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SUMMARY
The WiRo-6.3 is a six-degrees of freedom (six-DOF) robotic
parallel structure actuated by nine wires, whose character-
istics have been thoroughly analyzed in previous papers
in reference2. It is thought to be a master device for tele-
operation; thus, it is moved by an operator through a handle
and can convey a force reflection on the operator’s hand.
A completely new method for studying the workspace of
this device, and of virtually any nine-wire parallel structure
actuated by wire is presented and discussed, and its results
are given in a graphical form.
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1. Introduction
Mechanical structures actuated by wires (wire robots)
are characterized by the presence of a mobile platform
(representing the end-effector) connected by several wires to
a fixed frame; the wires are fixed to the platform, rolled over
pulleys and stretched by motors fixed to the frame in order
to exert forces and torques. At the same time, the position
and orientation of the mobile platform can be determined by
the measured wire lengths. Wire robots are parallel devices
having wires as links, and belong to a set of fully parallel
structures because every wire is an independent chain with
one DOF.1, 4–6

With respect to the traditional parallel structures, wire-
actuated robots have several advantages: they allow great
manoeuvrability, thanks to a reduced mass, and also promise
lower costs with respect to traditional actuators. Furthermore,
the stroke length of each linear joint does not follow the same
restrictions as with conventional structures, because wires
can be extended to much higher lengths, unwinding from a
spool. This kind of a structure allows to comply with several
needs in applications where conventional manipulation
technology can be hardly used for technical or economical
reasons. We could mention, for example, crane robots,1, 4

high-speed manipulation robots5 and force feedback devices
to be used as masters in master–slave teleoperation systems.6
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Such devices offer many advantages, such as a simplified
mechanical structure, very high speed, relatively large
workspace and low inertia. However, it must be noted that
wires can only pull objects and not push on them: this
unilateral constraint compels the adoption of a redundant
actuating mechanism. This can be seen as an analogy with the
grasping problem for multi-finger systems with frictionless
point contact; the forces exerted by the fingers on the grasped
object are subject to the same unidirectional constraint.

It has been stated5, 6, 9, 13 that to obtain n degrees of
freedom (DOFs) without external forces (or the gravity in the
crane case) it is necessary and sufficient to use n + 1 wires;
These devices are usually referred to as completely restrained
position mechanism (CRPM), while devices with a higher
number of wires are referred to as redundantly restrained
position mechanism (RRPM).

The study of the operative characteristics of wire-driven
devices may present more difficulties than the traditional
ones, in particular for the definition of their workspace and
dexterity. The workspace is not simply the set of non-singular
platform positions and orientations compatible with the joints
limits, but it is also necessary that all forces and torques
exerted in such platform poses should be obtainable only
by means of a set of wire forces directed from the platform
to the frame. Furthermore, the shape and the dimensions of
the workspace, and the dexterity of these devices are greatly
influenced by the number of wires and their geometrical
disposition.

It has been stated by several authors5, 6, 12, 13 that in a
certain pose of the end-effector of a six-DOF mechanism
driven by m wires, it is possible to exert arbitrary force and
moment, if and only if, the transpose of the inverse Jacobian
(called the structure matrix with six rows and m columns)
has a rank equal to six and if it is possible to find a vector
belonging to its null space with all the components strictly
positive. Practically speaking, after the evaluation of the null
space base constituted by m − 6 vectors with m components,
to decide if the considered pose belongs to the workspace at
least one set of m − 6 coefficients must be found to form
a linear combination of the m − 6 base vectors yielding a
resultant with all the m components strictly positive.

For the CRPM case (m = 7), the null space is a one-
dimensional (1-D) space vector and then the examined pose
belongs to the workspace if the vector chosen as base of the
null space has all the seven components of the same sign. For
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Fig. 1. The WiRo-6.1 structure.

the RRPM case (m > 7), the null space examination is not
trivial and solutions can be found using algorithms like the
ones used in linear programming problems of constrained
optimization.13

In the Department of Mechanics of the Politecnico di
Torino and in the Robotics Section of the ENEA, researches
on wire parallel structures have been carried out in order
to identify appropriate analysis and design criteria for the
development of devices devoted to remote manipulation and
sensed teleoperation.

