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Abstract
Traditional radiometric tracking navigation increasingly fails to meet the demands of deep space exploration.
In contrast, optical navigation enables interplanetary spacecraft to navigate autonomously with higher precision.
The effectiveness of image processing algorithms plays a crucial role in determining the accuracy of optical
navigation systems. This paper presents a robust centroid extraction method based on a hybrid genetic algorithm.
First, noise interference is effectively reduced by leveraging proximity information. Second, a fitness evaluation
mechanism is introduced to assess model performance throughout the iterative process. Third, an annealing mutation
operator is incorporated to prevent premature convergence to local optima. Finally, extensive comparative testing
demonstrates that the proposed method offers substantial improvements in both accuracy and robustness, thereby
substantially improving the reliability of the navigation system under complex conditions.

1. Introduction

In March 2019, the United States announced the Artemis programme, which aims to facilitate humanity’s
return to the Moon. The primary goal of this initiative is to establish a permanent and sustainable
human presence in cislunar space, while simultaneously preparing for future crewed missions to Mars.
To ensure astronaut safety, manned missions must be equipped with autonomous navigation systems to
prevent communication loss with ground control. In response to this need, Artemis I has been outfitted
with an optical navigation (OpNav) system, specifically designed to enable fully autonomous navigation
and ensure the safe return of astronauts to Earth without reliance on the ground station.

In May 1971, the Mariner-9 spacecraft provided the first successful confirmation that the OpNav
system could effectively guide spacecraft autonomously during its mission to Mars (Masursky, 1973).
Four years later, the viability of this technology was further demonstrated by two Viking missions
to Mars (Hess et al., 1977). Initially, however, the OpNav system required ongoing communication
with ground stations for mission management and navigation corrections. A significant milestone was
reached in 1998 when the Deep Space-1 mission successfully carried out OpNav without relying on
ground-based support, marking a major advancement in deep space navigation technology (Bhaskaran
et al., 2000). Following this achievement, OpNav capabilities have been incorporated into a range of
subsequent missions, such as the Surveyor and the Deep Impact missions (Albee et al., 2001; A’Hearn
et al., 2005).
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1.1. Related work

The OpNav system utilises various image processing (IP) techniques to extract navigation data from
the original images. These observations include landmark tracking (Cheng et al., 2003; Hanak, 2009;
Gaskell, 2011; Rohrschneider 2011), star horizon (Synnott et al., 1986; Owen, 2011), centroid and
apparent diameter (CAD) (Christian and Lightsey, 2012; Mortari et al., 2013; Borissov and Mortari,
2014), and star occultation (Psiaki and Hinks, 2007). When the probe approaches a planet, landmark
tracking methods are often employed to autonomously determine its orbit. However, these methods
struggle to accurately capture terrain geometry at greater distances, resulting in unacceptable levels of
precision. Conversely, when the probe is farther from the planet, planetary horizon features can be easily
extracted for autonomous navigation. While horizon-based navigation typically offers lower accuracy
compared to landmark tracking, it still meets the navigational requirements of deep space exploration.
Moreover, this approach is more practical in real-world applications, as it does not require identifying
and matching specific features.

In horizon-based measurements, CAD observations provide continuous estimates for the detector.
These observations consist of two key components: the line of sight (LOS) direction from the camera
to the planet and the apparent size of the planet within the image frame. If IP techniques successfully
identify the centroid of an object, the LOS direction can be determined. Furthermore, since planetary
size and shape are known parameters, measuring the apparent diameter on the image plane allows for
the calculation of the distance between the camera and the planet. By integrating these two pieces of
information − the LOS direction and apparent diameter − it becomes possible to accurately estimate
both the camera position and the spacecraft’s location.

Celestial geometric model fitting plays a pivotal role in IP tasks aimed at acquiring CAD observations
within OpNav systems. Liu et al. (2020) proposed a real-time ellipse detection algorithm that improves
fitting accuracy through edge screening and aggregation, but it struggles with overlapping and complex
backgrounds. To address this issue, Panagiotakis and Argyros (2020) developed the RFOVE method,
which uses region-based analysis to mitigate overlap interference. However, its robustness in high-
noise environments remains limited. Pruthi et al. (2020) employed a firefly optimisation algorithm to
enhance noise handling and improve nonlinear fitting performance; however, the method’s sensitivity to
initial parameters and its environmental adaptability still require further refinement. Dong et al. (2021)
introduced Ellipse R-CNN, which leverages convolutional neural networks and clustering techniques to
enhance fitting accuracy. However, its heavy reliance on large amounts of labelled data poses significant
challenges. Although Ou et al. (2021) optimised the model to reduce data dependency, the computational
complexity remains high, limiting its efficiency in real-time applications.

To improve consistency in ellipse detection, Wang et al. (2024) proposed the Anisotropic Scale-
Invariant method, which normalises ellipses to a unit circle in the ellipse normalisation (EN) space to
handle ellipses of varying sizes and shapes. However, this approach’s reliance on EN space transfor-
mation increases computational overhead, and its performance with extremely elliptical shapes remains
unverified. Wang et al.’s (2022) ElDet incorporates edge fusion and customised loss functions, sig-
nificantly enhancing detection accuracy, yet its dependency on edge information and complex module
design limits its applicability in resource-constrained environments. Long et al.’s (2023) three-stage
robust ellipse fitting algorithm reduces manual intervention through adaptive outlier removal and polar
coordinate detection, but it faces challenges due to its complexity and sensitivity to parameter selection.
Jia et al.’s (2024) EDNet improves detection accuracy through optimised loss functions and edge detec-
tion modules, but its intricate network structure and reliance on edge information still require further
refinement.

