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Abstract. We construct a countable family of open intervals contained in (0,1] whose
endpoints are quadratic surds and such that their union is a full measure set. We then show
that these intervals are precisely the monotonicity intervals of the entropy of α-continued
fractions, thus proving a conjecture of Nakada and Natsui.

1. Introduction
In many areas of mathematics, the space of parameters of a family of mathematical objects
is itself an object of the same type. A well-known example of this phenomenon in dynamics
is the Mandelbrot set, whose local geometry reflects the geometry of the Julia set of the
quadratic polynomial corresponding to a given point.

The goal of this paper is to analyse the parameter space of a family of one-dimensional
dynamical systems known as α-continued fraction transformations by means of regular
continued fraction (c.f.) expansions. As a consequence, we will be able to determine the
intervals in parameter space where a stability condition holds, which also correspond to
monotonicity intervals of the entropy function.

For each α ∈ (0, 1], the α-continued fraction transformation Tα : [α − 1, α] →
[α − 1, α] is defined as

Tα(x)=


1
|x |
−

⌊
1
|x |
+ 1− α

⌋
if x 6= 0,

0 if x = 0.

Notice that T1 is the usual Gauss map, and all maps in the family are expanding interval
maps with infinitely many branches. Moreover, every Tα admits a unique invariant measure
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absolutely continuous with respect to Lebesgue, hence it makes sense to study the metric
entropy h(Tα) with respect to this invariant measure.

The family {Tα} was introduced by Nakada [Nak81], who gave an explicit formula for
the entropy function α 7→ h(Tα) for α ∈ [1/2, 1] and showed that a phase transition occurs
at α = (

√
5− 1)/2.

Several authors have investigated the behaviour of entropy when the parameter α ranges
in the interval [0, 1/2]: Cassa [Cas95] proved that the entropy is constant on [

√
2− 1, 1/2]

(see also the appendix of [CMM99]); the entropy on [0, 1/2] was generally believed to be
a continuous, weakly monotone function, converging to 0 as α→ 0 ([Cas95] or [BDV02,
p. 284]). In [LM08], however, Luzzi and Marmi produced strong numerical evidence that
the entropy is not monotone; this fact was indeed rigourously confirmed by Nakada and
Natsui [NN08], who proved that in every neighbourhood of the origin there are intervals
where the entropy is strictly decreasing, as well as others where it is constant, and still
others where it is strictly increasing.

The key to their proof was showing that the entropy is locally monotone on intervals I
of parameters which satisfy the matching condition

there exists N , M ∈ N+ : T N
α (α)= T M

α (α − 1) for all α ∈ I (1)

as well as some other technical conditions. Such intervals will be called matching intervals,
and their union will be referred to as the matching set. Nakada and Natsui not only
exhibited families of intervals where these conditions are met, but also made the following
conjecture.

CONJECTURE 1.1. The matching set has full measure in (0, 1] (hence it is dense).

Empirical evidence for this conjecture was obtained in [CMPT10]: this numerical study
also revealed that the complement of the matching set, where phase transitions occur,
displays a fairly complicated fractal structure.

The goal of the present paper is to prove rigorously the existence of the structures
empirically observed there, thus proving Conjecture 1.1. The main tool to analyse the
matching set will be regular c.f. expansions; in fact, this matching set can be perfectly
described without even mentioning the dynamics of α-transformations. Let us briefly
explain why.

It is well known that any rational value r ∈Q can be expressed as a finite c.f. expansion
of either even or odd length. This fact, usually perceived as a nuisance, will give us the
chance to perform the following ‘natural’ construction.
(1) For any rational number r ∈Q ∩ (0, 1] we consider its two regular c.f. expansions,

namely,

r = [0; a1, . . . , an] = [0; a1, . . . , an − 1, 1] where an ≥ 2.

We will associate to any such r the open interval Ir whose endpoints are the quadratic
surds

[0; a1, . . . , an] [0; a1, . . . , an − 1, 1].

Such an Ir will be called the quadratic interval generated by r .
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(2) We will consider the union of all quadratic intervals

M :=

⋃
r∈Q∩(0,1]

Ir .

The object of §2 will be to understand the structure of the open dense set M, which can
be summarized in the following theorem.

THEOREM 1.2. The set M has full Lebesgue measure in (0, 1], but its complement has
Hausdorff dimension one.

Although the family of quadratic intervals {Ir }r∈Q will have substantial overlapping,
there is a subfamily that covers M exactly. More precisely, a quadratic interval Ir will
be called maximal if it is not properly contained in any other quadratic interval. It turns
out that every quadratic interval is contained in some maximal one, and distinct maximal
quadratic intervals do not intersect (Lemma 2.6): thus M is the disjoint union of this
collection of maximal intervals. This suggests that (0, 1]\M should have a Cantor-
like structure; this is only partially true because (0, 1]\M is not perfect. Indeed, the
presence of isolated points is a consequence of the period-doubling phenomenon (see
§3.3): if r := [0; a1, . . . an] ∈Q with n odd and Ir is a maximal quadratic interval,
then r ′ := [0; a1, . . . , an, a1, . . . an]< r generates Ir ′ which is maximal as well, and
the quadratic surd α := [0; a1, . . . , an] is a common endpoint, which is obviously not
contained in any quadratic interval.

In the second part of the paper (§3) we prove that that this set M is closely connected
to the matching intervals. More precisely, we prove the following theorem.

THEOREM 1.3. Let a ∈Q ∩ (0, 1] such that Ia is maximal. Then there exist positive
integers N , M such that

T N
α (α)= T M

α (α − 1) for all α ∈ Ia .

Moreover, the entropy function α 7→ h(Tα) is monotone on Ia .

The proof of the theorem relies on the fact that an algebraic matching condition stronger
than (1) holds everywhere on M; by Theorem 1.2, this condition holds for almost every
parameter.

Moreover, the set defined by the algebraic matching condition contains the matching
set defined by Nakada and Natsui and the difference between them is countable (see
Appendix A), hence they have the same measure and Conjecture 1.1 follows.

Our method also gives us an explicit control over the combinatorics of matchings: given
any rational number, we are able to determine which maximal interval it belongs to and
the matching exponents (N , M), hence the local behaviour of entropy (constant, increasing
or decreasing). Conversely, one can use such knowledge to produce families of matching
intervals with prescribed properties.

Finally, §4 contains a few technical tools which we use throughout the paper, including a
criterion for comparing purely periodic quadratic surds (string Lemma 2.12) and an explicit
characterization of either of the finite c.f. expansions which generate a maximal quadratic
interval (Lemma 2.13).
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It is worth noting that the phenomenon we describe is strongly reminiscent of the theory
of circle maps (see [Sch05, Ch. 7.2]): in that case, around each rational rotation number, in
the parameter space there is a region (‘Arnold tongue’) where the dynamics is still periodic
(‘mode-locking’), in such a way that on the critical line the complement of the union of all
Arnold tongues has measure zero (even though its Hausdorff dimension is strictly smaller
than one, differently from our case [GS96]).

