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The Richtmyer—Meshkov instability (RMI) is experimentally investigated in a vertical
shock tube using a broadband initial condition imposed on an interface between a
helium—acetone mixture and argon (A = 0.7). The interface is created without the use
of a membrane by first setting up a flat, gravitationally stable stagnation plane, where
the gases are injected from the ends of the shock tube and exit through horizontal
slots at the interface location. Following this, the interface is perturbed by injecting
gas within the plane of the interface. Perturbations form in the lower portion of this
layer due to the shear between this injected stream and the surrounding gas. This
shear layer serves as a statistically repeatable broadband initial condition to the RMI.
The interface is accelerated by either a M =1.6 or M =2.2 planar shock wave, and the
development of the ensuing mixing layer is investigated using planar laser-induced
fluorescence (PLIF). The PLIF images are processed to reveal the light-gas mole
fraction by accounting for laser absorption and laser-steering effects. The images
suggest a transition to turbulent mixing occurring during the experiment. An analysis
of the mole-fraction distribution confirms this transition, showing the gases begin to
homogenize at later times. The scalar variance energy spectra exhibits a near k=3
inertial range, providing further evidence for turbulent mixing. Measurements of the
Batchelor and Taylor microscales are made from the mole-fraction images, giving
~150 pwm and 4 mm, respectively, by the latest times. The ratio of these scales
implies an outer-scale Reynolds number of 6-7 x 10*.
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1. Introduction

A shock wave passing through an interface between two densities will deposit
vorticity on interfacial perturbations. This interaction, known as the Richtmyer—
Meshkov instability (RMI) (Richtmyer 1960; Meshkov 1970), leads to the unbounded
growth of perturbations and can result in turbulent mixing. The RMI is akin to
the Rayleigh-Taylor instability (RTI) (Rayleigh 1883; Taylor 1950), where a finite
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acceleration causes an interface to become unstable. These instabilities can lead to
mixing of material interfaces in inertial confinement fusion capsules (Lindl ez al.
2004), the formation of supernova remnants (Kane, Drake & Remington 1999)
and enhanced fuel-oxidizer mixing in supersonic combustion (Marble, Hendricks &
Zukoski 1987).

The RMI starts with baroclinic production of vorticity, where a misalignment of the
pressure gradient, Vp, at the shock front and the density gradient, V p, at the interface
will lead to vorticity (w) production: Daw/Dt= (Vp x Vp)/p?*. The perturbations grow
linearly until their amplitudes become comparable to their wavelengths. The interface
can develop into a turbulent mixing layer if the initial perturbation contains a broad
range of scales and it is accelerated by a sufficiently strong shock.

Turbulent mixing requires a separation between the largest, energy-containing
scales and the smallest, dissipative scales. The controlling length scales are the
Liepmann-Taylor scale A; (related to the Taylor microscale) and the inner viscous
scale 4, (related to the Kolmogorov scale) (Dimotakis 2000). The Liepmann—Taylor
scale is effectively the smallest scale generated by the largest eddies, while the
inner viscous scale is the scale where energy begins to be removed through viscous
dissipation. Thus, when 4; > A,, turbulent mixing is expected. In steady-state flows,
these scales are related to the Reynolds number through

A, =5LRe™'/? (1.1)
A, =S50LRe™*, (1.2)

where L is the largest scale of the flow, which implies a transition Reynolds number
of Re=1-2 x 10*.

For time-dependent flows such as the RMI, the Reynolds number can exceed
the turbulent transition before the flow develops the scale separation necessary for
turbulent mixing. Robey et al. (2003) considered the case where the interface starts
as a discontinuity and therefore the Taylor microscale begins at zero. With the Taylor
microscale growing with time as A oc 4/vt, eventually it surpasses the viscous scales,
marking a transition to turbulence. In the experiments discussed here, a different
scenario occurs: the Taylor and viscous scales start at finite values set by the initial
condition. After the shock interaction, where additional energy is deposited in the
layer, these scales evolve towards their fully developed values.

Previous works have observed evidence of turbulent mixing in shock tube
experiments. In a shock-accelerated gas curtain, Rightley et al. (1999) identified
a turbulent transition when the intensity histogram of planar post-shock images no
longer showed a local peak of unmixed fluid. Vorobieff, Rightley & Benjamin (1998)
and Vorobieff er al. (2003) used second-order structure functions on images from
similar experiments to identify turbulent mixing. The power-law slope of the structure
function at late times was analogous to a k=3 spectrum in wavenumber space.
Recent work by Balakumar et al. (2012) used simultaneous density and velocity
measurements to study the turbulent behaviour after a second shock wave interacted
with the layer. A shock wave interacting with a spherical density inhomogeneity
(a bubble or cloud) will form a ring of vorticity which has been observed to
turbulently strip mass from the sphere (Ranjan, Oakley & Bonazza 2011). For the
single-interface RMI, Zhou, Robey & Buckingham (2003) found that the single-mode
experiments of Jones & Jacobs (1997) and Collins & Jacobs (2002) approached the
transition limit at the latest times of their highest Mach number experiment, where
the vortex cores exhibited a chaotic structure. In an earlier subset of the present work
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(Weber et al. 2012), the shock-induced mixing layer appeared to be transitioning to
turbulent mixing at the latest observed time. For the present experiments, the shock
tube test section was extended to observe the mixing layer after this transition. In
addition, a higher Mach number campaign was undertaken for a point of comparison.

In the experiments presented here, evidence for a transition to turbulent mixing
of the shock-accelerated mixing layer is inferred by a homogenization of the
mole-fraction probability density functions (PDFs) and the emergence of an inertial
range in the scalar energy spectra. The length scales are measured and found to
separate with time. The largest scale, the overall thickness of the mixing layer,
initially grows linearly, the smallest scale, the Batchelor scale, decreases in size,
and the intermediate Taylor microscale remains nearly constant. Coincident with the
inferred turbulent transition, the Taylor microscale and the Batchelor scale appear
sufficiently separated to sustain an inertial range. The paper begins with a description
of the experimental set-up, the initial condition and the image processing. The results
section describes the structure of the mixing layer as it evolves in time. Length scales
are extracted from the mixing layer using several methods and are finally used to
estimate the Reynolds number.

2. Experimental set-up

The present experiments were performed at the Wisconsin Shock Tube Laboratory.
The shock tube is 9.1 m tall and has a 25.4 cm x 25.4 cm internal cross-section.
The 2.0 m driver section is separated from the rest of the shock tube by a steel
diaphragm. Before each experiment, the driver section is pressurized to 85 % of the
diaphragm rupture pressure. The remaining pressure is rapidly provided through two
pneumatically driven, fast-opening valves. The rupture of the diaphragm releases
a shock wave into the atmospheric pressure gas below. The distance between the
diaphragm and the interface, 5.4 m, allows the shock wave to stabilize and become
planar before interacting with the interface. Twelve piezoelectric pressure transducers
mounted in the walls of the shock tube detect the shock waves and help calculate the
strength of the shock waves and, indirectly, information about the gas composition.
The bottom section of the shock tube contains ports for generating the interface and
windows for planar imaging. Four window ports are used in the present work. The
top-most window is positioned to view the initial condition and an early post-shock
time. Lower windows allow for later-time visualization. These windows are made of
fused silica and are 7.5 cm thick to withstand the dynamic loading by strong shock
waves. The end wall of the shock tube contains a rectangular window to transmit the
laser sheets used for flow visualization.