Duan et al. (2020) introduced a biomimetic visual control system that simulates natural visual
mechanisms to enhance adaptability to complex celestial trajectories, while Toso et al. (2019) presented
a QR updating factorisation method that supports real-time fitting through fast computation. However,
its generalisability across broader application scenarios remains to be validated. Overall, current ellipse
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Figure 1. Relationship between the five coordinate systems.

fitting methods face challenges in balancing the complexities of handling overlaps, noise interference,
and computational efficiency.

1.2. Proposed approach

To overcome the limitations of existing methods, this paper introduces an ellipse fitting technique based
on a hybrid genetic algorithm for the OpNav system. By combining the global search capabilities
of genetic algorithms with local optimisation strategies, this method effectively addresses challenges
posed by outliers and noise, while ensuring rapid convergence to optimal solutions. The key innovations
of this approach include: (1) a fast method for identifying valuable celestial contours based on edge
gradients, (2) outlier elimination during the rough estimation phase using the RANSAC algorithm, and
(3) improved accuracy and efficiency in celestial model computation during the refined estimation phase
with the hybrid genetic algorithm.

2. Fundamentals of OpNav

2.1. Coordinate systems and LOS pointing model

The OpNav system involves five coordinate systems: the inertial coordinate system, 𝑂𝑤 − 𝑋𝑤𝑌𝑤𝑍𝑤 ,
the body coordinate system, 𝑂𝑏 − 𝑋𝑏𝑌𝑏𝑍𝑏, the camera coordinate system, 𝑂𝑐 − 𝑋𝑐𝑌𝑐𝑍𝑐 , the image
coordinate system, 𝑂𝑢′𝑣′ − 𝑥𝑦, and the pixel coordinate system, 𝑂𝑢𝑣 − 𝑢𝑣. As shown in Figure 1, the
𝑂𝑤 − 𝑋𝑤𝑌𝑤𝑍𝑤 is used to describe the spatial position and attitude of both the celestial body and the
spacecraft. The conversion relationship between the 𝑂𝑏 − 𝑋𝑏𝑌𝑏𝑍𝑏 and the 𝑂𝑐 − 𝑋𝑐𝑌𝑐𝑍𝑐 is determined
by the camera’s mounting position. The 𝑂𝑢′𝑣′ − 𝑥𝑦 and the 𝑂𝑢𝑣 − 𝑢𝑣 are in the same image plane.

Based on the monocular camera, the OpNav system extracts the LOS vector from the camera to
the planetary centroid. To simplify the calculation, the 𝑂𝑢′𝑣′ − 𝑥𝑦 is introduced into the model. The
𝑂𝑢′𝑣′ − 𝑥𝑦 and the𝑂𝑢𝑣 −𝑢𝑣 lie in the same plane, but their origins and coordinate units differ. The point
𝑝(𝑥, 𝑦) in the 𝑂𝑢′𝑣′ − 𝑥𝑦 can be expressed in pixel coordinates as{

𝑥 = (𝑢 − 𝑢′)/𝑑𝑥
𝑦 = (𝑣 − 𝑣′)/𝑑𝑦

(1)

where (𝑢, 𝑣) are the pixel coordinates of the navigation object, (𝑢′, 𝑣′) are the coordinates of the
image plane centre, and 𝑑𝑥 and 𝑑𝑦 denote the number of pixels per unit of physical size along the
respective coordinate axes. Based on the geometric relationship of the small-aperture imaging model,
the relationship between the point 𝑃(𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) in the𝑂𝑐 − 𝑋𝑐𝑌𝑐𝑍𝑐 and the point 𝑝(𝑥𝑖 , 𝑦𝑖) in the
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Figure 2. Imaging process and LOS direction model.

𝑂𝑢′𝑣′ − 𝑥𝑦 is given by ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥𝑖 = 𝑓

𝑋𝑖
𝑍𝑖

𝑦𝑖 = 𝑓
𝑌𝑖
𝑍𝑖

(2)

where f denotes the focal length of the camera, which is considered constant. Figure 2 illustrates the
concept for estimating the optical observation LOS using image coordinates (𝑥, 𝑦). If the 𝑍𝑐 axis of the
𝑂𝑐 − 𝑋𝑐𝑌𝑐𝑍𝑐 is assumed to coincide with the navigation camera’s optical axis, the relationship between
the focal length, a measured point on the image plane, and the LOS vector to the image source is given
by (Christian, 2010) the following:

𝑒𝐶𝑖 =
1√

𝑥2
𝑖 + 𝑦

2
𝑖 + 𝑓

2

⎡⎢⎢⎢⎢⎣
−𝑥𝑖
−𝑦𝑖
𝑓

⎤⎥⎥⎥⎥⎦ (3)

where 𝑒𝐶𝑖 is the LOS vector in the 𝑂𝑐 − 𝑋𝑐𝑌𝑐𝑍𝑐 . Further, the LOS vector in the 𝑂𝑤 − 𝑋𝑤𝑌𝑤𝑍𝑤 can be
obtained by the rotation operation:

𝑒𝐼𝑖 = 𝑇 𝐼
𝐵𝑇

𝐵
𝐶 𝑒

𝐶
𝑖 (4)

where 𝑇𝐵
𝐶 is the conversion matrix from the camera frame to the body frame, and 𝑇 𝐼

𝐵 is the conversion
matrix from the body frame to the inertial frame.

