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Price fluctuations under adaptive learning in renewable resource markets such as fisheries
are examined. Optimal fishery management with logistic fish population growth implies a
backward-bending, discounted supply curve for bioeconomic equilibrium sustained yield.
Higher discount rates bend supply backward more to generate multiple steady-state
rational expectations equilibria. Under bounded rationality, adaptive learning of a linear
forecasting rule generates steady-state, two-cycle as well as chaotic consistent
expectations equilibria, which are self-fulfilling in sample average and autocorrelations.
The possibility of “learning to believe in chaos” is robust and even enhanced by dynamic
noise.

Keywords: Bounded Rationality, Adaptive Learning, Cobweb Dynamics, Chaos, Optimal
Resource Management, Fishery Model

1. INTRODUCTION

In the past decade, adaptive learning models have been proposed as an alternative to
rational expectations; see, e.g., Evans and Honkapohja (2001) and Sargent (1993,
1999) for recent surveys. In contrast to rational expectations, adaptive learning
models assume that agents do not have perfect knowledge about market equilib-
rium equations, but have some belief, the perceived law of motion, about the true
unknown actual law of motion. Usually, the perceived law of motion is some pa-
rameterized model and adaptive learning simply means updating of the parameters
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of the perceived law of motion, for example, by ordinary least squares, as additional
observations become available. The implied actual law of motion under adaptive
learning is thus a time-varying self-referential or feedback system, depending upon
the perceived law of motion. In this framework, a rational expectations equilibrium
is simply a situation in which the implied actual law of motionexactlycoincides
with the perceived law of motion, and adaptive learning may converge to such a
rational expectations equilibrium.

However, convergence to a rational expectations equilibrium can only occur
when the perceived law of motion is correctly specified and in the same class
as the (unknown) actual law of motion. When agents believe in a misspecified
model, convergence to rational expectations can never occur, and the best one
can hope for is that the adaptive learning process converges to an “approximate
rational expectations equilibrium” with optimal misspecified forecasts [Sargent
(1999)]. Such an approximate rational expectations equilibrium may be a useful
concept describing a situation in which agents do not understand the world in its
full complexity, but have some simple perception of this complex world and try to
minimize their forecasting errors within their simple view of the world.

The present paper applies the notion ofconsistent expectations equilibrium
(CEE) to an optimal harvesting model of renewable resource markets, in particu-
lar, fisheries. A CEE refers to a situation in which the unknown law of motion is
nonlinear, but agents try to forecast the complex nonlinear world with linear fore-
casting rules. In equilibrium, these linear forecasting rules are consistent however;
that is, they are correct in terms of sample mean and sample autocorrelations. A
CEE thus may be seen as an “approximate rational expectations equilibrium,” in
which the misspecified perceived law of motion is the best linear approximation,
within the class of perceived laws of motion, of the unknown true nonlinear law
of motion.

At this point, let us relate the contribution of this paper to some recent litera-
ture. In his presidential address to the Econometric Society in the early 1990’s,
Grandmont (1998) introduced the concept of a self-fulfilling mistake. This phe-
nomenon can emerge when economic agents cannot distinguish between random-
ness and determinism, a situation that can occur when the underlying true dynamics
are chaotic [e.g., Brock and Dechert (1991), Radunskaya (1994)]. Agents believe
mistakenly that prices, for example, follow a stochastic law of motion and, given
their belief, the actual law of motion becomes deterministically chaotic. If agents
cannot distinguish between randomness and chaos, their mistake becomes self-
fulfilling. Bunow and Weiss (1979) and Sakai and Tokumaru (1980) showed that
a simple stochastic AR(1) model can mimic the behavior of a chaotic tent map.
Hommes and Sorger (1998), following earlier work by Hommes (1998) and Sorger
(1998), applied these results and introduced the notion of a CEE, in which agents
believe that prices follow a linear AR(1) stochastic process, whereas the implied
actual law of motion is a deterministic chaotic map. Along a CEE, price realiza-
tions have the same sample mean and sample autocorrelation coefficients at all
leads and lags as the AR(1) process. Hommes and Sorger (1998) find three types
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of CEE, steady state, two-cycle and chaotic, and they show that agents can learn
to converge on each of these CEE’s.

Related work on complicated “approximate rational expectations” equilibria
under learning includes work by Bullard (1994) and Sch¨onhofer (1999, 2000),
who show periodic and even chaotic dynamics under adaptive learning in an
OLG-model with inflation. In another related macroeconomic application, Arifovic
(1996) reports evidence of fluctuations in exchange rates driven by genetic algo-
rithm learning in an overlapping generations economy with two currencies. S¨ogner
and Mitlöhner (2000) have recently applied the concept of CEE in a standard asset-
pricing model.

In microeconomics, it has long been understood that cobweb adjustment models
can generate chaotic dynamics when agents have adaptive expectations, even when
demand and supply are monotonic curves [Chiarella (1988), Hommes (1994)]. An-
other related model is the backward-bending supply curve of labor due to Bolle
and Neugart (1998). They demonstrate the possibility of chaotic dynamics in this
model, but do not fully work out the self-fulfilling mistake implications. However,
as stressed by Hommes (1998), along these chaotic fluctuations, expectational er-
rors have significant autocorrelations, and boundedly rational agents might take
advantage of those and revise expectations accordingly. Hommes and Sorger show
that in the cobweb model with monotonic demand and supply curves with agents
using an AR(1) forecasting rule, the only CEE is the rational expectations steady
state. However, Hommes and Sorger (1998) also show that, for the case of a
backward-bending supply curve in which the true underlying dynamics are an
asymmetric tent map, a simple AR(1) cobweb behavior can mimic the true dy-
namics in the manner of a self-fulfilling mistake. They also show the possibility
that an adaptive learning process converges to chaotic CEE cobweb dynamics.
Even if the agents do not initially select the specific parameters that generate such
a chaotic CEE, there can exist positive Lebesgue measure sets of initial values for
those for which a simple adaptive learning scheme, such as sample autocorrelation
learning, will lead the agent to adjust those values so that they converge on the
parameters that do generate such a chaotic CEE. Such a process may start out with
very regular behavior that then becomes more complex as the system converges
on the chaotic implied actual law of motion. This phenomenon has been coined
learning to believe in chaosin Hommes (1998, p. 360), and explicit examples have
been given by Sorger (1998) and Hommes and Sorger (1998).

