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We study first-passage percolation on the random g@yh) with exponentially
distributed weights on the link&or the special case of the complete graibiis
problem can be described in terms of a continuous-time Markov chain and recursive
trees The Markov chainX(t) describes the number of nodes that can be reached
from the initial node in time. The recursive treesvhich are uniform trees dfl
nodes describe the structure of the cluster once it contains all the nodes of the
complete graphiFrom these resultthe distribution of the number of hoplinks) of
the shortest path between two arbitrary nodes is derived

We generalize this result to an asymptotic resagtN — oo, for the case of
the random graph where each link is present independently with a probatdpility
as long as\Npy /(logN)2 — co. The interesting point of this generalization is that
(1) the limiting distribution is insensitive tp and(2) the distribution of the num-
ber of hops of the shortest path between two arbitrary nodes has a remarkable fit
with shortest path data measured in the Internet

1. INTRODUCTION

The main result in this article is Theoren12This theorem contains a first-passage
result on the random grapB,(N), where the probabilityp = py of an open edge
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tends to zero al — oo, in such a way thallpy — oco. More specificallyto the open
edges we attach weights given by independent exponential random variables each
with mean 1 and ask for the number of ed@esps Hy, of the shortest path between
the nodes 1 andll. The shortest path is thesauniquepath from 1 toN that mini-
mizes the sum of the weights on the edges of the.path
Given a condition on the speed with whiblp, — oo (see Thm2.1), we prove
that the hopcountly can be coupledin an asymptotic sengé a random variable
Ry, with generating function

B = o (e - ) ®
N—-1 N
wheregy is the generating function
I'(z+ N) Nzt B
en(2) = (1+O(N™H)) (2)

TN+ DI (z+1) T(z+1)
and wherd (z) denotes the Gamma functiéef. [1, Sect6.1.1]). We also show that
E(Hy) ~logN+vy —1 if Npy/(logN)® — oo, 3)
Var(Hy) ~ logN+y — 726 if Npy/(logN)® — oo, 4)

wherey ~ 0.5772 is Euler’s constant

This theorem is a generalization of scattered known results for the complete
graphKy (the graph withN nodes and all’y) edges presepiand results for the
uniform recursive treeFor Ky, this theorem seems to be part of the folklore of
epidemic theoryalthough we did not find a precise reference to the result that on the
complete graph with exponential weightee hopcounHy, is connected with the
heightLy, of a uniform recursive tree and

E(z'N) = on(2),

with ¢y given by(2) (cf. Smythe and Mahmouldb]).

The question arises why this generalizatio®toN ) is interestingRecent mea-
surementsboth at Delft University of Technology7] and the University of Gent
[6], of the number of hops that have to be traversed between two arbitrary nodes in
the Internet show a remarkable fit between this data and the distribution with gen-
erating function(2) (cf. [7]). Itis known that the IP packets in the Internet are routed
according to a shortest-path algoritfithe so-called Dijkstra algorithmwhere the
weights between the routing machines are set by the operfatéasherefore model
the Internet as a graph with weights on the ed§é&sce many details of the Internet
are unknown and the Internet seems rather chaotic in strygtarehoose aandom
graph withrandomweights as a modeAs far as we knowthe result is the first
closed-form expression for the hopcount of the Intermdtich, according to[8,
Sect 2.2.2], has remained impregnable

The complete graply is obviously not a good choice to model the Inter-
net because the number of edges extending from each (rod&en equalsN — 1,
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whereas in realitythis number is restrictedn most cases by 32However every
graph withN nodes anghence the graph representation of the Internet are sub-
graphs ofKy. Therefore we randomly thin the number of edges on the complete
graph as far as we couldee Thm2.1) by erasing links in an independent and
identically distributed(i.i.d.) fashion and prove that the hopcount in the random
graphGy(N) still has the saméasymptotig distribution as the hopcount &y as
long asNpy /(logN)3 — co. Moreover simulations of the hopcount of the random
graph withpy = A/N, whereA = 10, and with exponential weights on the edges show
that the simulated distribution still resembles a distribution with generating function
(2) (se€[7]). The numbent = Npy, which equals the average number of outgoing
links in G,(N), is close to the genuine number of ports of a router in the Internet