2.1. Principle of OpNav

OpNav uses the camera to determine the spacecraft’s position relative to the planet. However, determin-
ing the location using image data is an abstract process. Therefore, this section discusses the projection
of a triaxial ellipsoid onto the image plane.

For a two-dimensional (2D) conic curve, the implicit equation is given by

𝐴𝑥2
𝑖 + 𝐵𝑥𝑖𝑦𝑖 + 𝐶𝑦

2
𝑖 + 𝐷𝑥𝑖 + 𝐸𝑦𝑖 + 𝐹 = 0 (5)

where (𝑥𝑖 , 𝑦𝑖) is the planetary edge in the image plane. If 4𝐴𝐶 >𝐵2, the curve is an ellipse. Based on
the relationship between a point (𝑥𝑖 , 𝑦𝑖) in the image plane and the corresponding point (𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) in
the camera coordinate system, as described by Equation (2), the three-dimensional form of the model is

𝐴

(
𝑓
𝑋𝑖
𝑍𝑖

)2

+ 𝐵

(
𝑓
𝑋𝑖
𝑍𝑖

) (
𝑓
𝑌𝑖
𝑍𝑖

)
+ 𝐶

(
𝑓
𝑌𝑖
𝑍𝑖

)2

+ 𝐷

(
𝑓
𝑋𝑖
𝑍𝑖

)
+ 𝐸

(
𝑓
𝑌𝑖
𝑍𝑖

)
+ 𝐹 = 0 (6)
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Figure 3. The process of planetary projection into the image plane.

Rewritten into matrix form as

[
𝑋𝑖 𝑌𝑖 𝑍𝑖

] ⎡⎢⎢⎢⎢⎢⎣
𝐴 𝑓 2 𝐵 𝑓 2/2 𝐷 𝑓 /2
𝐵 𝑓 2/2 𝐶 𝑓 2 𝐸 𝑓 /2
𝐷 𝑓 /2 𝐸 𝑓 /2 𝐹

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑋𝑖
𝑌𝑖
𝑍𝑖

⎤⎥⎥⎥⎥⎦ = 0 (7)

The 𝑃𝑖 and K are defined as

𝑷𝑖 =
[
𝑋𝑖 𝑌𝑖 𝑍𝑖

]𝑇
, 𝑲 =

⎡⎢⎢⎢⎢⎢⎣
𝐴 𝑓 2 𝐵 𝑓 2/2 𝐷 𝑓 /2
𝐵 𝑓 2/2 𝐶 𝑓 2 𝐸 𝑓 /2
𝐷 𝑓 /2 𝐸 𝑓 /2 𝐹

⎤⎥⎥⎥⎥⎥⎦
(8)

Then,
𝑷𝑇
𝑖 𝑲𝑷 = 0 (9)

It can be found that Equation (9) represents a conic surface. This implies that the image plane
intersects the conic surface, resulting in an ellipse, which corresponds to the planetary 2D model in the
image plane (as shown in Figure 3).

After deriving the conic surface from Equation (9), the relationship with the triaxial ellipsoid
representing the observed planet is established. In the planet’s inertial frame, any point 𝑃𝑖 on its surface
can be written as

𝑃𝑇𝑖

⎡⎢⎢⎢⎢⎣
1/𝑎2 0 0

0 1/𝑏2 0
0 0 1/𝑐2

⎤⎥⎥⎥⎥⎦ 𝑃𝑖 = 𝑃
𝑇
𝑖 𝐴𝑃𝑃𝑖 = 1 (10)

Based on the rotation matrix 𝑇𝑃
𝐶 from the camera to the planetary inertial frame, Equation (10) is

expressed in the camera frame as

𝑝𝑇𝑖 𝑇
𝑃
𝐶 𝐴𝑃 (𝑇

𝑃
𝐶 )𝑇 𝑝𝑖 = 𝑝

𝑇
𝑖 𝐴𝑝𝑖 = 1 (11)

where 𝑝𝑖 is the point in the camera frame corresponding to 𝑃𝑖 . As shown in Figure 4, the vector from
the origin of the camera frame to the planetary point, 𝑝𝑖 , is given by

𝑠𝑖 = 𝑝𝑖 − 𝑟 = 𝑘𝑒𝑖 (12)
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Figure 4. Geometry of the planetary surface as observed from the camera frame.

where 𝑒𝑖 is the unit vector of 𝑠𝑖 and k is the corresponding length. Substituting Equation (12) into
Equation (11) yields

(𝑒𝑇𝑖 𝐴𝑒𝑖)𝑘
2 + 2(𝑒𝑇𝑖 𝐴𝑟)𝑘 + (𝑟𝑇 𝐴𝑟 − 1) = 0 (13)

If k is the only real solution, it implies that the point 𝑝𝑖 lies on the horizon. Therefore, the determining
equation of Equation (13) is obtained as

4(𝑒𝑇𝑖 𝐴𝑟)2 − 4(𝑒𝑇𝑖 𝐴𝑒𝑖)(𝑟𝑇 𝐴𝑟 − 1) = 0 (14)

Rewritten as
𝑒𝑇𝑖 [𝐴𝑟𝑟

𝑇 𝐴 − (𝑟𝑇 𝐴𝑟 − 1)𝐴]𝑒𝑖 = 0 (15)

If 𝑴 = 𝐴𝑟𝑟𝑇 𝐴 − (𝑟𝑇 𝐴𝑟 − 1)𝐴, substitute it into Equation (15) and multiply 𝑘2 both sides of the
equation by

𝑠𝑇𝑖 𝑴𝑠𝑖 = 0 (16)

It has been demonstrated that all possible 𝑠𝑖 form a cone, and this conic surface is consistent with the
one described by Equation (9). Therefore, if the 2D ellipse parameters are known, the position relative
to the observed planet can be calculated using the projection relation. Note that A consists of the rotation
matrix, which can be accurately determined using the spacecraft’s attitude and the planetary ephemeris.

