
Robotica (2014) volume 32, pp. 257–277. © Cambridge University Press 2013
doi:10.1017/S0263574713001148

Distributed coverage with mobile robots on a graph:
locational optimization and equal-mass partitioning
Seung-kook Yun†∗ and Daniela Rus‡
†SRI International, Menlo Park, CA 94025, USA
‡Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

(Accepted November 1, 2013. First published online: December 18, 2013)

SUMMARY
This paper presents decentralized algorithms for coverage with mobile robots on a graph. Coverage
is an important capability of multi-robot systems engaged in a number of different applications,
including placement for environmental modeling, deployment for maximal quality surveillance, and
even coordinated construction. We use distributed vertex substitution for locational optimization and
equal mass partitioning, and the controllers minimize the corresponding cost functions. We prove
that the proposed controller with two-hop communication guarantees convergence to the locally
optimal configuration. We evaluate the algorithms in simulations and also using four mobile robots.

KEYWORDS: Multi-robot systems; Modular robots; Distributed algorithms; Path planning on
discrete spaces.

1. Introduction
Coverage is a core capability of multi-robot systems. In coverage, the goal is to compute a partition
of the environment subject to the optimization criteria of the application. Many multi-robot system
applications can be formulated as coverage problems, where the robot system deploys itself for
maximal modeling or surveillance scope, for load balancing in traffic, or for uniform task progression
in construction. All these applications can be modeled as graphs and can be parallelized. Most current
solutions to multi-robot deployment and coverage are formulated for continuous convex environments
and are centralized. We wish to have decentralized controllers to ensure good scalability properties in
the number of robots. Moreover, we wish for the decentralized coverage controllers to have discrete
formulations in order to support applications in arbitrarily shaped environments with obstacles, and
expressivity for a broader class of problems.

Current approaches to discrete coverage problems adapt existing continuous methods to the discrete
domain. Distributed coverage for multi-robot systems in continuous space has been studied to optimize
locations of robots,1, 2 to find the best partition for vehicle routing,3 and to distribute workload equally.4

These prior results require a convex obstacle-free target area in the Euclidean space and a continuous
weighting function on the target area called a density function. However, many applications in
assembly, construction, transportation, and resource allocation have a discrete nature and thus would
benefit from a discrete formulation of coverage algorithms. For example, we can use coverage to model
building truss structures, where the construction elements are bars and connectors such as screws.
This problem can be encoded with a continuous formulation.4 The coverage algorithm computes
sub-assemblies that are guaranteed to split the work evenly among the construction robots. This
continuous formulation required a continuous blueprint of the desired object, which is accomplished
by mapping the discrete blue print of the target object to a continuous function. This step introduces
approximation errors, and could be eliminated if a discrete solution to the coverage problem was
available. Discrete coverage on a graph could be used as the core computation for construction and
other problems that are intrinsically discrete. Moreover, distributed coverage on a graph also provides

* Corresponding author. E-mail: seungkook.yun@sri.com

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

258 Distributed coverage with mobile robots on a graph

a solution to a broad class of coverage problems whose environments are non-convex and have
obstacles.

In this paper we describe a decentralized algorithm for locational optimization,1 where the robots
deploy themselves at optimal locations with respect to a given cost function on a graph. The algorithm
uses a Voronoi-based method which converges when robots reach the weighted Voronoi centroids.
We then extend this algorithm to derive a decentralized equal-mass partitioning algorithm using a
different cost function, which distributes equal node weights to each robot, and demonstrate this
algorithm in the context of decentralized construction. The algorithm uses vertex substitution to
sequentially find the best partitions by checking every possible movement of a single centroid (robot
position in our case). We prove convergence of the algorithm to local minima in solution space
and experimentally demonstrate that a large fraction of the solutions found by our algorithms are
statistically close to the global optima. A surprising result is that two-hop communication rather than
single hop communication to neighbors is required for the best performance.

The contributions of this paper are: (1) development of the distributed algorithm for coverage on a
graph using the Voronoi tessellation, (2) evaluation of the algorithms on generic test graphs used for
operations research, (3) the communication condition required for convergence, and (4) the hardware
implementation of the algorithms.

1.1. Related work
This work builds on two areas of the previous work: distributed coverage and graph partitioning.
Although a multi-robot coverage was extensively studied before in both a continuous domain5 and a
discrete graph,6 the focus was on a centralized controller.7 We are revisiting this area with a distributed
controller, specifically focused on the coordinated construction.

Distributed coverage for cases where the continuous sensory function is known was proposed
in Cortes et al.1 The sensory function described weight or importance. Using Vornoi tessellations,
robots compute deployment regions whose distributions are guaranteed to match the sensory function
in a convex environment. Adaptive coverage with unknown sensory functions was proposed in
Schwager et al.,2 where the robots learn the sensory function as they move to achieve coverage and
the system is guaranteed to converge to a locally optimal configuration in a convex environment. In
equi-partitioning,3, 4 robots divide workload – integratd sensory information in each Voronoi partition
– into equal amounts. Distributed coverage was also considered in the context of heterogeneous
robots,8 where aerial and ground vehicles collaborate, and power-aware coverage9 of a sensor network
where high powered sensors compensate for low-powered sensors in the network. These works were
limited to a convex environment with smooth sensory functions.

Recently, the coverage algorithms have been extended to the coverage of a non-convex region under
special circumstances.8, 10–13 The visibility-based deployment problem was addressed in Ganguli
et al.,10 where a team of robots solve the art-gallery problem. In Caicedo-Nunez and Zefran11 a
non-convex region is transformed to a convex region by a diffeomorphism. Pimenta et al.8 use the
geodesic distance measure for a non-convex region instead of Euclidean distance. Controlling mobile
robots with proximity constraints was addressed for a known environment with obstacles in Ayanian
and Kumar.12 These solutions work for certain classes of non-convex environments; however, finding
a general solution for non-convex environment remains unsolved.

Graph coverage and partitioning have been extensively studied to find the optimal locations
of resources14 and to distribute workload equally. For two excellent surveys, see Reese15and
Fjallstrom.16 These methods were used in robotics.

Gabriely and Rimon17 and Durham et al.18 use an environment discretized by grid cells, and a
centralized algorithm based on spanning trees directs the robots to cover the environment. In Durham
et al.,18, 19 a group of mobile robots are deployed to cover a discretized environment by gossip
communication which requires the entire knowledge of neighbor partitions.

Our work is unique as the proposed algorithm is fully distributed, based on graph Voronoi
tessellations, and evaluated on a set of generic graphs which have been used in order to test the
algorithms for the p-median problem. Therefore, our algorithm can be used not only for a mobile
robot application but also for solving the generic p-median problem in a distributed way.

1 known as p-median problem.

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

Distributed coverage with mobile robots on a graph 259

Fig. 1. (Colour online) Applications of distributed coverage on graph. (a) Concept art for the construction of a
truss structure by mobile delivering robots and truss-climbing assembling robots. Trusses are discrete in nature,
and we can model them as a set of nodes and edges (reprinted with permission from Jonathan Hiller, Cornell
University, USA). (b) Coverage of a complicated non-convex region represented by a topological map. The blue
robots are covering the 3rd floor of Stata Center at MIT. Each room is modeled as a node with corresponding
importance as a weight.