Recently Katok and Ugarcovici have studied another family of transformations, called
(a, b)-continued fractions, which seem to share various features with the transformation
Tα (see [KU10]): it would be worth investigating more closely the connection between
these systems in order to see whether the two different approaches can lead to a deeper
understanding of both.

2. Thickening Q
Let S = (s1, . . . , sn) be a finite string of positive integers: we will use the notation

[0; S] := [0; s1, . . . , sn] =
1

s1 +
1

. . . + 1
sn

.

Moreover, S will be the periodic infinite string SSS . . . and [0; S] the quadratic surd
with purely periodic continued fraction [0; s1, . . . , sn]. The symbol |S| will denote the
length of the string S. We will denote the denominator of the rational number r as den(r).

2.1. Pseudocentres. Let us start out by defining a useful tool in our analysis of intervals
defined by continued fractions.

LEMMA 2.1. Let J = (α, β), α, β ∈ R, |α − β|< 1. Then there exists a unique rational
p/q ∈ J such that q =min{q ′ ≥ 1 : p′/q ′ ∈ J }.

Proof. Let d :=min{q ≥ 1 : p/q ∈ J }. If d = 1 we are done. Let d > 1, and assume by
contradiction that c/d and (c + 1)/d both belong to J . Then there exists k ∈ Z such
that k/(d − 1) < c/d < (c + 1)/d < (k + 1)/(d − 1), hence cd − c − 1< kd < cd − c,
which is a contradiction since kd is an integer. 2

Definition 2.1. The number p/q which satisfies the properties of the previous lemma will
be called the pseudocentre of J .

LEMMA 2.2. Let α, β ∈ (0, 1) be two irrational numbers with c.f. expansions β = [0; S,
b0, b1, b2, . . .] and α = [0; S, a0, a1, a2, . . .], where S stands for a finite string of positive
integers. Assume that b0 > a0. Then the pseudocentre of the interval J with endpoints α
and β is

r = [0; S, a0 + 1](= [0; S, a0, 1]).

Proof. Suppose that there exists s ∈Q ∩ J with den(s) < den(r). Since s ∈ J , then
s = [0; S, s0, s1, . . . , sk] with a0 ≤ s0 ≤ b0 and k ≥ 0. The choice s0 ≥ a0 + 1 gives rise
to den(s)≥ den(r), so s0 = a0. On the other hand, [0; S, a0] does not belong to the
interval, so k ≥ 1 and s1 ≥ 1, still implying that den(s)≥ den(r). 2
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2.2. Quadratic intervals.

Definition 2.2. Let 0< a < 1 be a rational number with c.f. expansion

a = [0; a1, . . . , aN ] = [0; a1, . . . , aN − 1, 1] where aN ≥ 2.

We define the quadratic interval Ia associated to a to be the open interval with endpoints

[0; a1, . . . , aN−1, aN ] and [0; a1, . . . , aN−1, aN − 1, 1]. (2)

Moreover, we define I1 := ((
√

5− 1)/2, 1] (recall that (
√

5− 1)/2= [0; 1]).

Note that the ordering of the endpoints in (2) depends on the parity of N : given a ∈Q,
we will denote by A+ and A− the two strings of positive integers which represent a as a
continued fraction, with the convention that A+ is the string of even length and A− the
string of odd length, so that

Ia = ([0; A−], [0; A+]), a = [0; A+] = [0; A−].

Example. If a = 1/3= [0; 3] = [0; 2, 1], [0; A+] = [0; 2, 1], [0; A−] = [0; 3], Ia =

((
√

13− 3)/2, (
√

3− 1)/2).

Note that a is the pseudocentre of Ia , hence Ia = Ia′ ⇔ a = a′.

LEMMA 2.3.
(1) If ξ ∈ I a , then a is a convergent to ξ .
(2) If Ia ∩ Ib 6= ∅, then either a is a convergent to b or b is a convergent to a.
(3) If Ia ( Ib then b is convergent to a, hence den(b) < den(a).

Proof. (1) Since ξ ∈ Ia , either ξ = [0; a1, . . . , aN , . . .] or ξ = [0; a1, . . . , aN − 1, . . .].
In the first case the claim holds; in the second case one has to notice that neither
[0; a1, . . . , aN − 1] nor all elements of the form [0; a1, . . . , aN − 1, k, . . .] with k ≥ 2
belong to Ia , so k = 1 and a is a convergent of ξ .

(2) Fix ξ ∈ Ia ∩ Ib. By the previous point, both a and b are convergents of ξ , hence the
rational with the shortest expansion is a convergent of the other.

(3) From (1) since a ∈ Ia ⊆ Ib. 2

Definition 2.3. A quadratic interval Ia is maximal if it is not properly contained in any Ib

with b ∈Q ∩ (0, 1].

The interest in maximal quadratic intervals lies in the following proposition.

PROPOSITION 2.4. Every quadratic interval Ia is contained in a unique maximal
quadratic interval.

A good way to visualize the family of quadratic intervals is to plot, for any rational
a, the geodesic γa on the hyperbolic upper half plane with the same endpoints as Ia , as
in Figure 1; one can see the maximal intervals corresponding to the highest geodesics, in
such a way that every γa has some maximal geodesic (possibly itself) above it and no two
maximal γa intersect.

The proof of Proposition 2.4 will be given in two lemmas.

LEMMA 2.5. Every quadratic interval Ia is contained in some maximal quadratic
interval.
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FIGURE 1. Quadratic intervals. Every Ia is represented by a geodesic landing on its endpoints. Maximal
intervals are shown as thick curves. The rational values displayed are the pseudocentres of maximal intervals

with denominator less than 10.

Proof. If Ia were not contained in any maximal interval, then there would exist an
infinite chain Ia ( Ia1 ( Ia2 ( · · · of proper inclusions, hence by the lemma every ai is a
convergent of a, but rational numbers can only have a finite number of convergents. 2

LEMMA 2.6. If Ia is maximal then, for all a′ ∈Q ∩ (0, 1),

Ia ∩ Ia′ 6= ∅⇒ Ia′ ⊂ Ia,

and equality holds if and only if a = a′. In particular, distinct maximal intervals do not
intersect.

Proof. We need the following lemma, which we will prove in §4. 2

LEMMA 2.7. If Ia ∩ Ib 6= ∅, Ia\Ib 6= ∅ and Ib\Ia 6= ∅, then either Ia or Ib is not maximal.