3. RANSAC

To extract the centroid of an object, the celestial body is modelled as a general ellipse model:

𝐹 (𝑥, 𝑦) = 𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷𝑥 + 𝐸𝑦 + 𝐹 = 0 (17)

where 𝐹 (𝑥, 𝑦) describes an ellipse when 4𝐴𝐶 > 𝐵2. It can be expressed in matrix form as

[
𝑥 𝑦 1

] ⎡⎢⎢⎢⎢⎣
𝐴 𝐵/2 𝐷/2
𝐵/2 𝐶 𝐸/2
𝐷/2 𝐸/2 𝐹

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑥
𝑦
1

⎤⎥⎥⎥⎥⎦ = 0 (18)

Rewritten as
𝒗𝑇 𝜶 = 0 (19)

where 𝒗 =
[
𝑥2 𝑥𝑦 𝑦2 𝑥 𝑦 1

]T and 𝜶 =
[
𝐴 𝐵 𝐶 𝐷 𝐸 𝐹

]T. When all points, (𝑥𝑖 , 𝑦𝑖), lie on the
ellipse, 𝐹 (𝑥𝑖 , 𝑦𝑖) = 0. Thus, the problem is converted to

min 𝐽 =
𝑛∑
𝑖=1

[𝐹 (𝑥𝑖 , 𝑦𝑖)]
2 = 𝒗𝑇 𝜶𝑇 𝜶𝒗 (20)
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Before introducing the RANSAC method for solving 𝐽min, some essential parameters are defined.
The set S represents all edge points, or the sample space, while 𝑆 ∈ S denotes a subset of sample points
used to fit the ellipse model. The ellipse model space, represented as M, contains all model instances
𝑀𝑖 : = 𝑀 (𝑆𝑖) ∈ 𝑀 , 𝑖 = 1, 2, . . . , 𝑚. The function 𝑑𝑖 : = F (𝑀𝑖 , S) is defined as the distance
function between a model instance ,𝑀𝑖 , and the sample space, S. Based on the distance information, the
number of inliers, 𝑁𝑖𝑛 (𝑀𝑖) : =

∑
𝑑𝑖 ≤ 𝜏 , 𝑖 = 1, 2, . . . , 𝑚, within the model, 𝑀𝑖 , can be calculated,

where 𝜏 ∈ 𝑅+ is the threshold.
The objective of RANSAC is to identify the optimal model, 𝑀∗ (𝑆), which corresponds to the model

𝑀∗ (𝑆) with the maximum number of inliers, 𝑁∗
𝑖𝑛 (𝑀). During the iterative process, each model 𝑀𝑖

is selected with equal probability. For example, a sample 𝑆𝑘 is chosen from the uniformly distributed
sample space S. The model instance,𝑀 (𝑆𝑘 ), that produces the set 𝑁 𝑘

𝑖𝑛 := 𝑁𝑖𝑛 (𝑀 (𝑆𝑘 )) with the highest
number of inliers, that is, 𝑁 𝑘

𝑖𝑛 ≥ 𝑁𝑖𝑛 (𝑀𝑖) for all i, is the desired model. It is important to note that the
optimal model, 𝑀∗ (𝑆), and the threshold, 𝜏, are closely related: 𝑀∗ (𝑆) = 𝜏𝑀 (𝑆𝑘 ), indicating that the
model is determined based on the threshold 𝜏. The RANSAC procedure is outlined in Algorithm 1.

By minimising J, the optimal model,𝑀∗ (𝑆), is determined. As detailed in Appendix A, other essential
ellipse parameters can be derived, including the centre coordinates, (𝑥0, 𝑦0), semi-major axis, a, the
semi-minor axis, b, and the orientation, 𝜙,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥0 =

2𝐶𝐷 − 𝐵𝐸

𝐵2 − 4𝐴𝐶

𝑦0 =
2𝐴𝐸 − 𝐵𝐷

𝐵2 − 4𝐴𝐶

(21)

𝑎 =

√√√√√ 2[𝐴𝐸 + 𝐶𝐷 − 𝐵𝐷𝐸 + 𝐹]

(𝐵2 − 4𝐴𝐶)
[
𝐴 + 𝐶 −

√
(𝐴 − 𝐶)2 + 𝐵2

] (22)

𝑏 =

√√√√√ 2[𝐴𝐸 + 𝐶𝐷 − 𝐵𝐷𝐸 + 𝐹]

(𝐵2 − 4𝐴𝐶)
[
𝐴 + 𝐶 +

√
(𝐴 − 𝐶)2 + 𝐵2

] (23)

𝜙 =
1
2

tan−1
(

𝐵

𝐴 − 𝐶

)
(24)

4. Centroid extraction based on a hybrid genetic algorithm

Ellipse model fitting is a complex nonlinear problem due to the strong correlation among ellipse
parameters. The RANSAC algorithm, while useful, tends to converge to local optima when addressing
nonlinear problems. In such cases, the genetic algorithm has proven to be highly effective for solving
ellipse models.

In OpNav tasks, various types of noise are often introduced into the original image, making it
challenging for the algorithm to accurately compute the ellipse model in the presence of noise. Therefore,
it is necessary to remove outliers before fitting the ellipse model. Eliminating these outliers significantly
improves the performance of the method.