1.2. Organization
The paper is organized as follows. Section 2 introduces distributed coverage and coverage on graphs.
We formulate the locational optimization problem on a graph in Section 3. Section 4 proposes
the controller and the distributed vertex substitution algorithm. The algorithms are tested for two
regularly spaced graph topologies as well as generic graphs from the OR library.20 As extensions
to the algorithm, distributed equal-mass partitioning on a graph is proposed and implemented in
Section 5.

2. Coverage on a Graph
In distributed coverage on a graph, the goal is to partition the graph such that a set of mobile
robots with local information only about the activities of the other robots in the system will place
themselves to optimally cover the nodes of the graph according to the problem-specific metric. In
this paper, we introduce two metrics: (1) locational optimization to optimize the sum of distances
from each robot to its clustered node, and (2) equal-mass partitioning in order to equally assign a
part of the graph to the robots. The robots, the environment, and the actions in such a system are
all discrete. For example, we can apply this method to decentralized construction (see Fig. 1(a))
where robots cooperate to assemble a complex structure out of discrete components by dividing
it into sub-assemblies. Our coverage algorithm can assign the sub-assemblies (sub-graphs) to each
robot, and each robot constructs its own sub-assembly, given the delivery of source material.21 Most
decentralized coverage solutions for continuous spaces work with convex environments,1–3 but many
indoor and outdoor environments are not convex (for example, see Fig. 1(b)). Decentralized coverage
on a graph can be used to cover continuous non-convex regions by modeling the non-convex region
as a mesh network as in finite element methods (FEM) or a topological map. Both continuous and
discrete methods are scalable in the number of robots and can handle robot failures.1

The discrete coverage on a graph algorithm has several advantages over the continuous approach,
which are as follows:

1. The continuous coverage methods require a density function. The discrete density function that
is natural in the discrete domain problem has to be processed to produce a continuous density
function for the continuous approach; this step introduces approximation errors.

2. Using continuous methods adapted to the discrete domain often produce regions that consist of
disconnected subsets; using coverage on a graph, we can guarantee that each computed coverage
region stays connected.

3. The robot neighbors computed by continuous coverage methods adapted to the graph domain may
not be physically reachable, while the neighbors computed by the discrete approach share Voronoi
edges and are thus reachable.

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

260 Distributed coverage with mobile robots on a graph

Fig. 2. (Colour online) A snapshot of robotic assembly experiment. The right side is GUI display. Two assembly
robots (green octagons in GUI) and two delivery robots cooperate to build a given truss structure, which can be
modeled as a weighted graph. The graph coverage algorithm is a suitable solution to find the optimal formation.
The details of the experiments can be found in Bolger et al.21

4. The continuous methods for distributed coverage work with obstacle-free convex environments
and special classes of concave environments, while the graph solution works for any type of convex
or concave environment with obstacles.

3. Problem Formulation
We are given a team of n robots. They have to cover an undirected graph G = (Q, E) with the
configuration2 {p1, ..., pn}, where Q is the set of vertices and E is its set of edges. Let pi ∈ Q be
the vertex location of the ith robot. Let d(·, ·) : Q × Q → R

+ ∪ {∞} denote the shortest distance
between two vertices in the graph. The distance d(s, t) = ∞ when there is no path from s to t in the
graph. The cost of each edge is strictly positive. Each vertex q ∈ Q has associate with it a node-weight
φ(q) denoting the importance the task at vertex q. We call φ : Q → R+ the target density function.

The set of robot locations induces a Voronoi partition of G.22 The intuition behind the partition is
that the task at vertex q will be executed by the nearest robot to q. Thus, each robot in the system is
allocated the tasks in its Voronoi partition Vi in G,

Vi = {
q ∈ Q|d(q, pi) < d(q, pj), ∀j �= i

}
. (1)

Unlike Voronoi partitioning in a continuous space, we have to clarify the assignment of a node that
has the same distance to multiple robots. We give priority to the robot with the minimum identity
(ID) according to the following condition:

q ∈ Vi ⇒ i = min
{
j |d(q, pi) = d(q, pj)

}
. (2)

A controller reassigns pi in order to minimize a certain cost function H(pi) until the configuration
reaches local minimum.

The distributed coverage algorithm makes the following assumptions:

1. The environment (G, φ(q)) is given to each robot.
2. The node weight φ(q) is fixed.
3. The robots do not know the initial locations of other robots nor how many other robots there are

in the system. Each robot is aware of information of only their neighbors which share an edge.
4. The robots do precompute the distance matrix D of G as a |Q| × |Q| symmetric matrix where the

matrix element dij is d(qi, qj).
5. There is no moving obstacle and no uncertainties.

Although the first assumption sounds very strong, it was generally accepted in the early stage
of distributed coverage.1 Since this work is one of the starting points for distributed coverage on

2 A configuration in this work denotes a set of the robot locations.

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

Distributed coverage with mobile robots on a graph 261

a graph, we leave simultaneous exploring and covering as a future work which may be extended
from Schwager et al..2

Because of the third assumption, the robots can not precompute the optimal configuration where
such optimality requires the knowledge of entire robots. The matrix D can be computed with O(|Q|3)
runtime by the Floyd–Warshall algorithm.23

Next, we describe the partitioning problems studied in this paper: locational optimization and equal-
mass partitioning. We focus on solving the locational optimization, and the solution is extended for
equal-mass partitioning.

3.1. Locational optimization
Locational optimization has been extensively researched in operations research for a variety of
optimization problems such as placing facilities to minimize costs (distances). For example, how
should we locate post offices to minimize the total distance from inhabitants in the area? Recently, the
locational optimization was revisited in robotics and control for distributed coverage of multi-robot
systems.1, 2 In distributed coverage, a team of robots cover an area of interest to optimize a cost
function.

In graph theory, this problem is called p-median (p should not be confused with the standard
way of denoting the position of a robot by variable p). The goal is to find the best set of medians
(centroids) of the given graph, which results in the optimal clusters of the graph. The cost function is
given as:

HL =
n∑

i=1

∑
q∈Vi

φ(q)d(q, pi), (3)

which is similar to the cost function used in locational optimization in continuous space:1

Ĥ =
n∑

i=1

∫
Vi

φ(q) ‖pi − q‖2 dq, (4)

where q and pi are now position vectors.
The p-median problem is NP-hard for a non-tree graph.24 A great number of heuristic centralized

solutions have been proposed.15 Our approach implements distributed coverage of multi-robot system
on a graph and is new in that it provides the following:

1. A distributed controller for a mobile robot system.
2. A geometry-based solution using graph Voronoi tessellation.

4. Decentralized Control Algorithms for Locational Optimization
In this section we describe the decentralized controllers that achieve locational optimization. Our
solution is iterative and the partitions are only updated by physical movements of the robots. Our
algorithm assumes local synchronization among neighbors, therefore it does not guarantee complete
asynchronous control, however it provides parallel execution. In practice, the robot spends most of the
time for physically moving, which takes much larger time than communication bandwidth, therefore
asynchronous control can be used without causing instability (cyclic motion). We will extend the
controller and apply it to equal-mass partitioning in Section 5.

Algorithm 1 shows the main control loop. Each robot has the following two states:

• COMPUTE: Compute the optimal node to relocate
• MOVING: Move to the optimal node.

