
FIRST-PASSAGE PERCOLATION
ON THE RANDOM GRAPH

REEEMMMCCCOOO VVVAAANNN DDDEEERRR HOOOFFFSSSTTTAAADDD AAANNNDDD

GEEERRRAAARRRDDD HOOOOOOGGGHHHIIIEEEMMMSSSTTTRRRAAA
ITS

Department of Mathematics
Delft University of Technology

2628 CD Delft, The Netherlands
E-mail: R.W.vanderHofstad@its.tudelft .nl

E-mail: G.Hooghiemstra@its.tudelft .nl

PIIIEEETTT VAAANNN MIIIEEEGGGHHHEEEMMM
ITS

Department of Electrical Engineering
Delft University of Technology

2628 CD Delft, The Netherlands
E-mail: p.vanmieghem@its.tudelft .nl

We study first-passage percolation on the random graphGp~N! with exponentially
distributed weights on the links+ For the special case of the complete graph, this
problem can be described in terms of a continuous-time Markov chain and recursive
trees+ The Markov chainX~t ! describes the number of nodes that can be reached
from the initial node in timet+ The recursive trees, which are uniform trees ofN
nodes, describe the structure of the cluster once it contains all the nodes of the
complete graph+ From these results, the distribution of the number of hops~links! of
the shortest path between two arbitrary nodes is derived+

We generalize this result to an asymptotic result, asN r `, for the case of
the random graph where each link is present independently with a probabilitypN

as long asNpN 0~ log N!3 r `+ The interesting point of this generalization is that
~1! the limiting distribution is insensitive top and~2! the distribution of the num-
ber of hops of the shortest path between two arbitrary nodes has a remarkable fit
with shortest path data measured in the Internet+

1. INTRODUCTION

The main result in this article is Theorem 2+1+ This theorem contains a first-passage
result on the random graphGp~N!, where the probabilityp 5 pN of an open edge
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tends to zero asNr`, in such a way thatNpN r`+More specifically, to the open
edges we attach weights given by independent exponential random variables each
with mean 1 and ask for the number of edges~hops! HN of the shortest path between
the nodes 1 andN+ The shortest path is the a+s+ uniquepath from 1 toN that mini-
mizes the sum of the weights on the edges of the path+

Given a condition on the speed with whichNpN r` ~see Thm+ 2+1!, we prove
that the hopcountHN can be coupled~in an asymptotic sense! to a random variable
RN , with generating function

E~zRN ! 5
N

N 2 1SwN ~z! 2
1

N
D, (1)

wherewN is the generating function

wN ~z! 5
G~z1 N!

G~N 1 1!G~z1 1!
5

Nz21

G~z1 1!
~11 O~N21!! (2)

and whereG~z! denotes the Gamma function~cf+ @1,Sect+ 6+1+1# !+We also show that

E~HN ! ; log N 1 g 2 1 if NpN 0~ log N!6 r `, (3)

Var~HN ! ; log N 1 g 2 p206 if NpN 0~ log N!9 r `, (4)

whereg ' 0+5772, is Euler’s constant+
This theorem is a generalization of scattered known results for the complete

graphKN ~ the graph withN nodes and all~N
2! edges present! and results for the

uniform recursive tree+ For KN , this theorem seems to be part of the folklore of
epidemic theory, although we did not find a precise reference to the result that on the
complete graph with exponential weights, the hopcountHN is connected with the
heightLN of a uniform recursive tree and

E~zLN ! 5 wN ~z!,

with wN given by~2! ~cf+ Smythe and Mahmoud@5# !+
The question arises why this generalization toGp~N! is interesting+Recent mea-

surements, both at Delft University of Technology@7# and the University of Gent
@6# , of the number of hops that have to be traversed between two arbitrary nodes in
the Internet show a remarkable fit between this data and the distribution with gen-
erating function~2! ~cf+ @7# !+ It is known that the IP packets in the Internet are routed
according to a shortest-path algorithm~the so-called Dijkstra algorithm!, where the
weights between the routing machines are set by the operators+1 We therefore model
the Internet as a graph with weights on the edges+ Since many details of the Internet
are unknown and the Internet seems rather chaotic in structure,we choose arandom
graph withrandomweights as a model+ As far as we know, the result is the first
closed-form expression for the hopcount of the Internet, which, according to@8,
Sect+ 2+2+2# , has remained impregnable+