Let Ia0 be the maximal interval which contains Ia′ . Since Ia ∩ Ia0 6= ∅, by Lemma 2.7
either Ia ⊆ Ia0 or Ia0 ⊆ Ia , hence by maximality Ia = Ia0 and Ia′ ⊆ Ia . Since a is the
pseudocentre of Ia , Ia = Ia′ ⇒ a = a′. 2

2.3. Hausdorff dimension. In this section we prove Theorem 1.2, which states that the
exceptional set E := ]0, 1]\M has zero Lebesgue measure but Hausdorff dimension equal
to one. The key tool of the proof is the following lemma, which establishes a connection
between E and numbers of bounded type.

LEMMA 2.8.
(i) Let ξ ∈ E = (0, 1]\M. Then ξ is irrational and ξ = [0; a1, . . . , an, . . .] with

a j ≤ a1 for all j ∈ N+.
(ii) Let ξ = [0; a1, . . . , an, . . .] be an irrational number such that ak ≤ a1 − 1 for all

k ≥ 2. Then ξ does not belong to any Ia for any a ∈Q ∩ (0, 1].

Proof. Since ξ /∈M then ξ /∈Q. If ξ has the infinite c.f. expansion ξ = [0; a1, . . . ,

an, . . .] with ak > a1 for some k ∈ N+ then x lies between r := [0; a1, . . . , ak−1] and
α := [0; a1, . . . , ak−1]; therefore x ∈ Ir ⊂M. Let a = [0; A+] = [0; A−], so that Ia =

([0; A−], [0; A+]). If ξ ∈ Ia , by Lemma 2.3 a is a convergent of ξ , so either

ξ = [0; A+, . . .] or ξ = [0; A−, . . .].
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FIGURE 2. Maximal intervals (thick solid curves) versus horoballs (dashed) in the window
(

1
11 ,

1
10

)
.

In the first case ξ = [0; A+, s, . . .] with s < a1, so ξ > [0; A+] = [0; A+, a1, . . .]; in the
second, ξ = [0; A−, s, . . .] with s < a1 and therefore ξ < [0; A−] = [0; A−, a1, . . .]. 2

Proof of Theorem 1.2. Lemma 2.8 implies that E is contained in the set of numbers of
bounded type, hence it has Lebesgue measure zero.

On the other hand, let N ≥ 1, and define

CN := {x = [0; a1, . . .] | ak ≤ N ∀k ≥ 1},

EN :=

[
1

N + 1
,

1
N

)
∩ E .

By Lemmas 2.10 and 2.8, EN ⊆ CN , and by Lemma 2.8, for N ≥ 2, EN ⊇ φ(CN−1)where
φ(x) := x 7→ 1/(N + x). Since φ is a bi-Lipschitz map, it preserves Hausdorff dimension,
so

dimH CN−1 = dimHφ(CN−1)≤ dimH EN ≤ dimH CN .

Since it is well known [Jar28] that supN→∞ dimH CN = 1 and E =
⋃

N EN , the claim
follows. 2

Remark. A similar way of stating the same result would be to say that for every p/q ∈
Q ∩ (1/(N + 1), 1/N ),

B

(
p

q
,

1

(N + 2)q2

)
⊆ Ip/q ⊆ B

(
p

q
,

1

(N − 1)q2

)
.

This means that in any fixed subinterval (1/(N + 1), 1/N ) the size of the geodesic over
Ip/q is comparable to the diameter of the horocycles ∂B(p/q + ı/Nq2, 1/Nq2) (which,
for any fixed N , all lie in the same SL2(Z)-orbit). Figure 2 shows this comparison for
N = 10.

2.4. The bisection algorithm. We will now describe an algorithmic way to produce all
maximal intervals, as announced in [CMPT10, §4.1]. This will also provide an alternative
proof of the fact the M has full measure.

Let F be a family of disjoint open intervals which accumulate only at 0, i.e. such that
for every ε > 0 the set {J ∈ F : J ∩ [ε, 1] 6= ∅} is finite, and denote F =

⋃
J∈F J . The

complement (0, 1]\F will then be a countable union of closed disjoint intervals C j , which
we refer to as gaps. Note that some C j may well be a single point. To any gap which is not
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a single point we can associate its pseudocentre c ∈Q as defined in the previous sections,
and moreover consider the interval Ic associated to this rational value. The following
proposition applies.

PROPOSITION 2.9. Let Ia and Ib be two maximal intervals such that the gap between
them is not a single point, and let c be the pseudocentre of the gap. Then Ic is a maximal
interval and it is disjoint from both Ia and Ib.

Proof. Pick Ic0 maximal such that Ic ⊆ Ic0 , so by Lemma 2.3 den(c0)≤ den(c). On the
other hand, since maximal intervals do not intersect, Ic0 is contained in the gap, and since
c is pseudocentre, den(c)≤ den(c0), with equality holding only if c = c0. 2

The proposition implies that if we add to the family of maximal intervals F all intervals
which arise as gaps between adjacent intervals then we will get another family of maximal
(hence disjoint) intervals, and we can iterate the procedure.

For instance, let us start with the collection F1 := {I1/n, n ≥ 1}. All these intervals
are maximal, since the continued fraction of their pseudocentres has only one digit (apply
Lemma 2.3).

Let us construct the families of intervals Fn recursively as follows:

Gn := {C connected component of (0, 1]\Fn},

Fn+1 := Fn ∪ {Ir : r pseudocentre of C, C ∈ Gn, C not a single point}

where Fn denotes the union of all intervals belonging to Fn .
It is thus clear that the union F∞ :=

⋃
Fn will be a countable family of maximal

intervals. The union of all elements of F∞ will be denoted by F∞; its complement (the set
of numbers which do not belong to any of the intervals produced by the algorithm) has the
following property.

LEMMA 2.10. (0, 1)\F∞ consists of irrational numbers of bounded type; more precisely,
the elements of (1/(n + 1), 1/n]\F∞ have partial quotients bounded by n.

Proof. Let γ = [0; c1, c2, . . . , cn, . . .] /∈ F∞; we claim that ck ≤ c1 for all k ∈ N. Since
γ /∈ F∞, for all n ≥ 1 we can choose Jn ∈ Gn such that γ ∈ Jn . Clearly, Jn+1 ⊆ Jn .
Furthermore, γ cannot be contained in either I1/c1 or I1/(c1+1), so all Jn are produced
by successive bisection of the gap ([0; c1, 1], [0; c1]), hence by Lemma 2.2, for every n,
the endpoints of Jn are quadratic surds with c.f. expansion bounded by c1. It may happen
that there exists n0 such that Jn = {γ } for all n ≥ n0, so γ is an endpoint of Jn0 , hence it is
irrational and c1-bounded. Otherwise, let pn/qn be the pseudocentre of Jn ; by uniqueness
of the pseudocentre, diam Jn ≤ 2/qn , and qn+1 > qn since Jn+1 ⊆ Jn . This implies that γ
cannot be rational, since the minimum denominator of a rational sitting in Jn is qn→+∞.
Moreover, diam Jn→ 0, so γ is limit point of endpoints of the Jn , which are c1-bounded,
hence γ is also c1-bounded. 2

PROPOSITION 2.11. The family F∞ is precisely the family of all maximal intervals; hence
F∞ =M.