The present paper makes two contributions. First, we investigate CEE in a fish-
ery model in which the backward-bending supply curve is derived from optimal
management of the fish resources, by a sole owner maximizing discounted rev-
enues. A backward-bending supply curve in a renewable resource market appears
to be natural when the discount rate is sufficiently high. In the fishery model, the
implied law of motion becomes a smooth one-dimensional nonmonotonic map.
Our results show that the possibility of chaotic CEE is not restricted to piecewise
linear tent- map dynamics, but occurs for general smooth nonmonotonic mappings.
Second, we investigate the effect of dynamic noise upon the learning dynamics
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and show that learning to believe in chaos is robust with respect to noise. In the
presence of noise, the adaptive learning process can easily settle down to a chaotic
CEE in which errors of the AR(1) forecasting rule have no significant autocorrela-
tions. In fact, in a noisy environment, it becomes even more difficult for the agents
to distinguish between their stochastic AR(1) belief and the unknown underlying
chaotic law of motion. Along a noisy CEE, agents using linear statistical tech-
niques are not able to reject the hypothesis that prices follow a stochastic AR(1)
process.

We apply the CEE concept to fishery models, but it can be applied more gen-
erally to any renewable resource market with an open access problem as well.
Fisheries have long presented great difficulties of understanding to both biolo-
gists and economists, as well as to policymakers. This has been especially the
case as there have been many collapses of fisheries around the world as well as
serious disputes between fishers from different countries. Understanding fisheries
involves modeling both the biological aspect as well as the economic aspect and
integrating the two in a sound manner, a fusion labeled bioeconomics by Colin W.
Clark (1990). Clark (1985, 1990) emphasizes that the modeling of fishery dynam-
ics is among the most complicated and difficult of all such cases of bioeconomic
modeling. As a scientist who has also been involved with advising the Canadian
government regarding management of the now-collapsed Grand Banks cod fishery,
he is also acutely aware of the policy difficulties as well.

A number of special peculiarities arise in the case of fisheries. One, understood
since the work of Copes (1970), is that supply curves in fisheries may be backward
bending, one of the few markets in which this can happen. Copes did not present
a rigorous derivation of this result but, rather, imputed it from the problem of
open access that had long been identified as a serious problem aggravating the
overharvesting problem in many fisheries [Gordon (1954)]. However, Clark (1990)
shows that such a backward-bending outcome can occur in an optimally managed
fishery without open access, as long as there is a sufficiently high discount rate, a
result that is explicitly derived later. In such cases, we already know that chaotic
dynamics can arise in fairly simple models with discrete dynamic adjustments.
Conklin and Kolberg (1994) have provided a specific model of chaotic dynamics
for the Pacific halibut fishery with such a backward-bending supply curve, although
without using a CEE framework. Chaotic dynamics, and chaotic CEE in particular,
are more likely to happen when there is either open access, high discount rates, or
relatively inelastic demand curves, the latter a result emphasized more broadly in
more general nonlinear bioeconomic models by Chavas and Holt (1995). Although
some of the details of the models are somewhat different, these basic problems
also arise in other renewable resource situations such as management of grazing
pastures and wild-game hunting preserves [Rosser (1995)].

The paper is organized as follows: Section 2 presents the model for optimal
management of the fish resources and derives the discounted equilibrium supply
curve. Section 3 focuses on adaptive learning and consistent expectations equilibria
in the fishery model, both without and with noise. Finally, Section 4 concludes.
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2. CLARK–GORDON–SCHAEFER FISHERY MODEL

We use an optimal control theoretic version of the Gordon–Schaeffer fishery model,
following Clark (1990). The presentation of the optimal equilibrium supply and
demand is in terms of a continuous model, whereas the price fluctuations in the
corresponding speculative cobweb dynamics are in discrete time.

Let us first introduce some notation. Letx denote population or stock of fish
(measured in terms of biomass units),h harvest of fish andF(x)= dx/dt growth of
fish population without harvest. In the Schaefer (1957) model, the sustained yield,
with sustained yield holding if harvesting equals population growth, is given by a
logistic function1:

h = F(x) = r x

(
1− x

k

)
, (1)

with r the intrinsic growth rate of the fish population andk the ecological carrying
capacity for the fishery, that is, the maximum possible steady-state level ofx.
This yield function admits a level of the stockx at which a maximum sustained
yield (MSY) will occur that will be atx= k/2. We note that there has long been
a conflict between biologists and economists, with many biologists favoring the
MSY level of the population as being the goal of optimal public policy, whereas
when economic considerations are added to the biological ones in a combined
bioeconomic analysis, it is highly unlikely that the MSY is optimal from the
economic standpoint.

Following Gordon (1954), the harvest equation is given by

h(x) = q Ex, (2)

whereE is the catch effort (measured in standardized vessel time) andq is catch-
ability (measured per vessel per day) reflecting technology and labor and capital.
Denoting the price of the fish per biomass byp, total revenue will bepq Ex.
Marginal cost of effortc is assumed to be constant here so that total cost will
equalcE. Clark (1990) has studied more general cost functions with congestion
effects and dynamic models in which capital stock has inertia in the form of the
unwillingness of fishers to retire their vessels even when a fishery is obviously
being overfished. This latter phenomenon can play an especially important role in
the collapse of actual fisheries.

Gordon (1954) solved for the open-access equilibrium in which all positive rents
would be fished away by the continuing entry of fishers into the fishery until that
point is reached. Such entry behavior can be shown to arise from a certain kind of
externality in which the individual fisher perceives his private marginal product to
equal the social average product, the amount currently being caught per vessel per
day. Essentially, the entering fishers do not take into account the effect of their entry
on the fishery, and so, too many of them enter and the fishery is overfished from
an economic perspective. This open-access equilibrium is now called a bionomic
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equilibrium and will occur when total revenue equals total cost at

E∞ = r

q

(
1− c

pqk

)
, (3)

x∞ = c

pq
, (4)

h∞ = r
c

pq

(
1− c

pqk

)
. (5)

These equations have the∞ subscript on the left-hand terms because this solution
is identical to the socially optimal solution to be presented later when the discount
rate is infinity, with the discount rate being given byδ. That is the same as saying
that the fishers are totally myopic and are paying no attention whatsoever to the
future in their decisionmaking. That can be seen intuitively as being essentially
what happens in the open-access situation in which no individual fisher is taking
into account the effects of his own actions. At the other extreme, whenδ= 0, the
fishers will treat the far-distant future as being equally valuable as today; that is,
they will be very farsighted.

