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SUMMARY
This paper is focused on the flying inverted pendulum problem, i.e., how to balance a pendulum on
a flying quadrotor. After analyzing the system dynamics, a three loop cascade control strategy is
proposed based on active disturbance rejection control (ADRC). Both the pendulum balancing and
the trajectory tracking of the flying quadrotor are implemented by using the proposed control strategy.
A simulation platform of 3D mechanical systems is deployed to verify the control performance and
robustness of the proposed strategy, including a comparison with a Linear Quadratic Controller
(LQR). Finally, a real quadrotor is flying with a pendulum to demonstrate the proposed method that
can keep the system at equilibrium and show strong robustness against disturbances.

KEYWORDS: Inverted pendulum; Micro aerial vehicles; Active disturbance rejection control;
Cascade control.

1. Introduction
The inverted pendulum is a typical non-linear control problem, and has been investigated for several
decades. It is also a common benchmark to evaluate advanced control techniques. Recently, it has
been extended to many different application scenarios, such as an inverted pendulum on a cart,
multi-degree pendulum and Furuta pendulum.1 The dynamics of these pendulum systems is related
to two-wheel robots, rocket guidance, etc,2 and many advanced control strategies have been deployed,
including PID control,3 neural networks control4 and controlled Lagrangians method.5

With the recent advancement of micro electro mechanical sensors (MEMS) and energy storage
devices, Micro Aerial Vehicles (MAVs) have demonstrated a great potential. They have been widely
used in many civilian and military applications, e.g., wildfire monitoring, aerial filming and pollution
assessment due to their easy construction and ability to takeoff and land vertically (VTOL).6

Meanwhile, thanks to their simple steering principle and low cost,7 these small flying machines
especially quadrotors are seen in research institutes worldwide, including the Autonomous Systems
Lab at Swiss Federal Institute of Technology8 and the General Robotics, Automation, Sensing and
Perception (GRASP) Laboratory at University of Pennsylvania.9

Recently, the flying inverted pendulum has attracted a lot of attention. It is a non-linear, under-
actuated and coupled system with 8 Degrees of freedom (DOFs), i.e., a 6-DOF quadrotor and a 2-DOF
pendulum. ETH Flying Lab is the first in the world to investigate this problem.10 After the nominal
pendulum equilibrium was realized, linear state feedback controllers were designed to stabilize the
whole system. Then, reinforcement learning was adopted to improve system performance by dividing
the task into two subtasks: initial balancing and balanced hover.11 In addition, a global stabilizing
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controller for inverted pendulum derived from controlled Lagrangians is used, together with another
parallel quadrotor position controller to generate attitude commands.12

In general, linear state feedback design is based on a linearization model around the equilibrium
point. The model is only valid in a small neighborhood and vulnerable to disturbances. Meanwhile,
the parameters of two independent controllers for the pendulum and the quadrotor are difficult to tune
and need many trials. Although reinforcement learning could be adopted in the controller design by
dividing the task into two subtasks, the designed controller actually is not controlling the pendulum
and quadrotor positions together. The final quadrotor position may be dozens of meters away from
the origin.11 Some other non-linear control methods,13 such as controlled Lagrangian method, are
very rigorous mathematically for a single inverted pendulum, which are however too complex to be
used in systems.

The classic inverted pendulum research may provide some ideas, but is difficult to be directly
applied to the flying pendulum system that has an unstable equilibrium, i.e., the upward vertical
position of the pendulum. Its internal and external disturbances are ubiquitous and difficult to be
described in a mathematical way. Other factors such as communication delay and aerodynamics may
degrade the control quality in practical systems as well.14

Recently, two disturbance estimation techniques15 have been proposed for disturbance rejection.
One is the disturbance observer technique proposed by Ohnishi et al.,16 which has been widely applied
to missile systems,17 humanoid joint,18 precise motion control systems.19 The other is ADRC, which
estimates internal and external disturbances online by using an extended state observer (ESO), and then
compensates them in control input signals.20 Since ADRC does not require an accurate mathematical
model and is easy to be realized, it has been widely deployed in many practical systems with promising
results.21 A two-loop linear ADRC controller is designed for a classic inverted pendulum on a cart
in ref. [22]. It is clear that linear ADRC shows great potential to solve the under-actuated non-linear
system control problem.