Starting from a number of seven-wire structures, which
is the minimum number of wires able to provide six-
DOFs, some analysis methodologies were implemented and
adopted, such as the use of appropriate indexes to identify the
best performing structures through an objective evaluation of
their workspaces.3 As a first result, one seven-wire structure,
WiRo-6.1 (Fig. 1), was chosen as the starting point for future
development, although its main problems were a very small
workspace and low dexterity.

Then, a new structure was conceived in order to lessen the
disadvantages of the earlier structure. The lower, single wire
was replaced by three wires converging in OM, thus obtaining
a highly redundant structure with a large workspace, good
dexterity and a better equilibrium in the disposal of wires.
This structure was called WiRo-6.3, and its inverse and
forward kinematics were both solved in a closed form.2

In this paper, a novel analytical methodology is proposed
for identifying the workspace of a nine-wire redundant
structure. In particular, this procedure was applied to the
study of WiRo-6.3, demonstrating that it possesses a larger
workspace and a more dexterous behavior than WiRo-6.1.

2. Workspace Definition
Together with the properties of the structure matrix, in the
study of the workspace of wire robots further aspects must
be considered:11 the structure must be sufficiently stiff, wires
must not intersect with each other and with the environment
and the stretching tension must lie between a minimum (in

Fig. 2. The WiRo-6.3 structure.

order to prevent wires becoming slack) and a maximum value
(determined by the motors, the breaking loads of the wires,
etc.).

These aspects are not considered in this paper because they
pertain to the practical realization of the mechanisms, while
the objective of our work is the development of a procedure
to explore the theoretical limits of these structures. The
workspaces obtained in this condition are called controllable
workspaces, while those obtained with all aspects considered
are called feasible workspaces; usually a feasible workspace
is a subset of the correspondent controllable workspace.

In the following sections, geometrical and analytical
considerations will lead to a procedure to calculate whether
a platform pose belongs to the workspace or not. Since
it is difficult to obtain a closed-form description of the
workspaces of such robots, they are described as grids of
points, starting from a discrete subdivision of the internal
volume of the fixed frame.

As can be seen in Figs. 1 and 2, the groups of six
wires of both WiRo-6.1 and WiRo-6.3 devices are disposed
as the actuators of a Stewart–Gough platform, a well-
known parallel mechanism with an amount of technical
bibliography.17 The workspaces of this and similar devices
have been widely studied17–22 using different methodo-
logies from the analytical study of the zeroes of its Jacobian
determinant18, 19 to the application of the Lie algebra.20

All these studies, though, can bring a relatively poor
contribution to our work because they do not deal with
the problem of the unilateral actuation of the wires, they
can be used to evaluate the rank of the structure matrix;
in fact, it can be recognized that the limitations to the
platform motion imposed by the need of preventing wire
tangles constraints the dispositions of the group of six wires
in non-singular configurations of a correspondent Stewart–
Gough platform. In this way, the block of the structure matrix
associated with the six wires group is a 6 × 6 matrix with
non-null determinant, ensuring the full rank of the whole
structure matrix and allowing to concentrate on its null space
examination.
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3. Force Closure
The force closure of a parallel structure in a particular
configuration can be expressed as

−W = f = J̃ · τ (1)

where, in the case of a nine-wire parallel robot, W is the six-
component wrench acting on the platform, f is the wrench
provided by the robot, J̃ is the 6 × 9 structure matrix evaluated
over any particular configuration and τ is the nine-component
vector containing the tensions of the wires.

