk 2 ZCwk+ (2)

Here, h~{! is a continuously differentiable convex increasing function and$c~k!% is
an ergodic Markov chain on@0,C# for someC . 0+ The first term penalizes high
buffer occupancy and, therefore, mean delay+ As an example, considerh~{!, which
takes small values for 0# x # B 2 d and rapidly increases thereafter, whereB . 0
is the intended buffer capacity andd . 0 is a small number+ This is a “soft” con-
straint on buffer capacity that approximates the “hard” constraint

h~x! 5 0I $x [ @0,B#% 1`I $x . B%+

The second term in the cost is proportional to the number of packets transmitted in
thekth time slot and captures the power cost+ The random coefficientc~k! captures
the dependence of this cost on the randomly varying channel conditions+ Let p~x,dy!
denote the transition kernel of the Markov chain$c~k!% +

The third term in~2! is the negative of the “reward” for successful transmis-
sion, with ZC . C+ The latter requirement ensures that at least for sufficiently high
buffer occupancy, there will be incentive to transmit+We will simplify ~2! by com-
bining the second and the third terms and replace~2! by

h~xk! 1 c~k!wk,

with c~k! now taking values in@2 ZC,C 2 ZC# , instead of@0,C# , and p~x,dy! is
redefined accordingly+ Note thatC 2 ZC , 0+

1z supported onR1 can be allowed under mild technical conditions+
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Let a [ ~0,1# denote the “discount factor” andN $ 1+ Our objectives will be to
minimize the finite horizon cost,

Hj ~x,c, $wk%! 5 EF(
k5j

N21

a k2j ~h~xk! 1 c~k!wk!6xj 5 x, c~ j ! 5 cG, (3)

for j 5 0 or the infinite horizon discounted cost~for a [ ~0,1!!,

H~x,c, $wk%! 5 EF(
k50

`

a k~h~xk! 1 c~k!wk!6x0 5 x, c~0! 5 cG, (4)

over the admissible controls$wk% +We correspondingly define the “value functions”

Jj ~x,c! 5 inf Hj ~x,c, $wk%!, 0 # j , N,

J~x,c! 5 inf H~x,c, $wk%!,

where the infima are over admissible controls+

2. THE FINITE HORIZON PROBLEM

Consider the cost~3!+ For this cost, the dynamic programming equation is

Jk~x,c! 5 min
0#wk#x∧K

E @h~xk! 1 c~k!wk

1 aJk11~xk 1 uk 2 wk,c~k 1 1!!6xk 5 x,c~k! 5 c#

5 min
0#w#x∧K

Sh~x! 1 cw1 aEEp~c,dc' !z~du!Jk11~x 1 u 2 w,c' !D+ (5)

Let y 5
n

x 2 w+ Then the above can be rewritten as

Jk~x,c! 5 min
0∨~x2K !#y#x

Sh~x! 1 c~x 2 y! 1 aEEp~c,dc' !z~du!Jk11~ y 1 u,c' !D
5 min

0∨~x2K !#y#x
S2cy1 aEEp~c,dc' !z~du!Jk11~ y 1 u,c' !D

1 ~h~x! 1 cx!+ (6)

We claim that theJk~{,c! ’s are convex fork , N, a fact that will be proved
later+ Assuming this, we now derive the structural properties of the optimal policy+
Let Sk 5 Sk~c! be the least element of the connected set of unconstrained minimiz-
ers of

S2cy1 aEEp~c,dc' !z~du!Jk11~ y 1 u,c' !D
overy [ @2`,`# , with 1` and2` being admissible values+ Since 0∨ ~x2 K ! #
y # x, we have the following:
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for Sk $ 0,

y 5 5
x if x # Sk

Sk if Sk , x , Sk 1 K

x 2 K if x $ Sk 1 K

for Sk , 0,

y 5 ~x 2 K ! ∨ 0+

An optimal policy can therefore be determined by the sequence of extended real-
valued numbers~S0,S1, + + + ,SN21! and is of the form:

for Sk $ 0,

µk
*~x,c! 5 5

0 if x # Sk

x 2 Sk if Sk , x , Sk 1 K

K if x $ Sk 1 K

for Sk , 0,

µk
*~x,c! 5 K ∧ x+

We now establish the convexity claim+

Lemma 1: Jk~{,c!, k , N, are convex.