Proof. If a maximal interval Ic does not belong to F∞, then its pseudocentre belongs to
the complement of F∞, but the previous lemma asserts that this set does not contain any
rational. 2
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Note that Proposition 2.11 and Lemma 2.10 provide another way of seeing that the
complement of M consists of numbers of bounded type, hence it has full measure.

2.5. Maximal intervals and strings. In order to get a finer control on the maximality
properties of quadratic intervals, we introduce a systematic description of the continued
fraction expansions in terms of strings and develop a few tools in order to characterize the
expansions of those rational numbers which give rise to maximal intervals.

Let us start with some notation. If S = (s1, . . . , sn) is a finite string of positive integers
and x a real number, we will denote

[0; S] :=
1

s1 +
1

. . . + 1
sn

and [0; S + x] :=
1

s1 +
1

. . . + 1
sn+x

.

We will also introduce a total ordering on the space of finite strings of given length:
given two distinct finite strings S and T of equal length, let l :=min{i : Si 6= Ti }. We will
set

S < T :=

{
Sl < Tl if l ≡ 0 mod 2,
Sl > Tl if l ≡ 1 mod 2.

The exact same definition also gives a total ordering on the space of infinite strings. Note
that if S and T have equal length L ∈ N ∪ {∞},

S < T ⇔ [0; S]< [0; T ],

i.e. this ordering can be obtained by pulling back the order structure on R, via identification
of a string with the value of the corresponding c.f.

The following lemma is the essential tool used to compare two purely periodic infinite
strings.

LEMMA 2.12. Let S, T be two non-empty, finite strings. Then the pair of infinite strings
S, T is ordered in the same way as the pair ST , TS, namely,

ST T TS ⇐⇒ S T T .

Finally, we can give an explicit characterization of the c.f. expansion of those rationals
which are pseudocentres of maximal intervals.

PROPOSITION 2.13. Let a = [0; A] ∈Q ∩ (0, 1]. The following are equivalent:
(i) Ia is maximal;
(ii) if A = ST with S, T finite non-empty strings, then either ST < TS or ST = TS with

T = S, |S| odd.
Moreover, if [0; ST ] is maximal, then [0; T ]> [0; ST ].

For the sake of readability, we postpone the proofs of these results to §4.

3. Application to α-continued fractions
Having investigated the properties of the maximal set itself, this section will be devoted to
studying its relation with the parameter space of α-continued fractions.
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3.1. Matching intervals. Let α ∈ (0, 1]. Recall that the α-continued fraction expansion
is given by the map Tα : [α − 1, α] → [α − 1, α] defined by Tα(0)= 0 and

Tα(x)=
εα(x)

x
− cα(x) for x 6= 0

with

εα(x) := Sign(x), cα(x) :=

⌊
1
|x |
+ 1− α

⌋
.

Moreover, one can represent the encoding with the matrices in GL(2, Z),

Mα,x,n =

(
0 εα(x)
1 cα(x)

)
. . .

(
0 εα(T n−1

α (x))
1 cα(T n−1

α (x))

)
=

(
pn−1,α(x) pn,α(x)
qn−1,α(x) qn,α(x)

)
,

so that

x =
pn−1,α(x)xn + pn,α(x)

qn−1,α(x)xn + qn,α(x)
with xn = T n

α (x). (3)

We will be interested in the metric entropy h(Tα) of these transformations as a function
of α; in [NN08], a series of matching conditions were introduced in order to define intervals
in the parameter space where the entropy function α 7→ h(Tα) is monotone. In the same
spirit, we give the following definition.

Definition 3.1. The value α ∈ (0, 1] is said to satisfy an algebraic matching condition of
order (N , M) when the following matrix identity, denoted by (N , M)alg, holds:

Mα,α,N =

(
1 1
0 1

)
Mα,α−1,M

(
−1 0

1 1

)
.

We will be interested in the set

Malg = {α ∈ (0, 1] s.t. ∃N , M ∈ N : α satisfies (N , M)alg}.

To get some intuition of what this condition means from a dynamic point of view, one
should note that (N , M)alg implies that

T N+1
α (α)= T M+1

α (α − 1).

The formal proof of this result is given in the Appendix A, together with a thorough
discussion of the relationship between our algebraic matching condition and the conditions
originally considered by Nakada and Natsui.

Our main result will be the following theorem.

THEOREM 3.1. Let a ∈Q ∩ (0, 1] such that Ia is maximal, and let a = [0; a1, . . . , an],
n even. If we define

N :=
∑
j even

a j , M :=
∑
j odd

a j ,

then for every x ∈ Ia , the algebraic matching condition (N , M)alg holds.

COROLLARY 3.2. Malg has full Lebesgue measure in (0, 1].

Proof. By Theorem 3.1, Malg contains M, which has full measure by Theorem 1.2. 2

Since it can be proved (see Appendix A) that the difference between Malg and
the matching set defined by Nakada and Natsui is countable, this also establishes
Conjecture 1.1.
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3.2. Anatomy of maximal orbits. The first step in the proof of Theorem 3.1 will be to
describe explicitly the first few steps of the orbit of any point inside a maximal interval Ia :
we will start by establishing the following lemma.

LEMMA 3.3. Let a ∈Q ∩ (0, 1] be the pseudocentre of a maximal Ia = (α
−, α+).

(1) Let a ≤ x < α+, so that we can write x = [0; a1, . . . , an + y] with 0≤ y < α+,
a = [0; a1, . . . , an] with n ≡ 0 mod 2. Then

[−1; b, ak+1, . . . , an + y]> α+ − 1 for all 1≤ b ≤ ak, 1< k ≤ n.

(2) Let α− < x ≤ a, so that x = [0; a1, . . . , an + y] with 0≤ y < α−, a = [0; a1, . . . ,

an] with n ≡ 1 mod 2 (note that this is the representation of a in c.f. other than the
one given in the previous point). Then

[−1; b, ak, . . . , an + y]> α+ − 1 for all 1≤ b ≤ ak, 1< k ≤ n.

Proof. (1) Let S := (a1, . . . , ak−1), T := (ak, . . . , an) and c := [0; T ]. By Proposi-
tion 2.13 and Lemma 2.12,

TS ≥ ST ⇒ TS ≥ ST ⇒ [0; TS] ≥ [0; ST ].