Our next point is the explanation of the choice of the exponential weight,
note that exponential weights are comparable with uniffrh] weights because
the exponential distribution and the uniform distribution are both in the saime
imal domain of attractionFor both exponential and uniforfii.d.) random vari-
ablesXy, X, ..., we have that

n min X
1=k=n

converges to a random variable with an extreme value distribution givertey/ 1,
for x > 0 (cf. [4]). We only have a statistical motivation to use exponen(ioal
uniform weights; other weightgconstant weights oriid. weights with distribution
functionF (x) = x*, x € [0,1], with « # 1) do not fit the datdsed 7]). Forpy = A/N
and weights constantly equal to\le have that the shortest path uses the minimal
number of hopdn this caseit can readily be seen thB{ Hy ) ~log N/log A and that
Var(Hy) is bounded foN — oo (se€[7]). Hence our result can be formulated as the
statement that for the Internet there is a great variability for the link weightny
casethe weights$ are surely not all equal to 1 as it initially was with RIRouting
Information Protocol

To explain the method of proof of our result for the random grayehreturn to
the complete graph with exponential weights on the edgessthe complete graph
Ky, the proof of(1)—(4) is as follows Consider a continuous-time Markov chain
{X(t)}+=0, Which is a pure birth process with state sp&te,..., N} and birth rate
An=n(N—n). The random variabl¥(t) represents the number of nodes that can be
reached from node 1 in a travel time less than or equalThe proces$X(t)}=o
starts at time 0 with one particleode and will eventually be absorbed in stade
when all the nodes can be reached

Observe that the process that describes the number of distinct iodesling
node 1 that can be reached Ky, over the exponential edges starting from 1 within
timetis indeed equal in distribution to the procé¥st)},—o. This follows from the
memoryless property of the exponential distribution and because whedes are
reachedeach of thesa nodes can be connected to the sdtlef nremaining nodes
overN — ndifferent edgeswhich explains the raté, = n(N — n). WhenX(t) = n,
the(not previously usededges between thenodes can be omitte@hese edges do
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not belong to the shortest patitherwise they would have been selected at an earlier
time.

Geometricallythe evolution of the above birth process can be visualized by a
(random recursive tregwhich is a uniform tree oN nodes Indeed each birth in
the Markov process corresponds to connecting an edge of unit length to one of the
existing nodes in the associated tritdollows from the Markov property that the
new edge is connecta@ndomlyto one of the existing nodes of the treghich
implies that this tree is aniformtree The hopcount is hence equal to theight Ly
of a uniformly chosen particle in the trdéis well known(cf. [5]) that the height of
an arbitrary pointincluding the roothas generating functidi2). In our problemN
cannot be the roptso that the resulfl), with Ry = Hy, for the complete graph
follows.

Using the above descriptipone can also compute the generating function of
the total weight\y, of the shortest pattSince the tree is uniforpeach of theN — 1
possibilities of positions for nodH is equally likely, furthermore the generating
function of the(independentsumX; + --- + X, whereX; is exponentially distrib-
uted with parametanN — i), equals

K i(N—1)
t(Xg+---+ X)) —
E(e ) i:Hli(N—i) 1
Hence
1 Nk i(N=)

(5)

In the next sectionwe extend the resultsl)—(4) to the classG,(N), where
p = pn is chosen such that

_New
(I0gN)? — oo.

(6)

This is a technical conditiarFrom the famous connectivity theorem of Erdés and
Rényi it follows that the random graph,isvith large probability disconnected
whenNpy /logN < 1, whereas it is with large probability connected whepy /
logN > 1 (see[2]). Therefore py = (logN)/N is called theconnectivity thresh-
old. Since the Internet is connectede can restrict ourselves to the case where
Npy/logN > 1. Moreover the percolation thresholdon the complete graph is
pn = 1/N. Hence for Npy > 1, the largest cluster is of the ordbk whereas for
Npy < 1, the largest cluster is of order Id¢ Hence we see that fopy such that
Npy — oo, the probability that the source and the destination are in the largest
cluster converges to. WWe expect that our limit laws ifl)—(4) remain valid even

in this regime when we condition the source and the destination to be in the
largest clusterTherefore we believe our results to remain valid below the con-
nectivity thresholdSimulations withNpy = 10 andN = 210,000 do confirm this
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For the random grapf®,(N), each node has a random number of linkke
above proof for the complete graph was based on the fact that from each node in a
cluster of sizen, there are @onstannumber(N — n) of outgoing links(i.e., edges
going to nodes outside the present clustBiow, for the random graphfor each
node in the cluster of the root when this cluster has sjzbe number of outgoing
links is binomial with parametersandN — n. These binomial random variables can
be sandwiched in between twonstanthumbers of outgoing links in each node of
the cluster of size equal to

