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Abstract
The market for green bonds, and environmentally aligned investment solutions, is increasing. As of 2022,
the market of green bonds exceeded USD 2 trillion in issuance, with India, for example, having issued its
first-ever sovereign green bonds totally R80bn (c.USD1bn) in January 2023. This paper lays the foundation
for future papers and summarises the initial stages of our analysis, where we try to replicate the S&P Green
Bond Index (i.e. this is a time series problem) over a period using non-traditional techniques. The models
we use include neural networks such as CNNs, LSTMs and GRUs. We extend our analysis and use an
open-source decision tree model called XGBoost. For the purposes of this paper, we use 1 day’s prior index
information to predict today’s value and repeat this over a period of time. We ignore for example
stationarity considerations and extending the input window/output horizon in our analysis, as these will be
discussed in future papers. The paper explains the methodology used in our analysis, gives details of
general underlying background information to the architecture models (CNNs, LSTMs, GRUs and
XGBoost), as well as background to regularisation techniques specifically L2 regularisation, loss curves and
hyperparameter optimisation, in particular, the open-source library Optuna.
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account may any part of this publication be reproduced without the written permission of the
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1. Executive summary
We are pleased to publish our first paper as a Working Party using data science techniques to look
at sustainability and climate change-related issues. In this paper, we summarise the first stage of
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our analysis, where we introduce data science techniques to construct a time series analysis of the
Standard & Poor’s (S&P) Green Bond Index.

1.1. Scope of this Paper

The aim of this paper is to lay out the foundations for a time series analysis of green, social and
sustainability (GSS) bond indices, and is not intended to be a definitive guide. We have
deliberately excluded stationarity considerations and restricted this paper to a univariate
analysis. We will include stationarity considerations and expand our examination to a
multivariate analysis in subsequent papers.

For the purposes of this paper, we have focussed on the S&P Green Bond Index and performed
various univariate time series analyses using a range of models, which include neural networks.
This paper focusses on using a rolling window approach of one prior day’s index value to predict
today’s index value.

In particular, this paper discusses (arranged as per the following Sections):

• Section 2: Introduction
○ Background to GSS bonds and a brief explanation of the analysis covered in this paper.

• Section 3: Data
○ Insight into the data used in our analysis along with summary information on the training/
validation/test splits.

• Section 4: Summary of models used
○ A high-level summary of model architectures used in our analysis (i.e. neural networks and
a decision tree) with supplemental background information, grouped into five model
categories.

• Section 5: Training the models
○ Background information on the loss history, Adam optimiser, regularisation techniques,
and hyperparameter optimisation techniques used in our analysis.

• Section 6: Results
○ Summary tables and graphs for the best-performing model per model category.

• Section 7: Conclusions and next steps
○ Summary of conclusions from our analysis and potential areas of analysis for subsequent
papers.

Please note that Sections 4 and 5 have been included in this paper to assist with the general
understanding of underlying model architecture, and the training process of neural networks.

1.2. Summary of Analysis in this Paper

1.2.1. Aim of the analysis
This paper focusses on the initial stages of our time series analysis of GSS bonds, specifically
focussing on the daily values from the S&P Green Bond Index and whether we can create accurate
prediction models using, for example, neural networks. This paper is the foundation for future
analysis, where we hope to develop a model that can assist with GSS-bond index prediction, which
will have wider applications such as index price modelling and investment portfolio analyses for
actuaries and non-actuaries alike.

For the purpose of this paper, we are looking to predict a rolling 1-day value of the index, based
on the prior day’s index value over the period 2013 to 2023 inclusive. A rolling window approach
is a typical approach for developing a time series model, where we assume prior history is used to
imply a future stock index price. For example, we assume values of the prior x days influence the
value of future value y days. The simplest approach of this type is to use 1 day prior to predict
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today’s value (i.e. a rolling 1-day window) to repeat this process over a period of time. We discuss
this in more detail in Section 3.2.

We set the baseline model such that today’s value equals yesterday’s value over the course of the
full date range of 31 January 2013 to 17 February 2023 (referred to as ‘Baseline model’ in this
paper). Applying a similar approach, we aimed to see if we can accurately create a time series
model with non-traditional methods such as neural networks and a decision tree model
(XGBoost). Please see Section 4 for further details.

Analyses using stationarity and multivariate techniques have been deferred to later papers.
Similarly, we extend our analysis by looking at using the prior x index values (window) to predict
the next y days in the future (horizon) in subsequent papers.

1.2.2. Data and method
We analysed the S&P Green Bond Index values between 31 January 2013 and 17 February 2023,
splitting the data using 70%/20%/10% splits for training/validation/test data.

The machine learning models analysed can be categorised into the following model categories:
Deep Neural Network (DNN), Convolutional Neural Network (CNN), Long Short-Term

Memory (LSTM) and Gated Recurrent Unit (GRU) neural network architectures. These
architectures and their distinctions are covered further in Section 4. A decision tree model,
i.e. XGBoost, was also included as the final category in our analysis. Again, we discuss this in
further detail in Section 4.

A prior, simplified examination was performed during the preliminary stages of our analysis,
where we adjusted, for example, the number of hidden layers up to five hidden layers, to see if this
produced material improvements in the model outputs. We do not address this part of the analysis
further in this report. Following this stage, we narrowed down the model architecture per model
category for further analysis which we present in this paper. Please see Appendix C for more
details.

Though we have analysed different model architectures as described in Appendix C in our
analysis, using the techniques described in Section 5, we have presented the best-performing
models per category when discussing the results and conclusions in this paper (Sections 6 and 7,
respectively).

The loss function used during model training was set to Mean Absolute Error (MAE) for all
models, with an Adam optimiser used to update the weights in the neural network and L2
regularisation to reduce any overfitting across all models. Hyperparameter tuning of all models
was completed via the open-source library Optuna, using the Bayesian optimisation algorithm
Tree-structure Parzen Estimator (TPE). These are discussed in more detail in Section 5.

1.2.3. Results and conclusions
Although we analysed a range of models per model category (see Appendix C for more details)
e.g., by varying the number and type of hidden layers, we have presented the best-performing
model per model category in this paper.