Moreover,
TS ≥ ST ⇒ TST ≥ ST T ⇒ T ≥ ST .

Now, Ic ∩ Ia = ∅ since Ia is maximal and the denominator of c is smaller than the
denominator of a, hence [0; T ]> [0; ST ]. Since b ≤ ak and 0≤ y < α+, for k even we
have

[−1; b, ak+1, . . . , an + y] ≥ [−1; T, y]> [−1; T, α+]

= [−1; TS] ≥ [−1; ST ] = α+ − 1,

and for k odd,

[−1; b, ak+1, . . . , an + y] ≥ [−1; T, y] ≥ [−1; T ]> [−1; ST ] = α+ − 1.

(2) Let S := (a1, . . . , ak−1), T := (ak, . . . , an) and c := [0; T ]. If k is odd,

TS ≥ ST ⇒ TTS ≤ TST⇒ T ≤ TS.

Moreover, T ≥ ST as in the previous point, and since Ia ∩ Ic = ∅, then [0; T ] ≥ α+, so
[0; TS] ≥ [0; T ] ≥ α+; hence,

[−1; b, ak+1, . . . , an + y] ≥ [−1; T, y]> [−1; T, α−] = [−1; TS] ≥ α+ − 1.

For k even, by the last point of Proposition 2.13, [0; T ]> [0; ST ], and since Ia ∩ Ic = ∅,
[0; T ]> α+; thus,

[−1; b, ak+1, . . . , an + y] ≥ [−1; T, y] ≥ [−1; T ]> α+ − 1. 2

An immediate corollary is the explicit description of the orbit of the pseudocentre which
explains an empirical rule given in [CMPT10].
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COROLLARY 3.4. Let a := [0; a1, a2, . . . an] (n ≥ 1) and let Ia be maximal; then the
orbits of a and a − 1 are as follows:

a = [0; a1, a2, . . . an] a − 1= [−1; a1, a2, . . . an]

Ta(a)= [−1; a2, . . . an] Ta(a − 1)= [−1; a1 − 1, a2, . . . an]

· · · · · ·

T a2
a (a)= [−1; 1, a3, . . . an] T a1−1

a (a − 1)= [−1; 1, a2, . . . an]

T a2+1
a (a)= [−1; a4, . . . an] T a1

a (a − 1)= [−1; a3, . . . an]

· · · · · ·

T N
a (a)= 0 T M

a (a − 1)= 0.

where (see also [CMPT10, p. 23])

N =
∑
j even

a j , M =
∑
j odd

a j if n is even,

N = 1+
∑
j even

a j , M =−1+
∑
j odd

a j if n is odd.

We will now prove that an algebraic matching condition holds for any pseudocentre of
a maximal interval.

PROPOSITION 3.5. Let a ∈Q ∩ (0, 1] so that Ia is maximal, and let N and M be given
by the previous corollary. Then a satisfies the algebraic matching condition (N , M)alg of
Definition 3.1.

Proof. We will make use of the following lemma.

LEMMA 3.6. For α < (
√

5− 1)/2, one has qn+1,α(x) > qn,α(x)≥ 1 for every n ≥ 0 and
every x ∈ [α − 1, α].

Proof. By definition, q0,α(x)= 1 and q1,α(x)= c1,α(x)≥ 2 (the latter only for α < (
√

5−
1)/2). By induction,

qn+1,α(x)= cn+1,α(x)qn,α(x)+ εn+1,α(x)qn−1,α(x)≥ 2qn,α(x)− qn−1,α(x) > qn,α(x).
2

Since it is easy to see that all values of α > (
√

5− 1)/2 satisfy a matching condition of
order (1, 2), we can restrict our attention to the case in which we can apply Lemma 3.6. We
will denote pk := pk,α(α) and p′k := pk,α(α − 1). Let (N , M) be given by Corollary 3.4,
such that

T N
a (a)= 0 and T M

a (a − 1)= 0.

By equation (3),
a = pN/qN , a − 1= p′M/q

′

M ,

and since gcd(pN , qN )= gcd(p′M , q ′M )= 1 (because det Ma,x,k =±1),

qN = q ′M , pN = p′M + q ′M . (4)

Now Corollary 3.4 implies that εa(T i
a (a))= εa(T

j
a (a − 1))=−1 for 1≤ i ≤ N − 1,

1≤ j ≤ M − 1, hence

det Ma,a,N =−1, det Ma,a−1,M = 1,
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by writing out the two determinants and summing up

pN−1qN − pN qN−1 + p′M−1q ′M − p′M q ′M−1 = 0,

and by using (4)

q ′M (pN−1 + p′M−1 − qN−1)= p′M (q
′

M−1 + qN−1).

Now, q ′M and p′M are coprime, hence q ′M |(q
′

M−1 + qN−1). Moreover, by Lemma 3.6,
0< q ′M−1 + qN−1 < 2q ′M , so

q ′M = q ′M−1 + q ′N−1, p′M = pN−1 + p′M−1 − qN−1,

which yields precisely the algebraic matching condition

Ma,a,N =

(
1 1
0 1

)
Ma,a−1,M

(
−1 0

1 1

)
. 2

The final step will be to prove that all points in Ia have the same convergents as the
pseudocentre.

LEMMA 3.7. Let Ia be maximal, and x ∈ Ia , N , M as in Corollary 3.4. Then

Mx,x,k = Ma,a,k for all 1≤ k ≤ N ,
Mx,x−1,h = Ma,a−1,h for all 1≤ h ≤ M.

Proof. If x ≥ a, we can write x = [0; A + y] with |A| ≡ 0 mod 2 and 0≤ y < α+; from
Corollary 3.4,

x = [0; a1, a2, . . . an + y] x − 1= [−1; a1, a2, . . . an + y]
M−1

a,a,1(x)= [−1; a2, . . . an + y] M−1
a,a−1,1(x − 1)= [−1; a1 − 1, a2, . . . an + y]

· · · · · ·

M−1
a,a,a2

(x)= [−1; 1, a3, . . . an + y] M−1
a,a−1,a1−1(x − 1)= [−1; 1, a2, . . . an + y]

M−1
a,a,a2+1(x)= [−1; a4, . . . an + y] M−1

a,a−1,a1
(x − 1)= [−1; a3, . . . an + y]

· · · · · ·

M−1
a,a,N (x)= [−1; 1+ y] M−1

a,a−1,M (x − 1)= y,

and again from the lemma,

M−1
a,a,k(x) ∈ (α

+
− 1, 0)⊆ (x − 1, 0) 1≤ k ≤ N ,

M−1
a,a−1,h(x) ∈ (α

+
− 1, 0)⊆ (x − 1, 0) 1≤ h ≤ M − 1,

hence
Mx,x,k = Ma,a,k 1≤ k ≤ N ,
Mx,x−1,h = Ma,a−1,h 1≤ h ≤ M − 1.