The condition representing the belonging of a given pose
to the workspace can be expressed imposing that for any f
the tensions of the wires can all be made positive (or greater
than a prefixed positive value)

τ > 0. (2)

Since J̃ is not square, among the infinite solutions of Eq. (1)
for any given f, the minimum-norm solution can be obtained
by means of the pseudoinverse

τmin = J̃+ · f (3)

where J̃+ is the pseudoinverse of J̃.
The generic solution of Eq. (1) is given by

τ = τmin + τ ∗ (4)

where τ ∗ must belong to the null space of J̃

J̃ · τ ∗ = 0. (5)

This means that the infinite possible values of τ can be
found by adding to τmin a set of vectors that do not affect the
resulting wrench.

Equation (2) may be reached imposing that for each
point of the workspace at least a strictly positive τ ∗ exists,
satisfying Eq. (5). In this way, knowing that all its multiples
also belong to the null space of J̃, it is possible to find an
appropriate positive multiplier c capable of compensating the
negative components of τmin

f = J̃(τmin + c · τ ∗) (6)

where

c · τ ∗ ∈ null(J̃); τmin + c · τ ∗ > 0.

4. Workspace Analysis
The procedure for the analysis of the workspace consists
of studying a discretized six-dimensional (6-D) space
comprising three displacements and three rotations, point
by point, checking whether the rank of J̃ is maximum (equal
to 6) and a strictly positive τ ∗ exists, satisfying Eq. (5).

If n is the number of degrees of freedom of a structure, and
m is the number of its actuators, the base of the null space
of J̃ (if J̃ has rank n) is a set of m − n vectors, each with m
components.

In the case of a nine-wire robot, the base of the null space
of J̃ is composed by three nine-component vectors, a linear
combination of which may provide the desired τ ∗.

Naming [ker] ∈ R9×3 the matrix whose columns generate
the null space of J̃, τ ∗ can be written as a linear combination

of its columns. Equation (2), considering Eq. (5) as well, can
be expressed by the following inequality:

τ ∗ = [ker] ×
⎡
⎣ α

β

γ

⎤
⎦ > 0 (7)

where α, β and γ are three unknown quantities.
Developing Eq. (7) yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k11α + k12β + k13γ > 0
k21α + k22β + k23γ > 0
k31α + k32β + k33γ > 0
k41α + k42β + k43γ > 0
k51α + k52β + k53γ > 0
k61α + k62β + k63γ > 0
k71α + k72β + k73γ > 0
k81α + k82β + k83γ > 0
k91α + k92β + k93γ > 0

(8)

where kij are the components of [ker].
Observing Eq. (8) shows that either it has no solution, or

in the three-dimensional (3-D) space generated by α, β and
γ it determines a polyhedral angle with vertex in the origin
and polygonal cross section (Fig. 3).

In case no solution of Eq. (8) exists, the corresponding
positioning point does not belong to the workspace; on the
contrary, if the polyhedral angle exists, there is an infinite
number of sets (α, β, γ ) satisfying Eq. (8), and they are all
contained inside the polyhedral angle. This means that any
external wrench can be compensated by positive tensions
in the wires, and so the positioning point belongs to the
workspace. Sectioning the polyhedral angle with a cylinder
coaxial with α, considering cylindrical coordinates with θ as
the angle on the plane βγ , something analogous to Fig. 4 is
obtained.

Combining linearly the three columns of J̃, it is always
possible to determine a new base of the null space of J̃ such

Fig. 3. The polyhedral angle determined by inequations given in
Eq. (8).
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Fig. 4. A generic section of the polyhedral angle.

that its last three rows are

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

thus limiting the search to the portion of space in which α, β
and γ are all greater than zero.

Naturally, the other elements of [ker] will change
consequently. The new matrix will be called [ker∗] to
highlight the modification performed.

The last three rows of [ker∗] now represent the conditions

⎧⎨
⎩

α > 0
β > 0
γ > 0.

(9)

The first six rows of [ker∗] may be written in the form

α > −ki2β + ki3γ

ki1
, if ki1 > 0

α < −ki2β + ki3γ

ki1
, if ki1 < 0 (10)

for i = 1 to 6.
If ki1 is null, the inequations are

γ

β
> −ki2

ki3
, if ki3 > 0

γ

β
< −ki2

ki3
, if ki3 < 0 (11)

for i = 1 to 6.
In this case, it is not important to exclude the case when

ki3 is zero, because the ratio γ /β may be infinite, as will be
pointed out afterwards.