These experiments use a gas interface with a mixture of helium and acetone vapour
(6.0 £0.8% by volume) above and pure argon below, giving an Atwood number of
A= (py—p1)/(p2+ p1) =0.7. The flow of the helium—acetone mixture is split, routing
a portion to the top of the shock tube and the remaining to the interface section. First,
an initially flat interface is formed by flowing the helium—acetone mixture into the
top of the shock tube and argon into the bottom. Excess gas is evacuated through
slots in the shock tube wall at the interface location. These slots are connected to
a pair of vacuum pumps, ensuring a rapid outflow of gas. This method to create a
flat, membrane-less interface is similar to that developed for the University of Arizona
shock tube (Jones & Jacobs 1997) and used previously at the University of Wisconsin
(Motl et al. 2009).

The flat interface is perturbed by injecting the pure argon and the helium-—acetone
mixture horizontally through separate slots above and below the stagnation plane,
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FIGURE 1. (Colour online) Diagram of the interface location showing gas flowing from
the top and bottom of the shock tube and from the left set of slots. The right set of slots
are connected to a vacuum pump, removing excess gas. The edges of the planar laser
sheet are shown as dashed lines and the laser causes fluorescence in the acetone vapour
in the top gas.

respectively, while maintaining the vertical flow started previously. This flow configura-
tion, shown in figure 1, was experimentally determined to provide the best initial
condition in terms of scale content and statistical repeatability. Perturbations form
due to the buoyant interaction between the two streams and from the shear stress
between this mixed layer and the pure argon. The superposition of the horizontal and
vertical flows creates a continual flow towards the interface, ensuring that all mixed
gas is removed and the mixing layer remains statistically steady in time.

Two excimer lasers (Lambda Physik LPX 210i, 308 nm, 470 mJ pulsefl, 28 ns
pulse) are used for planar laser-induced fluorescence (PLIF) diagnostics. During each
experiment, 10 pre-shock images are recorded prior to the arrival of the shock wave
to obtain a statistical description of the initial condition. To allow the laser to recharge
and account for variability in experimental timing, the last recorded initial condition
occurs 150-200 ms prior to the shock arriving at the interface. A pressure transducer
above the interface is used to trigger the two lasers for two post-shock images. The
images are all recorded using three thermoelectrically cooled (to —60°C) Andor CCD
cameras (model DV434-BU2).

The initial condition camera is set up with a resolution of 211 pm pixel™’,
while the post-shock cameras have 183 wm pixel ' resolution. The imaging system
resolution was measured using a scanning knife edge technique (Clemens 2002; Wang
& Clemens 2004) with the optics and shock tube windows in place and found the
standard deviation of the line spread function (o;sr) to be 151 pwm for the post-shock
cameras. The laser sheet was found to have a beam waist (occurring at the image
centre) of 890 wm and an M-squared value of 75. The thickness of the laser sheet
is rather large compared with the camera resolution and the smallest scales of the
flow (discussed later), but measurements of the dissipation scales are less sensitive
to laser sheet thickness than optical resolution. Kaiser & Frank (2011) find that the
laser sheet can be approximately 5x larger than the imaging resolution and still
have equivalent resolution in planar imaging of dissipation structures. The effects
of laser sheet thickness on the measured spectra were estimated using synthetic
turbulent images and are expected to overestimate the Batchelor scale by 10 %. No
motion blur is expected in the post-shock images due to the short laser pulse (28 ns),
rapid fluorescence emission (~2 ns), and negligible phosphorescence at these high
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FIGURE 2. (Colour online) Initial condition characterization. (@) A sample initial condition
image, processed so intensity corresponds to light-gas mole fraction. (b) Mole fraction
ensemble average and (c) standard deviation, o, from 100 images. (d) The scalar variance
energy spectrum from several rows within region C of (a). The colour of the curves are
related to the region C arrow. The average spectrum from this region is shown as a thick
dashed line. (e¢) The ensemble-averaged spectrum within the 0.2 < (§) < 0.3 region.

temperatures. In the initial condition images, phosphorescence, with a ~200 ps
lifetime, introduces a blur of approximately 1 pixel.

Figure 2(a) shows a sample initial condition image, corrected so that the signal
intensity corresponds to acetone concentration, which is also directly proportional to
the light-gas mole fraction, £. In the image, the gases are injected from the left near
z=0 cm. The injected stream of pure argon (§ =0) is visible as a dark horizontal
band at 7~ 0.5 cm. The injected helium—acetone mixture (§ = 1) is visible below the
argon stream. Approximately 5 cm to the right of the injection location (feature A),
the two gas streams begin mixing and the individual streams are no longer apparent.
Perturbations develop on the lower edge of this mixing region due to the velocity
difference of the mixture stream and the ambient argon. The boundary between the
mixed gas entering from the left and the helium—acetone mixture entering from the
top of the shock tube is identified as feature B. The gradient at the top of the mixing
region is diffuse and lacks noticeable perturbations. Between the top contour (feature
B) and the bottom shear surface (feature A), the average mole fraction is £ ~0.6. The
ensemble average and standard deviation from 100 images are shown in figure 2(b,c).
The most significant temporal fluctuations occur at the bottom shear surface, where
the light-gas mole fraction has a standard deviation of 0.2. The scalar variance energy
spectra from the initial condition are shown in figure 2(d,e). The spectra in figure 2(d)
are taken from individual rows in region C of figure 2(a). These rows have average
mole fraction values ranging from (§) =0.1 to 0.6 and are spaced 0.75 cm apart. The
spectra show the wide range of scales present in the initial condition, with a few
dominant modes present in each row. These dominant modes are weakly correlated
with other rows, such that over this region the average spectrum, shown as a thick
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dashed line, shows a smoother, broadband spectrum. Similarly, ensemble averaging
over a narrow region, 0.2 < (§) < 0.3, produces a smooth spectrum that is converged
by 20 images, shown in figure 2(e), and has an approximate spectral shape of

k' k<18 cm™!
Ex<{k? 18 cm!'<k<9 cm™! 2.1
k> k>9 cm™.

This initial condition is characterized further in Weber et al. (2012).

The interface is accelerated by an incident shock wave of strength M; =1.57£0.02
or M;=2.234+0.02. The incident shock wave speed, measured by pressure transducers
in the helium—acetone mixture above the interface, is combined with the measured
transmitted shock wave speed in the pure argon to determine the incident Mach
number and the acetone composition of the light gas. This method of measuring the
acetone composition agrees within 7 % of estimates made using Beer’s law attenuation
of laser light. As noted above, the interior of the initial condition layer has a mole
fraction & = 0.6, thus it is useful to compute effective incident Mach numbers (the
Mach number of the shock inside the £ =0.6 region) and an effective Atwood number
between the £ = 0.6 and £ =0 gas, giving M,; ~ 1.75 or M,; =2.62 and A, ~ 0.32.
The shock will distort slightly as it transmits into this £ = 0.6 region and take the
shape of the perturbations identified as feature B in figure 2(a) due to differences
in the incident wave speed in this region. This upper perturbation has an amplitude
of ~1 cm over a width of 10 cm, producing a shock amplitude of 0.2-0.3 cm, or
changing the shock angle by <2°, i.e. a negligible amount compared with the large
angle of the nonlinear perturbations at the bottom of the layer.