To prove the claim it remains to consider

M−1
a,a−1,M (x − 1)= y.

Since
0< [0; A]< [0; AA]< · · ·< [0; Ak

]< · · ·< [0; Ak+1
]< · · ·

there exists k ≥ 0 such that
[0; Ak

] ≤ y < [0; Ak+1
];

hence, y < [0; Ak+1
] ≤ [0; A + y] = x and M−1

a,a−1,M (x − 1) ∈ (0, x), so Ma,a−1,M =

Mx,x−1,M .
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The case x ≤ a is similar: the only non-negative element of the orbit this time is

M−1
a,a,N (x)= y with 0≤ y < α−

which, since α− < x , still implies that Ma,a,N = Mx,x,N . 2

Proof of Theorem 3.1. Let x ∈ Ia , a maximal. By Proposition 3.5, Ma,a,N and Ma,a−1,M

are related by the identity (N , M)alg. Since by Lemma 3.7, Mx,x,N = Ma,a,N and
Mx,x−1,M = Ma,a−1,M , the algebraic matching condition (N , M)alg also holds for x . 2

In order to complete the proof of Theorem 1.3, it remains to prove that the entropy is
monotone on every maximal Ia .

PROPOSITION 3.8. Let Ia be a maximal quadratic interval, and let N and M be as in
Theorem 3.1: then the function α 7→ h(Tα) is:
(i) strictly increasing if N < M;
(ii) constant if N = M;
(iii) strictly decreasing if N > M
on the whole interval Ia .

The proof is just an adaptation of the one given in [NN08] (see Appendix A): let us
just remark that we are able to establish explicit bounds for the domain of validity of their
entropy formula, which was previously just claimed to work locally. Moreover, N and M
are now given in terms of the c.f. expansion of a, so one can immediately establish which
of the cases (i)–(iii) holds in a neighbourhood of any given rational number.

3.3. Period doubling. Another feature observed in [CMPT10, §4.2]was the production
of infinite chains of adjacent matching intervals via period doubling. More formally, we
have the following proposition.

PROPOSITION 3.9. Let a be the pseudocentre of a maximal interval Ia , and write a =
[0; A−] = [0; A+] with |A−| ≡ 1 mod 2. Then a′ := [0; A−A−] is the pseudocentre of a
maximal interval.

The proposition follows immediately from Lemma 4.4, which will be proved in the next
section. By applying the proposition repeatedly, one gets the following corollary.

COROLLARY 3.10. Let Ia be a maximal (hence matching) interval. Then there is a
countable chain of matching intervals

· · ·< Ian+1 < Ian < · · ·< Ia1 = Ia

such that Ian and Ian+1 are adjacent, and limn→∞ an := a∞ > 0.

Note that the proposition also gives a recursive algorithm to generate the c.f. expansion
of the limit point a∞: an explicit computation for the chain generated by I1/2 is given
in [CMPT10, §4.2].

4. String techniques
This section contains the proofs of a few technical lemmas about the string ordering
mentioned in the rest of the paper.
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4.1. String formalism. To prove our results we shall need to fix some notation to
manipulate the strings of partial quotients. If A, B are two finite strings composed with the
alphabet N+, we denote:
A′ the twin string of the finite string A, i.e. the string such that the finite continued

fractions [0, A] and [0, A′] represent the same rational number;
AB the concatenation of A and B; Ab will denote the concatenation of the finite string

A with the one-letter string (b);
An the concatenation of n copies of A (A0 is the empty string);
A the endless concatenation of A;
|A| the length of A;
(A) j

i the substring of A going from the i th figure to the j th figure of A; to indicate the

j th character of the string A we shall usually write (A) j instead of (A) j
j ;

A ⊆ B A is a prefix of B, i.e. there exists B1 such that B = AB1.
We will be interested in the alternating lexicographic order structure on the space of

finite or infinite strings as defined in §2.5. Note that the set of finite strings S is a semigroup
for the operation of concatenation. Associating a finite string S to the fractional map
x 7→ [0; S + x] yields a natural action of the semigroup S on R+. Let us also recall that the
map x 7→ [0; S + x] is increasing if |S| is even and decreasing if |S| is odd; in particular,
odd convergents of any x are greater than x while even convergents are smaller. Moreover,
if x := [0; S, a + x ′] and y := [0; S, b + y′] with a > b ∈ N+, x ′, y′ ∈ [0, 1), then x > y
if |S| is even and x < y if |S| is odd.

In the following we shall need some effective criterion to compare infinite periodic
strings S, T : as soon as |S| 6= |T | this becomes a non-trivial task. The next section will
deal with this issue.

4.2. String lemma.

LEMMA 4.1. Let S, T be two non-empty strings. Then the pair of infinite strings S, T is
ordered in the same way as the pair ST , TS, i.e.

ST T TS ⇐⇒ S T T .

Proof. If ST = TS we can prove that there exist another string P and integers k, h ∈ N such
that S = Pk , T = Ph , hence S = T . In fact, we proceed by induction on n :=max{S, T }.
For n = 1 the claim is obviously true. Assume now that we have proved this claim for all
pairs of strings of length strictly less than n, and let S, T be a pair of strings of maximal
length n. We may assume that 0< |T |< |S| ≤ n, the cases |T | = 0 and |T | = |S| being
trivial. The hypothesis TS= ST implies that T is a prefix of S, namely S = TS1 therefore
TS= ST translates into TS1 = S1T . Since max{|T |, |S1|}< |S| ≤ n, we use the inductive
hypothesis to conclude that T = Pk , S1 = Ph , and therefore S = Ph+k .

If ST 6= TS, then d :=min{ j ∈ N : (ST ) j 6= (TS) j } ≤ s + t . By Lemma 4.2 with n =
d − 1 one has

(ST )d1 = (S)
d
1 , (TS)d1 = (T )

d
1 ,

hence the pair (S, T ) is ordered in the same way as (ST, TS). 2
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LEMMA 4.2. Let S, T be two non-empty strings, s := |S|, t := |T |, n ∈ N, 0≤ n < s + t .
If (ST )n1 = (TS)n1 then {

(S)n+1
1 = (ST )n+1

1 (∗)

(T )n+1
1 = (TS)n+1

1 . (∗∗)

Proof of Lemma 4.2. We can assume that |T | ≤ |S|. We can split the proof into three cases,
depending on the relation between n and the lengths data t and s.

Case 1: 0≤ n < t . In this case both (∗) and (∗∗) trivially hold.