The complete graphKN is obviously not a good choice to model the Inter-
net, because the number of edges extending from each node~router! equalsN 2 1,
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whereas in reality, this number is restricted~in most cases by 32!+ However, every
graph withN nodes and, hence, the graph representation of the Internet are sub-
graphs ofKN + Therefore, we randomly thin the number of edges on the complete
graph as far as we could~see Thm+ 2+1! by erasing links in an independent and
identically distributed~i+i+d+! fashion and prove that the hopcount in the random
graphGp~N! still has the same~asymptotic! distribution as the hopcount ofKN as
long asNpN 0~ log N!3 r `+ Moreover, simulations of the hopcount of the random
graph withpN 5l0N,wherel510, and with exponential weights on the edges show
that the simulated distribution still resembles a distribution with generating function
~2! ~see@7# !+ The numberl 5 NpN , which equals the average number of outgoing
links in Gp~N!, is close to the genuine number of ports of a router in the Internet+

Our next point is the explanation of the choice of the exponential weights+ First,
note that exponential weights are comparable with uniform@0,1# weights, because
the exponential distribution and the uniform distribution are both in the samemin-
imal domain of attraction: For both exponential and uniform~i+i+d+! random vari-
ablesX1,X2, + + + , we have that

n min
1#k#n

Xk

converges to a random variable with an extreme value distribution given by 12 e2x,
for x . 0 ~cf+ @4# !+ We only have a statistical motivation to use exponential~or
uniform weights!; other weights~constant weights or i+i+d+weights with distribution
functionF~x!5 xa, x [ @0,1# ,with aÞ 1! do not fit the data~see@7# !+ ForpN 5l0N
and weights constantly equal to 1, we have that the shortest path uses the minimal
number of hops+ In this case, it can readily be seen thatE~HN !; log N0 log l and that
Var~HN ! is bounded forNr` ~see@7# !+Hence, our result can be formulated as the
statement that for the Internet there is a great variability for the link weights+ In any
case, the weights2 are surely not all equal to 1 as it initially was with RIP~Routing
Information Protocol!+

To explain the method of proof of our result for the random graph, we return to
the complete graph with exponential weights on the edges+ For the complete graph
KN , the proof of~1!–~4! is as follows+ Consider a continuous-time Markov chain
$X~t !%t$0, which is a pure birth process with state space$1,2, + + + ,N% and birth rate
ln5n~N2n!+ The random variableX~t ! represents the number of nodes that can be
reached from node 1 in a travel time less than or equal tot+ The process$X~t !%t$0

starts at time 0 with one particle~node! and will eventually be absorbed in stateN,
when all the nodes can be reached+

Observe that the process that describes the number of distinct nodes~including
node 1! that can be reached inKN over the exponential edges starting from 1 within
time t is indeed equal in distribution to the process$X~t !%t$0+ This follows from the
memoryless property of the exponential distribution and because whenn nodes are
reached, each of thesen nodes can be connected to the set ofN2 n remaining nodes
overN2 n different edges, which explains the rateln 5 n~N2 n!+WhenX~t ! 5 n,
the~not previously used! edges between then nodes can be omitted+ These edges do
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not belong to the shortest path, otherwise they would have been selected at an earlier
time+

Geometrically, the evolution of the above birth process can be visualized by a
~random! recursive tree, which is a uniform tree ofN nodes+ Indeed, each birth in
the Markov process corresponds to connecting an edge of unit length to one of the
existing nodes in the associated tree+ It follows from the Markov property that the
new edge is connectedrandomlyto one of the existing nodes of the tree, which
implies that this tree is auniformtree+ The hopcount is hence equal to theheight LN

of a uniformly chosen particle in the tree+ It is well known~cf+ @5# ! that the height of
an arbitrary point~including the root! has generating function~2!+ In our problem,N
cannot be the root, so that the result~1!, with RN 5 HN , for the complete graph
follows+

Using the above description, one can also compute the generating function of
the total weightWN of the shortest path+ Since the tree is uniform, each of theN21
possibilities of positions for nodeN is equally likely; furthermore, the generating
function of the~independent! sumX1 1 {{{ 1 Xk, whereXi is exponentially distrib-
uted with parameteri ~N 2 i !, equals