The results of our analysis were inconclusive: the models from each category produced
comparable results to the Baseline model with differences in Mean Absolute Percentage Error
(MAPE) of up to approximately +/− 0.1% and hence with no material outperformance. The DNN
and LSTM models marginally outperformed the Baseline model, based on the data range and
parameters in our analysis. Given the initial approach of a 1-day rolling window, in effect we are
potentially not sharing sufficient historical information or correlated information e.g., as per a
multivariate analysis, for our models to learn underlying material information and patterns in the
data to result in a model that materially outperforms the Baseline model. We aim to address this in
future papers (see Sections 1.2.4 and 7 for more details).
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1.2.4. Next steps
For future papers, we will expand our analysis to include the following:

1. Stationarity considerations by introducing, for example, an autoregressive, integrated,
moving average model by widening the data input window and output horizon. A variation
of this has been explored for example Peters et al. (2022), which explores time series and
green bonds.

2. Use of more complex models e.g. a variation of an LSTM model known as a
Complete Ensemble Empirical Mode Decomposition with Adaptive Noise-LSTM
(CEEMDAN-LSTM) model and Neural Basis Expansion Analysis for Interpretable Time
Series (N-BEATS) model. The CEEMDAN-LSTM model is explored by Wang et al. (2022)
on green bonds (see 4 below). The N-BEATS model is a time series model and is explored by
Oreshkin et al. (2019). It outperformed the Makridakis time series M4 competition model
winner by 3%. Both models are discussed further in Section 7 of this paper.

3. Expanding the analysis to general GSS bonds. The analysis in this paper is based on a single
green bond index. We will look to expand our analysis to the wider GSS-bond universe and
over differing date ranges for the data to see if there are general underlying patterns.

4. Expanding the analysis to include any potential relationships with the general market such
as stock market and oil prices i.e. move to a multivariate analysis in subsequent papers.
This is examined in Wang et al. (2022) which, when coupled with the CEEMDAN-LSTM
model, seems to produce materially improved model predictions based on green bond time
series data.

As mentioned, this paper lays the foundation for later papers and introduces a range of model
architectures. We expect specific features such as convolutions for a CNNmodel, and iterations via
LSTM and GRU cells to have a larger influence on results once we start expanding the input
window and output horizon size in later papers.

1.2.5. Additional disclaimers
Please note the following:

a. Information within this paper is valid up to 30 September 2023. Hence, there may be
updates beyond this date that are not reflected in this paper e.g., changes to any legislation
mentioned or updates to any open-source code/programming libraries used.

b. This paper is not intended to be a comprehensive audit of models. Neither is this paper
recommending or promoting one approach over another, nor promoting any of the sources
or references stated in this paper. Any user of this paper should still reference the underlying
legislation, reference any standard mentioned in this paper, and should there be any conflict,
the underlying information in the relevant standard, reference or legislation supersedes any
information presented in this paper.

c. Though the work in this paper does not fall under the Financial Reporting Council’s
Technical Actuarial Standards, this paper has been reviewed both within the Working Party
and by the Institute and Faculty of Actuaries’ Data Science Practice Board.

2. Introduction
2.1. Background to Green Bonds

A green bond is a type of fixed-income instrument that is specifically earmarked to raise money for
climate and environmental projects (Segal, 2022). The key difference between green bonds versus
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conventional bonds is that green bonds are issued to finance projects that have a positive impact
on the environment. Examples of such projects include renewable energy and clean
transportation. For more background on green bonds, please see for example Investopedia’s
post (Segal, 2022) along with recent posts in The Actuary (Mitchell, 2022), which discuss the
concept of a greenium.

The first ever green bonds were issued in 2007 by the European Investment Bank (EIB)
totalling approximately USD 807 million (CFI Team, n.d.). Since then, the market for green bonds
has increased, with global cumulative green bond issuance passing the USD 1 trillion mark in 2020
(Climate Bonds Initiative, 2020), and stands at just over $2 trillion in 2022 (Statistica Research
Department, 2023).

Please see immediate chart below from Climate Bonds, as well as related information, from
their website (Climate Bonds Initiative, 2021) for details of this trend.

Please note that Figure 1 ignores any bonds issued prior to 2014.
Currently, issuers of green bonds range from supranational institutions, public entities, and

private companies (Iberdrola, n.d.).
In 2022, although Europe continued to lead the way in terms of issuing green bonds and

represented approximately 47% of the green bonds issued that year (Climate Bonds Initiative,
n.d.), China and the US accounted for approximately 18% and 13% respectively of the green bond
market (Michetti et al., 2023).

The number of countries issuing green bonds continues to expand. Recently, for example, India
issued its first-ever sovereign green bonds totalling R80 billion (approximately USD1 billion) in
January 2023 (Reed, 2023). Similarly, Israel issued its first-ever sovereign green bonds at the start
of 2023 approximately USD2 billion (Wrobel, 2023).

Please note that green bonds are part of the wider GSS-bond universe, which also cover social-
and sustainability-aligned investments. For more details on GSS bonds, please see, for example,
JP Morgan Asset Management (2023) and The World Bank (2023).
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Figure 1. Cumulative global green bond issuance.
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With the proposed legislative EU Green Bond Standard, we expect the trend of increased green
bond issuance to continue. The Standard was originally submitted by the European Council back
in 2021 (European Commission, 2021). The legislation received agreement between the EU
Parliament and the EU Council on 28 February 2023 (European Commission, 2023a). Currently,
this will be a voluntary regime which is intended to be the “gold standard” for green bonds
(Latham & Watkins, 2023) and will be subject to supervision by competent authorities (as set out
in the European Securities and Markets, Authority 2017 Prospectus Regulation). Some of the
requirements include issuers to publish a prospectus and a green bond fact sheet.

See European Commission (2023b) for further details on the Standard, and Latham &Watkins
(2023) for more general commentary.

2.2. Introduction to the S&P Green Bond Index and Our Time Series Analysis

There are several green bond indices in existence, including the Bloomberg Morgan Stanley Capital
International (MSCI) Green Bond Indices, Financial Times Stock Exchange Green Impact Bond
Index Series and the S&P Green Bond Index, where the index is designed to track the global green
bond market.

For the purposes of this paper, we have focussed on the S&P Green Bond Index and aim to
replicate the index using various models over a certain time period. We include data from the end
of January 2013 to mid-February 2023 in our analysis.

