Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2008), 22, 129-145. Printed in the USA.

Copyright © 2008 Cambridge University Press 0890-0604/08 $25.00
DOI: 10.1017/S0890060408000097

A grammar-based multiagent system in dynamic design

GRAZYNA SLUSARCZYK

Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Krakow, Poland

(Recevep June 21, 2007; Acceptep November 30, 2007)

Abstract

This paper deals with the system of agents treated as a concurrent modular system, which is able to support the designer in
solving complex design tasks. The behavior of design agents is modeled by sets of grammar rules. Each agent manages a
graph grammar and a database of facts concerning the subtask for which it is responsible. The course of designing is de-
termined by the interaction between cooperating specialized agents. The design context is expressed by the environment in
which agents act and predicates describing design criteria. The organization, design methodology, and a semantic model of
a grammar-based multiagent design system are presented. The notions of a valid design solution and a design solution con-
sistent with the design criteria are also introduced. The proposed approach is illustrated by the example of designing a house

estate.

Keywords: Computer-Aided Design; Graph Grammar; Multiagent System

1. INTRODUCTION

As design takes place in an ever-changing environment,
recent frameworks for design focus on dynamic character of
its context (Campbell et al., 1999; Gero & Kannengiesser,
2003; Sosa & Gero, 2004). This paper proposes a novel com-
putational framework for computer-aided adaptive design. It
uses the concept of grammar-based intelligent agents, which
control the dynamic multifunctional design process and sup-
port the designer in a conceptual phase of this process. The
organization, design methodology, and a semantic model of
a grammar-based multiagent design system are presented.

Our system of agents is treated as a concurrent modular
self-controlling open system that is able to solve complex
design tasks. The architecture of the proposed design system
is based on a collection of intelligent grammar-based agents
that communicate with each other and autonomously control
the development of subtask solutions. The design context is
expressed by the environment in which agents act and predi-
cates describing design criteria.

The behavior of our design agent is modeled by a set of
grammar rules. Each agent has a hypergraph grammar and
a database of facts concerning the subtask for which it is
responsible. The novelty of our approach lies in the fact that
the agents create their own design representations in the

Reprint requests to: Grazyna élusarczyk, Jagiellonian University, Institute
of Physics, Reymonta 4, 30-059 Krakéw, Poland. E-mail: gslusarc @uj.edu.pl

https://doi.org/10.1017/50890060408000097 Published online by Cambridge University Press

129

form of hypergraphs using rules of hypergraph grammars.
Because of the representation that was used, the agents are
capable of adapting to changes in the design problem specifi-
cation and realizing adaptive search for solutions. The design
knowledge encoded in hypergraphs enables agents to behave
dynamically, as they are able to evaluate not only complete
solutions but also partial solutions representing current states
of objects being designed, and on this basis make subsequent
design decisions. Agents plan their future behavior by choos-
ing grammar productions that are to be applied.

This paper presents our attempt to develop a grammar-
based multiagent system that supports the designer in the
earliest stages of architectural design. Section 2 describes
related work. In Section 3 the architecture of a proposed
design system and the information flow in it are presented.
The way in which grammar-based agents work is also
explained. In the next section formal notions of an agent, a
multiagent system, and agent knowledge are invoked. Section 4
describes internal representations of designs in the form of
hierarchical hypergraphs and hypergraph grammars used by
design agents to derive these hypergraphs. Elements of the
language generated by cooperating agents are then interpreted
as design solutions. Section 5 presents a semantic model of a
grammar-based multiagent design system. The notions of
valid designs and consistent design solutions are also dis-
cussed. In Section 6, the proposed approach is illustrated by
the example of designing a house estate with the assistance
of several cooperating grammar-based agents. The manager

https://doi.org/10.1017/S0890060408000097

130

agent generates the arrangement of the whole estate compati-
ble with the given specification and invokes agents designing
the garden and the house interior. The agent that is responsi-
ble for designing furnished floor layouts has agent assistants
generating furniture arrangements for different types of
spaces in the house. The implementation section gives an
outline of our prototype design system. Finally, some conclu-
sions are drawn.