Proof: The proof is by backward induction+ SetJN~{,{! [ 0 in what follows+ Con-
sider the policy atk 5 N 2 1+ Note thatSN21 5 2`; thus,

µN21
* ~xN21,c! 5 K ∧ xN21

and

JN21~xN21,c! 5 h~xN21! 1 c~K ∧ xN21!+

Thus, sincec , 0, we have thatJN21~{,c! is convex+ Now, suppose thatJk11~{,c! is
convex+ Then we have the following:

for Sk $ 0,

Jk~x,c! 5







h~x! 1 aEEp~c,dc' !z~du!Jk11~x 1 u,c' ! if x # Sk

h~x! 1 c~x 2 Sk! 1 aEEp~c,dc' !z~du!Jk11~Sk 1 u,c' !

if Sk , x , Sk 1 K

h~x! 1 cK 1 aEEp~c,dc' !z~du!Jk11~x 1 u 2 K,c' !

if x $ Sk 1 K,
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for Sk , 0,

Jk~x,c! 5 h~x! 1 c~K ∧ x! 1 aEEp~c,dc' !z~du!Jk11~x 1 u 2 ~K ∧ x!,c' !,

whereSk 5 Sk~c! minimizes

2cy1 aEEp~c,dc' !z~du!Jk11~ y 1 u,c' !

overy [ @2`,`# + Jk~{,c! is clearly continuous and separately convex on@0,Sk# ,
@Sk,Sk 1 K # , and@Sk 1 K,`! whenSk $ 0, and on@0,K # and@K,`! whenSk , 0+
Taking the left derivative of the above expression at its minimumSk and using the
property of its slope atSk,

2c 1 aEEp~c,dc' !z~du!Jk11
2 ~Sk 1 u,c' ! # 0,

whereJi
2~{,c! denotes the left derivative ofJi ~{,c!, 1 # i # N+ Thus,

c $ aEEp~c,dc' !z~du!Jk11
2 ~Sk 1 u,c' !+ (7)

Similarly, taking the right derivative atSk, we get

2c 1 aEEp~c,dc' !z~du!Jk11
1 ~Sk 1 u,c' ! $ 0,

whereJi
1~{,c! denotes the right derivative ofJi ~{,c!, 1 # i # N+ This leads to

c # aEEp~c,dc' !z~du!Jk11
1 ~Sk 1 u,c' !+ (8)

For Sk , 0, we can consider the right derivative aty 5 0 to conclude

2c 1 aEEp~c,dc' !z~du!Jk11
1 ~u,c' ! $ 0,

implying

c # aEEp~c,dc' !z~du!Jk11
1 ~u,c' !+ (9)

From the expression forJk~x,c!, we get the following:
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for Sk $ 0,

Jk
2~x,c! 5 5

h '~x! 1 aEEp~c,dc' !z~du!Jk11
2 ~x 1 u,c' ! if x # Sk

h '~x! 1 c if Sk , x # Sk 1 K

h '~x! 1 aEEp~c,dc' !z~du!Jk11
2 ~x 2 K 1 u,c' ! if x . Sk 1 K,

Jk
1~x,c! 5 5

h '~x! 1 aEEp~c,dc' !z~du!Jk11
1 ~x 1 u,c' ! if x , Sk

h '~x! 1 c if Sk # x , Sk 1 K

h '~x! 1 aEEp~c,dc' !z~du!Jk11
1 ~x 2 K 1 u,c' ! if x $ Sk 1 K

for Sk , 0,

Jk
2~x,c! 5 h '~x! 1 cI $x # K %

1 aEEp~c,dc' !z~du!Jk11
2 ~x 2 K 1 u,c' ! I $x . K %,

Jk
1~x,c! 5 h '~x! 1 cI $x , K %

1 aEEp~c,dc' !z~du!Jk11
1 ~x 2 K 1 u,c' ! I $x $ K %+

Recall thath is an increasing convex function+ Hence, from ~7! and ~8! and the
above expressions, we have, for Sk $ 0,

Jk
2~Sk,c! # Jk

1~Sk,c! (10)

and

Jk
2~Sk 1 K,c! # Jk

1~Sk 1 K,c!+ (11)

Similarly, for Sk , 0, using~9!,

Jk
2~K,c! # Jk

1~K,c!+ (12)

This implies thatJk~{! is convex, which completes the induction step+ n

We summarize the results in the following theorem+

Theorem 1: The optimal policy is given by$µk
*~{,{!%.