[(N—=n)py = VAN —n)py(1— py) logN ], )

which is defined to be zero whef@) becomes negative and whekds a positive
number to be determined latdio each of this constant number of outgoing links
there belong continuous-time Markov chaiXs(t), which is a pure birth process
with state spacégl,2,...,N*}, where

N* =[N(1+ A(1— py)logN/(Npy))1, (8)

and with birth rates\,; equal ton times the quantity given ifi7). Observe that the
sizeN* equals the smallest valuefor which A;; = 0. We next show that with high
probability the hopcount of the shortest path of tingiformtree belonging to the
Markov chainsX~(t) and the hopcount of the shortest path of the random graph
Gp(N) are the sameHence (1)—(4) hold when logN™ = log N + o(1), which im-
plies thatNpy /logN — oo. In fact, in the technical part of the proofve need that
Npy /(log N)? — oo, where the value g8 depends on whether we wish to couple the
respective random variablgsrove convergence of the meam prove convergence
of the variance

The result for the hopcount of the random graph and the insensitivity with re-
spect to the value gi can also be explained intuitivellfrom (2), it is seen that the
law of Ry is close to the Poisson law with parameter bd his can be explained as
follows. The probability that there is a pathlo&dges that has a sum of exponentials
not exceedind. is approximately equal to the number of such paths times the prob-
ability that the sum ok i.i.d. exponential variables with mean 1 is less thahe
number of paths of lengtkfrom 1 toN is, for N large roughly equal taN*~*. The
probability that the sum of exponential weights is less than or equaid@oughly
equal taL¥/k!. Multiplying out, we find thatP(Hy = k, Wy = L) ~ (LN)¥/NK!. These
probabilities have to sum up to 1 whénis the typical size of the weight of the
shortest patfso thatL has to be equal tdog N)/N. Substitution of this value gives
P(Hy = k) = (logN)¥/NK!, in accordance t¢2). For the random graple,(N),
where edges of the complete graph are present or absent independently with prob-
ability p and 1— p, respectivelythe weightW has to be of the ordd€tog N)/Npy
(i.e, the value opp merely serves as a scale fagtdrhe reason for this is thatonly
decreases theumberof links, which means that we take the minimum over less
exponential random variablddow, for integerNp, the minimum oveNpexponen-
tial random variables has tleamedistribution as 1p times the minimum oveN
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exponential random variableBhis explains thap only serves as a scale factdhe
limiting distribution of the hopcount remains unchang€hde insensitivity with re-
spect top of the law of the hopcount can be understood by adapting the above
heuristic to the case whek&y =~ (log N)/Npy and where the number of paths of
lengthsk is replaced by thexpectechumber of paths of lengtkwhich is equal to
p&N*~L We see that the factors pf; cancel outand we find that the asymptotics of
the hopcount is independent af.

The next sectioywhich contains the full proof of our main resgils organized
as follows We start with the statement of the theordrhen in Lemmas 2 and 23,
we show with large deviation theory that the hopcoHgtis bounded with over-
whelming probability by a large multiple of Idg. Lemma 24 is used in the proof of
our main theorem to show that we can assume that the number of outgoing links is
between a fixed upper and lower bound to obtain a uniform Wéefinally couple
the heightl_ of nodes of this uniform tree to the hopcount of the random graph in
Lemma 25.

2. THE RANDOM GRAPH

In this sectionwe investigate the hopcount of the random gr&ptiN) with expo-
nential travel times on the edge&e always assume that we are dealing with se-
quence9y satisfying lim sup py < 1, so that the random graph is truly random
The main result is the following theorem

THEOREM 2.1: There exists a probability space on which the hopcouyndHG,(N)

and a random variable Kl can be defined simultaneously, and where the marginal
distribution of H; has generating function (1) with N N~ given by (8), such that
the following hold:

(i) 1f Npy/(logN)® = oo, thenP(Hy # Hy) = o(1).
(i) 1f Npy/(logN)® — oo, thenE(Hy) =logN + y — 1+ o(1).
(i) If Npy/(logN)® — oo, thenVar(Hy) = logN + v — 72/6 + o(1).

The proofis divided into a number of step¥e first sketch these steps and then
formulate and prove them in a series of lemnfésally, we prove Theorem.2.