The PLIF images are processed to extract the light-gas mole fraction, £. The images
are processed using the knowledge that the top portion of the image contains pure
seeded (light) gas (¢ =1). Integrating downward while accounting for the divergence
of the laser sheet, deviations from Beer’s law attenuation are attributed to mixing of
unseeded (heavy) gas or changes in temperature. The equation for this is

(T/T\)Ss
Sir—mod [F(S/p)dr’

where S; is the local fluorescence signal, Sy is the fluorescence signal at the top
of the image where it is assumed & = 1, T/T), is the temperature ratio in relation
to the pure seeded region, n;o is the product of number density and absorption
cross-section in the pure seeded gas (this product is measured by the exponential
signal variation in the top of the image), and ¢ is the fluorescence quantum yield.
The integral is carried out from the local location r to the top of the image at location
R. This process (without the inclusion of temperature effects) is similar to that used
by Collins & Jacobs (2002) and Motl et al. (2009). The temperature field is the result
of the shock passing through a non-uniform medium and from mixing of materials at
different temperatures. The interaction of a shock with continuous interface is already
a non-trivial study (Chisnell 1955) and is complicated by the nonlinear effects of
perturbations. Temperature equilibration due to mixing has a dependence on the
specific heats of the different materials. Simulations of the shock-interface interaction
(Weber 2012) and the correct relation due to mixing show a temperature—mole fraction
dependence to within 3 % of linear. Therefore, the temperature is approximated as

T=T,+ (T, — T)E, (2.3)

§= (2.2)
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M; 1.57 2.23
M, 1.85 2.88
W, (m s 1150 1576
W, (m s71) 592 919
Vo (m s 315 606
Acetone (% Vol.) 5.6 6.5
o1 (kg m™3) 0.29 0.31
02 (kg m™3) 1.63 1.63
o) (kg m™%) 0.69 1.19
o5 (kg m3) 3.48 4.79
T; (K) 497 761
T, (K) 557 1011
P, =p, (MPa) 0.40 1.01
A 0.70 0.68
A’ 0.67 0.60
(1= Vo/ W) 0.73 0.62
(o1/p1 + p2/P3) /2 0.44 0.30

TABLE 1. Gas properties for the two Mach number cases. Primes denote post-shock
quantities. Gas 1 is the light gas (helium seeded with acetone) and gas 2 is the heavy
gas (argon). Here V; is the post-shock interface velocity.

where T| and T, are the post-shock temperatures in the pure light and heavy gases,
respectively, calculated from 1D gas dynamics. With a Prandtl number near unity, this
approximation is expected to remain first-order accurate throughout the experiment.
Since the right-hand side of (2.2) contains £ in the relation for T, o (T) and ¢(T), this
equation is iteratively solved until a converged mole fraction field is found. Once the
images have been corrected, fine-scale features remain due to refraction of light rays
caused by index of refraction gradients in the mixing layer. These features are clearly
identified in 2D Fourier space as a narrow spectral-energy band in the k, direction
(Dimotakis, Catrakis & Fourguette 2001). This band (located within |k, > 10.7 cm™!
and |k < 1.79 cm™!) is replaced with spectral-energy values interpolated from
outside this region at wavenumber k = /k? + k2. The final corrected image, obtained
by inverting the 2D notch-filtered spectrum, has these fine-scale artifacts greatly
suppressed. This filtering process preserves the original spectrum when applied to
synthetic turbulent images (Weber 2012).

At each Mach number, images from four post-shock times are obtained (termed
PS1-PS4). These post-shock times correspond to different shock-tube window
locations. Two post-shock images are obtained per experiment and a total of 20—40
images were collected at each time over the course of the experimental campaign.
Some of the relevant gas properties are reported in table 1. These are computed based
on the measured incident and transmitted wave speeds (W; and W,). Primes denote
post-shock quantities.

3. Experimental results and discussion
3.1. Structure of the post-shock scalar fields

Figures 3 and 4 show a sample of corrected PLIF images from the M = 1.6 and
M = 2.2 experiments, respectively. The laser sheet in the late-time location, near the
end wall of the shock tube, is narrower than locations further from the end wall.
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FIGURE 3. (Colour online) Selected images from M = 1.6 experimental sequence.
First row: initial condition images. Second row: PSI, 0.14 ms after shock interaction.
Third row: PS2, 0.88 ms after shock interaction. Fourth row: PS3, 2.16 ms after shock
interaction. Fifth row: PS4, 3.84 ms after shock interaction. The width of each image is
14.0 cm.

Owing to this, all images in these figures are cropped to the PS4 width (14 cm).
The first rows in each figure show three initial condition images. In figure 3 the
second, third, fourth and fifth rows of images are at post-shock times of 0.14, 0.88,
2.16 and 3.84 ms, respectively. The post-shock times in figure 4 are 0.10, 0.44, 1.12
and 2.05 ms. Images in the same column in rows four and five are from the same
experiment, whereas all other images are from different experiments.

The images show the large-scale extent of the mixing layer is growing, while
the fluid within the layer is becoming more mixed and turbulent (to be quantified
later). The earliest post-shock images seem to have features similar to those seen
in the initial condition images, but the gradients are somewhat sharper due to the
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FIGURE 4. (Colour online) Selected images from M = 2.2 experimental sequence.
First row: initial condition images. Second row: PS1, 0.10 ms after shock interaction.
Third row: PS2, 0.44 ms after shock interaction. Fourth row: PS3, 1.12 ms after shock
interaction. Fifth row: PS4, 2.05 ms after shock interaction. The width of each image is
14.0 cm.

compression from the shock wave. At the PS2 time, the layer is dominated by several
spikes of heavy gas (coloured black) penetrating into the mixed gas (coloured blue
and green). Coherent vortices are noticeable at this time and the interface contours
appear relatively smooth. Some chaotic behaviour (jagged contours and more mixing)
occurs on the left side of the layer. The slight left-right asymmetry is due to the
flow in the initial condition, where the gases are injected on the left side, leading to
sharper gradients on the left than on the right. Therefore, in some images the left
side appears to transition to turbulence faster than the right. By the PS3 time, the
smoothness that appeared along the interface is gone and many small-scale features
are present. This trend continues into the PS4 time, where the mixing layer appears
to be in a fully turbulent state (i.e. increased mixing and containing a broad range of
scales). Isolated regions in the PS3 images can be noticed where the layer remains
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relatively smooth; these no longer exist by the PS4 time, where the full layer appears
engulfed by turbulence.

The similarities between the two Mach number images are remarkable given the
~2x difference in interface velocity. The post-shock image number (i.e. PS1, PS2,
etc.) denotes the shock tube window used for the image and, between the two Mach
numbers, represents the same post-shock travel distance (V,f). Thus, the post-shock
travel distance appears to qualitatively capture the turbulent evolution of the mixing
layer. A few differences are apparent between the two Mach numbers. The greater
compression of the M =2.2 flow results in a thinner mixing layer at the same window
location. The composition of the layer also appears different at the last two times,
where there appears to be more & =0.75 fluid (yellow colours) in the M =2.2 images.

3.2. Mixing-layer thickness

The thickness of the mixing layer, hs_os, is defined as the distance between spanwise-
averaged mole-fraction values of (§) =0.05 and 0.95, where spanwise averaging, (-),
is

Xy — X

1
(&)= / £ dx. (3.1)

For the analysis that follows (except for the spectral analysis) the images are cropped
to include only the central 8 cm, avoiding differences in the flow caused by the
inlet. The mixing-layer thickness is shown in dimensional form in figure 5(a) from
all of the experimental data. Since these images show a two-dimensional slice from
a three-dimensional layer, a large amount of experimental variation is expected, and
the average from the experiments, shown as open circles, is of the most relevance. A
weighted, least-squares regression is used to calculate the initial linear growth rate at
the earlier times. The inverse of the number of images at that post-shock time is used
as the weighting in the regression, ensuring that the different times contribute equally
despite having different numbers of images. The growth rates from the PS1-PS2
data are hs_gs =242+ 1.6 m s and 354+ 73 ms! for M=1.6 and M =2.2,
respectively. The £ value is the standard error in that measurement. Between the PS2
and PS3 times, the layer is growing at hs_¢s =20.0£2.1 m s~' and 27.0+4.1 m s~!
for M = 1.6 and M = 2.2, respectively, showing that the layer growth has slowed
within this time frame.