Inspired by all the previous related work, we propose a three-loop cascade linear ADRC architecture
for the flying pendulum system in this paper such that the quadrotor can track its reference trajectory
while the inverted pendulum stays at the equilibrium (vertical position). The inner loop is a high
bandwidth onboard controller, which tracks desired attitude angles using feedbacks from inertial
measurement units (IMU). The quadrotor can respond to the commands fast since it has very low
rotational inertia and powerful brushless motors. Therefore, on the basis of the inner loop, an ADRC
controller for the pendulum position is designed using the tangent of angles as pseudo control
inputs.

In order to design the outer loop controller for quadrotor horizontal positions, the time scale
control concept23 is adopted since the stability of the inverted pendulum has to be guaranteed first
and thus position responses of the quadrotor has to be slower. An ADRC controller using the
pendulum position as control inputs is adopted here, with smaller parameters to meet the time-scale
separation principle. Another independent controller using total thrust as control input is designed
for the altitude of the quadrotor. From simulations, we find system performance is sensitive to the
gain coefficient of control inputs, thus we introduce an adaptive gain parameter after analyzing the
system.

Through this multi-level design, each sub-loop is a negative feedback controller that differs from
the common LQR and PID controllers. The vehicle loop is a positive feedback controller. This
change can utilize the natural connection between all sub-loops and can improve flying safety
in experimental flights. The robustness of the system is validated by adding disturbances during
flying. In addition, this system involves many communications such as TCP/IP connection from
Vicon system to PC and wireless Zigbee connection from PC to the quadrotor. Time delay is an
important issue here and may affect system stability. Inspired by Lupashin’s work,8 we proposed
a compensation algorithm to generate estimation feedbacks and velocities, which is simple and
effective.

The remainder of this paper is organized as follows. Section 2 presents the dynamics model of the
quadrotor-pendulum system used in this research. In Section 3, a cascade linear ADRC controller
is designed for quadrotor trajectory tracking and inverted pendulum balancing. Simulation on the
Matlab SimMechanics platform24 and experimental flights are carried out in Section 4 to show the
feasibility and effectiveness of the proposed control strategy. Finally, a brief conclusion and future
work are given in Section 5.
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Fig. 1. Fixed body and world coordinate systems.
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Fig. 2. Inverted pendulum on top of a quadrotor.

2. System Dynamics
A Humming bird quadrotor made by Ascending Technology is adopted in this research.25 Two right-
handed coordinate systems used for describing the MAV pose is shown in Fig. 1. The world frame,
W , is defined by axes XW ,YW and ZW with ZW axis pointing upward. The body frame, B, coincides
with the center of mass and is defined by the axes XB ,YB and ZB . XB is always aligned with the
preferred forward direction and ZB perpendicular to the plane of four rotors. To simplify the analysis,
some reasonable assumptions are given here without loss of generality.

Assumption 1. The body-fixed frame B is attached to the center of mass of the quadrotor and the
pendulum is rigidly attached to the center as well.

Assumption 2. The z position of the quadrotor can be well controlled and is nearly fixed.

Assumption 3. Dynamics of the quadrotor is not affected by the movements of the pendulum
since the mass and the inertia of the pendulum are one magnitude less than that of the quadrotor.

2.1. Quadrotor-pendulum model
As shown in Fig. 2, the position vector of the quadrotor is denoted by p = [x y z]T in the world frame
and the pendulum position is described by pr = [r s ζ ]T , which represents the translational position
of the pendulum mass center relative to the supporting point, i.e., r along the XW -axis, s along the
YW -axis and ζ the ZW -axis. The relative height ζ can be calculated by

√
L2 − r2 − s2, where L is

the length from the pendulum bottom to the mass center. Thus, the pendulum position with respect
to W can be given by pp = [x + r y + s z + ζ ]T .