Clark (1990) presents both an optimal control solution and an optimal social util-
ity solution, which yield the same result. Here, we follow the optimal-control fish-
ery management solution. Assume that there is a “sole owner,” for example, a gov-
ernment agency or a private firm, who owns all rights to the exploitation of the fish
population. The sole owner’s objective is to maximize discounted net revenues, that
is, finding a harvesting policyh(t) solving the following maximization problem:

max
h(t)

∫ ∞
0

e−δt {p− c[x(t)]}h(t) dt, (6)

subject tox(t)≥ 0 andh(t)≥ 0, wherep is the fish price andc(x) is the unit harvest-
ing cost when the population level isx. Substitutingh(t)= F(x)− ẋ into (6) yields

max
h(t)

∫ ∞
0

e−δt {p− c[x(t)]}[F(x)− ẋ] dt, (7)

which is of the form
∫
φ(t, x, ẋ) dt so that we can apply the classical Euler nec-

essary condition for a maximum

∂φ

∂x
= d

dt

∂φ

∂ ẋ
.

Using the Euler equation, a straightforward computation yields

F ′(x)− c′(x)F(x)
p− c(x)

= δ. (8)

Equation (8) is an implicit equation for theoptimal equilibrium population level
x∗. At this optimal population level, the corresponding optimal sustained yield is

h = F(x∗). (9)
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Assuming as in Gordon (1954) and Schaefer (1957) a cost functionc(x) = c/qx
and the logistic sustained yield equation, we get

c′(x) = − c

qx2
, (10)

F ′(x) = r − 2r x

k
. (11)

Substituting these into (8) yields a quadratic equation for the optimal fish popula-
tion x∗, whose positive solution is given by

x∗δ (p) =
k

4

[
1+ c

pqk
− δ

r
+
√(

1+ c

pqk
− δ

r

)2

+ 8cδ

pqkr

]
. (12)

This optimal solutionx∗δ is usually referred to as thebioeconomic equilibrium, and
is a function of the discount rateδ, the fish pricep, and the other parameters such
as the carrying capacityk, the catchabilityq, the marginal cost of effortc, and the
growth rate of fishr . The corresponding optimal sustained yield is given by

Sδ(p) = h = F
[
x∗δ (p)

]
. (13)

We refer toSδ(p) in (13) as thediscounted equilibrium supply curve, and writing
it as a function of the fish pricep will be convenient when we study cobweb dy-
namics under adaptive learning in Section 3. A straightforward computation shows
that, in the limit as the discount rate tends to infinity, the discounted supply curve
reduces to the open-access supply curve

S∞(p) = rc

pq

(
1− c

pqk

)
. (14)

The reader may easily check that, at the minimum pricepmin= c/(qk), the (dis-
counted) equilibrium supply becomes 0; we assume that below this minimum price
the equilibrium supply equals zero. For consumer demand for fish, we choose a
simple, linear form

D(p) = A− Bp. (15)

Figure 1a shows plots of the equilibrium demand and supply system, for different
values of the discount rateδ, with the other parameters of the discounted supply
curve fixed at

k = 400.000, q = 0.000013, c = 5,000, and r = 0.05,

as suggested for several specific fisheries by Clark (1985, pp. 25, 45, 48), and the
parameters of the demand curve fixed at

B = 0.25 and A = kr

4
+ Ac

qk
= 5240.5.
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FIGURE 1. Demand and discounted equilibrium supply curvesSδ in (13), and (b) implied
law of motionGδ in (17) under naive expectations for several discount factorsδ. As the
discount factorδ increases, two additional steady states are created at a tangent bifurcation
for δ≈ 0.085.

The marginal demandB has been chosen small, to allow for the possibility of
multiple equilibria. The constantA has been chosen such that at the minimum
price pmin= c/(qk) consumer demand would be exactly equal to the maximum
sustained yield. This is a convenient way of parameterizing the demand curve so
that the price dynamics under adaptive learning in Section 3 will be well defined
and remain bounded for all time; other nearby choices of the demand parameters
lead to results similar to those presented below.

At the extreme caseδ= 0, that is, when the sole owner treats the far-distant future
as equally valuable to today, the supply curve is upward sloping and approaches the
maximum sustained yield (MSY), as illustrated in Figure 1a. For positive values
of the discount factorδ, the supply curve (13) is backward bending. This follows
easily from the observation that the bionomic equilibriumx∗δ (p) is a decreasing
function of the fish pricep and the population growth mapF is nonmonotonic.
Figure 1a shows that, as the discount rateδ increases, the supply curve becomes
more backward bending. The most backwardly bent supply curve corresponds to
the totally myopic case ofδ=∞, which corresponds to the open-access bionomic
equilibrium case studied by Gordon (1954) and which is associated with overfish-
ing behavior. We note that the supply curve bends backward quite quickly at values
of the discount rate that are empirically and socially meaningful, in contrast to the
kinds of discount rates that are necessary to generate chaotic dynamics in golden-
rule neoclassical growth models [Montrucchio and Sorger (1996), Nishimura and
Yano (1996), Mitra (1998)].

Figure 1a also contains plots of the (linear) demand curve, illustrating the fact
that a backward-bending supply curve together with a sufficiently inelastic demand
curve may lead to multiple steady-state equilibria even for the static case. In the
extreme case,δ= 0, there is a unique steady-state equilibrium price, whereas at
the other extreme,δ= +∞, there are three different steady-state equilibrium
prices. The two additional steady states are created through a tangent bifurcation
at δ= δ∗ ≈ 0.085. This shows the original argument of Copes (1970) who argued

https://doi.org/10.1017/S1365100501019034 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501019034


188 CARS H. HOMMES AND J. BARKLEY ROSSER

that in the case of a strongly backward-bending supply curve, increasing demand
could lead to a collapse of a fishery and a jump in the equilibrium. Such a result
can be modeled by using catastrophe theory and was done so for the collapse of the
Antarctic fin and blue whale stocks [Jones and Walters (1976)], the latter falling
from over 150,000 to less than 1,000 within the space of a few years during the
1960’s [Clark (1985, p. 6)]. Clark (1985) provides a comprehensive (and lengthy)
list of fisheries that have collapsed around the world, although, as we have already
noted, a variety of other factors including capital stock inertia have been involved
in these tragedies.