The non-dimensional mixing-layer thickness is shown in figure 5(b). The thickness
after shock compression, A, and the initial growth rate of the mixing layer, /g, provide
excellent collapse of the two Mach number data. Also shown is the line

hh
— =41 (3.2)

h i\’
—=al 2] . (3.3)
0 hO

The power law fits the last three post-shock times with values of a=1.98 £0.01 and
0 =0.43 £ 0.01. This value of 0 is in the upper range of previously reported values
(0.25 <60 <£0.5) in Dimonte & Schneider (1997, 2000), Prasad et al. (2000) and Jacobs
et al. (2013).

and the power law
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FIGURE 5. (Colour online) Mixing-layer thickness, /hs_os: (a) dimensional and (b) non-
dimensional. Error bars in (b) show the standard error of the mean. Curve fits in (b) show
a linear fit (dashed) and a power-law fit (dotted).

Both /2, and &, were obtained from the linear fit to the PS1 and PS2 data, but these
values can be estimated a priori if their dependence on the initial conditions is known.
To understand the initial condition dependence for this interface, the initial growth
rates of the two Mach numbers are compared with the initial condition dependence
of two contrasting regimes: the linear growth of mixing layers following reshock and
the linear growth of well-defined interfacial perturbations. In reshock experiments
such as those of Vetter & Sturtevant (1995) and Leinov et al. (2009), the interface
is characterized by a thickness that contains, presumably, a broad distribution of
perturbations interspersed within the layer in a self-similar manner. These layers grow
linearly after reshock at a rate that is independent of the pre-reshock thickness,
h = CyA'Vy, which was proposed by Mikaelian (1989) and fits a number of
experiments (Read 1984; Youngs 1984; Vetter & Sturtevant 1995; Leinov et al.
2009; Jacobs et al. 2013) with Cy =~ 0.25-0.49. If the perturbations on the interface
between two gases are well-defined, then the initial growth rate is also proportional
to the amplitude of the perturbations after shock compression, h = A'Vyn'k, where n’
is the compressed amplitude of wavenumber k. A multimode interface would contain
a superposition of growing modes. If the perturbations are nonlinear in amplitude,
the relationship between growth rate and initial amplitude remains but is no longer
directly proportional.

The interface used here lies between the two extremes of reshock-type initial condi-
tions and well-defined interfacial perturbations. It contains identifiable perturbations,
but they are not well-defined, as contour locations are multivalued in the spanwise
direction and have different spectral content at different locations within the
layer (see figure 2d). The perturbations are interspersed within the layer, but not
self-similarly and only occupy ~1/4 of the full hs_os thickness. The ratio of
initial growth rates between the two Mach numbers, hy—p5/hy—16, 1S compared
with that expected by these two initial condition extremes. The experiments produce
hyr=22/hy—16=1.46 £0.32. If the growth rate were independent of initial conditions, a
ratio of (A'Vy)a=22/(A'Vo)u=16 = 1.72 would be expected. Alternatively, if the growth
rate were also proportional to the compressed interface thickness the ratio would
be 1.17. Here the compression factor was based on the pre- to post-shock density
ratios, hy/ho = (p1/p; + p2/p5)/2, which is within 10 % of the measured values. An
alternative compression factor, introduced by Richtmyer (1960) and commonly used
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to estimate perturbation compression, is (1 — V,/W;), where W; is the incident shock
wave speed and V; is the post-shock interface velocity (both of these compression
factors are reported in table 1). Using this, a growth-rate ratio of 1.46 is expected,
which is equal to the experimentally measured ratio. This suggests that the interface
perturbations still factor into the measured initial growth rate.

3.3. Mixing-layer composition

The composition of the mixing layer is explored through PDFs of mole fraction. These
two-dimensional PDFs, shown in figure 6, are given as a function of non-dimensional
z-location, 7 =z/hs_os, and are ensemble-averaged from the data set. Darker colours
represent an increased probability of mole fraction at a given location. Note that
integrating this PDF at a given Z location will give the spanwise-averaged mean,

(&) (Z)=/PDF (5,2 & d8, (3.4)

and the standard deviation,

o @)= \// PDF (£, 2) (§ — (£))° dé. 3.5)

By definition (£) = 0.05 or 0.95 at z = z/hs_o5s = —0.5 or 0.5, respectively. At the
location near 7 & 1 there is expected to only be & = 1.0 fluid, therefore the spread
in the PDF (i.e. the standard deviation) is due to measurement errors (shot noise and
uncorrected features in the laser sheet). Thus, the standard deviation in this region
(0 =0.03 for the IC and 0.04 for the post-shock images) gives the error in the mole
fraction measurement. These values agree with the expected error given the signal-to-
noise ratio of 30 for the raw images.

The first row of figure 6 shows that the initial condition mole fraction gradually
transitions from £ =1 at the top of the mixing layer to & ~ 0.4 near the bottom. This
gradual marching behaviour is due to the diffusive spreading of the inlet jet, which,
as seen in figure 2, does not contain large-scale inhomogeneities (Kelvin—Helmholtz
features) aside from the very bottom of the layer. The perturbations at the bottom
of the mixing layer show up as a wide region in the PDF, containing mole fractions
between £ =0 and £ =0.4.

The second post-shock realization (second row) shows a PDF that has spread out
over a wider extent of mole fractions; nearly all of the mixing layer contains a finite
probability between £ =0 and & = 0.6. The transition between £ =0.6 and £ =1 is
still confined to the top of the mixing layer as the growing perturbations that began
on the bottom of the layer have not significantly influenced this region yet.

By the PS3 time, the perturbations have reached the top of the layer, entraining high
mole fraction gas and distributing it throughout the mixing layer. This is evident by
the £ =0.6 to £ =1 mole fraction now having a larger probability throughout most
of the mixing layer. By this time, the peak in the PDF of mixed fluid (§ ~ 0.4) is
significantly reduced in the M =2.2 experiments.

At the latest time, the transition from & =0 to £ =1 is more gradual than earlier
times, particularly in the M =2.2 experiments. The peak near & ~ (.4 still exists at the
lower Mach number but is almost completely removed through mixing in the higher
Mach number experiments.
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FIGURE 6. PDF of mole fraction throughout the mixing layer for the (a) IC, and (b,c)
PS2, (d,e) PS3 and (f,g) PS4 from the (b,df) M = 1.6 experiments and (c,e,g) M =2.2
experiments. The z-axis is normalized by the (£) =0.05-0.95 thickness, h5_os.

The overall composition of the mixing layer (within 0.05 < (§) < 0.95) is obtained
from the 2D PDFs by

0.5
PDF (£) = / PDF(¢, 3) &, (3.6)

-05
and is shown in figure 7 for the (@) M = 1.6 data and (b) M = 2.2 data. The PDFs
show that local peak near & ~ 0.4 reduces over time and appears to mix with the
lighter (§ =1) fluid. This process occurs more rapidly in the M =2.2 case and results
in an increase in the fluid near £ ~ 0.8. This bias for mixing of the lighter fluids
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FIGURE 7. (Colour online) PDF of mole fraction within 0.05 < (§) <0.95: (a) M =1.6
and (b)) M =22.

has been noticed elsewhere and is attributed to the greater inertia of the heavy fluid
(Livescu & Ristorcelli 2008).