The aim of this paper is to introduce some of the ideas from the initial stages of our analysis.
Hence, we focus on a univariate time series model, where our model uses the prior day’s value to
predict the index value one day ahead (i.e. today’s value). We aim to address more complex
univariate time series and build on models discussed in papers such as Peters et al. (2022) (where a
hybrid Seasonal Auto-Regressive Integrated Moving Average with Exogenous factors, SARIMAX
and LSTM model is used) in future papers. Similarly, we aim to analyse any interaction between
green bonds and the general stock market (i.e., multivariate time series) in a future paper,
widening our analysis to cover other GSS bonds as well.

For the purposes of this paper, we will aim to produce a sufficiently accurate predictive model,
where the majority of the models we analyse are based on a neural network architecture. Data
from 31 January 2013 to around mid-February 2022 will be used to train and validate the models.
These models are then used to predict daily index values on unseen data from mid-February 2022
to mid-February 2023 (the test data set). The difference in predicted values from our models to
actual daily index figures will be used to gauge the accuracy of the proposed models.

3. Data
3.1. Background to S&P Green Bond Index Data Used

For the purposes of this paper, we analyse the S&P Green Bond Index (Total Performance, in US
dollars, from 31 January 2013 to 17 February 2023 inclusive). Part of the driver for this decision
was to use an index that is freely available. For details of this index, please see the S&P Green Bond
Index methodology paper published in February 2023, available via the main S&P website
(S&P, 2023).

Figure 2 shows the index value over this period.
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The underlying data is daily data taken from the main S&P website: https://www.spglobal.com/
spdji/en/indices/esg/sp-green-bond-index/. Please note that the data is based on work days. We
downloaded the data from the main S&P website and performed basic checks such as checking for
blanks in the data, ensuring that there were no duplicate date entries, comparing the chart against
the S&P website charts and other websites that displayed this index, as well as comparable charts
from other research papers which analysed this index. No adjustments were made to the data.

One interesting item of note is how the index behaves after early 2020: there is a general upward
trend in the index, increasing close to approximately 160 on 5 January 2021 and decreasing to
approximately 110 on 21 October 2022. This may be reflective of the underlying impact of COVID
on general markets from the start of this period, though this will be explored in more detail in
subsequent papers.

3.2. Overview of Time Series Methodology

For the purposes of this paper, we have based our time series analysis on a simple sliding window
technique, where a subperiod of historic data (window) is input into the model and used to predict
the future period (horizon), where both the window and horizon are of duration 1 day. We then
slide this window along the data by 1 day to predict the following day, and so on. Please see
Brownlee (2020) for the background to this approach. Alternative methods such as a cross-
validation window approach (Shrivastava, 2020), which varies the window input length, are not
analysed in this paper. We aim to look at more complex windowing techniques in future papers.

For the purposes of our analysis, the data set was split as follows: 70%/20%/10% between
training/validation/test data sets. The first two splits are used to train/tweak our model (using the
training/validation splits of data). We then tested the model against unseen data (test data) and
compared the predicted outputs against actual observed data to gauge the model’s accuracy.

3.3. Summary of Data

The splits mentioned above are shown in Figure 3. Given the nature of the analysis (a time series
analysis), we have proportioned these splits in chronological order, so that we can build models to
infer some form of prior/time dependency based on the underlying data and have not randomly
allocated the data between these splits across the full data range.

Figure 2. S&P Green Bond Index from 2013 to 2023.
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The splits correspond as follows: to 16 February 2020, to 16 February 2022 and to 17 February
2023, inclusive. Table 1 details further each data split.

In summary, there is greater volatility in the test data set range compared to the training and
validation data sets. Hence, it will be interesting to see how our models cope given that they will be
built on less volatile training and validation data.

Please note that, for the purposes of our analysis, we have not adjusted the data further i.e. no
normalisation of the index (fixing data to lie within a scale from 0 to 1, a technique typically used
to result in quicker convergence to a solution for a model) and no log transformation (which can
be used to potentially dampen any impact of seasonality). Such techniques may be discussed in
later papers.

Figure 3. S&P Green Bond Index data with training/validation/test splits highlighted.

Table 1. Summary information of the full data used, as well as the training, validation and test data sets

Full Data Training Data Validation Data Test Data

Start Date 31 Jan 2013 31 Jan 2013 17 Feb 2020 17 Feb 2022

End Data 17 Feb 2023 16 Feb 2020 16 Feb 2022 17 Feb 2023

Number of Index Entries 2,615 1,830 523 262

Index Minimum 109.80 121.78 133.14 109.80

Index Maximum 158.99 143.59 158.99 143.34

Index Average (2 d.p.) 136.00 133.60 150.46 123.96

Index Standard Deviation (2 d.p.) 9.65 5.32 5.70 8.04
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4. Summary of Models Used
4.1. Introduction

In this section, we give an overview of the underlying model architecture used in our analysis. For
the purposes of this paper, we have mainly used models based on neural networks. In summary,
these can be grouped as follows:

1. The Baseline model where we assume today’s value is consistent with yesterday’s, and then
move our projection along by 1 day. The aim of a baseline model is to start our analysis off
with something simplistic and act as a reference marker for other models to (ideally) beat
(and hence justify any additional complexity in model design).

2. A Deep Neural Network (DNN) model, which is a feedforward artificial neural network
with 1, 2 or 3 hidden layers. (Please note that strictly speaking, a deep neural network has 2
or more hidden layers. For consistency and simplicity, we have retained the same labelling
and categorisation approach between the models in this group.)

3. A Convolutional Neural Network (CNN), where a CNN has a convolutional layer that
effectively filters down information, stripping out noise to find an underlying pattern in
the data.

4. A Long Short-Term Memory (LSTM)model, which is a type of Recurrent Neural Network
(RNN) aimed at resolving the vanishing gradient problem.

5. A Gated Recurrent Unit (GRU) model, which is a type of RNN and may be seen as a
simplified version of LSTM.

6. A decision tree/ensemble gradient-boosting library i.e. XGBoost.

We go into more detail on the architecture for the above models in Section 4.2. Please note that in
our analysis we have used variations of models within each category above, for example by varying
the number of hidden layers. For details of the models analysed, see Appendix C. However, for the
purposes of this paper, we have presented the best-performing models per category in the results
section (Section 6).

4.2. General Background to Neural Networks

The inspiration for the underlying design of neural networks is the design of the human brain.
See IBM (n.d.) for a basic overview.