The first and the second inequations of Eq. (10) express
respectively, the lower and upper limits for the values of α,
as a function of the coefficients kij and of the value of β and
γ . The lower limits are counted through the letter l = 1, . . . ,
l∗, while the upper limits are counted through the letter u =
1, . . . , u∗.

For at least one valid α to exist, every lower limit must
be smaller than every upper limit, which is equivalent

to applying

−kl2β + kl3γ

kl1
< −ku2β + ku3γ

ku1

for l = 1, . . . , l∗, u = 1, . . . , u∗ (12)

for each possible combination between a lower limit and a
upper limit as from Eq. (10). Moreover, the first condition of
Eq. (9), requiring α > 0, means that all the upper limits must
be greater than zero

−ku2β + ku3γ

ku1
> 0, for u = 1, . . . , u∗ (13)

for every upper limit as from Eq. (10).
Remembering that β > 0 as per Eq. (9), Eq. (12) may be

written as

γ

β
>

(
ku2

ku1
− kl2

kl1

)
(

kl3

kl1
− ku3

ku1

) , if

(
kl3

kl1
− ku3

ku1

)
> 0

γ

β
<

(
ku2

ku1
− kl2

kl1

)
(

kl3

kl1
− ku3

ku1

) , if

(
kl3

kl1
− ku3

ku1

)
< 0.

(14)

If ( kl3
kl1

− ku3
ku1

) = 0, no problem occurs, since γ /β may be
infinite as will be better explained in the following sections.
The possibility that both the numerator and the denominator
are zero is excluded by the check of the rank of J̃.

Equation (13) may be written as

γ

β
>

−ku2

ku3
, if

ku3

ku1
< 0

γ

β
<

−ku2

ku3
, if

ku3

ku1
> 0.

(15)

In the 3-D space generated by α, β and γ , the projection
of the polyhedral angle (8) on the plane βγ determines an
angle delimited by an interval [θ1, θ2], as given in Fig. 5,
where a generic θ is represented as well. Remembering that

Fig. 5. Projection of the polyhedral angle on the plane βγ .
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Fig. 6. Flowchart of the workspace-determination procedure.

β > 0 and γ > 0 as per Eq. (9)

0◦ < θ1 < 90◦

0◦ < θ2 < 90◦.
(16)

Now, imposing β = cos θ and γ = sin θ , the generic angle
θ can be expressed in the form

θ = atan
γ

β
. (17)

This explains why the ratio γ /β may be infinite: the
corresponding angle θ would be 90◦.

In this notation, the inequations in Eqs. (11), (14) and (15)
express the lower and the upper limits for θ (note that the
limitations of α have been discussed previously). Therefore,
considering the notation of Fig. 5 as well, let the greatest of
the lower limits be θ1, and the smallest of the upper limits
be θ2

ϑ1 = max

[
atan

(
γ

β

)]
l=1,...,l∗

ϑ2 = min

[
atan

(
γ

β

)]
u=1,...,u∗.

(18)
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Fig. 7. WiRo-6.3: Positional workspace (rUB = rLB = 60, rP = 30,
h = 120).

Fig. 8. WiRo-6.3: Orientation workspace (α = 10◦).

Fig. 9. WiRo-6.3: Orientation workspace (α = 20◦).

If θ1 <θ2, then there is a non-null angular interval on the
plane βγ , which, being its projection, indicates the presence
of the polyhedral angle [Eq. (8)], thus guaranteeing the
existence of an infinite number of sets (α, β, γ ) satisfying
Eq. (7). In this way, as pointed above, the tensions in the
wires can in any case be made positive.

In conclusion, if θ1 <θ2 then the particular 6-D point
representing the position and orientation of the robot is part
of the workspace; if this is not verified, it is discarded.