E~et~X11{{{1Xk! ! 5 )
i51

k i ~N 2 i !

i ~N 2 i ! 2 t
+

Hence,

E~etWN ! 5
1

N 2 1 (
k51

N21

)
i51

k i ~N 2 i !

i ~N 2 i ! 2 t
+ (5)

In the next section, we extend the results~1!–~4! to the classGp~N!, where
p 5 pN is chosen such that

NpN

~ log N!3 r `+ (6)

This is a technical condition+ From the famous connectivity theorem of Erdös and
Rényi, it follows that the random graph is, with large probability, disconnected
whenNpN 0 log N , 1, whereas it is with large probability connected whenNpN 0
log N . 1 ~see@2# !+ Therefore, pN 5 ~ log N!0N is called theconnectivity thresh-
old. Since the Internet is connected, we can restrict ourselves to the case where
NpN 0 log N . 1+ Moreover, the percolation thresholdon the complete graph is
pN 5 10N+ Hence, for NpN . 1, the largest cluster is of the orderN, whereas for
NpN , 1, the largest cluster is of order logN+ Hence, we see that forpN such that
NpN r `, the probability that the source and the destination are in the largest
cluster converges to 1+We expect that our limit laws in~1!–~4! remain valid even
in this regime, when we condition the source and the destination to be in the
largest cluster+ Therefore, we believe our results to remain valid below the con-
nectivity threshold+ Simulations withNpN 5 10 andN 5 210,000 do confirm this+
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For the random graphGp~N!, each node has a random number of links+ The
above proof for the complete graph was based on the fact that from each node in a
cluster of sizen, there are aconstantnumber~N 2 n! of outgoing links~i+e+, edges
going to nodes outside the present cluster!+ Now, for the random graph, for each
node in the cluster of the root when this cluster has sizen, the number of outgoing
links is binomial with parametersp andN2n+ These binomial random variables can
be sandwiched in between twoconstantnumbers of outgoing links in each node of
the cluster of sizen equal to

[~N 2 n!pN 6!A~N 2 n!pN ~12 pN ! log N ] , (7)

which is defined to be zero when~7! becomes negative and whereA is a positive
number to be determined later+ To each of this constant number of outgoing links,
there belong continuous-time Markov chainsX6~t !, which is a pure birth process
with state space$1,2, + + + ,N6%, where

N6 5 [N~16 A~12 pN ! log N0~NpN !!] , (8)

and with birth ratesln
6 equal ton times the quantity given in~7!+ Observe that the

sizeN6 equals the smallest value ofn for whichln
6 # 0+We next show that with high

probability, the hopcount of the shortest path of theuniform tree belonging to the
Markov chainsX2~t ! and the hopcount of the shortest path of the random graph
Gp~N! are the same+ Hence, ~1!–~4! hold when logN2 5 log N 1 o~1!, which im-
plies thatNpN 0 log N r `+ In fact, in the technical part of the proof, we need that
NpN 0~ log N!b r`,where the value ofb depends on whether we wish to couple the
respective random variables, prove convergence of the mean, or prove convergence
of the variance+

The result for the hopcount of the random graph and the insensitivity with re-
spect to the value ofp can also be explained intuitively+ From~2!, it is seen that the
law of RN is close to the Poisson law with parameter logN+ This can be explained as
follows+ The probability that there is a path ofk edges that has a sum of exponentials
not exceedingL is approximately equal to the number of such paths times the prob-
ability that the sum ofk i+i+d+ exponential variables with mean 1 is less thanL+ The
number of paths of lengthk from 1 toN is, for N large, roughly equal toNk21+ The
probability that the sum of exponential weights is less than or equal toL is roughly
equal toLk0k!+Multiplying out,we find thatP~HN 5k,WN # L!' ~LN!k0Nk!+ These
probabilities have to sum up to 1 whenL is the typical size of the weight of the
shortest path, so thatL has to be equal to~log N!0N+ Substitution of this value gives
P~HN 5 k! ' ~ log N!k0Nk!, in accordance to~2!+ For the random graphGp~N!,
where edges of the complete graph are present or absent independently with prob-
ability p and 12 p, respectively, the weightWN has to be of the order~log N!0NpN