2. RELATED WORK

Recently, a great deal of design research has been focussed on
developing agent-based design systems (Myers & Pohl,
1994; Lander, 1997). The computational models and imple-
mentations of agents and collections of agents based on psy-
chological models of social cognitive abilities are described
(Velasquez & Maes, 1997; Kokoszka et al., 2001). Models
of motivated, emotional agents (Canamero, 1997) and cur-
ious agents (Saunders, 2001; Grabska et al., 2005) are also
presented. Sapient agents, which learn to refine the decision-
making capability and are able to make long-term strategic
decisions, are described in Dzeroski (2002). Adaptive, agent-
based methods of conceptual design are presented in Campbell
et al. (1998), whereas design systems with learning agents that
form some expectations are described in Grecu and Brown
(2000). Many of these approaches establish an efficient commu-
nication between agents to handle design subtask, but they are
not flexible enough to deal with the dynamic nature of design
that is particularly important in conceptual stages of design.

In contrast, shape, structural, and graph grammars are
widely used in architectural and engineering design (Stiny
& Mitchel, 1980; Longenecker & Fitzhorn, 1991; Carlson
et al.,, 1993; Borkowski & Grabska, 1995; Cagdas, 1996;
Cagan, 2001; Soman & Campbell, 2002). Most of these
approaches use other tools to deal with semantics of design.
For example, rules of a shape grammar generating coffeemak-
ers are linked with expressions determining the manufactur-
ing costs of designs in Agarwal et al. (1999).

Lately, different types of grammars are combined with
agent-based systems. Some grammatical models of multiagent
systems modeling eco systems can be found in Paun and
Salomaa (1999). In McCormack and Cagan (2002), each
shape grammar rule used in hood panel design is associated
with one instantiation agent that controls the application of
this rule. However, these approaches do not provide internal
representations of designs that would uniformly encode syn-
tactic and semantic design knowledge, and would be appropri-
ate for automatic processing. Therefore, we propose a compu-
tational framework, where grammar-based agents operate on
hierarchical design representations ground in the hypergraph
theory (Habel & Kreowski, 1987; Drewes et al., 2000).
The evaluation method based on hierarchical hypergraphs
corresponding to partial solutions is more meaningful than
the one presented in our previous work (Grabska et al.,
2006Db), where agents evaluate designs using a neural network.
Moreover, it allows agents to manipulate design representations

https://doi.org/10.1017/50890060408000097 Published online by Cambridge University Press

G.S lusarczyk

in a dynamical way and adapt to changes in design. This
approach is modeled in a similar way as a situated function—
behavior—structure design framework described in Gero and
Kannengiesser (2002).

3. A SYSTEM OF INTERFACE DESIGN AGENTS

The proposed multiagent design system consists of the context,
which contains the environment and the specified design cri-
teria, the message buffer, and a few kinds of agents acting
simultaneously and performing different tasks. In the presented
approach interface agents being designer’s assistants are used.

The application of intelligent agents in the process of design
is illustrated by the example of designing a house estate. The
main goal of this task is to provide a well-organized, furnished
living space inside a house and a suitably arranged garden.

The distinguished manager agent is responsible for design-
ing the arrangement of the whole estate. The manager agent
delegates tasks to the garden designing agent and the house
interior designing agent. The latter one is responsible for
designing the floor layout. It has agent assistants generating
furniture arrangements for different types of spaces in the
house. Eventually, the manager agent combines designs gen-
erated by itself, the “garden agent” and the “house interior”
agent, and sends them to the environment. The environment,
which is also treated as an agent, evaluates the obtained solu-
tions and stores them in the global database. It keeps the best
designs and a few poorer ones that can lead to long-term ben-
efits. The design solutions put into the database by the envi-
ronment can be visualized as the graphical models using a
given interpretation.