A metric describing the state of mixing can be constructed from the ratio of the
‘thickness of mixed fluid’ to the mixing layer thickness. Mixed fluid is defined
following Cook & Dimotakis (2001) as limited by the lesser component in a
stoichiometric mixture,

En(§) =2 min(§, 1 —§), (3.7)

thus an equal mixture would have &, = 1. With this definition, the mixing layer
thickness is

hm:/ En((§)) dz, (3.8)

and is shown in figure 8(a) to be proportional to hs_os (h, = 0.57hs_os). These
definitions of mixing-layer thickness do not differentiate between mixed gas and
unmixed but interpenetrating gas. These are compared in the following ratio:

/ (6w (§)) dz
= (3.9

/ £, ((8)) dz

where the denominator is the same as (3.8) and the numerator averages after
converting the mole fraction field into a mixture fraction field. A fully homogenized
fluid without interpenetrating perturbations will have a ratio of Z = 1, while a
discontinuous interface with perturbations would have & = 0. In these experiments,
this ratio, shown in figure 8(b), begins near & =1 for both IC and PS1, signifying
that the thickness of the layer mostly comes from mixed fluid and not from
perturbations. In the M = 1.6 case, & reduces steadily throughout the experiment,
while & in the M = 2.2 case reduces more rapidly (in non-dimensional time) before
increasing at the end. Both Mach numbers reach a final value of 0.79, which is
close to the asymptotic value of 0.8 reported after the onset of turbulent mixing
in Rayleigh-Taylor simulations (Cook, Cabot & Miller 2004). This final value is
slightly lower than the asymptotic values of 0.82-0.93 in gas-curtain experiments
(Orlicz, Balasubramanian & Prestridge 2013), which observed & to increase with
Mach number. The different temporal behaviour seen in figure 8(b) between these

-
o=
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FIGURE 8. (Colour online) (a) Comparison of mixing layer thickness definitions, #,,
versus hs_o¢s. (b) Ratio of the mixed fluid thickness to the mixing layer thickness, Z.

two cases may represent differences in the balance of modal growth and molecular
mixing. In the higher-Mach-number case, modal growth may be dominating earlier
in the experiment, bringing in unmixed fluid and more-rapidly decreasing &. A
transition may occur near PS3 of the M = 2.2 case, causing molecular mixing to
dominate towards the end. The less-rapid rate of change of = at the lower Mach
number may imply that these two forces are more balanced.

3.4. Density self-correlation

An additional measure of fluid mixing and an important quantity for turbulence
modelling is the density self-correlation,

(o ()

where asterisks denote spanwise variations, i.e. p* = p — (p). In the variable-density
Reynolds-averaged equations, b appears in the production term for the mass flux and
requires modelling for closure (Besnard et al. 1992). One approach for closure is to
make a Boussinesq approximation (Grégoire, Souffland & Gauthier 2005), in which
case b reduces to

(o)

(o)
This approximation has been found to be adequate at modest Atwood numbers
(Livescu et al. 2009; Ristorcelli, Gowardhan & Grinstein 2013).

Here the density field is approximated as

(3.10)

(3.11)

bBoussinesq =

o =py+ (o] — PyE. (3.12)
Figure 9 shows the spanwise-averaged mole fraction profile across the layer, (&) (left
axis), b (right axis, solid) and (p**)/(p)? (right axis, dashed) for (a) M = 1.6 and
(b) M = 2.2. Shock compression reduces (£) in the interior of the layer (i.e. at
z/hs_os = 0), partially due to differences in the compressibilities of the heavy and
light gases. By the PS3 and PS4 times, (§) has increased in the interior of the layer,
but does not yet show a self-similar profile. The density self-correlation at the first
post-shock time is similar to its value in the initial condition and both are much
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FIGURE 9. (Colour online) Density self-correlation, b (right axis, solid), normalized

density variance, (p*?)/(p)? (right axis, dashed), and mean mole fraction, (£) (left axis):
(a) M=1.6 and (b) M =2.2.

smaller than at later times. At PS2 a large peak in the b profile appears near the
lower density edge of the layer. By the latest two times the peak is centred closer to
the centre of the layer but the profile is still shifted towards the lower density side.
In the M =1.6 case, b is still increasing through most of the layer between the latest
two times, but in the M =2.2 case b is decreasing by the latest time, suggesting it is
in a more well-mixed state. Aside from the late-time differences, the trends for the
two Mach numbers are similar, but the values for the lower Mach number case are
~50 % larger.

The values of b measured here are a factor of 2—-3 times larger than those measured
in the gas-curtain RMI experiments (Balakumar et al. 2012) and in gas-channel RTI
experiments (Banerjee, Kraft & Andrews 2010). This is likely due to the presence
of unmixed spikes in these experiments that protrude through the mixing layer even
at late times. Despite the large range of densities, the Boussinesq approximation,
(p**)/(p)?, closely tracks the trend observed in b. As noted by Livescu et al. (2009)
for RTI simulations, (p*?)/(p)? tends to over-predict b on the low-density side of the
layer and under-predict it on the high-density side.

3.5. Scalar variance spectra

The scale distribution of the mole fraction fields is reported here using one-
dimensional scalar variance energy spectra. The spectra are computed horizontally
within the region 0.1 < (§) < 0.7 and includes the full width of the laser sheet
(15.5-19.5 cm). For (§) > 0.7, the IC-PS2 spectra deviated from the relatively similar
spectral shape observed in the 0.1 < (§) < 0.7 region, so only this lower region was
used to produce average spectra. Using only the central 8 cm of the images’ width
produced nearly identical spectra, but the full width allowed for lower wavenumbers
to be resolved. To reduce the influence of noise, an interlacing technique is used
(Kaiser & Frank 2007) where the Fourier coefficient, F(§(x)), is multiplied by the
complex conjugate of the Fourier coefficient of the adjacent row,

E(ko) ~ F(§(x))F*(§141(x)). (3.13)

Since photonic shot noise is uncorrelated from pixel to pixel, and assuming
neighbouring rows record a similar turbulence structure, the noise contribution tends
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FIGURE 10. (Colour online) One-dimensional scalar variance energy spectra, (a) M =1.6
and (b) M =2.2, and compensated spectra, (c) M =1.6 and (d) M =2.2.

towards zero with an average of these interlaced spectra. The spectra were found
to be converged with 10-20 images. The spectra are normalized to integrate to the
scalar variance, i.e.

/Edkx = (&%) — (&)*. (3.14)

Figure 10 shows the spanwise 1D energy spectra for the five times from the
(@) M =1.6 and (b) M =2.2 data. The spectra from the IC and PS1 lie very close
to each other, as would be expected given the very early time of PS1. Between PS1
and PS2 the magnitude of the spectrum increases, representing an increase in scalar
variance. The spectra of the last three times, PS2-PS4, are very similar, which is
interesting given the visual difference between the corresponding images in figures 3
and 4. The magnitude of the high-wavenumber region is increasing through the
latest time. An apparent k=3 inertial range is noticeable at the latest three times.
This inertial range manifests for approximately a decade in wavenumbers before an
exponential dissipation region is observed. The compensated spectra are shown in
figure 10(c,d) for the M = 1.6 and M = 2.2 data, respectively and show a region
between 0.7 and 7 cm~' that is nearly flat, although a slight negative slope appears
present. A least-squares fit to the 1 cm™' <k <5 cm™! region finds E oc k=''7* and
Eock™7 at PS4 for the M =1.6 and M =2.2 cases, respectively.

3.6. Turbulent length scales

In this section, turbulent length scales are measured from within the mixing layer
using the mole fraction fields. Of primary interest are the Taylor microscale and the
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viscous scale, as their relationship governs turbulent mixing. From these length scales,
a Reynolds number is computed and the turbulent transition is discussed.