Since the pendulum has no moment of inertia about its z-axis, its rotation kinetic energy can be
given by 1

6mpL2�T
p,xy�p,xy where mp is the pendulum mass and �p,xy is the angular rate. From
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the rigid body kinematics, we can derive �p,xy = pr × ṗr/L
2. The total kinetic energy Tp and the

potential energy Vp of the pendulum are

Tp = 1

2
mp

(
(ẋ + ṙ)2 + (ẏ + ṡ)2 +

(
ż − rṙ + sṡ

ζ

)2
)

+ 1

6
mpL2�T

p,xy�p,xy, (1)

Vp = mpg(z + ζ ). (2)

To derive the pendulum dynamics, Lagrangian mechanics is applied as below:

d

dt

(
∂Lp

∂(ṙ , ṡ)

)
− ∂Lp

∂(r, s)
= 0, (3)

where Lp = Tp − Vp. Then, we obtain

r̈ = −3

4

(
ζ 2

L2 − s2

)
ẍ + 3rζ (g + z̈)

4(L2 − s2)

+ r3(ṡ2 + ss̈) − 2r2sṙ ṡ + r(−L2ss̈ + s3s̈ + s2ṙ2 − L2ṙ2 − L2ṡ2)

(L2 − s2)ζ 2
, (4)

s̈ = −3

4

(
ζ 2

L2 − r2

)
ÿ + 3sζ (g + z̈)

4(L2 − r2)

+ s3(ṙ2 + rr̈) − 2s2rṡṙ + s(−L2rr̈ + r3r̈ + r2ṡ2 − L2ṡ2 − L2ṙ2)

(L2 − r2)ζ 2
. (5)

From the dynamic equations, the accelerations can be regarded as control inputs to the system. z̈ is
always small and considering the gain coefficient of z̈ is also much smaller than those of ẍ and ÿ, it
can be handled as an internal disturbance to the pendulum. So the system dynamics of the pendulum
can be written in the following form:

[r̈ s̈]T = B[ẍ ÿ]T + fz(r, s)z̈ + fn(r, s, ṙ, ṡ), (6)

where fz and fn are the second term and third term of the right-hand sides of Eqs. (4) and (5)
respectively, and

B =

⎡
⎢⎢⎢⎣

−3

4

(
ζ 2

L2 − s2

)
0

−3

4

(
ζ 2

L2 − r2

)
0

⎤
⎥⎥⎥⎦ . (7)

2.2. Quadrotor dynamics
The quadrotor pose is described in 6 DOF: the translational position in the world frame and the
vehicle attitude parameterized by XYZ-Euler angles (roll-φ,pitch-θ ,yaw-ψ). Using the Newton’s
second law, translational equations of the MAV motion can be derived as below:.26

mp̈ =

⎡
⎢⎣

0

0

−mg

⎤
⎥⎦ + R

⎡
⎢⎣

0

0

T

⎤
⎥⎦ , (8)

where R is the rotational matrix of body frame with respect to the world frame, m, g denote the total
mass and the gravitational constant respectively and T is the total thrust produced by four propellers.
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The attitude is not directly controllable, but R is related to the angular velocity of the quadrotor in
the body frame, which can be described by the following equation:

Ṙ = R�̂, (9)

where � = [wx, wy, wz]T denotes the angular velocity vector w.r.t B. The notation �̂ is the skew-
symmetric matrix of �. And the angular acceleration is determined by torques generated by four
propellers.

J �̇ = −� × J� + τ, (10)

where J denotes the inertia matrix w.r.t the frame B. The control input τ = [τ1 τ2 τ3]T represents
torques produced by propellers.

Based on these dynamic equations, we have made a high-bandwidth controller to track the desired
attitude Euler angle values and in order to transfer these commands to motor speeds, a brief motor
model is introduced here. As seen in Fig. 1, motor 1 is the motor on the +XB arm and the other three
motors are allocated to +YB , −XB , −YB arms, respectively. For a typical multi-rotor flying vehicle,
each rotor produces a thrust force Fi in its ZB-axis and a torque Mi around its ZB-axis. A basic
relationship between them and motor rotation speed ni is Fi = kf n2

i , Mi = kmn2
i . The parameters kf

and km can be regarded as constants and be determined from static thrust tests. Then, we can write
the general relationship in a matrix form for the quadrotor used in this paper.