The information flow in the system is shown in Figure 1. A
dashed line, which crosses arrows linking agents, denotes the
fact that agents and the environment communicate with each
other through the message buffer.

The proposed system is suitable for such a design task, as
each agent can independently realize adaptive search for solu-
tions of a subtask for which it is responsible. The agents are
equipped with programmed hierarchical hypergraph grammars
generating attributed hypergraph representations of design
solutions and task-oriented databases that together represent
their local knowledge. Grammar rules encode the structural
aspects of possible solutions, whereas values of hypergraph
attributes correspond to design constraints. The flow of
information related to the internal processes of a single design
agent that communicates with other agents through the mes-
sage buffer is presented in Figure 2. The names in brackets
denote agent’s processes that are specified in Definition 4.1.

First, the agent senses the message buffer and reads the
obtained message. Then the type of the message, which is
in the form of an attributed hypergraph, where values of attri-
butes carry over the design requirements, is recognized in the
perception process. When a hypergraph corresponding to
a subtask solution generated by the other agent is received
in the message, the adequate modification of the generated
hypergraph is made.

https://doi.org/10.1017/S0890060408000097

A grammar-based multiagent system

131

Multi-agent design system

Design context

Design agents

Estate
%anager agent

arrangement
agents

Database

of solutions

/Databas
agents

Fig. 1. Information flow in the proposed system.

When the message requires solving a subtask, the attributes
of a hypergraph representing an internal state of the agent are
updated according to the ones included in the obtained mes-
sage. Then the derivation of a new hypergraph design repre-
sentation is started. It should be noted that the agent can be
invoked by other agents each time with different values of
attributes. In this way the design requirements encoded in
hypergraph attributes enable agents to adapt to changing
design problem specifications.

After each modification of the generated hypergraph the
evaluation of the current solution takes place and a decision
about the next action is made. Either a message (a generated
solution, a request of cooperation or notification of an error)
is sent to the buffer or an internal action is taken. As a result of
an internal action a successive rewriting step on the derived

hypergraph is performed using a selected grammar rule, or
a complete solution is stored and the generation of a new
one is started. Thus, because of the evaluation of partial
solutions representing current states of design, agents make
decisions concerning grammar productions that should be
applied, and in this way select the direction of search for valid
solutions.

4. KNOWLEDGE REPRESENTATION IN
A MULTIAGENT DESIGN SYSTEM

A design agent is a computational entity situated in some
environment and capable of acting autonomously in this envi-
ronment to satisfy requirements of the assigned design task.
Its behavior is determined by processes of sensing,

Design agent

message reading message recognition

Requirements
coded in
a message

Message
buffer
A

modification
by cooperation
(internal action)

beginning of derivation
c C (internal state
(sensing process) (perception process) changing process)

Local knowledge

Database of fact: pergraph gramma

Z

new solution generation
(internal action)

uation |
evaluation
(decision process)

solution adding
(internal action)

l

Database
of solution

Initial representatio
of a design

production
application
(internal action)
Generated representations
of a design
(internal states)

message sending - chosen solution, request of cooperation, unsolvable task
(external action)

Fig. 2. The way in which a grammar-based design agent works.

https://doi.org/10.1017/50890060408000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000097

132

perception, evaluation of solutions, decision making, per-
forming internal actions, and affecting the environment by
external actions. The effectoric capability of an agent is as-
sumed to be represented by the set of its actions (Wooldridge,
1999). Each intelligent agent should possess two types of
memory: a short-term memory and a long-term one. The
short-term memory allows the agent to remember a few recent
perceptual and conceptual states. The long-term memory
stores agent’s generalized experiences from the past.

Let us define an intelligent agent in a formal way. Let
W denote a set of possible states of the world. Let S = {so,
st L P={p%p', .. Y and C={c° c'...} denote sets
of sensor, perceptual, and conceptual states, respectively.