A traditional approach to tackling a problem such as modelling time series data is to take a
prescriptive approach, for example, to consider a mathematical formula and build this formula
based on observed data, where we analyse and assume some form of understanding of the
underlying mechanics of a problem. The appeal of using neural networks is their potential to learn
any form of problem. A neural network can train itself based on sufficient data, once the model’s
architecture has been decided upon. One positive of this approach is that we do not need to fully
possess a mathematical model, or have even true underlying understanding, to tackle a problem.

4.3. Summary Comparison of Models Used

Below is a summary of the model architectures used in our analysis, with some explanatory
comments on the underlying nature of each type of architecture. We have grouped our models
into five categories in addition to the Baseline model. All models predict one day’s value of the
index, based on the prior day’s observed index value over a time period.
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Table 2 highlights typical problems we would normally associate with each category of model.
However, each model category can be extended to other areas such as time series, subject to the
model producing sufficiently accurate results. Sections 4.4–4.8 detail further general model
architectures for each category in Table 2.

4.4. Deeper Dive into Model Architectures – DNN

Figure 4 is an example of a deep neural network, with an input layer (in green), fully connected
hidden layers (in blue) and an output layer (in red). Each individual unit (circle below) is a neuron.

Table 2. Summary Table Showing Categories of Models Used in this Paper

Model
Category

Model
Architecture

Neural
Network? Overview Link

Typically Used to Solve Which
Problem?

0 Baseline N Index equal to prior day’s
value

– –

1 DNN Y Feedforward neural networks
with 1 to 3 hidden layers

• Overview Wide range of problems

2 CNN Y A CNN uses a convolutional
layer to extract underlying
features from the data.

Specifically, we focus on a
Conv1D architecture in this
paper.

• Overview
• Paper

Image, Speech, Audio

3 LSTM Y LSTM is a subset of RNNs,
used to address the
vanishing gradient problem
which exists in RNNs.

First published in 1997.

• Overview
• Paper

Sequential data e.g. Sentiment
analysis, Language modelling,
Speech recognition

4 GRU Y Can be seen as a simplified
version of LSTM and sits
within the RNN family.

First published in 2014.

• Overview
• Paper

Sequential data e.g. Sentiment
analysis, Language modelling,
Speech recognition

5 XGBoost N Gradient boosting open-
source library initially
released in 2014.

• Overview
• Paper

Classification, Ranking,
Regression

Figure 4. Example DNN architecture.
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The underlying mechanics of a neural network are as follows: different weights and biases are
applied to a value from a prior layer before an activation function is applied and then this value is
passed on to the next layer.

This is shown further in Figure 5, where we show the various components of a neuron for a
hidden layer, where xi represents inputs, wi the weight and b the bias.

The aim of an activation function in a neural network is to introduce non-linearity to a
regression model, such as a time series analysis. Please see Section 5.8 for more information on
activation functions.

4.5. Deeper Dive into Model Architectures – CNN

CNNs are a type of neural network architecture that can work with two-dimensional (2D) data,
for example, to classify images, though that can be extended to one-dimensional (1D) data such as
time series and to three-dimensional (3D) data such as that used for video classification or medical
image segmentation.

With a CNN, the underlying idea and aim of the architecture is to effectively summarise input
information and extract underlying features or patterns in the data before performing further
analysis. Typically, the information becomes quite large to handle and hence additional layers are
introduced in the neural network to reduce this information whilst retaining important
characteristics of the underlying data. CNNs are typically made up of:

• A convolutional layer uses filters and kernels to extract features (i.e. underlying patterns) in
the data. For the purposes of our analysis, the kernel can be viewed as the length of the input
window of our time series, whilst the filter size represents the number of features in the data,
with a single filter responsible for learning a single underlying pattern in the data.

• A pooling layer further reduces the information produced by prior convolutional layers
whilst still retaining important information.

Figure 6 shows an example structure of a CNN architecture for a time series.
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w2
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x2

x1

bias, b

Activation
function 

Output 

Figure 5. Components of a neuron in a hidden layer.
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We have used a 1D CNN in this paper to deal with time series, as the kernel in effect moves in
one direction (i.e., increases in time). Further, for the purposes of this paper, we have not included
a pooling layer given the initial nature of our analysis.

4.6. Deeper Dive into Model Architectures – LSTM

LSTM was introduced in 1997 and builds on RNNs (where information is passed through the
same layer multiple times before moving on to the next layer), with the aim of introducing some
form of longer-term memory compared to an RNN, as well as addressing the vanishing gradient
problem present in RNNs. An LSTM layer is a neural network layer that contains an LSTM cell.
These cells have additional structures called gates to control the flow of information. Figure 7
shows the internal structure of an LSTM cell, where these three different gates are represented by
the shaded, grey areas, though please note that there are many variants of an LSTM cell:
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Figure 6. Example convolutional 1D architecture.
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Figure 7. Inside an LSTM cell (Source: Ryan, 2020).
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The components of an LSTM cell include:

• The cell state Ct at time t which represents the long-term memory component:
• Ct = ft⊙ Ct-1 + it⊙ Čt, where Čt = tanh (Wc ∙ [ht-1, xt] +bc) and Ct-1 is the cell state at time t-1.
• The forget gate ft at time t decides which long-term memory component in the cell state is no
longer needed and hence can be removed: ft = σ (Wf ∙ [ht-1, xt] + bf).

• The input gate it at time t decides which new information to add to the long-term component
in the cell state: it = σ (Wi ∙ [ht-1, xt] + bi).

• The output gate ot at time t determines the value of the next hidden layer:
ot = σ (Wi ∙ [ht-1, xt] + bo).

In the above, W and b represent weight and bias vectors for each respective component, xt is the
input vector at time t, and ht and ht-1 are the hidden state vectors at times t and t-1 respectively.

4.7. Deeper Dive into Model Architectures – GRU

Introduced in 2014, GRUs are similar to LSTMs where the flow of information is via internal
gates. The internal GRU cell architecture is, however, simpler to an LSTM cell, with only two
internal gates. This makes it potentially quicker to train compared to an LSTM model. Figure 8
shows the internal structure of a GRU cell, showing these two different gates (though please note
that there are many variants of a GRU cell):

The components of a GRU unit include:

• The reset gate rt at time t decides which past information to forget: rt = σ (Wr ∙ [ht-1, xt] + br).
• The update gate zt at time t acts similarly as a combined forget and input gate of an LSTM
unit i.e. decides which information to delete and which new information to add:
zt = σ (Wz ∙ [ht-1, xt] + bz).