3. PRICE DYNAMICS UNDER ADAPTIVE LEARNING

We now consider cobweb-type price fluctuations under adaptive learning, with the
equilibrium supply of fish derived from optimal fishery management as described in
the preceding section. Section 3 is divided into three subsections. Subsection 3.1
describes price fluctuations under naive price expectations, and argues that the
naive forecasts can be improved in a linear statistical sense, even when price
fluctuations are chaotic. Subsection 3.2 recalls the notion of CEE as introduced
by Hommes and Sorger (1998). Finally, Subsection 3.3 investigates CEE in the
optimal control fishery model without and with noise.

3.1. Cobweb Dynamics Under Naive Expectations

We now turn to the price fluctuations in this renewable resource market, assuming
that producers have to make their investment decision for fishery equipment some
fixed time period ahead. Given producers’ price expectation, the optimal produc-
tion decision is derived from the discounted equilibrium supply curve (13). Price
expectations are formed one fixed time period ahead, which may be viewed as an
investment lag. The price dynamics induced by these investment decisions then
reduce to the usual cobweb “hog cycle” model, with a fixed production lag.2 The
market equilibrium price at datet is determined by demand and supply; that is,

D(pt ) = Sδ
(

pe
t

)
, (16)

with D the consumer demand (15) andSδ the discounted supply curve (13). It
will be instructive to discuss the case of naive expectations first, where producers
believe that last year’s price will also prevail this year; that is,pe

t = pt−1. Given
that producers have naive price expectations, the implied actual law of motion
becomes

pt = Gδ(pt−1) = D−1Sδ(pt−1) = A− Sδ(pt−1)

B
. (17)

Figure 1b shows graphs of the implied actual law of motionGδ under naive price
expectations, for different values of the discount rate. At the extreme caseδ= 0,
supply is increasing so that the mapGδ is decreasing and, under naive expectations,
prices diverge from an unstable steady state and converge to a stable two-cycle.
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Along this two-cycle, expectations are systematically wrong. When producers
expect a low (high) price, they decide to produce a low (high) quantity, which will
induce a high (low) market equilibrium price. For positive discount rates, beyond
a critical price the graph ofGδ is increasing, so that the implied actual law of
motion becomes a nonmonotonic map. As the discount rate increases, the implied
actual law of motion becomes strongly upward sloping for high prices and the
price dynamics under naive expectations become more complicated. It is not hard
to show by graphical analysis that, for example, for the tangent bifurcation value
δ∗ ≈ 0.085, the dynamics under naive expectations are (topologically) chaotic.
In fact, under naive expectations and with the other parameters fixed as before,
complicated dynamics arise for relatively small values of the discount rate, for
example, for 0.02≤ δ≤ 0.085. For sufficiently high values of the discount rate
(e.g., forδ≈ 0.1), naive expectations drive the system to the “bad” stable-steady
state equilibrium, with a high price and a low fish stock.

Let us now discuss what would happen under rational expectations (perfect
foresight). Recall that there is a critical parameter valueδ∗ ≈ 0.085 for which a
tangent bifurcation occurs at which the number of steady states changes from one to
two steady states at the bifurcation value and from one to three steady states beyond
the bifurcation value. For small discount rates 0≤ δ≤ δ∗, the unique steady-state
solutionpt ≡ p∗1, for all t , is the only rational expectations equilibrium (REE). For
large discount ratesδ > δ∗, three different steady states—pi , i = 1, 2, or 3—coexist,
and there are multiple stationary REE. For example, three constant steady-state
REE exist, wherept ≡ pi , for all t , andi is fixed at 1, 2, or 3. In addition, however,
infinitely many nonconstant REE exist because any solutionpt = p∗i , for all t ,
andi switching between 1, 2, and 3, is a REE. For high discount rates, infinitely
many REE coexist, for which prices are switching arbitrarily between the three
different steady-state price levelsp∗i , with the fish stock switching between the
corresponding high and low levels.

What happens when agents are boundedly rational and do not have exact knowl-
edge about underlying market equilibrium equations? Would boundedly rational
agents be able to learn the “good” steady-state equilibrium with low prices and high
fish stock? Would boundedly rational agents be able to discover regularities in their
forecasting errors under naive expectations and change expectations accordingly?
In the simple case of convergence to a stable period-2 price cycle, agents should,
at least in theory, be able to learn from their systematic forecasting errors and im-
prove their forecasts.3 However, what about the case of chaotic equilibrium price
fluctuations? Are boundedly rational agents able to learn in a chaotic environment
and detect regularities from time-series observations to improve their forecasts?

Figure 2 shows a chaotic price series under naive expectations and the corre-
sponding chaotic forecasting errors, forδ= 0.02. Table 1 contains the sample au-
tocorrelations of the forecasting errors, with the first lags being highly significant.
In particular, the chaotic forecasting errors have a strongly significant negative
first-order autocorrelation coefficientρ1≈ −0.646. Using standard linear statisti-
cal tools, a boundedly rational agent would thus conclude that naive expectations
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TABLE 1. Autocorrelations and partial correlations of
forecasting errors under naive expectations

Lag AC PC Q statistic Probability

1 −0.646 −0.646 84.68 0.000
2 0.230 −0.321 95.46 0.000
3 −0.151 −0.310 100.12 0.000
4 −0.079 −0.611 101.42 0.000
5 0.301 −0.408 120.25 0.000
6 −0.142 −0.141 124.46 0.000
7 −0.013 −0.154 124.50 0.000
8 −0.016 −0.071 124.55 0.000
9 −0.101 −0.179 126.71 0.000
10 0.230 −0.139 137.96 0.000

FIGURE 2. (a) Chaotic prices and (b) corresponding forecasting errors under naive expec-
tations, forδ = 0.02. The chaotic forecasting errors exhibit significant autocorrelations,
especially a negative first-order autocorrelation coefficient, as can be seen from Table 1.

are “systematically wrong,” even when prices fluctuate chaotically. As a first step,
agents might try to improve their forecast accuracy by using a simple linear AR(1)
rule with a negative first-order coefficient, and try to optimize the forecast param-
eters by adaptive learning as additional observations become available.