This leaves the issue of the nature of dependence ofSk~c! on c+ Unfortunately,
not much can be said in general, but we make a few comments here that may help
give some handle on this in specific cases+ Note thatSk~c! was the global minimizer

78 G. Rajadhyaksha and V. S. Borkar

https://doi.org/10.1017/S0269964805050059 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964805050059


of a function of the form2cy1 g~c, y! overy [ @2`,`# + For simplicity, suppose
that it is unique and finite for eachc+ Consider the cross-derivative

]2

]c ]y
~2cy1 g~c, y!! 5 211

]2

]c ]y
g~c, y!, (13)

assumed to exist and be continuous+ If this is greater than 0~resp+, less than 0!, it
implies “increasing differences”~resp+, “decreasing differences”! in the sense of
@6, Chap+ 10# + Note that

~2cy1 g~c, y!! 1 ~2cy' 1 g~c, y' !!

5 ~2c~ y ∨ y' ! 1 g~c, y ∨ y' !! 1 ~2c~ y ∧ y' ! 1 g~c, y ∧ y' !!,

for y, y' [ R+ Using this and by mimicking the arguments of Theorem 10+7 of
@6, p+ 259# , one then has thatSk~c! is increasing~resp+, decreasing! in c in a neigh-
borhood of a point where the right-hand side of~13! is , 0 ~resp+, . 0!+

3. THE INFINITE HORIZON PROBLEM

We now analyze the infinite horizon discounted cost problem by treating it as a
limiting case of the above asN r `+We will assume the following:

~* ! There is at least one control policy under which the cost is finite for any
initial condition+

As an example, consider the case whenK . *uz~du! ~i+e+, the maximum per-
missible transmission rate exceeds the mean arrival rate!+ Then, it is easy to verify
that the foregoing will hold for the control choicewk 5 x ∧ K, k $ 0+ Under~* !, one
has@5# the dynamic programming equation

J~x,c! 5 min
0#w#x∧K

Sh~x! 1 cw1 aEEp~c,dc' !z~du!J~x 1 u 2 w,c' !D+ (14)

In addition, we assume the following:

~** ! The kernelp~x,dy! is strong Feller; that is, for any bounded measurable
f :R r R, * f ~ y!p~x,dy! is continuous inx+

We will also assume thath~{! is Lipschitz continuous with Lipschitz constant
L . 0+ ~This could be relaxed at the expense of greatly enhanced technicalities+!
Let JN 5

n
J0, Ji

N 5
n

Ji , so as to make the dependence on the time horizonN explicit+
Define also

NJj
N~x,c! 5 inf EF(

k5j

N21

a k2j ~h~xk! 1 c~k!xk 1 ZCK!6x0 5 x,c~0! 5 cG ,
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for j , N, and ZJN 5 NJ0
N+ Then, $ NJj

N% satisfies the dynamic programming equation

NJi
N~x,c! 5 min

0#w#x∧K
Sh~x! 1 cx1 ZCK 1 aEEp~c,dc' !z~du! NJi11

N ~x 1 u 2 w,c' !D+
(15)

Clearly,

ZJN 5 JN 1
12 aN

12 a
ZCK+ (16)

$ ZJN% are monotone increasing+ Under~* !, they are also pointwise bounded+ Thus,
DJ 5 limNr` ZJN is well defined+

Lemma 2: $Ji
N~{,c!, NJi

N~{,c!% satisfies the Lipschitz condition with a common Lip-
schitz constant~L 1 ZC!0~12 a!.