3.6.1. Batchelor scale

The inner viscous scale separates the inertial range from the dissipation range, but
this can be difficult to identify in an experimental spectrum. Instead, the spectrum
can be compared with a model velocity spectrum, where the relevant length scales
are known (Wang et al. 2007; Petersen & Ghandhi 2011). Pope (2000) proposed the
following model for 3D isotropic, homogeneous turbulence:

Esp(k) = C, (&) k™ fL(kL)fy (kmi) (3.15)

with a dissipation region

fy ey =exp (= ([no* +¢]"* = ¢, ). (3.16)

where 7, is the Kolmogorov length scale and 8 and c, are chosen to fit experimental
data. Pope found an excellent fit to a range of homogeneous, isotropic experimental
data with C, =1.5, 8 =5.2 and ¢, = 0.4. Alternatively, the dissipation region is a
simple exponential when ¢, =0, and B is constrained to 8 =2.1 by requiring (3.15)
to integrate to the net turbulent kinetic energy and dissipation. The low-wavenumber
specification to the model spectrum, f;(kL), gives the spectrum an E;p ~ k* shape.
Since the spectra from the present data do not clearly depart from a power law on
the low-wavenumber side, the f;(kL) function is not included, allowing the model
spectrum to continue as k—>/3 into the low wavenumbers. The one-dimensional energy
spectrum is obtained through integration of the three-dimensional spectrum (Tennekes
& Lumley 1972),

E(k) = / ook‘le(k) dk. (3.17)

ki

The dissipation spectrum is related to the energy spectrum by D(k) = 2vk*E(k),
where v is the kinematic viscosity. Using Pope’s model spectrum, one finds that the
dissipation spectrum reaches 2 % of its peak at ki, = 1. Therefore, measuring the 2 %
dissipation level allows one to infer the Kolmogorov scale. This requires a resolution
of mn,. In passive scalar turbulence, the smallest length scale is the Batchelor scale,
Ap, which is related to the Kolmogorov length scale by the Schmidt number (Sc =
v/ D), dg=nSc™"?, where Sc~ 1 for gases.

The dissipation spectra from the PS4 data are shown in figure 11 and the 2%
dissipation level is indicated. The 1/k,q scale occurs at a wavelength of 2m/k;q,
requiring a resolution of 7/kyq or ~350 pwm, which is ~2 x the camera resolution
(pixel size) or half of the Nyquist frequency. The imaging system’s modulation transfer
function (MTF) is approximately 0.4 at this scale, thus this scale is expected to be
overestimated by the resolution limits. Photonic shot noise, however, would cause this
measurement to be underestimated. This noise effect is thought to be removed by the
interlacing technique, but there remains uncertainty in its efficacy. Another way of
estimating the Batchelor scale, and avoiding some of the uncertainty at the highest
wavenumbers, is to fit Pope’s model to the experimental spectrum using Ap as a fitting
parameter. A least-squares fitting procedure is biased towards finding the dissipation
spectra peak, where the MTF is still at 1.0. Pope’s model, also shown in figure 11,
appears to fall off more sharply than the experimental data and values of Az are found
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FIGURE 11. (Colour online) Dissipation spectrum from the latest post-shock time and
model spectra: (@) M =1.6 and (b) M =2.2.

to be approximately 50 % larger than the measured 1/k;4 scale. These two methods
give a range of estimates for the Batchelor scale. The value from fitting Pope’s model
is likely an upper bound, while the smaller 1/k,4 scale is not necessarily the lower
bound. It is interesting to note that a better fit to the high wavenumber region is found
using the exponential version of Pope’s model (i.e. ¢, =0 in (3.16)).

An additional length scale based on the Batchelor scale, the dissipation layer
thickness, is computed as a comparison with the length scales computed from the
dissipation spectra. The scalar dissipation rate field, x = ZVE& - V&, is observed
consisting of sheet-like structures (Buch & Dahm 1996, 1998; Tomkins et al.
2008; Orlicz et al. 2009). These structures arise from the compressive action of
the strain rate, which stretches contour lines and increases the scalar gradients, and
the thickening action of diffusion. Thus an equilibrium exists where these forces
balance, resulting in a scalar dissipation length scale (Su & Clemens 2003),

A5 = Adp. (3.18)

The proportionality constant A has been found to range from 2 to 14.9 (Buch & Dahm
1998; Su & Clemens 2003; Wang et al. 2007) and may be flow-dependent. The 20 %’
in (3.18) refers to a method to measure this scale: the thickness where the dissipation
rate drops to 20 % of its local peak.

To compute the dissipation rate field, the mole fraction images are filtered through
a 5 x 5 median filter, chosen to reduce shot noise and preserve spatial resolution
(Ghandhi 2006), and the gradient magnitude is calculated using an 8-point stencil
(Buch & Dahm 1996). For simplicity, the molecular diffusivity, &, is treated as
constant, therefore its magnitude does not influence the measurement of Ayyq. To
identify peaks in the dissipation rate field, a Canny edge detection algorithm (Canny
1986) is applied to the image of dissipation rate, which finds the local maxima of the
gradients. From these peaks, the dissipation rate in directions aligned with the local
gradient angle is computed through interpolation. The distance where the dissipation
rate drops to 20 % of the local maximum is recorded as half the A,y value. Points
are discarded if (i) the local dissipation rate maximum is less than a given threshold,
(ii) the dissipation rate does not decrease to 20 % monotonically, (iii) the dissipation
rate does not decrease to 20 % within a certain distance or (iv) if a value for Ay¢
is not found on both sides of a local maximum. An example of this calculation is
shown in figure 12, where the inset shows the dissipation rate and the detected Aygq,
lengths.
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FIGURE 12. (Colour online) Dissipation layer thickness measurement example. Left
images shows mole fraction from a M = 1.6 PS4 image. Middle image shows the
dissipation rate. Zoomed-in image shows the 20 % thickness of detected dissipation
structures.
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FIGURE 13. (Colour online) PDFs of dissipation layer thickness: (a¢) M = 1.6 and
by M=2.2.

The PDF of the dissipation layer thickness is shown in figure 13 for the different
times and Mach numbers. There is a noticeable trend of decreasing scales up until
the last three post-shock times, where the PDFs all collapse to a similar curve. The
peak in the late-time PDFs is at 0.75 mm, which is ~5x the standard deviation of
the line spread function. From this resolution there is an estimated 25 % error in the
dissipation length scale measurements at the late post-shock times (Wang & Clemens
2004). The trend of decreasing A,gq, is notable despite the resolution limits. This scale
is compared with the Batchelor scale from the dissipation spectra in figure 14. A
proportionality constant of A &5 scales A4 to Ap at the last three post-shock times.
This is within the range of previously reported values for A (Buch & Dahm 1998; Su
& Clemens 2003; Wang et al. 2007). All of the measurements in figure 14 show a
trend of decreasing scale for the first three times (IC, PS1, and PS2). The flattening
out at the last three times may be a consequence of resolution limitations.
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FIGURE 14. (Colour online) Batchelor and dissipation length scales: (¢) M = 1.6 and
() M=2.2.