Case 2: n < s, kt ≤ n < (k + 1)t for some k ≥ 1. (ST )n1 = (T S)n1 implies that T k is a
prefix of S, i.e. S = T k S1. On the other hand:
– S coincides with ST on the first s figures

n<s
H⇒ (∗) holds;

– T coincides with TS on the first (k + 1)t figures
n<(k+1)t
H⇒ (∗∗) holds;

Case 3: s ≤ n < s + t . (ST )n1 = (T S)n1 implies that S is a prefix of T k (with k = ds/te),
i.e. S = T k−1T0, T = T0T1. Thus

(S)s+t
1 = T k−1T0T0T1 = ST, (T )s+t

1 = T k T0 = TS.

So (∗) and (∗∗) are again both verified. 2

The following remark will be useful later.

Remark. Let T, S be two non-empty strings and set a := [0; ST ], b := [0; S], Ia :=

(α−, α+) and Ib := (β
−, β+). Then:

(i) if |S| is even then b < a and β− < α−;
(ii) if |S| is odd and T 6= (1), then b > a and β+ > α+.

LEMMA 4.3. If Ia ∩ Ib 6= ∅, Ia\Ib 6= ∅ and Ib\Ia 6= ∅, then either Ia or Ib is not maximal.

Proof. By Lemma 2.3, without loss of generality, we may assume that a is a convergent
of b; hence we can write a = [0; A], b = [0; A`A0], where A0 6= ∅ is a proper prefix of A.
Let a0 := [0; A0]; we claim that the interval Ia0 contains either Ia or Ib. There are several
cases to be examined; in all cases the proof that the two intervals are nested, one inside the
other, amounts to checking two inequalities: one of the two inequalities will be a trivial
consequence of the previous remark while the other is harder, but it will follow from the
string Lemma 2.12. We treat just one case in detail, and provide Table 1 to explain how
to get the ‘hard’ inequality for all the other cases. Let |A| ≡ 0, |A0| ≡ 0, α+ = [0; A],
β+ = [0; A`A0]. Then

α+ < β+⇔ A < A`A0⇔ AA0 < A0 A⇔ A < A0

so α+ < α+0 and, by the remark between Lemmas 4.2 and 4.3, α−0 < α
− so that Ia ⊆ Ia0

where a0 := [0; A0]. 2

LEMMA 4.4. Let a1 = [0; P], a` = [0; P`]. The following are equivalent:
(i) Ia` is maximal;
(ii) Ia1 is maximal and

`= 1 if |P| is even,
`≤ 2 if |P| is odd.
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TABLE 1.

Cases Hypotheses used Hard inequalitiy Aim

|A| even |A0| even A`A0 > A A < A0
a < b a0 < a < b < α+ β+ > α+ α+ < α+0 Ia ⊂ Ia0
α+ := [0; A]

|A| even |A0| odd A`A0 < A A0 < A
a < b α+ < b < a0 β− < α+ α−0 < β− Ib ⊂ Ia0
α+ := [0; A]

|A| odd |A`A0| even A`A0 > A

{
A0 > A`A0

α+0 > β+
if

{
|A0| even

` even
Ib ⊂ Ia0

b < a b < α− β+ > α−

{
A0 < A

α−0 < α−
if

{
|A0| odd

` odd
Ia ⊂ Ia0

α− := [0; A]

|A| odd |A`A0| odd A`A′0 > A

{
A′0 > A`A′0
α+0 > β+

if

{
|A′0| even
` odd

Ib ⊂ Ia0

b < a α− < b β+ > α−

{
A′0 < A

α−0 < α−
if

{
|A′0| odd

` odd
Ia ⊂ Ia0

α− := [0; A]

Proof. (i) ⇒ (ii). If |P| even, ` > 1 and a`−1 = [0; P`−1
], then Ia`−1 ) Ia` so that Ia`

cannot be maximal. If |P| is odd and ` > 2, setting a`−2 = [0; P`−2
] then Ia`−2 ) Ia`

so, again, Ia` cannot be maximal. To conclude the proof we just need to prove that
Ia1 is maximal. Let Ia∗ be the maximal interval containing Ia1 , so that a := [0; P∗] is

a convergent of a1. The function φ(x) := [0; P + x] is injective, φ : Ia∗
∼
−−→ φ(Ia∗)=

Iφ(a∗), with φ(a∗) := [0; PP∗]; moreover, φ(Ia1)= Iφ(a1) = Ia2 . So

Ia1 ⊂ Ia∗ , φ(Ia1)⊂ φ(Ia∗)= Iφ(a∗), Ia2 = φ(Ia1)⊂ φ(Ia∗)= Iφ(a∗).

Since Ia2 is maximal, Ia2 = Iφ(a∗) and hence Ia1 = Ia∗ is maximal.
(ii)⇒ (i). Let |P| be odd and `= 2 (otherwise there is nothing to prove); we have to

show that Ia2 is maximal (if Ia1 is). Let Ia j := (α
−

j , α
+

j ) ( j = 1, 2) and observe that, since

a1 is an odd convergent of α−1 and a2 is an even convergent of α+2 ,

a2 := [0; PP]< [0; P] = α+2 = α
−

1 −< a1.

If Ia is the maximal interval containing Ia2 , a := [0; A], |A| even, we have that Ia ∩ Ia1 = ∅

and so A = P . Therefore A and P have a common period Q: A = Qm , P = Q`; on the
other hand, by virtue of the implication (i)⇒ (ii), already proved, we get `= 1 (`= 2 is
impossible, since |P| is odd) and therefore m = 2, so Ia2 = Ia is maximal. 2

Let S, T be two non-empty strings and

a := [0; ST ], b := [0; S], c := [0; T ];

Ia := (α
−, α+), Ib := (β

−, β+), Ic := (γ
−, γ+).

(5)
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PROPOSITION 4.5. Let a = [0; A] ∈Q ∩ (0, 1].
(1) The following are equivalent:

(i) Ia is maximal;
(ii) if A = ST with S, T finite non-empty strings, then either ST < TS or ST = TS

with T = S, |S| odd.
(2) Moreover, if a = [0; ST ] and Ia is maximal, [0; T ]> [0; ST ] (i.e. a < c).

Proof. (1) To prove (i) ⇒ (ii), let us use the notation introduced above in (5); by
maximality of Ia we immediately get that b /∈ Ia (a, b ∈Q and den(b) < den(a)—see also
Definition 2.2); since b ∈ Ib\Ia 6= ∅, maximality of Ia and Lemma 2.6 also imply that
Ia ∩ Ib = ∅.

Case 0. If b is an even convergent of a (i.e. if |S| is even and b < a) then Ib lies to the left
of Ia and hence β+ ≤ α−; since [0; S] = β+ and [0; ST ] ∈ {α±}, by Lemma 2.12 we get
SST ≤ STS and, since |S| is even, ST ≤ TS. Lemma 4.4 tells us that, since |S| is even and
Ia is maximal, equality cannot hold.