1. Asindicated by the result8) and(4), we expect that the probability that the
hopcountHy exceeds a large multiple of ldgiis small This result is impor-
tant for the proof of our theorenbecause it gives an upper bound on the
number of nodes with which we have to deal

If the hopcounH) is bounded by a multiple of lol, then the exponen-
tial weights over the shortest path are likely to be bounded by another mul-
tiple of logN times the typical weight over each edge of the shortest path
These typical weights are of ord@ipy ) ™. The size of a typical weight of an
edge belonging to the shortest path follplwecause each node has the
averageNpy edges and the minimum bdlpy independent exponentials each
with weight 1 has expectatiofNpy) % In Lemma 22, we will show that
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P(NpyWy > BlogN) = N~°B for somes > 0. We prove this lemma with
the help of Cramér’s theorefuaf. [3, p. 26]).

2. Using Lemma 22, we prove that the bounidy, = BZ?log N holds with over-
whelming probability This will be shown in Lemma 3.

3. For a binomial random variabk with parameter&y andp = py such that

(logN)/(knpn(1—pn)) = 0,
P(XN & [kN Pn — \/AkN Pn (1 — pn) log N, Ky P

+ \[Aky pn (1~ pn) logN]) = 4N~

This will be proven in Lemma 2.

4. We coupleHy with a random variablély , which is the number of hops of a
uniformly chosen pointin aniformtree of sizeN ™ < N, whereN~™ =[N(1—
A(1 - py) logN/(Npy))]. Let

Ay ={Hy=Hy}

The main ingredient of the proof is th&(Af) — 0 at a certain rate that
depends on hoWpy — . The random variablely has generating function

B - 1 (v @ - ) ©

TN -1 ON- N-
wheregy is the generating function if2). Hence the ratio of the generating
functionsE(z"v ) andey (2) tends to 1 as long dspy /logN — co.

5. The asymptotic expressions fB(Hy # Hy), E(Hy), and VaHy) then

follow.

We start with Step 1Let Wy denote the sum of the exponential weights along
the shortest path from 1 fd in the graphG,(N).

LEMMA 2.2: There exists constanés> 0 and B such that for Nplarge,
P(NpyWy > BlogN) = N %8, (10)

Proor: Theidea behind this proofis that starting from node 1 we bulltharytree

by choosing at each node the two shortest edglesrtest with respect to the expo-
nential weights The size of this tree grows a& avherek is the depth of the tree
Hencewithin k= (logN)/log 2 stepswe have reached a\ nodesHowever if k~
(logN)/log 2, the number of nodes not yet in the binary tree approachesd
therefore the weight of the minimal edges has expectation almpatiich is large
compared tqNpy) L. Therefore we grow two binary treesone with root 1 and a
second with roolN. If we grow both trees until they reach sizeN, then there are
still N— O(VN)) nodes not in these treeshich implies that all weights in the trees
are of ordefNpy )% Moreover the number of connections between the two trees is
of ordery/Npy \/Npy = Npy and hencethe minimal weight of the connecting edges
is of the same reciprocal ord&py) ™
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Indeedin G,(N), we denote the exponentially distributed weights on the edges
incident with node by E} if the edge(i, k) is presentFurthermore

By <Ep < -

are the ordered weights of the edges incident witefine a binaryrandom sub-
treeB; C G,(N) of depthk in the following way start at node 1 and take the two
edges with weighE(, andEp,. Leti andj denote the end points of these two edges
From the collection of edges incidenti{g ), we remove the edgd, i) = (i,1)((1,j) =
(J,1)) and from the remaining set of edges incident wii(lj), we take the two
shortest onedProceeding this wayve grow a binary tree with depth

g

log 2

(11)

where[ x] is the smallest integer larger thanf N & B, grow a binary tree of depth
k starting from nodé\, without using any of the nodes in tr&g.
Fori € {1,2,...,N} and withX; the number of remaining edges incideni,to

E, E B

. . . d f d
ElH) = ming = —, Eph = +o——,
@ X @7 X% X -1

by properties of the exponential distributiddence if X; = ZNpy + 1, then

. 2E, _ 2E, + 2E,

Ey=<—, Ep=—7—", (12)
Npy Npy
where as earlier E; and E, are independent exponential random variables with
mean 1
From(12) and the fact that the minimal weight of the connecting edges can also

be bounded by2E; + 2E,)/Npy, we conclude thai\y = 25, 1/Npy, whereS, is
the sum ofn independent exponentials with mearHence

BIogN)
> .