3.6.2. Taylor microscale
The Taylor microscale is defined based on the curvature of the scalar or velocity
autocorrelation. The scalar variance autocorrelation,

(" (0" (x+ 1))
("?)

is symmetric, R(—r) = R(r), so the first terms in the Taylor series are

1 d*R(0) ,

— r

2 dr?

r2

-,
Az

R(r) = , (3.19)

R(r) = (3.20)

=1 3.21)

where Ay is the Taylor microscale. This scale can be calculated directly from the
curvature of the autocorrelation (Champagne, Harris & Corrsin 1970; Ramaprabhu &
Andrews 2004; Petersen & Ghandhi 2011),

[ 1RO
T2

or, equivalently, it can be calculated from the variance and the first derivative,

(3.22)

1/2 172

*2 *)2
/lT,x — M A, = M . (323a’b)

k] T,
9 g* 2 < 9 %-* 2
ox 0z
Both methods are explored here.
When calculating (§*(x)§*(x+r)) within the domain [x,, x,], the spanwise averaging

operator needs modification to avoid zero-biasing and ensure symmetry. Therefore, for
the autocorrelation, the following is used

1 Xo—r
("0 (x+1) = / ' E" (x+ 1) dx. (3.24)
Xop — X —F

X1
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FIGURE 15. (Colour online) Autocorrelation examples: (a) horizontal, zoomed in to
show interlacing technique and (b) the full autocorrelation in the horizontal and vertical
directions (using the two subtraction methods).

From the cross-correlation theorem, the transform of the autocorrelation is equivalent
to the square of the magnitude of the Fourier transform of the single variable,
in this case &. The autocorrelation can then efficiently be computed through the
inverse transform, with appropriate normalization. We take advantage of this and
use the interlacing technique, equation (3.13), when computing the transform. This
avoids some of the loss in correlation that occurs due to noise. The effect of this
is small, as shown in figure 15(a), but it improves the calculation of the Taylor
microscale, producing a curve that appears more parabolic near the r = 0 point.
For this example, the parabola fits the interlaced autocorrelation curve with 2.6 %
error in the Taylor microscale value, while 7.3 % error is found when fit to the
regular autocorrelation curve. The full autocorrelation is shown in figure 15(b) in
the horizontal and vertical directions. The horizontal autocorrelation, computed after
subtracting the spanwise-averaged profile from the image, continues downward into
the negative region due to the presence of low wavenumber structures in the layer.
The vertical autocorrelation is computed in two ways: (i) subtracting the vertical
average of each column before calculating the autocorrelation and (ii) subtracting
both the spanwise average and the vertical average. These two methods are shown in
figure 15(b). The vertical autocorrelation computed using the first method, subtracting
the vertical average, becomes inversely (negatively) correlated over large distances.
This is because the mole fraction goes from & = 0 in the bottom of the image to
& =1 in the top. This issue is mitigated by also subtracting the spanwise-averaged
profile from the image, which causes the autocorrelation to oscillate near zero at
larger distances and is similar to the horizontal curve at small distances.

The Taylor microscale is computed from the curvature of the autocorrelation curve
at » = 0. The chosen method is to fit a parabola to the central seven points, i.e.
the central r = 0 point, the next three points and the equivalent three points on the
negative r side of the autocorrelation. Using different numbers of points or using a
second-order central difference at » =0 produces proportional results but appears to
have more scatter over the different experiments. As shown below, this seven-point
fitting method gives similar results to a different Taylor microscale calculation in the
horizontal direction.

An alternate method for calculating the Taylor microscale, used in RTI simulations
(Ristorcelli & Clark 2004; Cabot & Cook 2006), is through the variance and the
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FIGURE 16. (Colour online) Taylor microscale: (a) M =1.6 and (b) M =2.2. Error bars
show the standard error of the mean.

gradient (3.23). The averaging is performed in the spanwise direction for both the
horizontal and vertical directions. The error in this measurement can be estimated
from the work of Wang et al. (2007), where the degradation in the mean variance and
scalar dissipation (i.e. the numerator and denominator of (3.23)) are computed based
on resolution. With the smallest measured Batchelor scale from the previous section,
the Taylor microscale would be overestimated by only 2% based on the resolution
(orsr/Ap = 1.3). If the Batchelor scale were actually 2x smaller than this value,
the Taylor microscale would be overestimated by 15 %, 4 x would produces a 66 %
overestimate. The Taylor microscale values are compared in figure 16, where ‘acorr’
refers to the parabolic fit to the autocorrelation and ‘var’ refers to the variance/gradient
method (3.23). The two methods produce similar results in the horizontal direction,
with a magnitude near 4 mm and little change in the last three post-shock times.
In the vertical direction there is nearly a factor of two difference between the two
methods for some of the post-shock times. Both methods start with a vertical Taylor
microscale that is smaller than the horizontal scale. In the variance-based method,
the scale appears to be slightly larger than the horizontal scale by the latest time,
while the autocorrelation-based method produces a vertical scale that stays below
the horizontal scale. The expected evolution of the layer supports the trend observed
in the variance-based method. (i) The vertical scales should start smaller than the
horizontal scales due to the shock compression of the layer. (ii) In time, simulations
of RTI and RMI turbulence note a persistent anisotropy with larger vertical Taylor
microscales (although based on the velocity, not on scalars) (Cabot & Cook 2006;
Lombardini, Pullin & Meiron 2012). For these reasons, the variance-based method is
used in the following discussion.

3.7. Length scales and Reynolds number discussion

The values of the Batchelor and Taylor scales measured above appear large compared
with those computed through Reynolds number scaling. We estimate below a Reynolds
number of 6 x 10* for the M = 1.6 experiments at late times. Using this, one could
estimate the Batchelor scale as Az = Re */*h =28 pm, where the final average hs_os
thickness of 10.6 cm is used. Similarly, the Taylor microscale could be estimated
as Ay = 2.3Re"'?h = 1.0 mm. Both of these values are 4x smaller than measured.
The resolution effects discussed in the previous section do not make up for this
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FIGURE 17. (Colour online) Summary of length scales: (a¢) M =1.6 and (b) M =2.2. The
markers represent, from left to right, IC, PS1, PS2, PS3 and PS4.

discrepancy, as a 4x overestimate of Az would reduce the actual Ay by only 1.66x.
This may imply that the traditional Reynolds number scaling laws ((1.1) and (1.2))
may need modifications (different coefficients) when applied to RMI or variable
density turbulence to produce length scales that agree with measurements. Using
Reynolds number scaling in a similar flow, Tomkins et al. (2013) estimate a value
of A7 =0.14 mm, thus it would be interesting whether (3.22) or (3.23) predict larger
values in a similar manner.

Some of the length scales discussed previously are summarized in figure 17. A
picture of scale separation emerges from this figure, with the largest scale, hs_os,
getting larger, the smallest scale, A,y and Ap, getting smaller, and the intermediate
scale, A7, staying approximately the same or slightly increasing.

The Reynolds number can be measured from the Batchelor and Taylor scales. From
the ratio of their Reynolds number dependence ((1.1) and (1.2)),

/lT _ 2.3£R€_1/2

Ag  LRe™4 -2

the outer-scale Reynolds number is

1 /a\*
Re~— (21 . (3.26)
28 \ 1,

By definition, Re > 1 x 10* for this equation is equivalent to A, /A4, > 1. The Reynolds
number is computed and shown in figure 18. Curves are shown for each Mach number
and separate calculations of (3.26) are made using the Batchelor scale from the 1/k;q,
value and from the fit to Pope’s model spectrum. The horizontal Taylor microscale,
calculated using (3.23), is used. Also shown in figure 18 is a definition for outer-scale
Reynolds number commonly used in RMI and RTI computational studies,

_hh
==

Re (3.27)
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105 L

103 §

FIGURE 18. (Colour online) Reynolds number measurements. Here M = 1.6 in blue and
M = 2.2 in red. Dotted lines use (3.27) and the curve fits of figure 5(b). Solid and
dashed lines use (3.26), measuring Az using the 1/k,4 method and fitting to Pope’s model,
respectively. The markers attached to the solid and dashed lines represent, from left to
right, IC, PS1, PS2, PS3 and PS4. The grey band indicates the threshold for turbulent
mixing (Dimotakis 2000).