~ i+e+, the value ofp merely serves as a scale factor!+ The reason for this is thatp only
decreases thenumberof links, which means that we take the minimum over less
exponential random variables+Now, for integerNp, the minimum overNpexponen-
tial random variables has thesamedistribution as 10p times the minimum overN
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exponential random variables+ This explains thatp only serves as a scale factor+ The
limiting distribution of the hopcount remains unchanged+ The insensitivity with re-
spect top of the law of the hopcount can be understood by adapting the above
heuristic to the case whereWN ' ~ log N!0NpN and where the number of paths of
lengthsk is replaced by theexpectednumber of paths of lengthk which is equal to
pN

k Nk21+We see that the factors ofpN cancel out, and we find that the asymptotics of
the hopcount is independent ofpN +

The next section, which contains the full proof of our main result, is organized
as follows+We start with the statement of the theorem+Then, in Lemmas 2+2 and 2+3,
we show with large deviation theory that the hopcountHN is bounded with over-
whelming probability by a large multiple of logN+ Lemma 2+4 is used in the proof of
our main theorem to show that we can assume that the number of outgoing links is
between a fixed upper and lower bound to obtain a uniform tree+We finally couple
the heightLN of nodes of this uniform tree to the hopcount of the random graph in
Lemma 2+5+

2. THE RANDOM GRAPH

In this section, we investigate the hopcount of the random graphGp~N! with expo-
nential travel times on the edges+ We always assume that we are dealing with se-
quencespN satisfying lim supN pN , 1, so that the random graph is truly random+
The main result is the following theorem+

Theorem 2.1: There exists a probability space on which the hopcount HN of Gp~N!
and a random variable HN

2 can be defined simultaneously, and where the marginal
distribution of HN

2 has generating function (1) with N5 N2 given by (8), such that
the following hold:

~i! If NpN 0~ log N!3 r `, thenP~HN Þ HN
2! 5 o~1!+

~ii ! If NpN 0~ log N!6 r `, thenE~HN ! 5 log N 1 g 2 1 1 o~1!+
~iii ! If NpN 0~ log N!9 r `, thenVar~HN ! 5 log N 1 g 2 p206 1 o~1!+

The proof is divided into a number of steps+We first sketch these steps and then
formulate and prove them in a series of lemmas+ Finally, we prove Theorem 2+1+

1+ As indicated by the results~3! and~4!,we expect that the probability that the
hopcountHN exceeds a large multiple of logN is small+ This result is impor-
tant for the proof of our theorem, because it gives an upper bound on the
number of nodes with which we have to deal+

If the hopcountHN is bounded by a multiple of logN, then the exponen-
tial weights over the shortest path are likely to be bounded by another mul-
tiple of logN times the typical weight over each edge of the shortest path+
These typical weights are of order~NpN !21+ The size of a typical weight of an
edge belonging to the shortest path follows, because each node has, on the
average,NpN edges and the minimum ofNpN independent exponentials each
with weight 1 has expectation~NpN !21+ In Lemma 2+2, we will show that
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P~NpNWN . B log N! # N2dB, for somed . 0+We prove this lemma with
the help of Cramér’s theorem~cf+ @3, p+ 26# !+

2+ Using Lemma 2+2, we prove that the boundHN # B2 log N holds with over-
whelming probability+ This will be shown in Lemma 2+3+

3+ For a binomial random variableXN with parameterskN andp5 pN such that
~log N!0~kN pN~12 pN !! r 0,

P~XN Ó @kN pN 2!AkN pN ~12 pN ! log N , kN pN

1!AkN pN ~12 pN ! log N # ! # 4N2A+

This will be proven in Lemma 2+4+
4+ We coupleHN with a random variableHN

2 , which is the number of hops of a
uniformly chosen point in auniformtree of sizeN2 , N,whereN25 [N~12
A~12 pN ! log N0~NpN !!] + Let

AN 5 $HN 5 HN
2%+

The main ingredient of the proof is thatP~AN
c ! r 0 at a certain rate that

depends on howNpN r`+ The random variableHN
2 has generating function

E~zHN
2

! 5
N2

N2 2 1SwN2~z! 2
1

N2D, (9)

wherewN is the generating function in~2!+Hence, the ratio of the generating
functionsE~zHN