4.1. Outlier elimination

The process of outlier elimination involves dividing the edge points into two categories: inliers, which
provide useful data for fitting the ellipse model, and outliers. Proximity information between edge
points is used to capture the characteristics of the data, offering a reliable basis for outlier elimina-
tion. The Euclidean distance is employed to quantify proximity and facilitate the removal of outliers.
The procedure is as follows:
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Algorithm 1: The RANSAC ellipse fitting algorithm

1: 𝑁∗
𝑖𝑛 (𝑀) : = { } , 𝑀∗ (𝑆) : = {}

2: for 𝑖 : = 1 to I do
3: Choose 𝑆1

𝑖 , . . . , 𝑆
𝑘
𝑖 ∼ S

4: 𝑀1
𝑖 , . . . , 𝑀

𝑘
𝑖 ∼ 𝑀 : = 𝑓 𝑖𝑡𝑡𝑖𝑛𝑔(𝑆1

𝑖 , . . . , 𝑆
𝑘
𝑖 )

5: 𝑁𝑖𝑛 (𝑀
1
𝑖 ), . . . , 𝑁𝑖𝑛 (𝑀

𝑘
𝑖 ) : = 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔(𝑀1

𝑖 , . . . , 𝑀
𝑘
𝑖 ∼ 𝑀)

6: if 𝑁𝑖𝑛 (𝑀𝑖) > 𝑁∗
𝑖𝑛 (𝑀) then

7: 𝑁∗
𝑖𝑛 (𝑀) : = 𝑁𝑖𝑛 (𝑀𝑖)

8: 𝑀∗ (𝑆) : = 𝑀𝑖

9: end if
10: end for
11: return {𝑁∗

𝑖𝑛 (𝑀), 𝑀∗ (𝑆)}

Figure 5. Results of outlier elimination trials for different thresholds Θ (Θ ∈ [1 , 6]).

1) Construct a proximity information space Z to store the proximity data, Z𝑖 𝑗 = | | (𝑥𝑖 , 𝑦𝑖), (𝑥 𝑗 , 𝑦 𝑗 ) | |,
between point (𝑥𝑖 , 𝑦𝑖) and point (𝑥 𝑗 , 𝑦 𝑗 );

2) Count the number, 𝑘𝑖 , of neighbouring points around the point (𝑥𝑖 , 𝑦𝑖) based on the proximity
information space, Z;

3) Set a threshold, Θ, to determine whether a point (𝑥𝑖 , 𝑦𝑖) is an outlier, assuming 𝑘𝑖 < Θ.

The threshold Θ significantly affects the performance of the outlier elimination process. When Θ
is too small, sample points tend to form strong connections, making it difficult to detect outliers.
Conversely, when Θ is too large, inliers within the sample space, S, are more likely to be considered
outliers. Therefore, careful selection of the threshold value is crucial. Six sets of comparative trials were
conducted to determine the optimal value of Θ. In these tests, the range of integer values for Θ was
Θ ∈ [1 , 6]. The results, presented in Figure 5, indicated that the best performance for outlier rejection
was achieved when Θ = 3. Almost all outliers were accurately detected, with no inliers excluded.
Thus, the optimal threshold for the outlier elimination process was Θ = 3.
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Figure 6. Overview of the method: orange arrows represent inputs, and green arrows represent outputs.

4.2. Finding the optimal model using a hybrid genetic algorithm

The genetic algorithm is a stochastic search method that simulates biological evolution. It aims to
identify individuals with high fitness through selection, crossover, and mutation operations. In this
problem, the chromosome in the hybrid genetic algorithm represents the ellipse model, with the points
on the ellipse functioning similarly to genes in a chromosome. Given that an ellipse model can be fitted
using multiple pixel points, this approach innovatively treats the pixel points as genes, facilitating the
solution of the ellipse model within the hybrid genetic algorithm framework. This strategy eliminates
the need for traditional gene encoding and decoding processes, significantly improving computational
efficiency. The complete procedure of the hybrid genetic algorithm is illustrated in Figure 6.

In the current application, the initialisation operation randomly selects 180 edge points from the
sample space, S, to construct the model population, M. Using these edge points, 30 chromosomes
(ellipse models 𝑀𝑖 ∈ 𝑀) are generated as the initial population, with each chromosome consisting of
6 genes (edge points (𝑥𝑖 , 𝑦𝑖) ∈ S). It is important to note that the outlier elimination procedure is
performed before this step.
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After the outlier elimination operation, it is assumed that the sample space S′ ∈ S consists of normal
data. A model, 𝑀𝑖 , that includes a higher number of inliers typically corresponds to a lower error.
Therefore, the performance of an ellipse model 𝑀𝑖 can be evaluated based on the number of inliers,
𝑁𝑖𝑛 (𝑀𝑖). However, it is also important to consider the distribution of outliers around the model. The
fitness evaluation function, 𝜌, is defined as follows:

𝜌 = 𝛥 ∗ 𝜒

=

����𝑁𝑖𝑛 (𝑀𝑖) −
1
𝑛

∑
𝑖≤𝑛
𝑆𝑖𝑛 (𝑀𝑖)

����
|S|

𝑒𝑥𝑝

(
−

1
2

[
F (𝑀𝑖 , S)

𝜏

]2
) (25)

where 𝛥 is the reward function used to evaluate the number of inliers, and 𝜒 is the distance scale function
employed to assess the distribution of outliers around the model. The maximum value of the 𝜒 function
is 1, indicating that the current model represents an optimal solution.