3.2. Consistent Expectations Equilibria

To be self-contained, we briefly recall the notion of CEE as introduced and dis-
cussed extensively by Hommes and Sorger (1998). Consider a dynamic market
equilibrium model

pt = G
(

pe
t

)
, (18)

where G is a function relating the realized market pricept as a function of
the expected pricepe

t . The cobweb model discussed above is of this type, with

https://doi.org/10.1017/S1365100501019034 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501019034


RENEWABLE RESOURCE MARKETS 191

G= D−1Sδ. To complete the dynamic model, one has to specify how the agents
form their price expectationpe

t . We assume that agents donotknow market equi-
librium equations and form expectations based only on time-series observations.
We assume that the agents know all past pricesp0, p1, . . . , pt−1 and use these in
their forecastpe

t . Notice that we assume that the equilibrium pricept is notknown
to the agents when making their forecastpe

t because it has not been revealed by
the market equilibrium equation yet. We further assume that agents believe that
prices follow a simple linear stochastic process, and that expectations are homo-
geneous across agents. More specifically, we assume that all agents believe that
prices are generated by a stochastic AR(1) process. Given this perceived law of
motion and prices known up topt−1, the unique predictor or forecasting rule for
pt that minimizes the mean-squared prediction errors is given by

pe
t = α + β(pt−1− α), (19)

whereα andβ are real numbers,β ∈ [−1, 1]. The expected price thus equals a
constantα [the unconditional mean of the AR(1) process] plus the constantβ (the
first-order autocorrelation coefficient) times the deviation of the previous price
from the unconditional mean. Given that agents use the linear predictor (19), the
implied actual law of motionbecomes

pt = Gα,β(pt−1) := G[α + β(pt−1− α)]. (20)

Now, recall that the empirical or sample average of a time series(pt )
∞
t=0 is

defined as [see, e.g., Brockwell and Davis (1991)]

p̄ = lim
T→∞

1

T + 1

T∑
t=0

pt (21)

and the empirical or sample autocorrelation coefficients are given by

ρ j = lim
T→∞

cj,T

c0,T
, j ≥ 1, (22)

where

cj,T = 1

T + 1

T− j∑
t=0

(pt − p̄)(pt+ j − p̄), j ≥ 0. (23)

In the special case in which the time series is constant, the definition ofρ j involves
an indeterminate expression and all sample autocorrelations can be defined asβ j

for someβ ∈ [−1, 1]. We are now ready for the definition of a CEE.

DEFINITION 1. A triple {(pt )
∞
t=0;α, β}, where(pt )

∞
t=0 is a sequence of prices

andα and β are real numbers, β ∈ [−1, 1], is called aconsistent expectations
equilibrium if

(i) the sequence(pt )
∞
t=0 satisfies the implied actual law of motion(20);

(ii) the sample averagēp exists and is equal toα; and
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(iii) the sample autocorrelation coefficientsρ j , j ≥ 1, exist and the following is true:
(a) if (pt )

∞
t=0 is a convergent sequence, then sgn(ρ j ) = sgn(β j ), j ≥ 1;

(b) if (pt )
∞
t=0 is not convergent, thenρ j =β j , j ≥ 1.

A CEE is a price sequence together with an AR(1) belief process such that
the expectations are self-fulfilling in terms of the observable sample average and
sample autocorrelations. Along a CEE, expectations are thus correct in a linear
statistical sense and, using time-series observations only agents would have no
reason to deviate from their belief.4

Given an AR(1) belief, there are at least three possible types of CEE: (i) a
steady-state CEEin which the price sequence(pt )

∞
t=0 converges to a steady-state

price p∗; (ii) a two-cycle CEEin which the price sequence(pt )
∞
t=0 converges to a

period two cycle{p∗1, p∗2}with p∗1 6= p∗2; and (iii) achaotic CEEin which the price
sequence(pt )

∞
t=0 is chaotic. Which of these cases occurs in a particular model

depends on the mappingG in (20).

3.2.1. Sample autocorrelation (SAC) learning.The definition of a CEE in-
volves a fixed AR(1) belief described by the parametersα and β. Agents are
supposed to stick to this belief over the entire time horizon and the consistency
of the implied actual dynamics with the belief can be verified only if the entire
price sequence is known. Now, consider the more flexible situation of adaptive
learning in which agents change their forecasting function over time within the
class of AR(1) beliefs, and update their belief parametersαt and βt , as addi-
tional observations become available. A natural learning scheme that nicely fits
the framework of CEE is based upon sample average and sample autocorrelation
coefficients.

For any finite set of observations{p0, p1, . . . , pt }, the sample average is given
by

αt = 1

t + 1

t∑
i=0

pi , t ≥ 1, (24)

and the first-order sample autocorrelation coefficient is given by [see Brockwell
and Davis (1991)]

βt=

t−1∑
i=0

(pi − αt )(pi+1− αt )

t∑
i=0

(pi − αt )
2

, t ≥ 1. (25)

When, in each period, the belief parameters are updated according to their sample
average and their first-order sample autocorrelation, the (temporary) law of motion
(20) becomes

pt+1 = Gαt ,βt (pt ) = G[αt + βt (pt − αt )] , t ≥ 0. (26)
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We call the dynamical system (24)–(26) the actual dynamics withsample autocor-
relation learning(SAC learning).5 The initial state for the system (24)–(26) can
be any triple(p0, α0, β0) with β0∈ [−1, 1].

Another, perhaps better-known, adaptive learning process is ordinary least
squares (OLS) learning. In fact, although not identical, the SAC- and the OLS-
learning schemes are closely related; see the discussion by Hommes and Sorger
(1998). In particular, we would like to stress that, for any given bounded time
series, the differences in the parameter estimations of the SAC- and OLS-learning
schemes become arbitrarily small for larget . In the initial phase of the learning
schemes, there may be differences between OLS- and SAC-learning, however,
which in a self-referential system may, in turn, lead to differences in the implied
realized price series in the long run. A particular problem with the OLS-learning
scheme is that the estimateβ̂ does not necessarily lie in the interval [−1, 1], which
may cause global divergence of the realized price series. Marcet and Sargent (1989)
have proposed the imposition of a so-called projection facility on OLS learning,
which is a maximum allowable interval for the OLS estimateβ̂, but, in general,
the choice of such a projection facility is arbitrary. In contrast, the SAC estimateβt

in (25) always lies in the interval [−1, 1], so that the AR(1) coefficientβt cannot
cause global divergence of the price series. In Subsection 3.3, we focus on the
SAC adaptive learning scheme. Simulations with the OLS-learning scheme lead
to similar results and would not change our general conclusions later.