⎡
⎢⎢⎢⎢⎣

τ1

τ2

τ3

T

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 lkf 0 −lkf

−lkf 0 lkf 0

km −km km −km

kf kf kf kf

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

n2
1

n2
2

n2
3

n2
4

⎤
⎥⎥⎥⎥⎦ , (11)

where l denotes the distance from rotor to the center of quadrotor, and the unit of motor speed is
revolutions per minute (rpm). Hence, we can achieve the required motor speeds by inverse operation
of Eq. (11). The attitude control loop and the calculation of the motor speed run on the Asctec
Autopilot board mounted on the quadrotor at 1 KHz.

3. Controller Design
The quadrotor-pendulum control system includes three loops, i.e., the onboard attitude loop based on
IMU feedbacks, the pendulum balancing loop and the quadrotor position loop. Since the system is
underactuated and the vertical position of the pendulum is an unstable equilibrium, a cascade control
strategy is adopted, i.e., the middle loop is the pendulum control and the quadrotor position loop
is the outer loop. Desired attitude angles and thrust are tracked by onboard inner loop. The overall
system structure can be seen in Fig. 3.

3.1. Inverted pendulum loop
The target of the middle loop is to keep the pendulum staying at the equilibrium point, i.e., r, s ≈ 0.
From Eq. (8), we can derive

ẍ =(sin ψ sin φ + cos ψ sin θ cos φ)T/m,

ÿ =(− cos ψ sin φ + sin ψ sin θ cos φ)T/m,

z̈ =(cos θ cos φ)T/m − g.

(12)
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Fig. 3. An overview of the experimental flying pendulum system.

For simplification, it is assumed that the yaw angle is always kept near zero. Substitute Eq. (12) into
Eq. (6) and take the attitude angles as control inputs

r̈ = −3

4

(
1 − r2

L2 − s2

)
g tan θ + fr, (13)

s̈ = 3

4 cos θ

(
1 − s2

L2 − r2

)
g tan φ + fs, (14)

where fr represents the non-linear dynamics produced by z̈, s, r and parameter uncertainties, and fs

represents external disturbances.
Linear ADRC control is adopted here to handle complex disturbance compensation. Take the

r-tan θ loop as an example to show more details. A linear ESO with the following discrete form is
employed to estimate the system states [r ṙ fr ]T including the extended state fr .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

er = zr1 − r̂

br = −3

4

(
1 − r2

L2 − s2

)
g

zr1 = zr1 + h(zr2 − βr1er )

zr2 = zr2 + h(zr3 − βr2er + br tan θ)

zr3 = zr3 + h(−βr3er )

, (15)

where r̂ denotes the measurement value of r , er is the tracking error, zri(i = 1, 2, 3) represents outputs
of the ESO, h is the sampling time and βri(i = 1, 2, 3) is observer gains to be tuned. Generally, the
larger the observer gain is, the faster response and better performance the system will have. However,
a large gain will increase noise sensitivity. According to ref. [27], a proper parameter can be acquired,
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which can achieve a compromise between the suppression performance and the noise tolerance in
experimental practical system tuning.

Through the ESO, observations of position, velocity and unknown lumped uncertainties are
achieved. Hence, the state error feedback control law is designed as follows:

ur = (krp(rd − zr1) − krd (zr2) − zr3)/br, (16)

where ur is tan θ here, krp, krd are the controller gains and rd is the reference command for the outer
loop.

The controller and observer of the s − tan φ loop can be derived in the same way.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

es = zs1 − ŝ

bs = 3

4 cos θ

(
1 − s2

L2 − r2

)
g

zs1 = zs1 + h(zs2 − βs1es)

zs2 = zs2 + h(zs3 − βs2es + bs tan φ)

zs3 = zs3 + h(−βs3es)

(17)

us = (ksp(sd − zs1) − ksd (zs2) − zs3)/bs. (18)

All the variables have the same definitions as those in Eqs. (15) and (16). The desired angle commands
for the onboard attitude loop can be achieved by anti-tangent calculation.