Ni is the set of IDs of the neighbors of robot i. The neighbors are defined as robots whose graph
Voronoi partition share edges with Vi . We assume the neighbors are always in communication range,
which is commonly accepted in distributed coverage.3

3 Work on the communication range issues can be found in Julian et al.25

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

262 Distributed coverage with mobile robots on a graph

Algorithm 1 Distributed controller.
Require: COMPUTE

1: Communicate with Ni

2: Construct a new Voronoi partition by {p∗
i , p

∗
Ni

, p∗
NNi

}
3: Find the new optimal p∗

i (Algorithm 2)
4: if pi �= p∗

i then
5: state ← MOVING
6: end if

Require: MOVING
7: Move to p∗

i

8: if pi = p∗
i then

9: state ← COMPUTE
10: end if

p1

p2

p3

p1

p2

(a)

p3

p1

p2

p3

(b)

Fig. 3. (Colour online) An example shows why a robot needs to know information of the neighbors of the
neighbors NNi

. Each node and edge have unit weight and cost. Colors of nodes denote which robot they belong
to. Remind that nodes which have the shortest distance to multiple robots belong to the robot with minimum ID.

In contrast to the distributed coverage controller in a continuous domain1 where each robot requires
only information about its neighbors Ni , in the graph case each robot needs to know information
about all the neighbors of its neighbors NNi

(excluding Ni and robot i) as well. This is because
relocation of the robot on a graph cannot be infinitely small as in the controllers for the continuous
domain. Therefore, the relocation may change the Voronoi region of NNi

. Figure 3 shows an example.
The initial graph’s Voronoi tessellation is shown in Fig. 3(a). Each color represents its Voronoi region
Vi . All the edges are unit distance long. If robot 2 moves downward by an edge as in Fig. 3(b), V3

changes, although robot 3 was not a neighbor of robot 1 in the initial configuration. Because of this,
unlike the continuous case of locational optimization, repeatedly moving each robot to its current
centroid does not guarantee the decay of the cost function.

In the COMPUTE state, the robot communicates and receives information about the neighbors Ni

and the neighbors of its neighbors NNi
to construct the graph Voronoi tessellation. p∗

i is the centroid
of Vi denoting the desired location for robot i. Note that p∗

i can be different from the actual position
pi while the robot is moving to p∗

i in the MOVING state. This is a key to implement parallel execution
of the control algorithm. Therefore, the graph of Voronoi tessellation should be built from the set of
p∗ (new centroid), not from p. After building the current Voronoi tessellation, each robot determines
the optimal node for its relocation. Algorithm 2 finds the optimal node for locational optimization.
The algorithms guarantee decay of the cost functions. If the found p∗

i is not pi , the robot switches to
the state MOVING and moves to p∗

i .

4.1. Why two-hop information?
Intuitively, we need two-hop communication because we need to access the location of the neighbors’
neighbors. This can be done by two-hop communication (contact the neighbors to get their neighbors’
locations). Alternatively, we can store the location of the neighbors with each node and use one-hop
communication. The trade-off is that as the neighbors move, many updates (hence communications)
may be necessary.

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

Distributed coverage with mobile robots on a graph 263

More specifically, we want relocation of robot i to change only the Voronoi regions of itself and
its neighbors so that we can decouple the cost function as follows:

HL = Hi + H\i ,

where

Hi =
∑

l∈{i}∪Ni

∑
Vl

φ(q)d(q, pl),

and

H\i = HL − Hi .

Hi is a part of the cost function that can be changed by the relocation of robot i.4 It includes only
Vi and VNi

, where Vi is Voronoi partition of robot i. We want the remaining part H\i untouched while
robot i is moving. To ensure this decoupling, robot i should know the locations of NNi

(neighbors of
the neighbors). Note that we have shown that the relocation of a robot may change the Voronoi region
of NNi

. Given the locations NNi
, the proposed distributed vertex substitution algorithm ensures no

change in NNi
.

Without two-hop information, we cannot decouple the cost function.
Next, we explain the details of the algorithms for locational optimization. The algorithm is based on

vertex substitution. Vertex substitution14 is known as a typical solution for the p-median problem.15

We modify it to fit our problems and call the modified version distributed vertex substitution.

4.2. Distributed vertex substitution algorithm
Algorithm 2 describes the distributed vertex substitution algorithm for locational optimization. Each
robot runs this algorithm independently as follows. Robot i picks a candidate node qb in Vi as its next
centroid p∗

i , and checks how the movement to qb will change HL by investigating all the possible
changes to the Voronoi partitions. The algorithm returns the candidate with the maximal reduction of
HL. If there is no candidate that decreases HL, the algorithm returns null.

Given the position set Pi = {
p∗

i , p
∗
Ni

, p∗
NNi

}
, where p∗

Ni
is the list of the centroids of the neighbors

and p∗
NNi

is the list of the centroids of the two-hop neighbors, let D
Q
i be the |Q| × |Pi | sub-matrix

of D whose rows and columns match Pi (see line 2 of Algorithm 2). The algorithm finds the
optimal node for substituting the current position among qb, the candidate node for the next centroid
location of robot i in Vi (line 2 of algorithm 2). The algorithm then checks how the substitution
of pi by qb will affect the Voronoi tessellation and the cost function, by examining how the nodes
qj ∈ {Vi ∪ VNi

∪ BNi
} will change, where BNi

is a set of vertices that do not belong to VNi
but

share edges with other vertices. Therefore, it represents the nodes of NNi
that can be affected by the

movement of robot i.
In line 4–7 of Algorithm 2, djk is the minimum distance from qj to the robots (robot i, Ni , and

NNi
), rk is the ID of the robot with the minimum distance that is located at node k, and djs is the

distance from qj to the second closest robot (closest except for robot rk). Accordingly, qs is the node
of the second closest robot.

We consider whether qj belongs to robot i before substitution of p∗
i by qb. If so, the substitution

may lead to the following three cases:

1. d(qj , qb) < d(qj , pi),
2. d(qj , qs) > d(qj , qb) > d(qj , pi),
3. d(qj , qb) > d(qj , qs) > d(qj , pi).

In the first case, qj ∈ Vi after the substitution, therefore HL decreases by φ(qj)(d(qj , qb) −
d(qj , pi)), which is denoted as j�bi in line 2 in Algorithm 2. In the second case, still qj ∈ Vi,

however qj is further away from robot i now. Therefore, HL increases by the same amount

4 Note that HL �= ∑
i Hi . Depending on a number of neighbors and configurations, movement of robot i can

affect HL differently. However, the amount of change in Hi contributes to the same amount of change in HL.

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

264 Distributed coverage with mobile robots on a graph

φ(qj)(d(qj , qb) − d(qj , pi)). For the last case, qj will belong to the second closest robot and HL

increases by φ(qj)(d(qj , qs) − d(qj , pi)).
If qj does not belong to robot i before the substitution, the cost function increases by

φ(qj)(d(qj , qs) − d(qj , pi)) only when the closest robot rk to qj is in Ni . If rk /∈ Ni , we may change
VNNi

. Therefore, we do not consider qb as a substitute for p∗
i . This guarantees that the algorithm will

only change the neighboring Voronoi regions.
The final node for substitution is chosen to reduce the cost function most among all �bi , which is

the sum of each j�bi , where |Qj | is the number of qj . �b, the minimum of �bi , must be negative,
otherwise the algorithm returns null, that is, robot i does not move.