In the above, W and b represent weight and bias vectors for each respective component, xt is the
input vector at times t, and ht and ht-1 are the hidden state vectors at times t and t -1 respectively:
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ht-1 ht

σ σ tanh
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GATE
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Figure 8. Inside a GRU cell (Source: Phi, 2018).
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ht = (1- zt) ⊙ ht-1 + zt ⊙ h̃t.

This uses the candidate activation vector h̃t = tanh (Wh ∙ [rt ⊙ ht-1, xt] + bh).

4.8. Deeper Dive into Model Architectures – XGBoost

XGBoost uses a gradient-boosting algorithm that uses weak learners as building blocks. Weak
learners can be viewed as simplified models that are improved upon during the iterative training
process (see below). In the case of a time series, the weak learners are regression trees i.e., decision
trees that output continuous variables.

XGBoost is an ensemble method, which takes the aggregate of results from multiple smaller weak
learnermodels. Boosting refers to the fact that the model is built sequentially i.e. a model using values
from prior model iterations to produce improved subsequent model iterations. Gradient refers to the
fact that a gradient descent algorithm is used to reduce errors in sequential models.

Broadly, the process underlying a gradient-boosting algorithm is (Analytics Vidhya, 2018) and
summarised in Figure 9 below:

i. An initial model, F1(X), is defined to predict a target variable, which will result in associated
residuals, r1 = actual value (y) – predicted value (ŷ).

ii. A new model is fit to the residuals from the prior step, F'1(X).
iii. The models from steps i and ii are combined to produce an improved model, F2(X).
iv. We repeat this process (steps i to iii) but using model F2(X) as the starting model, and so on.

The final model prediction Fm X� � � Fm�1 X� � � αmhm X; rm�1� �, where αi and ri are the
regularisation parameters and residuals for the ith tree, respectively, and hi is a function to predict
residuals. XGBoost also incorporates parallel processing, tree pruning, handling missing values
and regularisation to avoid overfitting (Morde, 2019).

Launched in 2014, XGBoost won the Higgs Machine Learning Challenge (ATLAS
Collaboration, 2014). Further, the recent popularity of XGBoost is increasing, with
implementations of the approach having won several Kaggle awards (Kaggle, n.d.). Though
XGBoost is predominantly used for classification problems, it can also be extended to regression
problems including time series analysis.

F1(X) Fm(X)F2(X)
Data

…

Residuals, r1 Residuals, r2

Regularised 
parameters, α1

Regularised 
parameters, α2

…

Figure 9. Overview of how XGBoost works (Source: Amazon Web Services, 2023).
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5. Training the Models
5.1. A Note on the Code

We have mainly used Google’s Tensorflow framework (see https://www.tensorflow.org/) and
functions taken from the Keras library (see https://keras.io/) to build our neural networks, as well
as Python-based libraries such as Matplotlib (see https://matplotlib.org/), Numpy (see https://
numpy.org/) and Pandas (https://pandas.pydata.org/). Similarly, we have used open-source
libraries for XGBoost (see https://xgboost.ai/) for the decision tree model analysis and Optuna (see
https://optuna.org/) for hyperparameter optimisation. The code was run in Google Colab (see
https://colab.research.google.com/).

5.2. Input Windows & Output Horizons

As mentioned earlier, for the purposes of this paper, we will use a window of 1 day to predict a
horizon of 1 day i.e., 1 day prior to predict today’s value and repeat this method over the data set
(broadly 2013 to 2023 inclusive). In subsequent papers, we will adjust both the window and
horizon size, as well as introduce stationarity.

5.3. Loss History

The underlying variables for a neural network model architecture can be grouped into parameters
and hyperparameters. Parameters are adjusted by the model itself during the training process,
while hyperparameters are set/adjustable by the modeller. We go into further detail for both below.

We have used the Keras default Glorot Uniform Initialisation method to initialise the weights
and biases in the neural network. Glorot and Bengio (2010) provide further details. These weights
and biases are then updated during the training process via a combination of backpropagation and
optimisation, with the overall aim of minimising the loss function and hence producing a better-
fitting model. Backpropagation calculates the gradient of the loss for each weight and bias in the
network, and the optimiser subsequently uses these gradients to update any weights and biases.

When training models, we aim to reduce the size of the loss function that measures how
accurate/ inaccurate the model outputs are for, in our case, a batch of data. The loss information is
indirectly fed back into the model via backpropagation for a neural network, and weight/biases are
updated via an Adam optimiser (Brownlee, 2021a) for the purposes of this paper, for batch sizes of
128 consecutive index values. Any updates to parameters are made without intervention from the
modeller. This process is then repeated a number of times, with the aim of producing an improved
model, with an overall reduced loss function.

The loss function used in our analysis was set to MAE. The MAE takes the average of the

absolute differences between actual versus predicted values for each batch of data i.e. 1n
Pn

i�1
y � ŷ
�
�

�
�,

where y is the actual value and ŷ is the predicted value.
For hyperparameter optimisation, we used Optuna (see https://optuna.org/). The hyper-

parameters optimised include:

• The number of units (or neurons) in the neural network hidden layers.
• The number of iterations which information is passed through an LSTM cell or a GRU cell
before moving on to the next layer.

• The activation function used in each layer.
• The learning rate applied to the Adam optimiser.
• L2 regularisation applied to the weights (i.e. kernel regularisation).
• Filter size for CNN models.
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• Return sequence for LSTM and GRU, which indicates if a single value or sequential
information is outputted to the next layer. Please note that given the analysis in this paper
(effectively 1 day in, 1 day out) we do not expect this hyperparameter to have any material
impact on the results.

For XGBoost, the following hyperparameters were included in our search space whilst tuning via
Optuna:

• Eta, which represents the learning rate.
• Gamma, which is used to prune the branches.
• Max depth, which represents the maximum depth of each decision tree within the ensemble.
• L2 regularisation applied via a parameter called reg_lambda to leaf weights of individual
decision trees.

Regularisation, Adam optimiser, Optuna and activation functions will be discussed in further
detail in Sections 5.5–5.8.

5.4. Loss History Curves

Figure 10 is an example of the training outputs from one of the models, showing the training and
validation loss of MAE after each epoch. An epoch represents the period when the entire data set
has been passed through a neural network during the training/validation process.