θd = arctan ur, φd = arctan us. (19)

3.2. Quadrotor position loop
In order to stabilize the inverted pendulum when the quadrotor is moving, a fast response speed of
the middle loop has to be guaranteed and the quadrotor position loop has to be relatively slow. So it
is reasonable to assume that the variables r, s are in a steady state due to this time scale separation.
The MAV reference trajectories pd = [xd (t), yd (t), zd (t)]T are generated with sufficient smoothness
and bounded time derivatives. The altitude of the quadrotor is controlled by an independent ADRC
controller. Therefore, the outer loop controller is actually x − r and y − s loops. From Eqs. (13)–(16),
by defining external disturbances and unmodeled dynamics together as ξx and ξy , we can derive

{
ẍ = bxr + fx

ÿ = bys + fy

, (20)

where bx, by are the estimated control input gains and fx, fy stand for the whole non-linear dynamics
and disturbances

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bx = −g

ζ

by = −g

ζ

fx = −4(r3(ṡ2 + ss̈) − 2r2sṙ ṡ + r(−L2ss̈ + s3s̈ + s2ṙ2 − L2ṙ2 − L2ṡ2))

3ζ 4
+ ξx

fy = −4(s3(ṙ2 + sr̈) − 2s2rṡṙ + s(−L2rr̈ + r3r̈ + r2ṡ2 − L2ṡ2 − L2ṙ2))

3ζ 4
+ ξy.

(21)
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The design of the outer linear ADRC controller is similar to that of the pendulum loop, hence the
details are omitted and the results are shown as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ex = zx1 − x̂

zx1 = zx1 + h(zx2 − βx1ex)

zx2 = zx2 + h(zx3 − βx2ex + bxrd )

zx3 = zx3 + h(−βx3ex)

rd = (kxp(xd − zx1) + kxd (ẋd − zx2) − zx3)/bx

(22)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ey = zy1 − ŷ

zy1 = zy1 + h(zy2 − βy1ey)

zy2 = zy2 + h(zy3 − βy2ey + bysd )

zy3 = zy3 + h(−βy3ey)

sd = (kyp(yd − zy1) + kyd (ẏd − zy2) − zy3)/by

. (23)

It is worth noting that the control parameters in the outer loop have to be much smaller than those in
the middle loop to implement the two-time-scale control.

3.3. Time delay compensation
In the experimental system, the famous motion capture system VICON is deployed to measure the
position of the quadrotor and the pendulum. A commercial computer will acquire these data through
TCP/IP and send commands to the onboard controller via wireless Zigbee modules. System latency
is caused mainly by communications. If the pendulum has made a big displacement during the time
delay, the vehicle needs a very large acceleration to stabilize the pendulum. However, the maximal
acceleration is around 13.1 m/s2 on Humming bird, and our VICON area has a limited range as well.
Therefore, a short delay may result in the pendulum falling down from the quadrotor.

In this paper, a tracking differentiator (TD) is introduced to compensate for system latency on the
basis of ESO. The TD input is the raw measurement y and the outputs are filtered measurement ỹ and
estimated differentiation ˜̇y. The specific TD system is shown as below:

⎧⎪⎪⎨
⎪⎪⎩

fh = fhan(ỹ − y, ˜̇y, r0, h0)

ỹ = ỹ + h ˜̇y

˜̇y = ˜̇y + hfh,

(24)

where fhan(x1, x2, r0, h0) is a special non-linear function with the following form which can fast
track the signal differential.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d = r0h0, d0 = h0d, y = x1 + h0x2

a0 =
√

d2 + 8r0|y|

a =

⎧⎪⎨
⎪⎩

x2 + a0 − d

2
sign(y), |y| > d0

x2 + y

h0
, |y| ≤ d0

fhan = −
⎧⎨
⎩

r0sign(a), |a| > d

r0
a

d
, |a| ≤ d

,

(25)
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where r0 and h0 are positive parameters to determine the tracking speed and the filtering performance,
respectively. According to the TD output signals, we can adopt a conventional algorithm to predict
the latency-compensated measurements ŷ.

ŷ = ỹ + τ̂ ˜̇y, (26)

where τ̂ is the estimated real latency. ŷ is the input of ESO instead of directly measurement y and the
latency-free control is generated using compensated signals. The whole time delay is 30 ms∼50 ms
according to experimental test results. We choose τ̂ = 40 ms in our controller design.