2
! andwN~z! tends to 1 as long asNpN 0 log N r `+

5+ The asymptotic expressions forP~HN Þ HN
2!, E~HN !, and Var~HN ! then

follow+

We start with Step 1+ Let WN denote the sum of the exponential weights along
the shortest path from 1 toN in the graphGp~N!+

Lemma 2.2: There exists constantsd . 0 and B such that for NpN large,

P~NpN WN . B log N! # N2dB+ (10)

Proof: The idea behind this proof is that starting from node 1 we build abinarytree
by choosing at each node the two shortest edges~shortest with respect to the expo-
nential weights!+ The size of this tree grows as 2k, wherek is the depth of the tree+
Hence,within k5 ~ log N!0 log 2 steps,we have reached allNnodes+However, if k'
~ log N!0 log 2, the number of nodes not yet in the binary tree approaches 0, and,
therefore, the weight of the minimal edges has expectation almost 1, which is large
compared to~NpN !21+ Therefore, we grow two binary trees: one with root 1 and a
second with rootN+ If we grow both trees until they reach size!N , then there are
still N2 O~!N ! nodes not in these trees, which implies that all weights in the trees
are of order~NpN !21+Moreover, the number of connections between the two trees is
of order!NpN!NpN 5 NpN and, hence, the minimal weight of the connecting edges
is of the same reciprocal order~NpN !21+
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Indeed, in Gp~N!,we denote the exponentially distributed weights on the edges
incident with nodei by Ek

i if the edge~i, k! is present+ Furthermore,

E~1!
i , E~2!

i , {{{

are the ordered weights of the edges incident withi+ Define a binary~random! sub-
treeB1 , Gp~N! of depthk in the following way: start at node 1 and take the two
edges with weightE~1!

1 andE~2!
1 + Let i andj denote the end points of these two edges+

From the collection of edges incident toi ~ j !,we remove the edge~1, i !5 ~i ,1!~~1, j !5
~ j,1!! and from the remaining set of edges incident withi ~ j !, we take the two
shortest ones+ Proceeding this way, we grow a binary tree with depth

k 5
log!N

log 2


, (11)

where[x] is the smallest integer larger thanx+ If N Ó B1, grow a binary tree of depth
k starting from nodeN, without using any of the nodes in treeB1+

For i [ $1,2, + + + ,N% and withXi the number of remaining edges incident toi,

E~1!
i 5 min

j
Ej

i 5
d E1

Xi

, E~2!
i 5

d E1

Xi

1
E2

Xi 2 1
,

by properties of the exponential distribution+ Hence, if Xi $ 1
2
_NpN 1 1, then

E~1!
i #

2E1

NpN

, E~2!
i #

2E1 1 2E2

NpN

, (12)

where, as earlier, E1 and E2 are independent exponential random variables with
mean 1+

From~12! and the fact that the minimal weight of the connecting edges can also
be bounded by~2E1 1 2E2!0NpN , we conclude thatWN # 2S4k110NpN , whereSn is
the sum ofn independent exponentials with mean 1+ Hence,

P~NpN WN $ B log N! # PSS4k11 $
B log N

2 D+
Now, apply Cramér’s theorem toS4k11 with k given in~11!+ n

As a corollary to Lemma 2+2 we have the following lemma+

Lemma 2.3: There exists constantsd . 0 and B such that for NpN sufficiently large,

P~HN . B2 log N! # 2N2dB+

Moreover, the same bound holds for RN , which is the number of hops of a uniform
chosen point in a uniform tree of size N.
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Proof: Intersect the event$HN . B2 log N% with the event$NpNWN . B log N% and
its complement to obtain

P~HN . B2 log N!

5 P~NpN WN . B log N,HN . B2 log N!

1 P~NpN WN # B log N,HN . B2 log N!

# P~NpN WN . B log N! 1 P~NpN WN # B log N,HN . B2 log N!

# N2dB 1 P~S[B2 log N]# B log N!

# 2N2dB,

whereP~S[B2 log N]# B log N! # N2dB by Cramér’s theorem+
To see that the same bound also holds forRN , the random variable with gener-

ating function~2!, use

P~RN . B log N! # min
t.0

P~etRN . NtB! # 2 min
t.0

N2tB
Net

G~et 1 1!
,

where we use the asymptotic expression in~2! for N large enough+ Pick t 5 log B
to get