DEerINITION 4.1. An intelligent agent with a short-term
(Ms) and long-term memory (Mp) is defined as a tuple
Ag=(nt, A, o, p, W, X, @), where Int= {int’, int!, . . .} is
a set of agent’s internal states, A ={a’, a', . ..} is a set of
its actions, o: W — S is the world sensing process, p: S — P
is the perception process being the interpretation of data
obtained from sensors, 1: Int X P — Int is the internal state
changing process, x: Int— C is the evaluation and deci-
sion-making process during which an internal state is evalu-
ated and new goals are specified, and a: C — A is the action
process that translates goals specified by a conceptual state to
an action that should be taken. |

In our approach, the world W= {wy, wy, . . .} of design
agents is a set of hypergraphs representing solutions and gen-
erated by all agents in a parallel way. A set of agent’s internal
states Int includes hypergraphs being derived using produc-
tions of its grammar. Perceptual states correspond to require-
ments obtained in messages, whereas conceptual states repre-
sent hypergraph evaluation results, which are then stored in
variables of the short-term memory. The long-term memory
is in the form of a database of the created admissible solu-
tions. The agents’ actions are depicted in Figure 2.

A multiagent design system is composed of a collection of
agents Agy, . .., Ag, and the environment that they occupy.
The definition of a multiagent system is preceded by the
one of an environment that follows (Fagin et al., 1995; Wool-
dridge & Lomuscio, 2000).

DEeFINITION 4.2. An environment is a tuple: Env = (W, Ag,
Ky, ...,K,, 7, where W= {wp, wy, ...} is a set of possible
states of the world; Ag = {al, af, . . .} is a set of environment
actions; K;: W — Wy, € 2% is a partition of W for every agent
Ag;, which characterizes information available to an agent in
every environment state; and 7: Ag X A; X --- X A, — 2w
is a state transformer function, which maps an action of the
environment being in a given state and one action of each
agent to the set of environment states that can result from
the performance of these actions in this state. |

DEerINITION 4.3. A multiagent system (Wooldridge &
Lomuscio, 2000) is a structure AS = (Env, Agy,. . ., Ag),
where Env is an environment specified as in Definition 4.2

https://doi.org/10.1017/50890060408000097 Published online by Cambridge University Press

G.S lusarczyk

and Agy, . . .,Ag, are intelligent agents determined as in
Definition 4.1. u

At any moment of time the system is in a global state.
The set of global states GS of the system AS contains subsets
of W x Int; x --- x Int,. The functioning of the system is
realized by changes of the global states described by the
environment state transformer function 7 and the agents’ in-
ternal state changing functions 7.

The initial global state is of the form go = (wy, int!, . . .,
intg). At this point every agent Ag; senses the environment
computing s? = 0;(K;(wy)), on the basis of s? establishes its
initial perception state p?, updates its internal state, which be-
comes int! = n;(int?, p?) and selects the first action, which
should be performed as a? = ai()(i(int})). The state of the
environment is updated as wy = 7(al, a’, ..., a°), and the sys-
tem reaches the next global state g; = (wy, int}, . . ., int}).

In our system the initial state wy has a form of one hyper-
edge from which the derivation starts. Its attributes specify
the design requirements like the number of rooms in a house.
Initial internal states of the agents int?, . . . , int’ are empty
hypergraphs. When an agent Ag; senses that it is invoked
by the environment or the other agent, it identifies the
obtained message with the initial hyperedge of its grammar,
which becomes its next internal state int; .

A prepositional multimodal logic is often used to represent
and reason about various aspects of multiagent systems (Gaborit
et al., 1990; Traverso & Spalazzi, 1995; Wooldridge, 1995). To
represent knowledge possessed by design agents we define an
interpreted system /5 and then associate with it a Kripke struc-
ture (Fagin et al., 1995).

We assume that we have a set @ of primitive propositions that
describe basic facts about the system. A run of AS over GS is a
function r: N — GS so it can be identified with any sequence
of global states over GS. Let R denote a set of runs over GS.