4. Verification Tests

4.1. Simulation results
To make simulations as accurate as possible, a multibody simulation environment for 3D mechanical
systems called SimMechianics on Matlab platform is used instead of numerical equations. The
multibody system can be modeled using blocks representing bodies, joints, constraints and force
elements, and then SimMechanics formulates and solves the equations of motion for the complete
mechanical system. Models in CAD files, including mass, inertia, joint, constraint and 3D geometry,
can be imported into SimMechanics and an assembly file with experimental data from the quadrotor
and pendulum drawn using Solid works is used in this paper.

Additionally, an automatically generated 3D animation can visualize the system dynamics as
shown in Fig. 1. The inner onboard attitude loop consists of three individual PD controllers which
show fast response and strong robustness with well-tuned parameters. The controller details are
omitted here since they have been mentioned in many papers and works.25, 28 The altitude controller
is an independent linear ADRC controller similar to the outer position loop to command the thrust.
The higher-level loops, i.e., quadrotor position and pendulum position loops, are running at 50 Hz
and 100 Hz respectively, which are the same settings as our experimental system.

First, the simulation for set point tracking is conducted while the pendulum is being balanced. The
quadrotor takes off and hovers in first 0–5 s, then a move command is sent to the quadrotor at t = 5
s, and a 5 N force disturbance with 0.01 s duration is given to the pendulum at t = 20 s. To show
the advantage of the proposed method, the results of a LQR controller are illustrated here to compare
system performance.

LQR is an efficient method to solve inverted pendulum problems. It has been used for classical
pendulum on a cart case29 and as well as the flying pendulum.10 To design the LQR controller
for the pendulum on a quadrotor system, a linearization has to be done first. Using system state
[r ṙ s ṡ x ẋ y ẏ]T , dynamic equations can be written in the following form by linearizing around the
equilibrium point:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

r̈ = 3g

4L
r − 3

4
g tan θ

s̈ = 3g

4L
s + 3

4
g tan φ

ẍ = g tan θ

ÿ = −g tan φ

. (27)

Regarding [tan θ − tan φ] as control input, the LQR controller can be achieved by a proper selection
of matrix Q and R. After many trials, Q = diag([10; 0; 10; 0; 1; 0; 1; 0]) and R = diag([1; 1]) are
selected and feedback matrix K can be derived. It shows excellent performance on the linear model,
however the performance degrades significantly on the non-linear system and we have to tune the
feedback gains manually again.

The simulation outputs are shown from Figs. 4 to 7, the left-hand panels are from the proposed
controller and the right-hand panels from the LQR controller. On the other hand, LQR actually
consists of two parallel controllers and the gains of the vehicle loop are positive,i.e., [1 1.9588] in this
case. It means the vehicle position loop is a positive feedback control which is the same as when using
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Fig. 4. Pendulum relative position output. (a) Output of the proposed method. (b) Output of the LQR controller.
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Fig. 5. Quadrotor position output. (a) Output of the proposed method. (b) Output of the LQR controller.
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Fig. 6. Roll angle command and output. (a) Output of the proposed method. (b) Output of the LQR controller.

PID controller.3 The positive feedback will make parameters tuning more complicated and may lose
control of the vehicle when being used in experimental flights. LQR needs system state information
to build the feedback loop. However, neither the velocities of the vehicle nor the pendulum can be
measured directly. Therefore, extra sensors or observer design is needed. But in the proposed control
strategy, it is perfectly solved by the ESO design.

Another big difference is the control weight of the pendulum state has to be much greater than
that of the quadrotor position state in matrix Q. It is difficult to find a balance between all system
states and make the system a good performance on quadrotor position control especially in trajectory
tracking. From Figs. 4 and 5, we can see although the pendulum is moving in a smaller range under

https://doi.org/10.1017/S0263574716000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574716000035


Cascaded control for balancing an inverted pendulum 1273

Time(s)
0 5 10 15 20 25 30

P
itc

h
(r

a
d

)

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Command
Output

Time(s)
0 5 10 15 20 25 30

P
itc

h
(r

a
d

)

−0.8

−0.6

−0.4

−0.2

0

0.2

Command
Output

Fig. 7. Pitch angle command and output. (a) Output of the proposed method. (b) Output of the LQR controller.
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Fig. 8. Disturbance estimation results of system. (a) Estimation output of the middle loop. (b) Estimation output
of the outer loop.

the LQR controller, the quadrotor position tracking performance is much worse which takes nearly
10 s to arrive at the set point. This problem can also be solved in the proposed controller since the
real-time estimation of the disturbance can cover the functions of the Integral part in PID control and
ESO can balance the control input between two loops. Thus, both stable hovering and path tracking
can be realized.