Algorithm 2 Distributed vertex substitution algorithm for locational optimization.

1: D
Q
i = D(:, p∗

i ∪ p∗
Ni

∪ p∗
NNi

)
2: for qb = {q ∈ Vi |q �= pi} do
3: for qj = {

q ∈ Vi ∪ VNi
∪ BNi

|q �= pNi

}
do

4: djk ← min(row(DQ
i , j))

5: ri ← ID of the robot i

6: rk ← ID of the robot at k

7: djs ← 2nd smallest row(DQ
i , j)

8: if ri = rk then
9: if d(qj , qb) ≤ d(qj , pi) or (d(qj , qb) > d(qj , pi) and d(qj , qs) > d(qj , qb)) then
10: j�bi = φ(qj)(d(qj , qb) − d(qj , pi))
11: else
12: j�bi = φ(qj)(d(qj , qs) − d(qj , pi))
13: end if
14: else
15: if d(qj , qb) < djk then
16: if rk /∈ Ni then
17: discard qb

18: end if
19: j�bi = φ(qj)(d(qj , qb) − djk)
20: end if
21: end if
22: end for
23: �bi = ∑|Qj |

j=1 j�bi

24: end for
25: �b = min �bi

26: if �b ≥ 0 then
27: return ∅

28: else
29: return qb∗ for �b

30: end if

4.3. Analysis
The runtime of Algorithm 2 is O(n|Q|2) due to two loops, where |Q| is the number of nodes in G.

Given the locations of the robots connected by a two-hop communication, we prove Algorithm 2’s
convergence to a critical configuration where the robots do not reconfigure anymore according to the
distributed vertex substitution. Note that the critical configurations depend on the control algorithm.
They can be different from a critical configuration with the original vertex substitution algorithm14

(not distributed).
Let � be the set of all possible configurations with n robots, and let M ⊂ � be the set of critical

configurations in which the robots do not reconfigure any more (�b ≥ 0 for ∀i), given the distributed
vertex substitution control algorithm. The critical configurations can be local minima or saddle points.
Note that our algorithm cannot guarantee convergence to the global optimum. Let �HL be the total
change of the cost function after running Algorithm 2 for all the robots.

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

Distributed coverage with mobile robots on a graph 265

0 2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

(a)

0 5 10 15 20
400

600

800

1000

1200

1400
Cost function

Time

(b)

Fig. 4. (Colour online) Simulation result from coverage on the small bridge. Nodes are filled circles and edges
are black solid lines connecting the nodes. The circles enclosed by the black outline are robot locations. Each
color represents a Voronoi region that belongs to the same colored robot. (a) The final configuration of locational
optimization on the small bridge by four robots. (b) The cost function HL.

Theorem 1. � and M are bounded and invariant sets.

Proof. The number of possible configuration is
(|Q|

n

)
. Therefore, � has a finite number of

configurations, and it is bounded. Also, it is invariant since it contains every possible set. Considering
M , given the controller, robots do not move when �HL = 0. Therefore, once a configuration yields
�HL = 0, this configuration remains constant. �

Theorem 2. Every configuration in � converges to M .

Proof. Let H0 be the minimum of HL in �. A configuration with H0 is the global optimum. H0

is the lower bound of HL, and the configuration with H0 should be in M since the robot should not
move when their configuration is the global optimum.

Let ε be the smallest negative change in HL between every possible pair of configurations in �.
Since � has a finite number of configurations, ε is also finite. Therefore, given any configuration
with the proposed controller, �HL is either 0 or less than ε. If �HL = 0, the configuration is in M .
If not, the configuration converges to M within a finite number of runs T < HL−H0

ε
, because the cost

function decreases at least by ε and it is lower bounded by H0.
Since M is invariant, any configuration in � converges to the critical configuration. �

4.4. Implementation and evaluation in simulation
We implemented Algorithms 1 and 2 and tested them on a suit of regularly shaped graph topologies
as well as general graph test sets designed for p-median problem. To our knowledge, our work is the
first approach to test a control algorithm for mobile robots on the general graph test sets. In all tests,
the initial configurations of the robots are randomly selected. We show the statistical performance of
our partitioning algorithms and the resultant partitions. Unfortunately, the general graph test sets20

do not provide any topological information.

4.4.1. Evaluation on regularly spaced graphs. We report on the results of the implementation of two
graphs with similar topology but different sizes representing blue prints of bridge structures. The first
structure shown in Fig. 4(a) has 144 nodes and 240 edges. The second structure is shown in Fig. 6(a).
It has 384 nodes and 649 edges. Coverage by 2 to 10 robots is tested for the small bridge graph,
while coverage by 2 to 15 robots are simulated for the big bridge graph. For each robot team size we
simulate the algorithm 20 times using randomly initialized configurations. The simulations terminate
when the Voronoi partitions no longer change.

Note that the first structure represents a mesh-network of the non-convex shape with the uniform
density function shown as the yellow region in Fig. 5. Therefore, the resultant partitions are
approximated partitions from continuous distributed coverage which does not exist yet. The finer
mesh network will yield more precise approximation.

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

266 Distributed coverage with mobile robots on a graph

r 0 5 10 15

2

4

6

8

10

12

14

16

Fig. 5. (Colour online) The resultant Voronoi regions by locational optimization with the continuous density
function. The yellow region denotes high-density area, while the white region has low density. The blue circles
are robots.

0 5 10 15 20 25 30

5

10

15

20

(a)

0 10 20 30 40 50 60 70
900

1000

1100

1200

1300

1400

1500
Cost function

Time

(b)

Fig. 6. (Colour online) Simulation result from 15 robot coverage on the big bridge. (a) The final configuration
of locational optimization on the big bridge. (b) The cost function HL.

Figure 4(a) shows the resultant Voronoi regions of the small bridge obtained using Algorithm 2
with four robots. The graph of the cost function is shown in Fig. 4(b). We see that the cost function
decreases over time. By comparison, Fig. 5 shows the solution computed by a distributed coverage
controller for a continuous domain, where robots move not only on the target structure but also in
free space (white region). The weighting function is continuously defined by interpolating the node
weights. The distributed controller in Cortes et al.1 is used for distributed coverage in Fig. 5. The
cost function for the continuous domain is shown in Eq. (4). The final locations of the robots look
almost identical. However, we can clearly see that our algorithm for graph coverage ensures fully
connected Vi and neighbors whose regions are physically connected. The distributed controller in the
continuous domain may result in Vi with separated parts and physically non-connected neighbors. In
Fig. 5, we can see that the upper-right and the lower-left robots are neighbors, although they are not
connected by the target structure.

Figure 6(a) shows the final Voronoi regions computed by Algorithm 2 with 15 robots. The result
matches our intuition to locate the robots at the joints of the bridge.

We used two centralized methods to compare our solution with centralized solutions capable
of computing global optima: integer programming and Lagrangian relaxation heuristics. Integer
programming could not handle the problem size. We used MATLAB and SCIP 1.2.05 on 64bit Quad
CPU Q9550. The software failed to compute the global optimum even for the smaller graph in
Fig. 4(a) because the computation load was too high.