P(NpyWy = Blog N) = P<S4k+1z

Now, apply Cramér’s theorem t8;; with k given in(11). u
As a corollary to Lemma.2 we have the following lemma
LeEmMA 2.3: There exists constands> 0 and B such that for Npsufficiently large
P(Hy > B?log N) = 2N°E,

Moreover the same bound holds forRwhich is the number of hops of a uniform
chosen point in a uniform tree of size N.
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Proor: Intersectthe evedtdy > B2log N} with the even{Npy W > BlogN}and
its complement to obtain

P(Hy > B2logN)
= P(NpyWy > BlogN, Hy > B2logN)
+ P(NpyWy = BlogN, Hy > B?logN)
= P(NpyWy > BlogN) + P(NpyWy = BlogN,Hy > B2?logN)
= N8 + P(Sg2i0gn7 = BlogN)
=2N°%8

whereP(Sg2 101 = BlogN) = N8 by Cramér’s theorem
To see that the same bound also holdsRQr the random variable with gener-
ating function(2), use

Ne'
P(Ry > BlogN) = minP(efy > N®B) <= 2minN"® ————
(Ry ogN) =minP(e ) =2min re 11’

where we use the asymptotic expressiotidnfor N large enoughPick t = logB
to get

2

P(Ry > BlogN) = N*B(Iongl) <
" o re+1
This bound isin fact, sharper than the upper bound fafHy > B?log N). -

LemMma 2.4: For a binomial random variable X with parameters k and p, satis-
fying (logN)/(kn pn (1 — pn)) — O, uniformly in kg and py for large N

P(XN & [kN Pn — \/AkN Pn(1— pn) log N, Ky pu

+ \/Aky pn(1— py) logN]) = 4NA
Proor: ForA > 0, define

CN = 0N VAIOgN,

whereod = kypn (1 — pyn). Then
P(Xy > kpy + Cy) = inf P(e%n > ") < inf{e i rc) (¢ (1))},
t=> t>

whereg(t) =1 — py + pn €t Forky (1 —py) > Cy, we find that the argumeny, of
the infimum satisfies

o+ Cu(1—py)

eln = 5
og — Cubn
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From this we obtain

c Cn —(kn Pn+Cr) Cy Pn Kn
P(Xy > +Cy=(1+—5"T— 1+——7—7— .
(X P ) < Uﬁ_CNpN> < O'I\ZJ_CNPN)

Hence for Cy /o3 — 0 or, equivalently (logN)/o2 — 0, asN — oo,

Ci B
P(Xy >kpy +Cy) =2expl ———~— | =2NA
o — Cupn
To treatP(Xy < kpy — Cy), defineYy = ky — Xy; then Yy has a binomial distri-
bution with parameterky and 1— py and

P(Xn < knpPn — Cn) = P(ky — Yy < knpn — Cn)
=P(Yn > kn(1—pn) + Cy).

The result follows from repeating the above argument Withreplaced byyy and
Py by 1— py. u
LemmA 2.5: There exists a probability space on which the hopcoupHG,(N)
and a random variable Kl can be defined simultaneously and where the marginal

distribution of H; has generating function (1) with 8 N~ given by (8), such that
for Npy — oo andlim suppy < 1,

P(H #H‘)=O<—|OgN > (13)
e [Npy 172 )0

Moreover,
E(z™) = ¢n(2)(1+ 0(1))
as long as NRp/logN — co.

Proor: The method of proof is described in Step 4 at the beginning of this section
Defineky = O((NlogN)/(Npy)¥®) (this choice oky will become clear at the
end of the proof and check thallpy — oo together with lim suppy < 1 imply

logN
Kn P (1 — pn)

asN — oo. This is the condition of Lemma.2 that guarantees that the binomial
random variableXy with parametersky and py is with probability larger than
1—4N~*in between the bounds, py + Cy. Take node 1 06,(N). The number of
edges incident to node 1 is a Bernoulli varialflewith parameterd — 1 andpy.