On the other hand, the proposed cascade controller behaves more robustly than the LQR, which
has shorter reaction time to the disturbance and recovers faster, i.e., 10% versus 40% in displacement
and 5 s versus 10 s in recover time. From the angle commands in Figs. 6 and 7, we can also find the
system behavior is more aggressive under the proposed method.

The disturbance estimation outputs are shown in Fig. 8. We can see the observer responses rapidly
when an external force is exerted. Take the pendulum r position loop for example to show the
efficiency clearly, the unmodeled dynamics fr is calculated with the description in Eq. (4). The
comparison between it and the estimated disturbance is shown in Fig. 9. From the figure, we can find
the observer estimates the internal dynamic well. We can see the estimation curve does not always
coincide with the calculated dynamic curve. It is because that although we have tried our best to
build an accurate model for the system, some other factors may still affect the system. For example,
the yaw angle cannot always stay at 0 and the quadrotor is not a mass point actually. All the factors
will have an influence which can be described on the SimMechanics simulation platform. So it is
reasonable that the estimated output is always a little larger than we calculated especially during the
adjusting process.

Second, a circular trajectory tracking test of the quadrotor is conducted. The reference trajectory
is a circle with 1 m radius. The external disturbance is the same as that in the previous simulation
which is exerted at t = 20 s. From the results in Figs. 10 and 11, we can see the trajectory tracking of
the quadrotor while the pendulum is being balanced can be fulfilled by the proposed controller even
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Fig. 10. Reference trajectory tracking outputs of quadrotor. (a) Tracking output in X-axis. (b) Tracking output
in Y -axis.

when disturbances exist. The attitude angles are shown in Fig. 12. From the results, we can find it
is unnecessary to calculate the accurate pendulum trajectory which was calculated in ref. [10]. The
cascade controller can find it itself, i.e., a small circle (see Fig. 11).

4.2. Experimental results
4.2.1. Experiment setup. The proposed control method was implemented in Lab Arena at our
university. The vehicle is a Humming bird quadrotor with a spherical universal joint attached to
the top. A carbon fiber tube with only light weight is used as the inverted pendulum. The joint base is
approximately 7 cm above the quadrotor geometrical center and is 0.39 m away from the pendulum
mass center. Figure 3 shows the whole flying pendulum system architecture and the experimental
system’s specific parameters are shown in Table I. A pair of wireless Zigbee modules are used to
exchange data between the onboard attitude controller and the higher level control algorithms at a
frequency of 50 Hz. The Vicon system is running at 100 Hz and communicates with our conventional
desktop via a gigabit ethernet. Figure 13 shows the quadrotor is hovering while the inverted pendulum
is being balanced.

4.2.2. Experiments and analysis. Balancing and hovering is tested at first. The quadrotor is hovering
without balancing control in the beginning and will switch to the cascade controller when the
pendulum relative horizonal position (r, s) is smaller than 3 cm. The results are shown in Figs. 14 and
15. The cascade controller is switched on at approximately t = 5 s. The positions of the pendulum
and the quadrotor converge to zero at approximately t = 11.8 s. After the system becomes stable,
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Table I. Parameters of the experimental system.

Symbol Definition Value Unit

m Mass of quad 0.55 Kg
mp Mass of pendulum 13.5 g
L Half length of pendulum 0.39 m
l Arm Length of quad 0.17 m
Jxx Moment of inertia in x 0.0023 Kg m2

Jyy Moment of inertia in y 0.0028 Kg m2

Jzz Moment of inertia in z 0.0046 Kg m2

kf Thrust coefficient 5.9 × 10−8 N/rpm2

km Moment coefficient 1.3 × 10−9 Nm/rpm2
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Fig. 11. Pendulum relative position output when moving circles.
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Fig. 12. Quadrotor attitude angles output when moving circles.

external disturbances are given twice by knocking the pendulum with a stick. From the figures, the
two knocks can be found at t ≈ 60 s and t ≈ 75 s, respectively and the system recovered to the stable
state quickly. The average performance is shown in Table II.