5 SCIP claims, it is currently one of the fastest non-commercial mixed integer programming (MIP) solvers.

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

Distributed coverage with mobile robots on a graph 267

2 3 4 5 6 7 8 9
200

300

400

500

600

700

800

Number of robots

C
os

t f
un

ct
io

n

Global optimum
Decentralized controller

(a)

2 3 4 5 6 7 8 9
−4

−2

0

2

4

6

8

10

Number of robots

D
ef

ic
it

fr
om

 g
lo

ba
l o

pt
im

um
 (

%
)

(b)

Fig. 7. (Colour online) Performance comparison with the global optimum for the graph in Fig. 4(a). Data
are obtained from locational optimization on the big bridge by 2–15 robots. (a) The global optimum and the
resultant cost function value from the locational optimization controller. (b) Percentage of deviation from the
global optimum. Mean and error-bars (unit σ) are shown.

2 4 6 8 10 12 14
1000

1500

2000

2500

3000

3500

Number of robots

C
os

t f
un

ct
io

n

Global optimum
Decentralized controller

(a)

2 4 6 8 10 12 14
−2

0

2

4

6

8

10

Number of robots

D
ef

ic
it

fr
om

 g
lo

ba
l o

pt
im

um
 (

%
)

(b)

Fig. 8. (Colour online) Performance comparison with the global optimum for the graph in Fig. 6(a). Data
are obtained from locational optimization on the big bridge by 2–15 robots. (a) The global optimum and the
resultant cost function value from the locational optimization controller. (b) Percentage of deviation from the
global optimum. Mean and error-bars are shown.

Lagrangian relaxation does not guarantee the computation of a global optimum, but once it finds
a solution, it can determine whether it is a global optimum or not. We used this method to evaluate
the solutions computed by our method. Lagrangian relaxation produces the global optima for eight
times out of nine cases for the graph in Fig. 4(a), and for seven of 14 cases we tested for the graph in
Fig. 6(a).

Figures 7 and 8 compare the solution computed with Algorithm 2 with the results using Lagrangian
relaxation (centralized method) and identify the distance between the local and global optima.
Deviation from the guessed global minimum slowly increases as the number of robots increases,
however it remains within 10%.

4.4.2. Evaluation on generic graphs. In order to evaluate the performance on a general graph, we
implement our algorithm on 25 graphs in OR library,20 which have been used for the p-median
problem. The tested graphs have six sets, each of which has three to five graphs with the same
number of nodes and edges but different topologies. First four graphs are the smallest (100 nodes and
200 edges) in the OR library, and the last three graphs are the largest (900 nodes and 16,200 edges).
Our algorithm has been run for 20 times for each graph. The performance is shown in Table. I.6 |Q| is
the number of nodes, |E| is the number of edges, n is the number of robots, and H0 is the optimal cost.

In most cases, the average deviation from the global optimum stays within 10% unless n is over
roughly 30% of |Q|. The larger deficit from a larger n is expected since the robots can be easily

6 Since the OR library does not give any locational information of the nodes, we can not display the partitions.

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

268 Distributed coverage with mobile robots on a graph

Table I. Performance comparison with the global optimum for the graph in OR library.20

Filename in Average Standard Average deviation from Average iterations
OR library |Q| |E| n H0 cost deviation the global optimum per robot

pmed1.txt

100 200

5 5819 5970 4.7% 2.5% 1.9
pmed2.txt 10 4250 4415 3.8% 3.8% 1.6
pmed3.txt 20 3034 3321 5.0% 9.5% 1.0
pmed4.txt 33 1355 1628 5.3% 20.1% 0.7

pmed6.txt

200 800

5 7824 7824 0.0% 0.0% 2.3
pmed7.txt 10 5631 5728 1.8% 1.7% 1.9
pmed8.txt 20 4445 4732 3.0% 6.4% 1.6
pmed9.txt 40 2734 3013 3.0% 10.2% 1.0

pmed11.txt

300 1800

5 7696 7787 1.9% 1.2% 2.7
pmed12.txt 10 6634 6788 1.7% 2.3% 2.0
pmed13.txt 30 4374 4655 2.1% 6.4% 1.4
pmed14.txt 60 2968 3226 2.1% 8.7% 1.0
pmed15.txt 100 1729 2033 4.1% 17.6% 0.6

pmed16.txt

400 3200

5 8162 8198 1.5% 0.4% 2.7
pmed17.txt 10 6999 7195 2.2% 2.8% 2.0
pmed18.txt 40 4809 5063 1.3% 5.2% 1.4
pmed19.txt 80 2845 3133 1.8% 10.1% 1.0
pmed20.txt 133 1789 2108 3.2% 17.8% 0.6

pmed21.txt

500 5000

5 9138 9289 2.1% 1.6% 2.0
pmed22.txt 10 8577 8680 1.6% 1.1% 2.3
pmed23.txt 50 4619 4870 1.8% 5.4% 1.3
pmed24.txt 100 2961 3269 1.3% 10.0% 0.9

pmed38.txt
900 16,200

5 11,060 11087 0.9% 0.2% 2.5
pmed39.txt 10 9423 9464 0.9% 0.4% 2.4
pmed40.txt 90 5128 5226 1.3% 5.8% 1.3

stuck to local minimum when only a small number of nodes (small number of choices for the next
move) belong to each robot. In terms of convergence speed, the algorithm converges within just three
iterations per robot in all the cases whereas the Lagrangian relaxation heuristics often requires several
hundreds of iterations, each of which may take very long time without a guarantee of finding the
global optimum .26

5. Application to Equal-Mass Partitioning
Using a different goal with a corresponding cost function, we can extend and apply Algorithms 1
and 2 to equal-mass partitioning. In equal-mass partitioning we wish to partition an environment so
that all partitions have the same weight. The environment has an associated weighting function. This
problem is important in decentralized construction where we seek to identify sub-assemblies that
can be aggregated in approximately the same time period,4 and in vehicle routing where we want
each vehicle to cover the same workload along its route.3 In this section we introduce the problem,
describe the distributed algorithm, and evaluate the algorithms by simulations and experiments.

5.1. Equal-mass partitioning
The goal of equal-mass partitioning is to divide a given space into components with equal amount
of workload. Mass can be viewed as the physical measure of the weight associated with each region,
or as an abstract measure. Prior centralized solutions include Baron et al.27 Recently, two groups
introduced distributed controllers for equal-mass partitioning in the continuous domain.3, 4

Equal-mass partitioning is related to graph partitioning, where the goal is to find subsets of
a graph with equal node weights and minimum total weights of edges crossing between subsets.
Graph partitioning is also NP-hard,28 and has many heuristic algorithms.16 Distributed and geometric

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

Distributed coverage with mobile robots on a graph 269

solutions were proposed by Refs. [29–32]. Our work specializes this problem by adding the following
two constraints:

1. Each graph node belongs to the nearest robot.
2. A robot can relocate itself only in its Voronoi region.

Many existing algorithms either arbitrarily assign a node to a partition (robot) or relocate centroids
to any nodes. In the equal partition problem it is not important that we obtain the minimum edge cut,
since the cost of the edge cut does not affect the cost function that drives the controller. We focus on
dividing a graph into subsets with equal node weights.