During the selection operation, the probability of selecting an individual is proportional to its
fitness. This strategy has the advantage of automatically identifying better-performing individuals while
ensuring that no individuals in the population are discarded. The probability, P, of selecting an individual
is given by

𝑃𝑖 =
|𝑎 · 𝜌𝑖𝛥 + 𝑏 · 𝜌𝑖𝜒 |∑𝑛

𝑗=1

√
(𝑎 · 𝜌 𝑗

𝛥 + 𝑏 · 𝜌 𝑗
𝜒)

2
(26)

where a and b denote the factors of the reward function, 𝜌𝛥, and the distance scale function, 𝜌𝜒,
respectively. The properties of the selection operation can be controlled by adjusting these two factors.

The crossover of two chromosomes is designed to evolve better individuals. Since edge points are
treated as the genes of a chromosome, crossover is achieved by swapping points between individuals.
Parental chromosomes are randomly mated to produce two offspring chromosomes. A crossover factor,
𝛼, is introduced to control the crossover point between genes, with its value set in the range of 𝛼 ∈ (0, 1).
In each crossover event, the parental chromosomes mate only once.

The original mutation method is a one-way, random operation, which often causes the algorithm to
converge to locally optimal results. To improve the performance of the mutation operation, an annealing
mutation operator is introduced, which operates in a two-way, probabilistic manner. The mutation factor,
𝛽, is used to control the mutation probability, with its value set in the range of 𝛽 ∈ (0, 1). Mutation
results are either accepted or rejected based on the improved Metropolis criterion. If 𝜌𝑖+1 > 𝜌𝑖 , the
probability of accepting the new variant result is 1. Otherwise, the acceptance probability is determined
using the distance scale function, 𝜒, of the outliers. The improved Metropolis criterion is defined as

Improved Metropolis :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 𝜌𝑖+1 > 𝜌𝑖

𝑒𝑥𝑝

(
−

1
2

(
𝜌𝑖+1

𝜌𝑖

)2
)
, 𝜌𝑖+1 < 𝜌𝑖

(27)

5. Simulation and analysis

5.1. 𝜶, 𝜷 test

Before evaluating the performance of the algorithm, it is necessary to determine the optimal crossover
parameter, 𝛼, and the annealing mutation parameter, 𝛽. The crossover parameter, 𝛼, controls the mating
operations between two chromosomes, enabling the population to evolve into better individuals. The
annealing mutation parameter, 𝛽, is introduced to prevent the algorithm from converging to a local
optimum.
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Figure 7. Relative goodness tests are performed to determine a pair of coupled parameters: the
crossover parameter, 𝛼, and the annealing mutation parameter, 𝛽.

The general performance analysis of the method is based on the following terms. The inlier function,
G, calculated using the parameters 𝛼, 𝛽, is denoted as

𝐺 𝑡 (𝛼, 𝛽) : = 𝑁 𝑡
𝑖𝑛 (𝑀𝛼,𝛽) (28)

The average performance curve, L, is defined as

𝐿𝑡 (𝛼, 𝛽) : =
𝐺 𝑡 (𝛼, 𝛽)

𝑚
=

1
𝑚

𝑚∑
𝑖=1
𝑁 𝑡
𝑖𝑛 (𝑀𝑖) (29)

𝐿𝑡 (𝛼, 𝛽) represents the average number of inliers in the evolutionary process of the algorithm at
time t. It reflects the average performance of the algorithm during its evolution. The parameters 𝛼 and
𝛽 in the algorithm exhibit a degree of coupling, and it is important to consider the impact of this pair
of parameters on the algorithm’s performance. Therefore, the relative goodness curve, L, is defined to
represent the performance graph:

L(𝛼, 𝛽) : =
𝐿(𝛼, 𝛽) − min

∀𝛼′,𝛽′
𝐺 (𝛼′, 𝛽′)

max
∀𝛼′,𝛽′

𝐺 (𝛼′, 𝛽′) − min
∀𝛼′,𝛽′

𝐺 (𝛼′, 𝛽′)
(30)

In the test, the parameter ranges for 𝛼 and 𝛽 are set as (0, 0 · 95]. The performance of L (as shown in
Figure 7) improves significantly after several iterations. Specifically, the maximum value of L increases
from 0 · 3824 in the fifteenth generation to a peak value of 0 · 6384. As a result, the optimal values for
the parameters were found to be 𝛼 = 0 · 55 and 𝛽 = 0 · 15.

5.2. Ellipse fitting test

The edge points of the ellipse are used to evaluate the performance of the algorithm. To test its accuracy
and robustness, various levels of Gaussian noise are introduced into the data. The standard deviations,
𝛥, of the Gaussian noise are set to 0 · 3, 1, 1 · 5, and 2, respectively. After the iterative process, the
results are shown in Figures 8–11. The experimental results demonstrated that the proposed method
achieved superior accuracy and robustness. As noted previously, RANSAC tends to converge to a local
optimum as noise levels increase. In contrast, the proposed method consistently and accurately extracted
the centroid of the ellipse model.
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Figure 8. RANSAC and the proposed method utilise edge points to fit the ellipse model (𝛥 = 0 · 3).

Figure 9. RANSAC and the proposed method utilise edge points to fit the ellipse model (𝛥 = 1).

The number of inliers involved in the ellipse model is shown in Figure 12, where the total number of
edge points is 506. The results indicated that the outlier elimination operation effectively mitigated the
impact of noise. Furthermore, the ellipse models computed by the proposed method incorporated nearly
all valuable edge points. Consequently, the precision and robustness of this approach outperformed
those of RANSAC.