3.3. CEE in the Clark–Gordon–Schaefer Fishery Model

In our simulations of the adaptive SAC-learning process (24), (25), and (26), with
G≡Gδ = D−1Sδ, we have observed three typical outcomes:

(i) convergence to the “good” steady-state equilibrium with a low price and a high fish
stock;

(ii) convergence to the “bad” steady-state equilibrium with a high price and a low fish
stock; and

(iii) convergence to a chaotic CEE, with prices and fish stock irregularly jumping be-
tween low and high values.

Simulations of the SAC-learning dynamics suggest that, for low values of the
discount rate, convergence to the “good” equilibrium steady state is the most likely
outcome of the SAC learning process, whereas for high values of the discount rate,
convergence to the “bad” steady state is most likely. For intermediate discount
rates, the outcome of the learning process is uncertain and in general depends on
the initial states, that is, on the initial belief parametersα0, β0 and the initial fish
stockx0. The system may settle down to either the “good” or the “bad” steady state,
possibly after a long (chaotic) transient. However, it also may happen that belief
parametersαt andβt converge to constantsα∗ andβ∗ while prices never converge
to a steady state (or to a cycle), but keep fluctuating chaotically, as illustrated in
Figure 3 forδ= 0.1. This situation is referred to aslearning to believe in chaosand
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FIGURE 3. Learning to believe in chaos. Forδ= 0.1 and initial state(p0, α0, β0)=
(1,500, 6,000,−1) in the SAC-learning process, prices fluctuate chaotically (a), while belief
parametersα (c) andβ (d) converge to constantsα∗ ≈ 4,988 andβ∗ ≈ −0.87. Forecasting
errors (b) are chaotic and unpredictable, with amplitude, e.g., much smaller than under
naive expectations (cf. Figure 2b).

it seems to occur with positive probability, that is, for an open set of initial states
(x0, α0, β0). Learning to believe in chaos means that the SAC-learning dynamics
converge to a chaotic system, whenαt andβt have converged to constantsα∗

andβ∗, while prices keep fluctuating chaotically.6 Figure 3 shows an example
with the learning parameters(αt , βt ) converging to(α∗, β∗)≈ (4,988,−0.87) and
permanent chaotic price fluctuations with sample averageα∗ and strongly negative
first-order autocorrelation coefficientβ∗.

To understand the existence of chaotic CEE for our smooth, nonmonotonic
implied actual law of motion it is useful to consider the graph of the corre-
sponding one-dimensional map. Given the AR(1) forecasting rule with param-
etersα∗ and β∗, Figure 4 shows the graph of the implied actual law of mo-
tion Gδ,α∗,β∗(p)= D−1Sδ[α∗ +β∗(p− α∗)], and its second iterateG2

δ,α∗,β∗ . From
these graphs, it follows immediately that the implied actual law of motion is a

https://doi.org/10.1017/S1365100501019034 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501019034


RENEWABLE RESOURCE MARKETS 195

TABLE 2. Autocorrelations and partial correlations of
prices of chaotic CEE under SAC learning

Lag AC PC Q statistic Probability

1 −0.877 −0.877 233.08 0.000
2 0.737 −0.141 398.05 0.000
3 −0.661 −0.212 531.52 0.000
4 0.578 −0.139 633.62 0.000
5 −0.527 −0.193 718.91 0.000
6 0.451 −0.257 781.63 0.000
7 −0.352 −0.023 819.97 0.000
8 0.295 −0.001 846.89 0.000
9 −0.256 −0.061 867.32 0.000
10 0.211 −0.077 881.23 0.000

FIGURE 4.Graphs of the first iterateGδ,α∗,β∗ (a) and the second iterateG2
δ,α∗,β∗ (b) of the im-

plied actual law of motion for the chaotic CEE belief parameters(α∗, β∗)= (4,988,−0.87)
for δ= 0.1.

(topologically) chaotic map. A typical chaotic trajectory of the implied actual law
of motion will be characterized by up-and-down oscillation around the unstable
steady state. The graph of the implied actual law of motion thus suggests chaotic
time series with strongly negative first-order autocorrelation. Apparently, typical
chaotic time series generated by the implied law of motion are self-fulfilling in
terms of sample average and sample autocorrelations.

Recall that our boundedly rational agents have no knowledge about underlying
market equilibrium equations, and therefore do not know the implied actual law of
motion. They only observe time series and use linear statistical techniques. Would
they be satisfied with their linear forecasting rules and stick to their AR(1) belief?
Would boundedly rational agents be able to reject their stochastic AR(1) belief or
perceived law of motion by linear statistical hypothesis testing?7 Table 2 shows
the first 10 lags of the sample autocorrelation and partial autocorrelation of 300
observations of the chaotic price series. The autocorrelation pattern of the chaotic
series is indeed similar to the autocorrelation pattern of an AR(1) process with
strongly negative first-order autocorrelation. The first-order partial autocorrelation
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TABLE 3. Estimation results for AR(1) model on chaotic CEE (300 observations,
after transient of 5,000)

Model: pt =C+βpt−1, [C=α(1−β)]
Variable Coefficient Std. error t-statistic Probability

C 9538.893 157.6361 60.51211 0.0000
β −0.883612 0.027461 −32.17699 0.0000
R2 0.777087
AdjustedR2 0.776336
S.E. of regression 1280.983
Sum-squared residual 4.87E+0.8
Log likelihood −2562.719
Durbin-Watson statistic 2.261127
Mean dependent variable 5061.651
S.D. dependent variable 2708.605
Akaike info criterion 17.15531
Schwarz criterion 17.18006
F-statistic 1035.358
Prob (F-statistic) 0.000000

TABLE 4. Autocorrelations, partial correlations, andQ
statistics of residuals of fitted AR(1) model on chaotic
CEE under SAC learning