More formally, given the Voronoi partition Vi , we define its mass as the sum of the target density
function in the area,

MVi
=

∑
Vi

φ(q). (5)

If all the nodes have the same unit node weight φ, then MVi
is the number of nodes in Vi . The cost

function is given by:

HE =
n∑

i=1

1

MVi

. (6)

Note that HE is minimized only if MV1 = MV2 = . . . = MVn
.

5.2. Control algorithm
The distributed vertex substitution algorithm is also used for equal-mass partitioning. The setup of
the algorithm inherits Algorithm 2, and the local cost function HEi

is defined as:

HEi
=

∑
l=∈{i}∪Ni

1

MVl

. (7)

Note that decay of HEi
directly leads to the decay of the total cost function HE . We check how

the Voronoi regions change. The change to the masses is j�l, where l = i, l ∈ Ni . For equal-mass
partitioning, lines 10–12 and 19 of Algorithm 2 are replaced by j�i ←j �i ± φ(qj) , where j�i is
the change of the mass for robot i. Its sign is decided according to gain or loss of mass. Let ĤEi

be the changed HEi
by substituting p∗

i to qb. The optimal node for substitution is chosen so that it
minimizes ĤEi

. The substitution to qb that may lead to change VNNi
is discarded as in Algorithm 2.

The minimum is smaller than HEi
, otherwise the algorithm returns null.

5.3. Implementation and evaluation in simulation
The vertex substitution algorithm for equal-mass partitioning was implemented and tested on a suite
of graphs, including the graphs in Figs. 4 and 6, and the generic graphs in OR library.20

5.3.1. Evaluation on regularly spaced graphs. Originally our continuous version of equal-mass
partitioning controller4 was developed for equally distributing workload to a team of robots for
construction (see Fig. 2, which likely consists of a number of regular structures). Therefore, we start
the evaluation of the algorithm on two regularly shaped graphs representing feasible blue prints of
bridge-like structures. Figure 9 shows the resultant partitions and the data for the small bridge. We see
the masses converge to approximately the same value as in Fig. 9(b). The resultant Voronoi regions
from the distributed controller in a continuous domain is shown in Fig. 10,4 and they look similar
as well. Note that Algorithm 2 guarantees that Vi is fully connected, while the distributed controller
in Yun4 does not.

Figure 11(a) shows the final Voronoi regions by the equal-mass partitioning controller with
15 robots on the big bridge. The masses converge as shown in Fig. 11(b).

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

270 Distributed coverage with mobile robots on a graph

0 2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

(a)

0 2 4 6
0.1

0.15

0.2

0.25
Cost function

Time

0 2 4 6

10

20

30

40

50

60

70

Masses

Time

(b)

Fig. 9. (Colour online) Simulation result from four robot coverage on the small bridge. (a) The final configuration
of equal-mass partitioning on the small bridge. (b) The cost function HE and the masses MVi

.

0 5 10 15

2

4

6

8

10

12

14

16

Fig. 10. (Colour online) The resultant Voronoi regions by equal-mass partitioning with the continuous density
function. The distributed controller proposed in Yun et al.4 is used.

0 5 10 15 20 25 30

5

10

15

20

(a)

0 20 40
0.55

0.6

0.65

0.7

0.75

0.8
Cost function

Time

0 20 40

10

20

30

40

50

Masses

Time

(b)

Fig. 11. (Colour online) Simulation result from 15 robot coverage on the small bridge. (a) The final configuration
of equal-mass partitioning on the small bridge. (b) The cost function HE and the masses MVi

.

For the equal-mass partitioning problem, we know the lower bound of the global optimum of HE:

HEopt = n2

MG

, (8)

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

Distributed coverage with mobile robots on a graph 271

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of robots

C
os

t f
un

ct
io

n

Global optimum
Decentralized controller

(a)

2 4 6 8 10 12 14
−0.5

0

0.5

1

Number of robots

D
ef

ic
it

fr
om

 g
lo

ba
l o

pt
im

um
 (

%
)

(b)

Fig. 12. (Colour online) Performance comparison with the global optimum. Equal-mass partitioning on the
big bridge is implemented with 2–15 robots. (a) The global optimum and the resultant cost function from the
equal-mass partitioning controller. (b) Percentage of deviation from the global optimum. Mean and error-bars
are shown.

where MG is the total mass of G.7 Therefore, we can compare the result from our controller with
HEopt as in Fig. 12. The two plots for the ideal global optimum and for our controller are almost
identical. Figure 12(b) confirms that the deviation from the global optimum is less than 1% and is
independent of how many robots were used in the test.

5.3.2. Evaluation on generic graphs. The same graphs for the p-median problem in OR library20

are used for the evaluation of our equal-mass partitioning algorithm.8 We use the graphs which have
more than 10 nodes per robot in order to ensure enough number of node assignments for each robot.
We assume a unit weight to each node. The equal-mass partitioning algorithm has been run 100 times
for each graph. The performance is shown in Table. II, in which MG

n
is the ideal optimal mass for each

robot, “average deviation" is the average of mass deviations from the optimal mass, and “std. dev. of
avg. dev." is the standard deviation of the average deviation.

In most cases, the average deviation from the global optimum stays within a very small amount
of node weights. The small standard deviations prove the stability of the control algorithm. As in
Table I, the algorithm converges within two iterations per robot in most of the cases.

5.4. Hardware experiment for equal-mass partitioning
Our hardware system consists of four iCreate mobile robots as shown in Fig. 13. Specifications of
each component are in Table III. We do not use the arm in this experiment. Poses of all the robots are
captured by a Vicon motion capture system which broadcasts 3D poses over a mesh network. The
robot has three communication protocols: IR, UDP, and xBee, which are used for communication
with the smart parts, other robots, and motion capture system, respectively. We equipped each robot
with a small Dell Inspiron Mini 10s netbook which runs a Java-based controller. The robots receive
precise location information from a Vicon motion capture system providing the 2D positions and
the rotational heading with accuracy to the millimeter and milli-radian respectively at 10 Hz using a
commercial xBee radio frequency (RF) wireless mesh network. Between the robots, a UDP multicast
channel on the local network is implemented with a singe WLAN router. The UDP packets contain
a logical time-stamp, a robot ID number, their current positions, and their current target robot. The
robots also broadcast their states.

A* navigation algorithm, which updates every second, has the robots navigate to approach a
destination node. More details of the system can be found in Bolger et al.21

Using this four-robot hardware platform we implemented the equal-mass partitioning algorithm
and evaluated it using two classes of graphs: a planar square graph consisting of 900 nodes (see
Fig. 14) and a planar graph that captures the geometry of an A-shaped bridge (and thus has geometric
concavities) consisting of 724 nodes (see Fig. 16). The size of each of these structures is approximately

7 It is possible that the configuration with HEopt does not exist.
8 Note that there is no example graph set for equal-mass partitioning since this is a new problem.