We erase edges from node 1 until we reach the nearest intedé® of1)py —
\/A(N —1Dpn(1—py) logN. The edges that we erase are called ghost edges

Now, take the smallest edge extending from node 1 and form the tree which

consists of these two nodés/e now proceed with the induction steguppose that

the uniform tree contains = 2 nodes|n the original graplG,(N), each of these

n nodes has a binomial-distributed number of edges td\then remaining nodes

’
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The parameters of thed@ total n) marginal distributions ar& — n and py.
Assume that all these binomial random variables are in betwlen n)py £
\/A(N —n)pn(1— py) logN. Then erase edges in gray,(N) in a uniform way
until each of then nodes has precisely

[(N—n)py = VAN — n)py(1— py) logN| (14)

outgoing links Draw the link to the node which carries the smallest exponential
weight Since this link is connected to any of the nodes of the cluster ofrsizi¢h
equal probabilityit gives rise to a uniform tree of size + 1. This advances the
induction Furthermorethe above construction also produces a continuous-time
Markov chainX™(t) with birth rate given byn times the quantity if14). Here
X~ (t) is the number of points in the cluster where the sum of the weights is less than
or equal ta. We continue until this Markov chain is in the absorbing steteich is
precisely when the cluster contaiNs points To this Markov chain there is asso-
ciated a uniform tree of sizBl~. Hence the random variablédy, which is the
number of hops in this uniform trebas a generating function given 9).

We now introduce three events that will be used to bound the probability
P(Hy # Hy ). Define the event

Dy = {nodeN is reached wheX~(t) = N — ky}.

Since the probability for any order of connections of khe 1 nodes other than the
root 1 is equally likelythe probability that the nodé has not been connected to the
tree ofG,(N) when this tree has siz¢ — ky is ky /(N — 1). Hence we have

P(DF) = O(ky/N). (15)

Now, consider the tree 06,(N), when its size is equal tbl — ky. Let X;,
1=i=N-Kky, ] =i, bethe number of outgoing links from nog@hen the cluster
contains precisely= N — ky nodeg(i.e., the number of links to thél — i nodes not
in the tree at that momentThen for everyj, the marginal distribution oK; is
binomial with parameterdl — i andpy. Let

N—ky

En= [ MN{X; il (16)

i=1 j=i

where

i = [(N=i)py = VAN = )py(1— py) log N, (N = i)py
+ /AN —i)py(1— py) logN].

According to Lemma 2 and Boole’s inequality

N—ky

P(ES) = X 4i(N") =2NZA (17)

i=1
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Finally, we set
Fn = {[Hn| = B?logN},
so that by Lemma.3,
P(FS) = 2N %8, (18)
This estimate holds in the random gra@p(N). From(15), (17), and(18),
P(Hy # Hy)
=P(Hy #Hy,Dy NEy N Fy) + P(Hy # Hy, (Dy N Ey N FY))
= P(Hy # Hy, Dy N Ey N Fy) + P(DR) + P(ES) + P(FY)

\/A logN k
M +O( N) + 2N2-A 4 2N 98B

Kn P N

=0 ﬁ +0 (Iog—N)3/2 (19)
N \ Kn P ,

where the second inequality follows from Boole’s inequalitsing that the shortest

path has at mo$?log N nodes and from the probability that any given link in the
shortest path isy ( p) is one of the edges that has been eraseHd foand is bounded

by the number of edges that have been erased divided by the total number of edges
extending from the nodé his ratio is bounded above byw2ky py l0g N /Ky P,

when all the binomial random variables are in between the bounds giv&6)ihe
choiceky = O((NlogN)/(Npy)¥?) follows from optimizing the right-hand side

of (19) overky. |

Proor or THEOREM 2.1: The proof of(i) is immediate from the previous lemma
We only prove statemen(i); the proof of (iii) is similar As earlier Ay =
{Hy = Hy}. Then

E(Hy) = E(Hy1a,) + E(Hylag) = E(HN1a,) + E(Hydag)-

= (2B%logN)

We have that
E(Hy1a,) — E(Hy) = E(Hyla) >0 and E(Hyly)—O. (20)
Indeed let F = {max(Hy,Hy) = B?log N}; then
E(Hy1ag) = E(Hy1ge) + E(Hylag1p) = CN28 + (B%logN)P(Af)

and similarly forE(Hy 1ag ). From this we see that it is necessary to have

I0gN>'

This can be obtained from Lemmab2oy takingNpy /(logN)® — oo, which is the
condition in part(ii) of the theoremMoreover it is easy to check from the explicit

P(AS) = o(
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formula in(1) that the expectation dfly is asymptotically equal to the right-hand
side 0of(3) as long adNpy /logN — co. ]
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Notes

1. The actual values are kept confidential by the Internet operators
2. In Cisco’s OSPF implementatioit is suggested to use weights which are inverse proportional to

the bandwidth of the link
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