Lag AC PC Q statistic Probability

1 −0.134 −0.134 5.3925 0.020
2 −0.221 −0.243 20.136 0.000
3 −0.083 −0.164 22.221 0.000
4 −0.084 −0.203 24.358 0.000
5 −0.119 −0.276 28.689 0.000
6 0.118 −0.087 32.979 0.000
7 0.131 −0.012 38.306 0.000
8 −0.063 −0.106 39.524 0.000
9 −0.034 −0.078 39.884 0.000
10 −0.057 −0.137 40.899 0.000

coefficient is strongly negative; all other partial autocorrelation coefficients are
small, but the lags 2–6 are significantly different from 0. Table 3 contains estima-
tion results of an AR(1) model to the chaotic price series of 300 observations,
implying estimated belief parameterŝβ ≈ − 0.88 and α̂=C/(1−β)≈ 5,064.
Table 4 contains the first 10 lags of the sample autocorrelations, together with their
Q-statistics, of the residuals of the fitted AR(1) model. Although all autocorrela-
tions of the AR(1) residuals are small, some of them, for example, at the first two
lags, are statistically significant. Hence, a careful boundedly rational agent, based
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upon this linear statistical analysis, would reject the null hypothesis that prices
follow an AR(1) process. Using the last 300 observations, agents would discover
that their AR(1) forecasting rule is not optimal and that their AR(1) model must be
misspecified.

Now, let us investigate the effect of noise upon the learning dynamics. SAC
learning with additive dynamic noise is given by (24) and (25), as before and,
adding a noise term to the implied actual law of motion,

pt+1 = Gδ,αt ,βt (pt ) = Gδ[αt + βt (pt − αt )] + εt , t ≥ 0, (27)

whereεt is an independently and identically distributed (IID) random process and
Gδ = D−1Sδ in (17) as before. Notice that the noise is not merely observational
noise, but dynamic noise affecting the dynamic law of motion in each period
of time. Figure 5 illustrates a typical example, withεt drawn from a uniform

FIGURE 5. Learning to believe in noisy chaos, forδ= 0.1 and initial state(p0, α0, β0)=
(1,500, 6,000,−1). In the presence of noise, the SAC learning converges to a (noisy)
chaotic CEE, with chaotic price flucutations (a) and at the same time convergence of the
belief parametersαt (c) andβt (d). Forecasting errors (b) are (noisy) chaotic and seemingly
unpredictable. Tables 5–7 show that the null hypothesis that prices follow a stochastic AR(1)
process is not rejected.
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distribution over the interval [−1000, +1000];8 for this choice of the noise pro-
cess, the signal-to-noise ratio, as measured by the ratioσp/σε of standard devia-
tions of the noise-free price series to the noise, is about 5. Surprisingly, even in
the presence of dynamic noise, the SAC-learning dynamics still settle down to a
chaotic CEE, as illustrated in Figure 5. The noisy chaotic series has an autocor-
relation pattern very similar to that of an AR(1) process with strongly negative
first-order autocorrelation, as can be seen in Table 5. Table 6 contains the estima-
tion results of an AR(1) process for 300 observations (after a transient of 5,000) of

TABLE 5. Autocorrelations, partial correlations, andQ
statistics of noisy chaotic CEE under SAC learning

Lag AC PC Q statistic Probability

1 −0.871 −0.871 229.91 0.000
2 0.742 −0.071 397.17 0.000
3 −0.653 −0.095 527.25 0.000
4 0.563 −0.063 624.31 0.000
5 −0.475 0.028 693.53 0.000
6 0.373 −0.121 736.36 0.000
7 −0.290 −0.017 762.40 0.000
8 0.209 −0.081 775.95 0.000
9 −0.144 −0.027 782.38 0.000
10 0.075 −0.086 784.16 0.000

TABLE 6. Estimation results for AR(1) model on noisy chaotic CEE (300 observa-
tions, after transient of 5,000)

Model: pt =C+βpt−1, [C=α(1−β)]
Variable Coefficient Std. error t-statistic Probability

C 10141.58 175.9158 57.65017 0.0000
β −0.871095 0.028454 −30.61460 0.0000
R2 0.759369
AdjustedR2 0.758559
S.E. of regression 1465.235
Sum squared residual 6.38E+0.8
Log likelihood −2602.901
Durbin-Watson statistic 2.090609
Mean dependent variable 5421.955
S.D. dependent variable 2981.958
Akaike info criterion 17.42409
Schwarz criterion 17.44884
F-statistic 937.2537
Prob (F-statistic) 0.000000

https://doi.org/10.1017/S1365100501019034 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501019034


RENEWABLE RESOURCE MARKETS 199

TABLE 7. Autocorrelations, partial correlations, andQ
statistics of residuals of fitted AR(1) model on noisy
chaotic CEE under SAC learning

Lag AC PC Q-statistic Probability

1 −0.058 −0.058 1.0013 0.317
2 −0.097 −0.101 3.8737 0.144
3 −0.048 −0.061 4.5656 0.207
4 0.031 0.015 4.8645 0.301
5 −0.081 −0.091 6.8860 0.229
6 −0.042 −0.053 7.4308 0.283
7 −0.015 −0.038 7.5024 0.379
8 −0.048 −0.075 8.2286 0.411
9 −0.019 −0.038 8.3453 0.500
10 −0.092 −0.123 10.976 0.359

the noisy chaotic series. The estimated parameters areβ̂ ≈ −0.87 andα̂≈ 5420,
which are fairly close to the coefficients of the chaotic CEEβ∗ ≈ −0.87 andα∗ ≈
4988 in the noise-free case. Table 7 shows that the sample autocorrelation coef-
ficients of the residuals of the fitted AR(1) model are not statistically significant,
and theQ-statistics indicate that the null hypothesis that prices follow a stochas-
tic AR(1) process cannot be rejected, not even at the 10% level. Learning to
believe in noisy chaos is thus a possibility that is not rejected by linear statistical
theory.

One major difference between the fishery management system considered here
and the CEE’s investigated by Hommes and Sorger (1998) is that our model is
smooth, without any kinks in the curves determining the underlying law of motion.
In Hommes and Sorger (1998), as in the other studies cited here that have come up
with self-fulfilling chaotic mistake behavior, the underlying law of motion is given
by a piecewise linear asymmetric tent map with one or more kinks. The chaotic CEE
detected in the overlapping generations model in Hommes and Sorger (1999) are
not piecewise linear but do have one kink. Our results for the optimal management
of renewable resources shows an extension of the existence of chaotic CEE result
to smooth nonmonotonic mappings on the interval.