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

272 Distributed coverage with mobile robots on a graph

Table II. Equal-mass partitioning: performance comparison with the global optimum
for the graph in OR library.20

Filename in Average Std. dev. of Average iterations
OR library |Q| |E| n MG

n
deviation avg. dev. per robot

pmed1.txt
100 200

5 20 1.3 0.7 1.6
pmed2.txt 10 10 1.3 0.8 1.6

pmed6.txt
200 800

5 40 2.2 2.1 1.7
pmed7.txt 10 20 2.2 1.4 2.1
pmed8.txt 20 10 2.1 0.8 1.7

pmed11.txt
300 1800

5 60 3.1 4.4 2.0
pmed12.txt 10 30 3.1 3.2 1.8
pmed13.txt 30 10 2.2 0.5 2.0

pmed16.txt
400 3200

5 80 4.1 7.1 1.9
pmed17.txt 10 40 2.7 2.1 1.9
pmed18.txt 40 10 2.0 0.5 1.9

pmed21.txt
500 5000

5 100 3.1 1.4 1.75
pmed22.txt 10 50 2.8 1.7 1.9
pmed23.txt 50 10 2.2 0.4 1.9

pmed26.txt
600 7200

5 120 3.3 1.5 1.8
pmed27.txt 10 60 3.5 2.6 1.9
pmed28.txt 60 10 2.2 0.5 1.9

pmed31.txt
700 9800

5 140 3.5 1.2 1.8
pmed32.txt 10 70 3.2 1.0 1.9
pmed33.txt 70 10 1.8 0.4 1.9

pmed35.txt
800 12,800

5 160 5.5 12.1 1.8
pmed36.txt 10 80 4.0 3.6 1.9
pmed37.txt 80 10 1.9 0.3 1.9

pmed38.txt
900 16,200

5 180 5.1 9.8 1.8
pmed39.txt 10 90 4.3 4.0 1.9
pmed40.txt 90 10 1.9 0.4 1.9

Fig. 13. (Colour online) Side view of robot hardware.

3 × 3 m. For each graph example, we divided the space into grid cells using a grid size of 0.1 m. Each
grid point is a node in the corresponding graph. Nodes are connected when they are adjacent, either
by side or by diagonal. Each node has a unit weight. The bridge has two virtual empty spaces as
shown in the right figures of Fig. 16. For equal-mass partitioning, the robots broadcast their centroid
when they update the centroid.

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

Distributed coverage with mobile robots on a graph 273

Table III. Specifications of the robot.

Mobile iRobot iCreate

Arm

Model CrustCrawler SG5-UT
DoF 4
Reach 0.5 m
Payload 0.6 kg

Communication IR, UDP, xBee

5 10 15 20 25 30

5

10

15

20

25

30

X

Y

5 10 15 20 25 30

5

10

15

20

25

30

X

Y

5 10 15 20 25 30

5

10

15

20

25

30

X

Y

Fig. 14. (Colour online) Snapshots of equal-mass partitioning on a graph representing the square region enclosed
by yellow lines. The right figures show the partitions, including nodes (circles), edges (lines), robot locations
(bold circles), and target locations (squares). Each color represents a partition which belongs to the robot with
the same color. This experiment took about 50 sec.

Figures 15 and 17 show convergence of the masses during the experiments.

6. Conclusions
In this paper we describe two algorithms for distributed coverage on graph. The algorithms enable
mobile robots to cover a target graph with minimizing the cost functions. The target graph represents

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

274 Distributed coverage with mobile robots on a graph

0 10 20 30 40 50 60

180

200

220

240

260

280

Time

M
as

se
s

Masses of robots

Fig. 15. (Colour online) Masses of four robots during the experiment. All of them converge to a single value.

5 10 15 20 25 30

5

10

15

20

25

30

X

Y

5 10 15 20 25 30

5

10

15

20

25

30

X

Y

5 10 15 20 25 30

5

10

15

20

25

30

X

Y

Fig. 16. (Colour online) Snapshots from a hardware execution of equal-mass partitioning with a planar bridge-
like structure provided as input. The desired boundary and the free space are drawn in yellow on the left; the
corresponding partitions are drawn on the right. This experiment took about 35 sec.

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

Distributed coverage with mobile robots on a graph 275

0 5 10 15 20 25 30 35

80

100

120

140

160

180

200

220

Time

M
as

se
s

Masses of robots

Fig. 17. (Colour online) Masses of four robots during the experiment of partitioning the A-shaped bridge.

environments that can be inherently modeled by a set of nodes and edges or non-convex region. Two
cost functions for locational optimization and equal-mass partitioning are used and the corresponding
algorithms are designed based on vertex substitution. The algorithms construct Voronoi tessellation
based on positions of the robots, and find the optimal next positions. We show that two-hop
communication is necessary for the convergence of the algorithms. We have implemented the
algorithms and evaluated them in both simulation and hardware and tested their performance for
a variety of graphs encoding several types of environments. Our implementations show that the
graph-coverage algorithms work correctly and achieve the partitioning of the environment in an
effective and efficient way. This graph partitioning algorithm was used for mobile robots tasked with
distributed assembly.21

6.1. Lessons learned
We have found out that the proposed algorithms performed considerably better for the regularly
shaped graphs than the generic graphs. This suggests that the graph-coverage algorithm can be a good
fit for coordinated construction, where the target structure likely comprises many regularly shaped
components such as trusses and connectors.21 The performance data that we collected empirically
for different graphs with different number of robots allocated to the coverage task on these graphs
suggest a critical ratio of robots to graph size. As we increase the number of robots allocated to
the task of covering a given graph, we observed that the performance increases up to this critical
ratio and then begins to decrease. We believe this is caused by a limited choice of the next node for
each robot, but further investigation is necessary. As such, there are environments for which a more
centralized approach to give more choices for the robots might improve performance. For example,
we can extend the number of hops for communication and let the robot choose the next node not
only in its own partition but also in the partitions of its multi-hopped neighbors. The challenge is
to identify how many hops to consider while guaranteeing convergence. We may also use such an
extended communication range occasionally to rescue the robots from local minima at the cost of
additional communication, since undesirable local minima was inevitable time to time. Guaranteeing
the global optimum has been the ultimate goal for distributed coverage, and our algorithms are also
in the same boat.

6.2. Future direction and extension
The proposed algorithms can be applied to any graph. Since our target application is coordinated
construction, graphs are our primary targets, and the target graphs are most likely planar or 3D graphs
converted from a continuous non-convex region or a certain target structure. A well-modeled graph
that captures the essence of the model and is as sparse as possible will result in efficient performance.
However, while the regularly spaced graphs were very good fit for our algorithms, we conjecture

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

276 Distributed coverage with mobile robots on a graph

that biasing the node allocation such that we have sparse node assignments for large open regions
and dense assignments on a bottleneck-like regions may provide faster calculation as well as lower
chance of being stuck in (unbalanced) local minima. We will investigate the finite element methods
(FEM) literature33 to better understand this idea.

We prove the algorithms converge to local minima; however, we have not discussed the quality of
the converged configuration. In an extreme case, even the global minimum may not exist when we
use Voronoi tessellation.

Another thing we should consider is a range of communication if we do not have enough assembly
robots. Partitioning while maintaining connectivity may be challenging.

Development of a completely asynchronous controller is an imminent future work. Local
handshake among neighboring robots can be an easy fix; however, it will still involve certain amount of
synchronization with heavy communication load. Efficient and stochastically provable asynchronous
algorithm will be a good solution.