DEerINITION 4.4. An interpreted multiagent system /Iag
generated by the structure AS is a pair (GSas,), where
GSas = U,egr(N) is a set of all global states reachable by
AS and 7 is an interpretation for the propositions in @ over
GS, which assigns truth values to the primitive propositions
at the global states. |

There is a one-to-one correspondence between each parti-
tion on W, which defines the possible worlds indistinguish-
able to the agent Ag; in the given state of W (see Definition
4.2), and an equivalence relation on W. Given a partition K;
on W the corresponding equivalence relation [; is defined
by (W', w") € K iff K;(w') = K;(w").

A system Ixg corresponds to the Kripke structure M, =
(GSps, m Ky, . . ., Ky), where [K; C GSpAgxXGSyas is the
equivalence relation corresponding to the partition K; on W
and extended on GS s in such a way that for each two global
states g¢' = (W', int}, ..., int;) and g" = (", int{, . . . , inty), (g,
g el if W, w") €K and intj = int].

The knowledge of a design agent is determined by its
database, grammar rules, and generated hypergraphs. Having

https://doi.org/10.1017/S0890060408000097

A grammar-based multiagent system

a set ®@ of propositions describing design criteria the agent
can test the validity of a generated solution by comparing val-
ues of hypergraph attributes with a given requirement.

Let K, . . ., K, denote modal operators and let L denote a
language obtained by closing off ® under negation, conjunc-
tion, and the modal operators <, . . ., [<,.

DEFINITION 4.5. Agent Ag; knows the formula ¢ € Lin a
global state g = (w, inty, . . ., int,) of AS exactly if (M;,q, g)|
= ¢ (i.e., @is satisfied in state g of a structure M;,). In other
words, (Ias, g)|= K¢ < m(h)(¢) = true for all h such that
(g, h) e K,’. |

5. HYPERGRAPHS AND HYPERGRAPH
GRAMMARS USED BY DESIGN AGENTS

As many designed objects have hierarchical structures there is
a preference for a hierarchical approach to modeling design
(Suh, 1990; Rosenman & Gero, 1999). Therefore, in this
paper the representation of design object structures used by
design agents is in the form of hierarchical hypergraphs
(Slusarczyk, 2003; Grabska et al., 2006a), which allows repre-
senting objects on different levels of detail. Hyperedges of these
hypergraphs enable us to express multiargument relations
between different parts and subparts of objects.

Hypergraphs used in a multiagent design system contain
two types of labeled hyperedges. Hyperedges of the first
type are nondirected and represent parts of objects, whereas hy-
peredges of the second type represent relations among them.
They are directed unless they represent symmetrical relations.
Hyperedges of the hypergraph are labeled by names of the
corresponding components or relations.

To represent features of objects and relations between them,
attributing of hyperedges is used. Attributes represent proper-
ties (like shape, size, position, color, material) of elements cor-
responding to hyperedges. Values of attributes obtained by the
agent when it is invoked specify the design requirements that
should be met by the solutions.

Hyperedges representing object components can contain
nested hypergraphs. Hierarchical hyperedges (with nonempty
contents) represent object components with different func-
tions or some groups of components. Hierarchical hyper-
graphs can be then mapped into various graphical models
of the objects according to attributes assigned to these hyper-
graphs.

Let [i] denote the interval {1, .. ., i} fori > 0 (with [0] = @).
Let X =3¢ U 3R, where 3¢ N 3g = @, be a fixed alphabet of
hyperedge labels. Let Az be a set of hyperedge attributes.