The statistical results of the comparison test are presented in Table 1. The minimum fitting error for
RANSAC was 0 · 671582 pixels, while the maximum error reached 2 · 462185 pixels. In contrast, the
maximum fitting error of the proposed method was 0 · 190068 pixels, demonstrating that the proposed
approach for deep space OpNav yielded superior performance in celestial centroid extraction. However,
the accuracy of centroid extraction does not directly reflect the overall performance of the OpNav system.
To assess this, the LOS direction for OpNav must be computed according to Equation (3).

For this evaluation, the camera parameters are assumed to be a focal length of 𝑓 = 200 mm, a field
of view of 𝜗 = 3 · 5◦, and scale factors of 𝑑𝑥 = 78 · 4 pixel/mm and 𝑑𝑦 = 68 · 7 pixel/mm. The LOS
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Figure 10. RANSAC and the proposed method utilise edge points to fit the ellipse model (𝛥 = 1 · 5).

Figure 11. RANSAC and the proposed method utilise edge points to fit the ellipse model (𝛥 = 2).

Table 1. Errors of the planetary centroid.

Ellipse fitting errors of the planetary centroid (pixel)

The standard deviation of Gaussian noise:

Comparison of two methods 𝛥 = 0 · 3 𝛥 = 1 𝛥 = 1 · 5 𝛥 = 2

RANSAC 𝑥0 coordinate error 1 · 340141 −1 · 564522 −1 · 711254 −1 · 892337
𝑦0 coordinate error 0 · 671582 −2 · 123813 −2 · 352374 −2 · 462185

Our method 𝑥0 coordinate error 0 · 016472 0 · 096484 −0 · 110343 −0 · 141847
𝑦0 coordinate error 0 · 121552 0 · 168122 0 · 172195 0 · 190068
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Figure 12. Comparison of the number of inliers between RANSAC and the proposed method under
different levels of Gaussian noise.

Table 2. Errors of the LOS direction.

Errors in the LOS direction from the
camera to the raw image (10−4rad)

The standard deviation of Gaussian noise:

Comparison of two methods 𝛥 = 0 · 3 𝛥 = 1 𝛥 = 1 · 5 𝛥 = 2

RANSAC 0 · 987811 1 · 85706 2 · 04953 2 · 18025
Our method 0 · 0902536 0 · 138414 0 · 145183 0 · 166826

pointing accuracy for OpNav is shown in Table 2. The results indicated that the LOS direction errors
of the proposed method were less than 0 · 902536 × 10−5 rad under noise 𝛥 = 0 · 3, and less than
1 · 66826 × 10−5 rad under noise 𝛥 = 2, both of which are smaller than the corresponding errors of the
RANSAC method.

Next, the centroid extraction errors of the two methods were compared under varying levels of
noise. Both approaches used edge points with different noise levels to fit ellipse models, and the results
are presented in Figure 13. As the standard deviation, 𝛥, of the noise increased, the fitting errors for
both methods also increased. However, it was evident that the fitting error of the proposed method
gradually decreased to a small value as the number of iterations grew. Due to the diverse population
in the algorithm, the proposed method consistently demonstrated smaller fitting errors compared to
RANSAC. In conclusion, the proposed method not only accurately extracted the planetary centroid but
also effectively mitigated the impact of noise.

To simulate realistic OpNav scenarios, celestial images were used to evaluate the performance of
the two algorithms. These images were generated using Celestia, an authoritative software developed
by NASA. Three images of a planet from different scenes were considered, with varying levels of
Gaussian noise (𝛥 = 5, 10, 25) were added to the images. The results of the two methods are shown in
Figures 14–16. The position of the celestial centroid is located at the centre of the image, marked by the
white spot. It can be observed that the proposed method accurately extracted the celestial centroid, even
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Figure 13. Errors in the 𝑥0 and 𝑦0 coordinates of centroid extraction under different noise levels.

Figure 14. Results of RANSAC (green) and the proposed method (red) for fitting planetary images. The
white spot is the precise centroid (𝛥 = 5).

Figure 15. Results of RANSAC (green) and the proposed method (red) for fitting planetary images. The
white spot is the precise centroid (𝛥 = 10).

Figure 16. Results of RANSAC (green) and the proposed method (red) for fitting planetary images. The
white spot is the precise centroid (𝛥 = 25).
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under different noise levels. Therefore, the effectiveness of the proposed method was demonstrated,
making it suitable for application in deep space OpNav.

6. Conclusions

This paper presents a robust optical observation extraction method for deep space exploration, based on a
hybrid genetic algorithm. By incorporating proximity information, the method effectively reduced noise,
while a fitness evaluation mechanism and an annealing mutation operator optimised model performance
and prevented premature convergence. The proposed ellipse fitting technique leverages the global search
capabilities of genetic algorithms combined with local optimisation to address challenges such as outliers
and noise. Extensive testing under varying noise levels demonstrated the method’s superior accuracy
and robustness in centroid extraction, even under complex conditions. These advancements improve the
reliability of OpNav systems, providing a promising solution for autonomous spacecraft navigation in
deep space.

Acknowledgements. Many thanks to Baojun Lin and Yingchun Liu for their discussions and contributions to this work.
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A. Appendix A

Consider the general equation of a conic section:

𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷𝑥 + 𝐸𝑦 + 𝐹 = 0 (A1)

where 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 are constants. The objective is to transform this equation into the standard form
of an ellipse through coordinate transformations, including translation and rotation, and to derive the
lengths of the semi-major and semi-minor axes.