Acknowledgments
This research was done at the Distributed Robotics Laboratory, at CSAIL, MIT. This project has
been supported in part by The Boeing Company, the US National Science Foundation, NSF grant
number IIS-0426838, Emerging Frontiers in Research and Innovation (EFRI) grant #0735953, MURI
SMARTS grant #N0014-09-1051, MURI ANTIDOTE grant #138802, and MURI SWARMS grant
#544252. Seung-kook Yun is supported in part by Samsung Scholarship. We are grateful for this
support.

References
1. J. Cortes, S. Martinez, T. Karatas and F. Bullo, “Coverage control for mobile sensing networks,” IEEE

Trans. Robot. Autom. 20(2), 243–255 (2004).
2. M. Schwager, D. Rus and J.-J. E. Slotine, “Decentralized, adaptive control for coverage with networked

robots,” Int. J. Robot. Res. 28(3), 357–375 (Mar. 2009).
3. M. Pavone, E. Frazzoli and F. Bullo, “Distributed Algorithms for Equitable Partitioning Policies: Theory and

Applications,” IEEE Conference on Decision and Control, Cancun, Mexico (Dec. 2008), pp. 4191–4197.
4. S.-kook Yun, M. Schwager and D. Rus, “Coordinating Construction of Truss Structures Using Distributed

Equal-Mass Partitioning,” Proceedings of the 14th International Symposium on Robotics Research, Lucern,
Switzerland (Aug. 2009).

5. H. Choset, “Coverage for robotics – a survey of recent results,” Ann. Math. Arti. Intell. 31 , 113–126 (2001).
6. H. Choset and P. Pignon, “Coverage Path Planning: The Boustrophedon Cellular Decomposition,”

Proceedings of the International Conference on Field and Service Robotics (1997).
7. S. Hert and V. Lumelsky, “Polygon area decomposition for multiple-robot workspace division,” Int. J.

Comput. Geom. Appl. 8, 437–466 (1998).
8. L. C. A. Pimenta, V. Kumar, R. C. Mesquita and G. A. S. Pereira, “Sensing and Coverage for a Network

of Heterogeneous Robots,” IEEE Conference on Decision and Control, Cancun, Mexico (Dec. 2008),
pp. 3947–3952.

9. A. Kwok and S. Martı́nez, “Energy-Balancing Cooperative Strategies for Sensor Deployment,” IEEE
International Conference on Decision and Control, New Orleans, LA (Dec. 2007) pp. 6136–6141.

10. A. Ganguli, J. Cortes and F. Bullo, “Distributed Deployment of Asynchronous Guards in Art Galleries,”
American Control Conference, Minneapolis, MN (Jun. 2006), pp. 1416–1421.

11. C. H. Caicedo-Nunez and M. Zefran, “A Coverage Algorithm for a Class of Non-Convex Regions,” IEEE
International Conference on Decision and Control, Cancun, Mexico (Dec. 2008) pp. 4244–4249.

12. N. Ayanian and V. Kumar, “Decentralized Feedback Controllers for Multi-Agent Teams in Environments
with Obstacles,” IEEE International Conference on Robotics and Automation, Pasadena, CA (May 2008)
pp. 1936–1941.

13. S. Bhattacharya, N. Michael and V. Kumar, “Distributed Coverage and Exploration in Unknown Non-
Convex Environments,” 10th International Symposium on Distributed Autonomous Robots, Nov. 1–3
(Springer, New York, NY, 2010).

14. M. B. Teitz and P. Bart, “Heuristic methods for estimating the generalized vertex median of a weighted
graph,” Oper. Res. 16, 955–961 (1968).

15. J. Reese, “Solution methods for the p-median problem: An annotated bibliography,” Networks 48, 125–142
(2006).

16. P.-O. Fjallstrom, “Algorithms for graph partitioning: A survey,” Linkoping Electronic Articles in Computer
and Information Science, Vol. 3, article no. 10, available at http://www.ep.liu.se/ea/cis/1998/010/ (1998),
online.

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

Distributed coverage with mobile robots on a graph 277

17. Y. Gabriely and E. Rimon, “Spanning-tree based coverage of continuous areas by a mobile robot,” Ann.
Math. Arti. Intell. 31(1–4), 77–98 (2001).

18. J. W. Durham, R. Carli, P. Frasca and F. Bullo, “Discrete Partitioning and Coverage Control with Gossip
Communication,” ASME Dynamic Systems and Control Conference, Hollywood, CA (Oct. 2009) pp. 225–
232.

19. J. Durham, R. Carli, P. Frasca and F. Bullo, “Discrete partitioning and coverage control for gossiping
robots,” IEEE Trans. Robot. 28(2), 364–378 (2012).

20. J. E. Beasley, “OR-library: Distributing test problems by electronic mail,” J. Oper. Res. Soc. 41(11),
1069–1072 (1990).

21. A. Bolger, M. Faulkner, D. Stein, L. White, S.-kook Yun and D. Rus, “Experiments in Decentralized Robot
Construction with Tool Delivery and Assembly Robots,” IEEE/RSJ International Conference on Intelligent
Robots and Systems, Taipei, China (Oct. 2010) pp. 5085–5092.

22. M. Erwig and F. Hagen, “The graph voronoi diagram with applications,” Networks 36, 156–163 (2000).
23. R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM 5(6), 345 (1962).
24. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness

(Series of Books in the Mathematical Sciences). (W. H. Freeman, New York, NY, Jan. 1979).
25. B. J. Julian, M. Schwager, M. Angermann and D. Rus, “A Location-Based Algorithm for Multi-Hopping

State Estimates within a Distributed Robot Team,” Proceedings of the International Conference on Field
and Service Robotics (FSR 09), Cambridge, MA (Jul. 2009).

26. J. Beasley, “Lagrangean heuristics for location problems,” Eur. J. Oper. Res. 65(3), 383–399 (1993).
27. O. Baron, O. Berman, D. Krass and Q. Wang, “The equitable location problem on the plane,” Eur. J. Oper.

Res. 183(2), 578–590 (Dec. 2007).
28. M. R. Garey, D. S. Johnson and L. Stockmeyer, “Some Simplified Np-Complete Problems,” Proceedings

of the Sixth Annual ACM Symposium on Theory of Computing (STOC ’74) (ACM, New York, NY, 1974)
pp. 47–63.

29. M. J. Berger and S. H. Bokhari, “A partitioning strategy for nonuniform problems on multiprocessors,”
IEEE Trans. Comput. 36(5), 570–580 (1987).

30. R. Leland and B. Hendrickson, “An Empirical Study of Static Load Balancing Algorithms,” Proceedings
of the Scalable High-Performance Computing Conference (1994) pp. 682–685.

31. A. Vidwans, Y. Kallinderis and V. Venkatakrishnan, “A parallel dynamic load balancing algorithm for 3D
adaptive unstructured grids,” AIAA J. 32, 497–505 (1993).

32. C. Ozturan, H. L. deCougny, M. S. Shephard and J. E. Flaherty, “Parallel adaptive mesh refinement and
redistribution on distributed memory computers,” Comput. Methods Appl. Mech. Engrg, Tech. Rep. 119,
123–137 (1993).

33. I. Babuška, U. Banerjee and J. E. Osborn, “Survey of meshless and generalized finite element methods: A
unified approach,” Acta Numerica 12, 1–125 (2003).

https://doi.org/10.1017/S0263574713001148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001148