P~RN . B log N! # N2B~ log B21!
2

G~B 1 1!
+

This bound is, in fact, sharper than the upper bound forP~HN . B2 log N!+ n

Lemma 2.4: For a binomial random variable XN with parameters kN and pN satis-
fying ~ log N!0~kN pN~12 pN !! r 0, uniformly in kN and pN for large N,

P~XN Ó @kN pN 2!AkN pN ~12 pN ! log N , kN pN

1!AkN pN ~12 pN ! log N # ! # 4N2A+

Proof: For A . 0, define

CN 5 sN!A log N ,

wheresN
2 5 kN pN~12 pN !+ Then,

P~XN . kpN 1 CN ! # inf
t.0

P~etXN . etkpN1CN ! # inf
t.0

$e2t~kN pN1CN ! ~f~t !!kN %,

wheref~t ! 512 pN 1 pN et+ ForkN~12 pN ! . CN , we find that the argumenttN of
the infimum satisfies

etN 5
sN

2 1 CN ~12 pN !

sN
2 2 CN pN

+
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From this, we obtain

P~XN . kpN 1 CN ! # S11
CN

sN
2 2 CN pN

D2~kN pN1CN !S11
CN pN

sN
2 2 CN pN

DkN

+

Hence, for CN 0sN
2 r 0 or, equivalently, ~log N!0sN

2 r 0, asN r `,

P~XN . kpN 1 CN ! # 2 expS2
CN

2

sN
2 2 CN pN

D # 2N2A+

To treatP~XN , kpN 2 CN !, defineYN 5 kN 2 XN ; then, YN has a binomial distri-
bution with parameterskN and 12 pN and

P~XN , kN pN 2 CN ! 5 P~kN 2 YN , kN pN 2 CN !

5 P~YN . kN ~12 pN ! 1 CN !+

The result follows from repeating the above argument withXN replaced byYN and
pN by 12 pN + n

Lemma 2.5: There exists a probability space on which the hopcount HN of Gp~N!
and a random variable HN

2 can be defined simultaneously and where the marginal
distribution of HN

2 has generating function (1) with N5 N2 given by (8), such that
for NpN r ` and lim suppN , 1,

P~HN Þ HN
2! 5 OS log N

@NpN #103D+ (13)

Moreover,

E~zHN
2

! 5 wN ~z!~11 o~1!!

as long as NpN 0 log N r `+

Proof: The method of proof is described in Step 4 at the beginning of this section+
DefinekN 5 O~~N log N!0~NpN !103! ~ this choice ofkN will become clear at the

end of the proof! and check thatNpN r ` together with lim suppN , 1 imply

log N

kN pN ~12 pN !
r 0,

asN r `+ This is the condition of Lemma 2+4 that guarantees that the binomial
random variableXN with parameterskN and pN is with probability larger than
12 4N2A in between the boundskN pN 6 CN + Take node 1 ofGp~N!+ The number of
edges incident to node 1 is a Bernoulli variableX1 with parametersN 2 1 andpN +
We erase edges from node 1 until we reach the nearest integer of~N 2 1!pN 2

!A~N 2 1!pN ~12 pN ! log N + The edges that we erase are called ghost edges+
Now, take the smallest edge extending from node 1 and form the tree which

consists of these two nodes+We now proceed with the induction step+ Suppose that
the uniform tree containsn $ 2 nodes+ In the original graphGp~N!, each of these
n nodes has a binomial-distributed number of edges to theN 2 n remaining nodes+
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The parameters of these~in total n! marginal distributions areN 2 n and pN +
Assume that all these binomial random variables are in between~N 2 n!pN 6

!A~N 2 n!pN ~12 pN ! log N + Then, erase edges in graphGp~N! in a uniform way,
until each of then nodes has precisely

{~N 2 n!pN 2!A~N 2 n!pN ~12 pN ! log N} (14)

outgoing links+ Draw the link to the node which carries the smallest exponential
weight+ Since this link is connected to any of the nodes of the cluster of sizen with
equal probability, it gives rise to a uniform tree of sizen 1 1+ This advances the
induction+ Furthermore, the above construction also produces a continuous-time
Markov chainX2~t ! with birth rate given byn times the quantity in~14!+ Here,
X2~t ! is the number of points in the cluster where the sum of the weights is less than
or equal tot+We continue until this Markov chain is in the absorbing state, which is
precisely when the cluster containsN2 points+ To this Markov chain there is asso-
ciated a uniform tree of sizeN2+ Hence, the random variableHN