Proof: We will prove that for eachi, Ji
N~{,c! and NJi

N~{,c! satisfy the Lipschitz
condition with a common Lipschitz constant~L 1 ZC!~12 aN2i !0~12 a! , which, in
turn, implies the lemma+ This is trivially true for i 5 N+ The claim forJi

N, i , N,
follows by a simple backward induction, using the fact that

6Ji
N~x,c! 2 Ji

N~ y,c!6 # 6h~x! 2 h~ y!61 6c~x 2 y!6

1 a sup
c',w,u
6Ji11

N ~x 1 u 2 w,c' ! 2 Ji11
N ~ y 1 u 2 w,c' !6

# L6x 2 y61 ZC6x 2 y6

1 a~L 1 ZC!S12 aN2i21

12 a
D6x 2 y6,

where the last inequality follows from the induction hypothesis+ The claim for$ NJi
N%

is immediate from~16!+ n

Corollary 1: The convergenceZJN r DJ is uniform on compacts. Furthermore,DJ
satisfies

DJ~x,c! 5 min
0#w#x∧K

Fh~x! 1 cw1 ZCK 1 aEEp~c,dc' !z~du! DJ~x 1 u 2 w,c' !G+
(17)

Proof: As an increasing limit of continuous functions, DJ is at least lower semicon-
tinuous+ ~In fact, it is convex, being the pointwise limit of convex functions and
hence continuous on theinterior of its domain+! Lemma 2 implies that$ ZJN~{,c!%
and DJ~{,c! will be Lipschitz with a common Lipschitz constant, as earlier+ In par-
ticular, they are equicontinuous and, hence, for each fixedc, the convergence
ZJN~{,c! r DJ~{,c! is uniform on compacts+ The monotone convergence theorem

leads to
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aEEp~c,dc' !z~du! ZJN~x 1 u 2 w,c' ! r aEEp~c,dc' !z~du! DJ~x 1 u 2 w,c' !,

where the convergence in thex andw variables is uniform on compacts for fixedc
in view of the foregoing remarks+ In particular, this implies that the corresponding
minima overw [ @0, x ∧ K # converge+ Thus, we can letN r ` in ~5! to conclude
that DJ satisfies~17!+ By the uniform Lipschitz continuity of DJ~{,c! and ~** !, the
expression in square brackets on the right-hand side of~17! is uniformly continu-
ous w+r+t+ ~x,c! on compacts+ Thus, the claim follows from Dini’s theorem+ n

Corollary 2: J~x,c! 5 DJ~x,c! 2 ZCK0~1 2 a!. It is convex in x, uniformly con-
tinuous in~x,c!, and the least@2 ZCK0~1 2 a!,`!-valued continuous solution to
(14).

Proof: Uniform continuity of DJ and the fact that it satisfies~17! are proved in
Corollary 1+ Furthermore, Corollary 1 also implies that

DJ~x,c! 5 inf EF(
k50

`

a k~h~xk! 1 c~k!xk 1 ZCK!6x0 5 x,c~0! 5 cG
5 J~x,c! 1 ZCK0~12 a!+

Then, J is a uniformly continuous solution to~14!, with J 5 limNr`JN, the limit
being uniform on compacts+ Since theJN’s are convex, so isJ+ SupposeJ*$ 2 ZCK0
~12 a! satisfies~14!+ Then, J ' 5n J*1 ZCK0~12 a! $ 0 satisfies~17!+ Iterating~17!
N times and using the nonnegativity ofJ ' , we getJ '$ NJ0

N+ LettingNr`, we have
J ' $ DJ; hence, J* $ J+ This completes the proof+ n

Let S5 S~c! be the least element of the connected set of unconstrained mini-
mizers of

2cy1 aEEp~c,dc' !z~du!J~ y 1 u,c' !,

over @2`,`# + One argues as in the preceding section to conclude the following
theorem+

Theorem 2: The optimal policy is given by

µ*~x,c! 5 5
0 if x # S

x 2 S if S, x , S1 K+

K if x $ S1 K +

Regarding the dependence onc, remarks analogous to those at the end of the
preceding section apply+
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