Here this equation is evaluated using the linear and power-law curve fits from
figure 5(b). The kinematic viscosity is computed as v(§) = puu/ (05 + (0] — p5)&) and
the dynamic viscosity is averaged from the viscosities of each species, weighted by
its mole fraction and molecular weight (Reid, Prausnitz & Poling 1987),

Z wi&ivMW;

W. (3.28)

Momix =

The kinematic viscosity varies by ~3x for the range of mole fractions within the
mixing layer, implying that (3.27) could vary by similar amounts. Since the average
mole fraction within the mixing layer is £ ~0.5, v(§) is evaluated at this value, giving
1.60 x 107> m? s! and 1.64 x 107> m? s~ for the M = 1.6 and M = 2.2 cases,
respectively.

Using the length scales and (3.26), the Reynolds number grows by two orders
of magnitude throughout the experiment. Using the 1/k,q value for the Batchelor
scale, the turbulent transition (shown as a horizontal grey band in figure 18) is
passed near the second post-shock time. A final Reynolds number of 5.7 x 10* and
7.2 x 10* is reached at the latest time in the M = 1.6 and M = 2.2 experiments,
respectively. The Reynolds number based on the Batchelor scale from fitting Pope’s
model spectrum is considerably smaller and only predicts that the flow begins to
transition to turbulence at either of the last two times (A;/4, & 1). These differences
highlight how the uncertainty in the measurements are amplified by the power of
four involved in (3.26). Since the Pope-model estimate is believed to be the upper
limit of the Batchelor scale, then the corresponding curve represents the lower limit
of this Reynolds number estimate. But both calculations exhibit the same trend,
with a Reynolds number increasing in time due to increased scale separation as the
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FIGURE 19. (Colour online) The estimated initial vorticity field from a M = 1.6
experiment. The vortex Reynolds number of several vortices are noted.

mixing layer develops. The Reynolds number using the 1/k,4 value agrees with
the conclusions of the mole fraction PDFs and the spectra, where a transition to
turbulence appeared to occur near the second post-shock time. In a similar flow,
Balasubramanian, Orlicz & Prestridge (2013) computed a Reynolds number based on
the turbulent kinetic energy and also saw an increase in Re over time. In that case,
the Reynolds number only rose by 50 %, possibly due to the flow remaining in a
transitional state (Re~ 1.5 x 10*).

The Reynolds number based on hh/v does not capture the transition that occurs
during the experiment but is in general agreement with the final values based on
Ar/Ag. Equation (3.27) is not expected to represent the time-dependent Reynolds
number, particularly in this flow where h starts out rather large, but may represent
the maximum Reynolds number that may be reached. Others (Balasubramanian et al.
2013; Tomkins et al. 2013) have noted that this definition fails to capture the ratio
of inertial to viscous forces that drive RMI turbulence.

A final estimate of the Reynolds number can be made using a model of vorticity
deposition on the interface and compared to the values in figure 18. Assuming an
impulsive acceleration to a velocity V;, the out-of-plane vorticity deposition on the
interface is (Weber, Cook & Bonazza 2013)

w,~ -2 (3.29)

where p is the compressed, post-shock density field. This vorticity model is applied
to a PS1, M = 1.6 image, which is taken immediately after shock compression where
it is expected that little amplitude growth has occurred. Figure 19 shows the deposited
vorticity approximation, using (3.29) and (3.12).

From figure 19, the initial post-shock layer appears to contain coherent rings and
tubes of vorticity. A vortex ring in isolation becomes turbulent and breaks apart when
its vortex Reynolds number is larger than 2.5 x 10* (Glezer 1988). Vortex tubes in this
layer will experience similar dynamics, complicated by interactions with neighbouring
vortices, thus it is appropriate to measure vortex Reynolds number within this layer.
The vortex Reynolds number is defined as

r
Rer = —, (3.30)
%

where I is the circulation of the vortex core.
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Vortex cores are identified in the vorticity field by isolating regions where
the vorticity magnitude is above a certain threshold and integrating the vorticity,
I' = [ wda, within this region. In addition, the local viscosity is computed using the
mole fraction values within the isolated region. Several vortex cores are outlined in
figure 19 and their corresponding vortex Reynolds number are noted. This method
finds a number of vorticity regions that are above the turbulent threshold, with a
maximum of Re; = 1.0 x 10°. This Reynolds number calculation shares similarities
to the method used by Lombardini et al. (2012), where the impulsive RMI model of
Saffman & Meiron (1989) was used to estimate the initial kinetic energy deposited
on the interface and, thus, the Reynolds number. With reasonable estimates for the
parameters in their model (a perturbation size of 2 cm, which is approximately the
thickness of the high-variance region in figure 2(c), and a diffusion thickness of 4 cm,
which is the compressed hs_os value), a Reynolds number of 8.4 x 10* is found for
this M = 1.6 case. These Reynolds number estimates are similar to that measured
using the Taylor/Batchelor scale ratio.

Agreement between these different Reynolds number techniques is not unexpected.

First, there are common roots in hil/v and I"/v. The value hh/ v will peak between
the linear and power-law stage of growth where h is approximately equal to the
dominant wavelength, A, reaching a maximum value N/lh/ v. Through linear analysis,
I' = (2/m)Ah (Jacobs & Sheeley 1996). Therefore hh/v can be expected to peak
near I'/v. Second, recent analy51s by Tomkins et al. (2013) compared hh/v, I'/v
and locally computed values using particle-image velocimetry data, finding that these
Reynolds numbers agreed within a factor of two. The Reynolds number estimate
presented here based on Ay/Ap can be considered an additional method of estimating
the local Reynolds number from PLIF data.

4. Conclusions

The turbulent mixing that results from the RMI was studied using a unique
shear-layer initial condition and quantitative PLIF imaging. After acceleration by
aM=16 or M = 2.2 shock wave, the mixing layer is initially dominated by
the growth of large-scale spikes and bubbles, but these structures eventually break
apart into smaller scales, leading to molecular mixing and scale separation that is
indicative of a turbulent transition. The two Mach numbers seem to evolve similarly
when compared at the same interface travel distance.

The mole fraction PDFs and spectra provide evidence for turbulent mixing at late
times. The PDFs show three peaks, two representing the unmixed fluids and one
representing the mixed fluid that is present in the initial condition. The central peak
in the PDF reduces in time and disappears by the latest time at the larger Mach
number. This intermediate fluid and the light fluid are observed mixing to produce
& ~ 0.8 fluid. The scalar variance energy spectra appear to be fully developed by the
last two times and exhibit an inertial range close to k=/3.

Several length scales from within the mixing layer are measured and provide a clear
picture of the scale separation that causes the turbulent transition. The large-scale
extent of the mixing layer is found growing linearly early on and then as ** by
the end of the experiment. The smallest length scale, the Batchelor scale, reduces from
its initial condition value and reaches 100-250 pwm, depending on the technique used.
The intermediate scale, the Taylor microscale, shows early-time anisotropy caused by
the shock wave and then stays near 4 mm for the latter three post-shock times.

The ratio of the Taylor to Batchelor scale is used to compute the Reynolds
number. This Reynolds number is growing in time and crosses the turbulent transition
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threshold near the second post-shock time, eventually reaching 6-7 x 10*. This result
is dependent on the method used for measuring the Batchelor scale, but Az = 1/ky¢
appears to support the results of the PDF and spectral analysis. This Reynolds number
is similar to the vortex Reynolds number through an estimate of the initial baroclinic
vorticity.
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