2 , which is the
number of hops in this uniform tree, has a generating function given by~9!+

We now introduce three events that will be used to bound the probability
P~HN Þ HN

2!+ Define the event:

DN 5 $nodeN is reached whenX2~t ! 5 N 2 kN %+

Since the probability for any order of connections of theN21 nodes other than the
root 1 is equally likely, the probability that the nodeN has not been connected to the
tree ofGp~N! when this tree has sizeN 2 kN is kN 0~N 2 1!+ Hence, we have

P~DN
c ! 5 O~kN 0N!+ (15)

Now, consider the tree ofGp~N!, when its size is equal toN 2 kN + Let Xij ,
1# i # N2 kN , j # i, be the number of outgoing links from nodej when the cluster
contains preciselyi # N2 kN nodes~i+e+, the number of links to theN2 i nodes not
in the tree at that moment!+ Then, for every j, the marginal distribution ofXij is
binomial with parametersN 2 i andpN + Let

EN 5 ù
i51

N2kN

ù
j#i

$Xij [ IN, i %, (16)

where

IN, i 5 @~N 2 i !pN 2!A~N 2 i !pN ~12 pN ! log N , ~N 2 i !pN

1!A~N 2 i !pN ~12 pN ! log N # +

According to Lemma 2+4 and Boole’s inequality,

P~EN
c! # (

i51

N2kN

4i ~N2A! # 2N22A+ (17)
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Finally, we set

FN 5 $6HN 6# B2 log N%,

so that by Lemma 2+3,

P~FN
c! # 2N2dB+ (18)

This estimate holds in the random graphGp~N!+ From ~15!, ~17!, and~18!,

P~HN Þ HN
2!

5 P~HN Þ HN
2 ,DN ù EN ù FN ! 1 P~HN Þ HN

2 , ~DN ù EN ù FN !c!

# P~HN Þ HN
2 ,DN ù EN ù FN ! 1 P~DN

c ! 1 P~EN
c! 1 P~FN

c!

# ~2B2 log N!
!AkN pN log N

kN pN

1 OS kN

N
D1 2N22A 1 2N2dB

5 OS kN

N D1 OS ~ log N!302

!kN pN
D, (19)

where the second inequality follows from Boole’s inequality, using that the shortest
path has at mostB2 log N nodes, and from the probability that any given link in the
shortest path inGN~ p! is one of the edges that has been erased forHN

2 and is bounded
by the number of edges that have been erased divided by the total number of edges
extending from the node+ This ratio is bounded above by 2!AkN pN log N0kN pN ,
when all the binomial random variables are in between the bounds given in~16!+The
choicekN 5 O~~N log N!0~NpN !103! follows from optimizing the right-hand side
of ~19! overkN + n

Proof of Theorem 2.1: The proof of~i! is immediate from the previous lemma+
We only prove statement~ii !; the proof of ~iii ! is similar+ As earlier, AN 5
$HN 5 HN

2%+ Then,

E~HN ! 5 E~HN 1AN
! 1 E~HN 1AN

c ! 5 E~HN
21AN

! 1 E~HN 1AN
c !+

We have that

E~HN
21AN

! 2 E~HN
2! 5 E~HN

21AN
c ! r 0 and E~HN 1AN

c ! r 0+ (20)

Indeed, let F 5 $max~HN ,HN
2! # B2 log N%; then,

E~HN 1AN
c ! # E~HN 1F c ! 1 E~HN 1AN

c 1F ! # CN12dB 1 ~B2 log N!P~AN
c !

and similarly forE~HN
21AN

c !+ From this, we see that it is necessary to have

P~AN
c ! 5 oS 1

log N
D+

This can be obtained from Lemma 2+5 by takingNpN 0~ log N!6 r `, which is the
condition in part~ii ! of the theorem+ Moreover, it is easy to check from the explicit
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formula in ~1! that the expectation ofHN
2 is asymptotically equal to the right-hand

side of~3! as long asNpN 0 log N r `+ n
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Notes

1+ The actual values are kept confidential by the Internet operators+
2+ In Cisco’s OSPF implementation, it is suggested to use weights which are inverse proportional to

the bandwidth of the link+
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