A.1. Coordinate translation to eliminate linear terms

To eliminate the linear terms 𝐷𝑥 and 𝐸𝑦, a coordinate translation is performed, establishing a new
centre at (𝑥0, 𝑦0):

𝑥 = 𝑥 ′ + 𝑥0, 𝑦 = 𝑦
′ + 𝑦0 (A2)

Substituting these into the original equation yields

𝐴(𝑥 ′ + 𝑥0)
2 + 𝐵(𝑥 ′ + 𝑥0)(𝑦

′ + 𝑦0) + 𝐶 (𝑦
′ + 𝑦0)

2 + 𝐷 (𝑥 ′ + 𝑥0) + 𝐸 (𝑦
′ + 𝑦0) + 𝐹 = 0 (A3)

Upon expansion and simplification, the linear terms involving 𝑥 ′ and 𝑦′ appear as

(2𝐴𝑥0 + 𝐵𝑦0 + 𝐷)𝑥
′ + (2𝐶𝑦0 + 𝐵𝑥0 + 𝐸)𝑦

′ (A4)

To eliminate these linear terms, the following conditions must be satisfied:

2𝐴𝑥0 + 𝐵𝑦0 + 𝐷 = 0( 𝑓 𝑜𝑟𝑥0)

2𝐶𝑦0 + 𝐵𝑥0 + 𝐸 = 0( 𝑓 𝑜𝑟𝑦0)
(A5)

Solving this system yields the coordinates of the ellipse centre:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥0 =

2𝐶𝐷 − 𝐵𝐸

𝐵2 − 4𝐴𝐶

𝑦0 =
2𝐴𝐸 − 𝐵𝐷

𝐵2 − 4𝐴𝐶

(A6)

After eliminating the linear terms, the equation simplifies to

𝐴𝑥 ′2 + 𝐵𝑥 ′𝑦′ + 𝐶𝑦′2 + 𝐹 ′ = 0 (A7)
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where 𝐹 ′ is expressed as a combination of the squares of 𝑥0 and 𝑦0 along with the original constant 𝐹:

𝐹 ′ = 𝐴𝑥2
0 + 𝐵𝑥0𝑦0 + 𝐶𝑦

2
0 + 𝐷𝑥0 + 𝐸𝑦0 + 𝐹 (A8)

A.2. Elimination of cross terms through coordinate rotation

To eliminate the cross term 𝐵𝑥 ′𝑦′, a rotation of coordinates is performed, defined by an angle 𝜃. The
relationship between the new coordinates (𝑥 ′′, 𝑦′′) and the old coordinates (𝑥 ′, 𝑦′) is given by

𝑥 ′ = 𝑥 ′′ cos 𝜃 − 𝑦′′ sin 𝜃, 𝑦′ = 𝑥 ′′ sin 𝜃 + 𝑦′′ cos 𝜃 (A9)

Substituting these into 𝐴𝑥 ′2 + 𝐵𝑥 ′𝑦′ + 𝐶𝑦′2 and expanding leads to the condition for eliminating the
cross term 𝑥 ′′𝑦′′:

(𝐴 − 𝐶) sin(2𝜃) + 𝐵 cos(2𝜃) = 0 (A10)

Solving for 𝜃 yields

𝜃 =
1
2

tan−1
(

𝐵

𝐴 − 𝐶

)
(A11)

A.3. Transformation to standard form

After rotation, the equation simplifies to a form without cross terms:

𝜆1𝑥
′′2 + 𝜆2𝑦

′′2 + 𝐹 ′ = 0 (A12)

where 𝜆1 and 𝜆2 are defined as

𝜆1 =
𝐴 + 𝐶

2
+

√
(𝐴 − 𝐶)2 + 𝐵2

2
, 𝜆2 =

𝐴 + 𝐶

2
−

√
(𝐴 − 𝐶)2 + 𝐵2

2
(A13)

To achieve the standard form, the equation is divided by −𝐹 ′:

𝑥 ′′2

𝑎2 +
𝑦′′2

𝑏2 = 1 (A14)

where the semi-major axis a and semi-minor axis b are given by

𝑎 =

√
−𝐹 ′

𝜆1
, 𝑏 =

√
−𝐹 ′

𝜆2
(A15)

A.4. Calculation of the constant term 𝑭′

The expression for 𝐹 ′ is shown in Equation (1). Substituting 𝑥0 and 𝑦0 into Equation (1):

𝐹 ′ = 𝐹 +
(2𝐶𝐸 − 𝐵𝐷)2𝐴 + 2(2𝐶𝐸 − 𝐵𝐷)(2𝐴𝐷 − 𝐵𝐸)𝐵 + (2𝐴𝐷 − 𝐵𝐸)2𝐶

(𝐵2 − 4𝐴𝐶)2 (A16)
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Ultimately, the semi-major axis a and semi-minor axis b are

𝑎 =

√√√√√ 2[𝐴𝐸 + 𝐶𝐷 − 𝐵𝐷𝐸 + 𝐹]

(𝐵2 − 4𝐴𝐶)
[
𝐴 + 𝐶 −

√
(𝐴 − 𝐶)2 + 𝐵2

]

𝑏 =

√√√√√ 2[𝐴𝐸 + 𝐶𝐷 − 𝐵𝐷𝐸 + 𝐹]

(𝐵2 − 4𝐴𝐶)
[
𝐴 + 𝐶 +

√
(𝐴 − 𝐶)2 + 𝐵2

] (A17)
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