Fig. 10. WiRo-6.3: Orientation workspace (α = 30◦).

5. Practical Application of the
Workspace-Determination Procedure
The algorithm of Section 4 can be used to determine whether
a single platform pose (position and orientation) belongs to
the workspace or not. Consequently, it must be part of a
wider analysis strategy to identify the complete workspace
of the nine-wire structure. According to figure 6 flowchart,
the simplest thing is to consider a parallelepiped containing
the device or at least the workspace. The parallelepiped can
then be discretized according to the required accuracy level.

In order to obtain a useful graphical representation of the
workspace, the orientation and position degrees of freedom
can be considered separately, calling the whole of 3-D points
with null orientation (i.e. with Euler angles ψ = 0, χ = 0,
ϕ = 0) belonging to the 6-D workspace positional workspace
as the, and the whole of 3-D points in which, considering
a given angle α, all combinations of ψ , χ , ϕ resulting in
a rotation around a generic axis of an angle smaller than
or equal to α belonging to the 6-D workspace as the α-
orientation workspace.

Therefore, in the case of the positional workspace only the
displacement of the platform will be varied through all the
discretized points along x, y and z; for every point, the full
procedure of Section 4 will be applied in order to recognize
whether the point belongs to the workspace or not. In the
case of α-orientation workspace, the analysis will anyway
be conducted starting from the discretized positions, but
for every position the orientation of the platform will be
varied applying a discretized set of combinations of ψ , χ ,
ϕ resulting in a rotation around a generic axis of an angle
smaller than or equal to α. For the sake of visualization,
the 3-D point of the discretized parallelepiped will belong
to the orientation workspace, if and only if, each and every
considered combination of ψ , χ , ϕ at that position has been
found to be belonging to the 6-D workspace.

The method presented in the previous sections has been ap-
plied to several nine-wire structures. In particular, Figs. 7–10
show the positional workspace and three different orientation
workspaces for WiRo-6.3 having a given structure geometry
(rUB = rLB = 60, rP = 30, h= 120).

In all the figures, the central shape is a 3-D view of the
workspace, while on the coordinate planes the projections
of the workspace are shown. These results have been com-
pared to those concerning the WiRo-6.1 structure having
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Fig. 11. WiRo-6.1: Positional workspace.

Fig. 12. WiRo-6.1: Orientation workspace (α = 10◦).

Fig. 13. WiRo-6.1: Orientation workspace (α = 20◦).

the same geometrical dimensions. Figures 11–13 show
the corresponding workspaces. By this comparison, it is
immediately clear that WiRo-6.3 has a much larger work-
space in all directions. The differences from its predecessor
become particularly evident in the lower part, where WiRo-
6.1 can only move within a very small portion of space.
Furthermore, when the platform gets orientations different
from zero, WiRo-6.3 maintains a noticeable manoeuver-
ability in the lower part, while WiRo-6.1 has a very thin
orientation workspace. Even with α = 30◦, which generated a
minuscule volume for WiRo-6.1, WiRo-6.3 can be controlled
in a certain zone of space.

From this example, it is evident that the capability of
the proposed method to investigate both the positional and
the orientation workspaces allows us to make a significant

analysis and comparison of the performance of different
wire-actuated structures.

6. Conclusions
Although the analysis of the workspace of parallel structures
has been studied extensively and has led to a number of
analytical methods for investigation, such methods in general
cannot be applied directly to wire-actuated structures, since
their workspace depends not only on the structure geometry
but also on the capability of the wires to exert only the traction
forces. In this paper, a new method has been presented for
the analysis of the workspace of wire parallel structures
with triple redundancy. The method is useful to investigate
both the positional and the orientation workspaces. It was
developed for WiRo-6.3 but it can be applied to any nine-
wire parallel robot and, with a few simplifications that can
be easily derived from this paper, to seven- and eight-wire
robots as well.

The results produced by the method allow us to make
significant comparisons between different wire-actuated
structures, showing the performance differences in a
quantitative form.
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