As a model trains and converges to a solution, we would expect the loss to reduce after each
epoch and hence the curve to decrease, as shown in Figure 10.

Figure 10. Sample loss history curve from training one of the models.
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5.5. Adam Optimisation in More Detail

Optimisers are algorithms that are used to update the parameters of a neural network (weights and
biases) during the training process, with the overall aim of minimising a set loss function, utilising
gradients calculated via the process called backpropogation. Optimisers include stochastic gradient
descent, adaptive moment estimation (Adam), root mean square propagation and Adagrad,
adaptive gradient algorithm (Duchi et al, 2011).

For our analysis, we have used an Adam optimiser as it potentially converges to a solution more
efficiently than other methods such as stochastic gradient descent.

Introduced in 2014 (Kingma and Ba, 2014), the Adam optimiser is an algorithm for first-order
gradient-based optimisation of stochastic objective functions, based on adaptive estimates of lower-
order moments.

The Adam optimiser combines the advantages of two other gradient descent methods
(GeeksforGeeks, 2018) and (Musstafa, 2021):

1. momentum – storing exponentially weighted moving average of past gradients, to help
overcome local minima and speed up convergence; and

2. root mean square propagation - storing the exponentially moving average of the past
squared gradients, which helps in adapting the learning rates for each parameter
individually.

The moving averages are used to calculate specific (adaptive) learning rates for each parameter
(weight and bias).

Using similar notation as per the original published in 2014: Θn�1 � Θn � αt
m̂tp
v̂t� ε

,
where Θn and Θn�1 are the parameters (a weight or bias in the neural network), at iteration n and
n+1 respectively; m̂t is the bias-corrected first moment estimate; v̂t is the bias-corrected second raw
moment estimate; αt is the learning rate, and ε is a small value used to prevent division by zero.

Expanding for the terms in the formulae above:

• mt = β1 ·mt−1 + (1− β1) · gt, where β1 is a forgetting factor and used for decaying the running
average of the gradient; gt is the gradient at time t along the parameter Θ. mt is the
exponential average of gradients along the parameter Θ.

• vt = β2 · vt−1 + (1− β2) · (gt)2, where β2 is a forgetting factor and used for decaying the
running average square of the gradient; and gt is the gradient at time t along the parameterΘ.
vt is the exponential average of squares of gradients along the parameter Θ.

• m̂t = mt
1 �βt1 is the bias-corrected first moment estimate.

• v̂t = vt
1 �βt2 is the bias-corrected second raw moment estimate.

5.6. L2 Regularisation in More Detail

We have to be conscious of overfitting when training a neural network i.e., when the neural
network in effect memorises or closely matches the training data set to the point that it is unable to
predict effectively on unseen test data. To avoid this, we can use regularisation techniques to
dampen this effect. Figure 11 shows different categories of regularisation techniques which we can
apply to reduce any overfitting when training our models.
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In effect, L1 and L2 regularisation add in some form of penalty when training the model. For
the purposes of our analysis, we have used L2 regularisation (also known as Ridge Regression)
where we have allowed for adjustments to the weights in all non-baseline models via Keras’s in-
built regularisation methods (Keras, n.d.).

Given that the number of input features is minimal, and we do not have a requirement to
minimise the number of input features, we have used L2 regularisation.

With L2 regularisation, a squared penalty term is added to the loss function. For example, if we

adjust the MAE formula 1
n

Pn

i�1
y � ŷ
�
�

�
� to allow for L2 regularisation, we obtain:

• 1
n

Pn

i�1
y � ŷ
�
�

�
� + λ ∙

Pp

j�1
β2
j , where y is the actual value and ŷ is the predicted value, and β is the

penalty term, λ ∈ [0,1] is a regularisation parameter.

5.7. Optuna Hyperparameter Optimisation in More Detail

Hyperparameters, such as the number of neurons per layer, the activation function and learning
rate, are set by the modeller and hence influence the overall architecture of a neural network.
Parameters such as weights and biases are then adjusted by the network during the training
process without intervention from the modeller. Various methods to find optimal hyper-
parameters exist including:

1. Manual tuning by the modeller.
2. Grid search and random search approaches, which loop across a search space and try

various candidates (combinations of hyperparameters), though search results do not feed
into future searches.

3. Bayesian optimisation where the aim is to produce a probability distribution of the objective
function (i.e. loss function). Unlike grid and random searches, Bayesian optimisation
techniques keep track of prior evaluations and use these values in future runs.

Hence, Bayesian optimisation techniques should produce solutions that converge more efficiently
for more complex problems when compared to manual tuning and grid search approaches.

For our analysis, we used the open-source library Optuna to vary (tune) the hyperparameters.
Optuna is an automatic hyperparameter optimisation software framework, particularly designed
for machine learning (Optuna, n.d.). We used the Bayesian optimisation algorithm called Tree-

Regularisation
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Weight / Parameter 
adjustments

- L1 Regularisation

- L2 Regularisation

Neural network 

adjustments

- Dropout
adjustments

Other

- Early stopping

- Data augmentation
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Figure 11. Graphical summary of regularisation techniques (Pramoditha, 2022).
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structure Parzen Estimator, TPE which was introduced in 2011. Please see Bergstra et al. (2011)
for more details on this.

Bayesian optimisation techniques involve:

1. Constructing a surrogate probability model of the objective function, which is a simplified
version and hence computationally less expensive version of the actual probability
distribution of the objective function.

2. Using an acquisition function to choose the next set of candidates to evaluate.

For the purposes of our analysis, we used Sequential Model-Based Optimisation which is an
iterative process that builds the surrogate probability model of the objective function using an
acquisition function of TPE (Bergstra et al., 2011).

Introduced in 2013, TPE uses a mixture of 2 Gaussian distributions to set parameter values: i.
for successful candidates, l(x); and ii. unsuccessful candidates, g(x): P(x|y) = l(x) if y< y*, or g(x) if
y ≥ y*, where x is the single hyperparameter, y is the loss, y* is a threshold and P(x|y) is the
probability of observing a single hyperparameter given a certain loss value.