4. SUMMARY AND CONCLUSIONS

We have seen that there are a growing number of examples of systems in which self-
fulfilling chaotic mistakes can occur in the form of chaotic consistent expectations
equilibria with the possibility of convergence through learning to those equilibria
through simple learning processes, the phenomenon of learning to believe in chaos.
Such cases include models in which the underlying dynamics are determined by
asymmetric tent maps as with the overlapping generations macroeconomic model
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from Sorger (1998) and the generic price adjustment model of Hommes and Sorger
(1998). We have presented a model of fishery dynamics that shows such phenomena
for reasonably realistic parameter values, even for systems in which the underlying
dynamics are given by functions that do not have kinks of the sort found in the
asymmetric tent map.

A chaotic CEE may be seen as anapproximate rational expectations equilibrium,
where agents use an optimal linear predictor to forecast an unknown nonlinear ac-
tual law of motion. We have shown that such equilibria are persistent with respect
to dynamic noise. In fact, the presence of noise may increase the probability of
convergence to such learning equilibria. Agents are using a simple, but misspec-
ified, model to forecast an unknown, possibly complicated, actual law of motion.
Without noise, boundedly rational agents using time-series analysis might be able
to detect the misspecification and improve their forecast model. In the presence of
dynamic noise, however, misspecification becomes harder to detect and boundedly
rational agents using linear statistical techniques can do no better than stick to their
optimal, simple linear model of the world.

With regard to the specific issues raised by consideration of the fishery dynam-
ics model, several points are in order. One is that this modeling effort certainly
reinforces much that has already been known: that chaotic or irregular dynamics
are more likely as myopia is greater or as there is a lack of control over access for
which the solution resembles the optimal solution with total myopia. This suggests
that efforts to make the markets and fishers take a longer-term perspective and also
to encourage systems to control access should be encouraged, by reassigning or
enforcing property rights or by some collective system of access limitation in a
commons fishery, although we have no specific new proposals regarding these
difficult and complicated issues.

However, the results in this paper do suggest at least one element of optimism
that may not have been known by analysts of these problems previously. The
implications of the possible existence of observable chaotic CEE’s in fisheries
suggests that, in a world of underlying chaotic dynamics, fishers may be able to
mimic the behavior implied by accurate expectations by fairly simple, boundedly
rational rules of adaptation, even in the presence of dynamic noise, which is cer-
tainly present in the uncertain world of fisheries. More particularly, in contrast
to the catastrophic results arising from some models and situations, it should be
kept in mind that chaotic dynamics remain bounded. Thus, if a group of fishers
fishing a fishery are actually able to successfully follow an underlying truly chaotic
dynamic, even if by doing so through a self-fulfilling chaotic mistake, the results
of their doing so will not lead to the collapse of that fishery, which is certainly a
desideratum.

NOTES

1. Clark (1990) and Rosser (1991, Ch. 13) consider more complicated yield functions that can
involve catastrophic collapses of populations below certain critical levels. Such a nonsustained yield
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outcome does not arise with the Schaefer logistic yield function. D´avila and Mart́in-Gonzáles (1997)
show yield functions for multispecies fisheries that generate backward-bending supply curves.

2. Another complication is the speed of adjustment of the fish population. Implicitly, we assume
a rapid adjustment of the population compared to price adjustment. However, adjustment speeds of
fish stocks vary considerably for different fisheries, with some apparently having adjustment lags as
long as one year. For investment, we assume that one year is the time horizon of decision and thus is
the appropriate lag. Therefore, there will be disequilibrium production that we are not fully capturing
in our simplified model. In Subsection 3.3, we show that important features of the adaptive learning
process are persistent under dynamic noise. These dynamic noise terms may be interpreted as noise in
supply (and/or demand).

3. Hommes et al. (2000b) have recently done laboratory experiments where participants had to
predict prices of an unknown cobweb model, with feedback from their own forecasts. Only in about
one third of the single-agent experiments was the participant able to learn the unique steady-state REE.
In similar multiagent experiments by Hommes et al. (2000a), the sample mean of realized market prices
was close to the REE price, but all multi-agent experiments exhibit significant excess volatility driven
by heterogeneous expectations.

4. Hommes and Sorger (1998) focus attention on the case of AR(1) beliefs, but emphasize that the
definition of CEE can easily be generalized to higher-order belief processes, e.g., AR(k) processes with
k ≥ 2.

5. In the case of an AR(1) belief, the SAC-learning scheme coincides exactly with the Durbin–
Levinson algorithm, the well-known recursive form of the Yule–Walker estimators for an AR(p)
process; see, e.g., Brockwell and Davis (1991, pp. 238–245).

6. The notionlearning to believe in chaoswas introduced by Hommes (1998, p. 360), and the
first examples were given by Sorger (1998) and Hommes and Sorger (1998). The key feature is that
learning parameters converge to constants whereas prices do not converge but fluctuate chaotically on
a strange attractor, with the correct sample average and sample autocorrelations. Sch¨onhofer (1999,
2000) has recently employed the notion of learning to believe in chaos in a somewhat different context,
namely, when the entire OLS-learning process fluctuates chaotically. In Sch¨onhofer’s examples, belief
parameters of the OLS-learning scheme donot converge but keep fluctuating chaotically, while, due
to inflation, prices diverge to infinity.

7. See also Crespo-Cuaresmaand Sorger (1999) for statistical hypothesis testing of CEE; Sch¨onhofer
(2000) investigates statistical hypothesis testing of chaotic equilibria under OLS adaptive learning.

8. The graphs ofGδ,α∗,β∗ andG2
δ,α∗,β∗ in Figure 4 show that the basin of attraction of chaotic

motion is bounded above byp= p̄≈ 9,290. Therefore, adding noise to the system may lead to prices
diverging away from the chaotic region, and lock into the “bad” steady-state equilibrium with a high
price. In the simulations with noise, we therefore have chosen a bounded noise process and imposed
an upper bound on (noisy) prices of 10,000. This upper bound for prices is not inconsistent with the
AR(1) forecasting rule, because it always predicts a price well below this upper bound.
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