Case 1. If b is an odd convergent (i.e. if |S| is odd and b > a) by the previous argument
α+ ≤ β−. If [0; ST ] = α+ = β− = [0; S] then, by Lemma 4.4, T = S. If not, then
[0; ST ]< [0; S]; by Lemma 2.12, STS< SST and, since |S| is odd, this implies that
TS> ST (which is the same conclusion as the previous case).

The first implication is thus proved.
We now prove (ii)⇒ (i). Assume that Ia is not maximal; then there exist two non-empty

strings such that a := [0; ST ], b := [0; S], Ib is maximal and Ib ⊃ Ia (which, in particular,
implies that if |S| is odd then S 6= T ). Then α+ ≤ β+ and α− ≥ β−. Let us take a quick
glance at the cases that can occur:

|S| |T | [0; ST ] [0; S] Consequence of string lemma Conclusion

Even Even α+ β+ STS ≤ SST ST ≥ TS
Even Odd α− β+ STS< SST ST > TS
Odd Even α− β− STS ≤ SST ST ≥ TS
Odd Odd α+ β− STS< SST ST > TS

It is thus easy to realize that condition (ii) never holds.
(2) Let us now prove the second statement of the previous proposition. Since our claim

concerns rational values, we may assume that |ST | is even (so that α+ = [0; ST ]). Let us
rule out the ‘period doubling case’ (i.e. |S| odd and S = T ): in this case a < c because c
is an odd convergent of a. In all other cases the strict inequality ST < TS holds and hence
ST T < TST .

Moreover, we know that:
• γ := [0; T ] is an endpoint of Ic;
• γ > α+ (because ST T ≤ TST);
• Ia ∩ Ic = ∅ because Ic must contain points which are not in Ia , and Ia is maximal

(recall Lemma 2.6).
Therefore c > a (and in fact α+ ≤ γ− since Ia ∩ Ic = ∅). 2
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Proposition 4.5 provides an effective algorithm to decide whether or not a string defines
the pseudocentre of a maximal interval: it is sufficient to check that all its cyclical
permutations produce strings which are strictly bigger (unless the exceptional case of
period doubling occurs).

A. Appendix. Matching conditions and entropy
A.1. Comparison between matching conditions. Let us recall the matching conditions
given in [NN08]:
(c-1) {T n

α (α) : 0≤ n < k1} ∩ {T m
α (α − 1) : 0≤ m < k2} = ∅;

(c-2) Mα,α,k1 =
(

1 1
0 1

)
Mα,α−1,k2(⇒T k1

α (α)= T k2
α (α − 1));

(c-3) T k1
α (α)(= T k2

α (α − 1)) /∈ {α, α − 1}.
The matching set is therefore

M̃ := {α ∈ (0, 1) : (c-1), (c-2), (c-3) hold for some (k1, k2)}.

PROPOSITION A.1. If α satisfies the algebraic matching condition (N , M)alg of
Definition 3.1, then T N+1

α (α)= T M+1
α (α − 1).

Proof. Writing the identity (N , M)alg in terms of Möbius transformations and evaluating
it at α,

T N
α (α)+ T M

α (α − 1)=−T N
α (α)T

M
α (α − 1),

which implies that T N
α (α)= 0⇔ T M

α (α − 1)= 0. If both are zero, the claim follows
trivially since Tα(0)= 0; if they are non-zero, one can write

1
T N
α (α)

+
1

T M
α (α − 1)

=−1. (A.1)

Now suppose that εα(T N
α (α))= ε and cα(T N

α (α))= c so that
ε

T N
α (α)

− c ∈ [α − 1, α).

The fact that |T N
α (α)|< 1 and (A.1) imply that εα(T M

α (α − 1))=−ε, hence

−
ε

T M
α (α − 1)

− c − ε ∈ [α − 1, α)

so cα(T M
α (α − 1))= c + ε and T N+1

α (α)= T M+1
α (α − 1). 2

PROPOSITION A.2. Let Ia be a maximal quadratic interval, and let the two c.f. expansions
of a be a = [0; A+] = [0; A−]. Let N and M be as in Theorem 3.1 and

Ĩa := {α ∈ Ia s.t. (c-1), (c-2), (c-3) hold with k1 = N + 1, k2 = M + 1}.

Then
Ia\ Ĩa ⊆ {a} ∪ {α = [0; A+, k], k ∈ N} ∪ {α = [0; A−, k], k ∈ N}.

Proof. By the proof of the previous proposition, (c-2) holds for α ∈ Ia\{a}. By using the
explicit description of the orbits as in Corollary 3.4 and Lemma 3.7, one can check that (c-
1) holds for every α ∈ Ia\{a}. Exceptions to (c-3) precisely correspond to α = [0; A−, k]
or α = [0; A+, k]. 2

COROLLARY A.3. M\M̃ is a countable set.

https://doi.org/10.1017/S0143385711000447 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385711000447


1268 C. Carminati and G. Tiozzo

A.2. The entropy is monotone on maximal intervals. Let us now prove Proposition 3.8.

LEMMA A.4. Let a ∈Q ∩ (0, 1] such that Ia = (α
−, α+) is maximal, let a = [0; A] be

its c.f. expansion with |A| ≡ 0 mod 2, and choose α, α′ such that α− < α < α′ < α+ and
α′ ≤ [0; A + α]. Then

h(Tα′)

h(Tα)
= 1+ (M − N )µα′([α, α

′
]),

h(Tα)

h(Tα′)
= 1+ (N − M)µα([α − 1, α′ − 1]),

where µα and µα′ are the invariant densities of Tα and Tα′ , respectively.

Proof. Choose x ∈ (α, α′). The proof proceeds exactly as in [NN08, Theorem 2], once we
show that

M−1
α′,x,k(x) /∈ (α, α

′) 1≤ k ≤ N ,

M−1
α,x−1,h(x − 1) /∈ (α − 1, α′ − 1) 1≤ h ≤ M.

This follows directly from Lemma 3.3, except for two cases: one in which h = M and
x ≥ a, and the other in which and k = N and x ≤ a. In the first case one can write x =
[0; A + y] with a = [0; A], |A| ≡ 0 mod 2, 0≤ y < α+. Then M−1

α,x−1,M (x − 1)= y < α
because

[0; A + y] = x < α′ ≤ [0; A + α] ⇒ y < α.

The second case is handled similarly. 2

Proof of Proposition 3.8. Given α, α′ ∈ Ia , α < α′, let αk := [0; Ak
+ α] and k0 :=

max{k > 0 s.t. αk < α
′
}. One can apply the lemma to each consecutive pair of the chain

α < α1 < · · ·< αk0 < α. 2
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