The aim is to optimise an acquisition function - Expected Improvement (EI), which quantifies
any potential gain in the objective function value from sampling a particular point in the parameter
space. The aim of EI is to balance exploration (sampling points with uncertain outcomes) and
exploitation (sampling points that are likely to improve the current best results). Using the same
notation as per the original paper (Bergstra et al., 2011):

EIy� x� � � γy�l x� � � l x� � R y�
�∞ p y

� �
dy

γl x� � � 1 � γ� � g x� �
where x, g(x), l(x), y and y* are as per above, and γ is some quantile of the observed y values.

For an introductory background to Optuna, please see Lim (2022) and Akiba et al. (2019). For
more background to TPE, please see Watanabe (2023). For more details on algorithms for
hyperparameter optimisation, please see Bergstra et al. (2011).

5.8. Activation Functions in More Detail

As mentioned earlier, the overall aim of activation functions is to introduce non-linearity to a
neural network in a regression analysis such as a time series prediction model. Table 3 shows the
set of activation functions used during hyperparameter optimisation in our analysis.

Table 3. The Set of Activation Functions Used During Hyperparameter Optimisation

ACTIVATION function Mathematical Formula

relu 0 for x < 0
x for x ≥ 0

elu α(ex −1) for x<0
x for x ≥ 0

gelu x∙Φ(x), where Φ(x) is the standard Gaussian function

swish
x

1� e��x

linear a∙x

sigmoid
1

1� e�x

tanh
2

1� e�2x
� 1
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For more background on activation functions, please see GeeksforGeeks (2018) and Nwankpa
et al. (2018).

6. Results
6.1. Summary

In addition to the Baseline model, we ran multiple models from each of the five distinct categories,
where we varied the model architecture within the same category e.g. by varying the number of
hidden layers. Please see Section 3.3 for more details on the model categories used in our analysis
as well as Appendix C.

In this section, we summarise the best-performing model from each model category and use the
subscript best or suffix of _best to represent this.

Figure 12 shows the predicted value against expected value, over the test data set range from the
Baseline model.

As can be seen, the overall Baseline model is a fairly good fit to the actual values over the test
date range for this index, reflective of the fact that the index has a low daily volatility. Diving
deeper, Table 4 summarises the cost functions i.e., MAE and MAPE, for the best-performing
model from each category analysed.

Figure 12. Predictions from the Baseline model over the test range versus actual data.

Table 4. Comparison of Performance of the Best Performing Model from Each Model Category against the Baseline Model

Model
Category Model

MAE
(3 d.p.)

MAE in Relation to
the Baseline Model

MAPE
(4 d.p.)

MAPE in Relation to the
Baseline Model

0 Baseline 0.610 – 0.4969% –

1 DNNbest 0.607 −0.003 0.4947% −0.0022%

2 CNNbest 0.611 +0.001 0.4977% +0.0008%

3 LSTMbest 0.609 −0.001 0.4966% −0.0003%

4 GRUbest 0.615 +0.005 0.5011% +0.0042%
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Please note that we have not fully listed the results from all models in each category for ease of
comparison. Also, Table 4 excludes XGBoost which is discussed in Section 6.2.

Figure 13 gives a graphical comparison of the results in order of performance, showing the best
performing model from each model category excluding XGBoost.

We have adjusted the y-axis accordingly to highlight the differences in performance.

On both MAE and MAPE measures, the DNN and LSTM models marginally outperform the
Baseline model. The Baseline model in turn marginally outperforms the CNN model, whilst the
GRU model performs worst when compared to the other models. Each of the best-performing
models from each model category perform within +/- 0.1% accuracy based on a MAPE measure.
Please note that these results are based on the data set examined along with the hyperparameter
search ranges and model architecture (as described in Appendix C).

Different results may be obtained should we use, for example, different data ranges. If we
exclude data from 2022 and rerun the analysis (assuming a similar training/validation/test split of
70%/20%/10% and hence the date ranges will now differ), we obtain similar conclusions: the
models are close to the Baseline model with differences up to approximately +/- 0.1% (based on a
MAPE measure). However, the order of best-performing models and hence those which beat the
Baseline model differ to those above with DNN, CNN and GRU now beating the Baseline model
and the LSTM model performing worse. Again, given the magnitude of difference in performance
between the Baseline model and each other model, the conclusions are not definitive.

6.2. A Note on XGBoost

Although XGBoost is typically used for categorisation problems, it can be extended to time series
analysis. For example, please see Brownlee (2021b) and Kaggle (2019).

Using XGBoost on our data set produced unexpected results. As can be seen in Figure 14,
the model gives a relatively poor fit compared with other models as it was unable to deal with the
“troughs” in the test data set range. The predictions flat-lined and did not go below a level of
123 approximately.

0.490%

0.492%

0.494%

0.496%

0.498%

0.500%

0.502%

DNN_best LSTM_best Baseline CNN_best GRU_best

Figure 13. Comparison of best-performing models using MAPE from each model category excluding XGBoost.
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Similarly, if we look at the MAE and MAPE, we see that the XGBoost model is further off the
Baseline model predictions when compared with the models earlier (Table 5).

It turns out that, although decision tree models such as XGBoost can be applied to time series
problems, they struggle to extrapolate values and predict outside of the original training
(and validation) data set range (where the minimum in the train data set is approximately 122 in
this case). Please see Mavuduru (2020) for further details.

7. Conclusions and Next Steps
7.1. Conclusions

Based on our analysis, given the data range and training/validation/test splits of the S&P Green
Bond Index, we can draw the following conclusions:

1. The Baseline model is fairly accurate. The forecasts produced by the Baseline model results
in an error of approximately 0.5%MAPE over the test data set based on the date ranges used
in the body of the paper.

2. The neural network models analysed do not materially (if at all) beat the Baseline model.
3. In saying this, the best-performing models came from the DNN and LSTM categories based

on our analysis of this data set. The best-performing models from the CNN and GRUmodel
categories performed worse than the Baseline model.

4. All models differed by up to approximately +/-0.1% from the Baseline model when
analysing their MAPE over the test data set range.

Figure 14. Outputs from XGBoost model runs over the test range versus actual data.

Table 5. Comparison of Performance of XGBoost against the Baseline Model

Model MAE (3 d.p.)
MAE Relation to
Baseline Model MAPE (4 d.p.)

MAPE Relation to
Baseline Model (4 d.p.)

Baseline 0.610 – 0.4969% –

XGBoost 2.840 +2.23 2.4445% +1.9476%
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5. The XGBoost model was a poor fit compared to the other models analysed, especially over
the period July 2022 to February 2023. This seems to be due to decision tree models being
unable to predict values outside of the training (and validation) data values.