Then, a reference trajectory is given to the vehicle. The system is switched to the cascade controller
at approximately t = 7.1 s, starts hovering at [0 0 800]T , then goes to the setpoint [1000 0 800]T at
t = 65.4 s, begins to move in a circle at t = 78.8 s and back to the origin in the end. The quadrotor
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Table II. Results of 10 trials for hovering flights.(MAE is short for maximal absolute error, S.D. is short for
standard deviation).

Settling time(s) X-MAE(mm) Y -MAE(mm) r-MAE(mm) s-MAE(mm)

Mean 7.53 41.31 47.64 27.9883 33.76
S.D. 0.9709 9.1414 10.4278 4.6202 4.3345

Fig. 13. An inverted pendulum on a hovering quadrotor.
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Fig. 14. Quadrotor positions in experimental hovering.

position output is shown in Fig. 16. Figure 17 depicts the pendulum dynamics in flight. Additionally,
an experimental flight by the same controller without latency compensation is done here. From
outputs comparison shown in Fig. 18, we can find the proposed method works effectively and the
output trajectory is more accurate.

From the output comparisons between experiments and simulations, it is clear that the actual
response chatters much more heavily and needs longer adjust time. It is because that although we
have tried our best to build an accurate mechanical model from a CAD file, it still cannot describe the
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Fig. 15. Pendulum relative position in experimental hovering.

Time(s)
0 50 100 150 200

Q
ua

dr
ot

or
 P

os
iti

on
-X

(m
m

)

−1500

−1000

−500

0

500

1000

1500
Reference
Output

Time(s)
0 50 100 150 200

Q
ua

dr
ot

or
 P

os
iti

on
-Y

(m
m

)

−1500

−1000

−500

0

500

1000

1500
Reference
Output

Fig. 16. Quadrotor position in experimental trajectory tracking. (a) Tracking output in X-axis. (b) Tracking
output in Y-axis.

real system dynamics 100% accurate and does not have an unknown transmission delay. Additionally,
the real experimental environment is much more complex than that on the Simmechanics platform.
We realized the balancing by the LQR control in the simulation but we have not succeeded in the
experimental system. A little change in the parameters adjustment could lead to a deadly crash
sometimes. So it is worth noting that the proposed approach has a better robustness in tuning the
control parameters.

5. Conclusion
In this paper, a cascade linear ADRC controller is proposed for controlling a flying inverted pendulum.
After an analysis of system dynamics, a cascade controller with three loops is designed: an inner
loop for onboard attitude control, a middle loop for pendulum position control and an outer loop for
quadrotor position control. Both the middle and the outer loops are running on an off-board computer.
Since the inverted pendulum is very sensitive to changes in quadrotor attitude, a time-scale control
scheme is deployed, which involves linear feedback for the fastest inner loop, the desired attitude
generation from the middle pendulum loop and the desired pendulum position generation from the
slowest trajectory tracking of the outer loop.

Since the control input gain b influences system performance obviously, a changing gain design
from the dynamic equations is adopted to make the observer work more efficiently instead of a
traditional constant gain. Based on the performance comparison between the proposed approach and
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Fig. 17. Pendulum relative position in experimental trajectory tracking.
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Fig. 18. Trajectory comparison between time-delay compensated and uncompensated.

an LQR controller, it is clear that the proposed method can effectively utilize the system dynamics
and make a better balance between two control objectives. Therefore, the trajectory tracking is easily
realized and works well under strong disturbances without further tuning.

Simulations were conducted by using the Matlab Simmechanics platform, which offers a 3D
animation interface for the visualization of the system dynamics. Then, the proposed control strategy
was successfully implemented on a Humming bird quadrotor in our robotics lab. To handle the time-
delay caused by communications, a compensation algorithm based on a TD is added between output
measurement and state observer to predict the real-time output. The experimental flight results show
that the controller has fast response and excellent robustness in the face of external disturbances.

It is also worth noting that this cascade controller can be easily expanded to other under-actuated
robotics systems such as aircraft and stand-up robots since it does not depend on an accurate system
model. Both the simulation results and the experimental flights can be clearly watched in the videos.
Our future research work includes smooth trajectory generation as well as some formation control
applications.
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