6. Although the overall performance by the neural networks was not materially an
improvement on the Baseline model, we hope that the reader can see that there is
potential merit in using neural networks for tackling a time series problem in general i.e.,
beyond green bond applications. For example, for more complex scenarios, neural networks
may provide a viable supplementary/alternative view to traditional techniques. We hope to
explore and evidence this further in future papers.

7.2. Future Considerations

The aim of this paper was to introduce the initial stages of our analysis using non-traditional
techniques including neural networks. Although we have not considered the points below in this
paper, further areas we aim to explore in future papers include:

1. Extending our analysis to a wider data set beyond the S&P Green Bond Index, for example to
Bloomberg Barclays MSCI’s Green Bond Index as well as other GSS bonds. By widening
the index analysed, it would be good to understand if similar results are produced as per
Section 6 across different data sets and indices, and if techniques such as neural networks
can successfully be applied to the wider GSS-bond universe.

2. Extending our analysis to a multi-step projection model by increasing the input window
and/or output horizon, where we compare results by producing predictions over the next
week or month, say. Similarly, we aim to extend our analysis to use alternative windowing
techniques such as cross-validation windowing, and pre-processing the data, for example via
normalisation or lognormal techniques. In doing so, we can introduce the idea of
stationarity into our analysis and build on ideas discussed in Peters et al. (2022) where a
hybrid SARIMAX-LSTM model is used. We hope that this will improve the model and
model outputs, as we are providing additional data to the model for it to learn from and
hopefully interpret underlying patterns, which is not possible if only one day’s prior data is
fed into the model at a time.

3. Exploring relationships with other indices and hence perform a multivariate analysis. For
example, research paper by Gao et al. (2023) suggests that green bond indices are correlated
with commodities such as oil. Hence, expanding the above analysis to include this could
improve the model outputs. We would expect some form of wider influence and
relationship with the general market. By exploring a univariate time series analysis, as we
have done in this paper, we are ignoring any such potential relationships.

4. Explore the concept of greenium further and see how this relates to other indices and varies
over time for example pre- and post-COVID. For example, Cui et al. (2022) examines how
green bonds have reacted to the COVID pandemic.

5. Expand the neural network models used to more exotic models such as a CEEMDAN-LSTM
architecture or N-BEATS architecture. For example, the research paper by Wang et al.
(2022) suggests that a CEEMDAN-LSTM is more effective for time series analysis on green
bonds compared to an LSTM model when analysing a time series on green bonds. The N-
BEATS model is explored in Oreshkin et al. (2019) and has been designed with the specific
aim of tackling time series problems. For example, it outperformed the Makridakis time
series M4 competition model winner by 3% (Oreshkin et al., 2019).

Hence, in exploring the above, we hope that such models will provide improved results compared
to the initial models chosen in this report as well as wider insight into GSS bonds and other time
series problems in general.
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Appendix B. List of Abbreviations

Below is a list of abbreviations used within this paper.

Abbreviation Explanation

ARIMA Auto-Regressive Integrated Moving Average

CEEMDAN Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

CNN Convolutional Neural Network

DNN Deep Neural Network

EIB European Investment Bank

FTSE Financial Times Stock Exchange

GRU Gated Recurrent Unit

GSS bonds Green, Social and Sustainability bonds

IFoA Institute and Faculty of Actuaries

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MSCI Morgan Stanley Capital International

N-BEATS Neural Basis Expansion Analysis for Interpretable Time Series

RNN Recurrent Neural Network

S&P Standard and Poor’s

SARIMAX Seasonal Auto-Regressive Integrated Moving Average with Exogenous factors

TPE Tree-structure Parzen Estimator
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Appendix C. Summary of Models Analysed

Below is a summary of the models analysed in this paper, with a brief description of the underlying model architecture.
As mentioned earlier in the paper, the best-performing model per category below based on our analysis and data was
highlighted earlier in Section 6 of this paper.

Appendix D. Useful Links

Below is a list of links that we hope that the reader finds useful.

• IBM’s introductory series on neural networks: https://www.ibm.com/topics/neural-networks
• IFoA’s Certificate in Data Science programme: https://www.actuaries.org.uk/news-and-insights/news/data-
science-credential

• IFoA’s Data Science Lifelong Learning page: https://actuaries.org.uk/about-us/practice-areas/cross-practice-work/
data-science/

• Google Tensorflow’s tutorial on time series: https://www.tensorflow.org/tutorials/structured_data/time_series

Model
Abbreviated
Name Category Description of Architecture

0 Baseline Baseline Baseline model which assumes today’s value is the same as yesterday’s value.

1 DNN0 DNN Feedforward artificial neural network with one hidden dense layer.

2 DNN1 Feedforward artificial neural network with two hidden dense layers.

3 DNN2 Feedforward artificial neural network with three hidden dense layers.

4 CNN0 CNN Convolutional neural network, with one Conv1D layer and no additional hidden
layers.

5 CNN1 Convolutional neural network, with one Conv1D layer and one hidden dense
layer.

6 LSTM_0HL_F LSTM LSTM neural network, with one LSTM layer, return sequence set to false, and no
additional hidden layers.

7 LSTM_0HL_T LSTM neural network, with one LSTM layer, return sequence set to true, and no
additional hidden layers.

8 LSTM_1HL_F LSTM neural network, with one LSTM layer, return sequence set to false, and
one additional hidden dense layer.

9 LSTM_1HL_T LSTM neural network, with one LSTM layer, return sequence set to true, and one
additional hidden dense layer.

10 GRU_0HL_F GRU GRU neural network, with one GRU layer, return sequence set to false, and no
additional hidden layers.

11 GRU_0HL_T GRU neural network, with one GRU layer, return sequence set to true, and no
additional hidden dense layers.

12 GRU_1HL_F GRU neural network, with one GRU layer, return sequence set to false, and one
additional hidden dense layer.

13 GRU_1HL_T GRU neural network, with one GRU layer, return sequence set to true, and one
additional hidden dense layer.

14 XGBoost XGBoost XGBoost model. Hyperparameters analysed are described earlier in this paper.

Cite this article: Dey D. (2024). Time series analysis of GSS bonds. British Actuarial Journal. https://doi.org/10.1017/
S1357321724000011
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