DEFINITION 5.1. An attributed hierarchical hypergraph
over X, is a system H = (Ey, Vy, Sy, ty, by, atty, exty, chy),
where

1. Ey =Ec U ER, where Ec N Eg =@, is a finite set of
hyperedges, where elements of Ec represent object
components and elements of ER represent relations,

https://doi.org/10.1017/50890060408000097 Published online by Cambridge University Press

133

2. Vy is a finite set of nodes,

3. sy: Ey — Vy*and ty: Ey — Vg™ are two mappings as-
signing to hyperedges sequences of source and target
nodes, respectively, in such a way that Ve € Ecsy(e) =
ty(e),

4. lby: Ey — 3 is a hyperedge labeling function, such that
Ve € EC lby(e‘) S Ec and Ve € ER lby(e‘) S ER,

5. atty: Ey — P(A?) is a function assigning sets of attri-
butes to hyperedges,

6. exty: [n] — Vg is a mapping specifying a sequence of
hypergraph external nodes,

7. chy: Ec — P(A) is a child nesting function, where A =
Vi U Ey is called a set of hypergraph atoms, and the
following conditions are satisfied:

e one atom cannot be nested in two different hyperedges,

e a hyperedge cannot be its own child,

e source and target nodes of a nested hyperedge e are
nested in the same hyperedge as e. |

Hypergraph nodes express potential connections between
hyperedges. To each hyperedge a sequence of source and tar-
get nodes is assigned. A hyperedge is called nondirected if
sequences of its source and target nodes are equal. Moreover,
for each hypergraph a sequence of its external nodes is deter-
mined. The length of this sequence specifies the type of a
hypergraph.

ExamPpLE 5.1. A hierarchical hypergraph representing an
arrangement of kitchen equipment and furniture shown in
Figure 3b is presented in Figure 3a. It contains three hierarch-
ical component hyperedges. The hierarchical hyperedge la-
beled Kitchen represents a given space where the pieces are
to be located. The four external nodes of this hyperedge repre-
sent four walls of the kitchen. The hyperedge labeled Eating
place contains a hierarchical hypergraph composed of a hy-
peredge representing a table that is connected by a relational
hyperedge with a hierarchical hyperedge labeled Chairs
representing a group of four chairs. All other component
hyperedges represent single pieces of furniture or kitchen
equipment. A hyperedge labeling function assigns one
name of the set 3¢ = {Chairs, Eating place, Kitchen, chair,
cooker, counter, fridge, sideboard, sink, stool, dishwasher}
to each component hyperedge.

There are five hyperedges representing distance relations
between pieces. These hyperedges are labeled near or far,
which means that some pieces should be located close to
each other or possibly far away from each other, respectively.
For example, sideboards should be placed close together,
whereas a fridge and a cooker should be far away from each
other. It should be noted that if a relational hyperedge is inci-
dent to a node connected with a component hyperedge with
no empty contents, then the relation represented by this
hyperedge is inherited by all hyperedges nested in the hier-
archical one (e.g., all furniture located in the eating place
should be placed far away from the cooker).

https://doi.org/10.1017/S0890060408000097

134

Kitchen

G. S‘lusarczyk

Fig. 3. (a) A hierarchical hypergraph representing a kitchen layout and (b) its visualization. [A color version of this figure can be viewed

online at www.journals.cambridge.org]

Shapes, colors, and location of the furniture or equipment
are specified by values of three attributes, shape, color, and
location, assigned to all nonhierarchical component hyper-
edges. The location can take value 0, which denotes that there
are no constrains as to the location of the piece (e.g., stools,
chairs), 1—the element should be placed by a wall (e.g.,
cooker, fridge, sink), 2—it can be located by the window
(e.g., counter, table), or 3—it has to be placed by a wall or
by the window (e.g., sideboard). The attribute area is as-
signed to hierarchical hyperedges. |

When structures of designs are described in terms of hier-
archical hypergraphs, hierarchical hypergraph grammars can
serve as efficient tools for generating these structures. Appli-
cation of grammar rules chosen by design agents corresponds
to successive design actions. In this way design agents dy-
namically control the design process driving it toward solu-
tions compatible with the design criteria.

A hierarchical hypergraph grammar is composed of a set
of hypergraph edges with terminal and nonterminal labels,
a set of hypergraph nodes, a set of productions, and an
axiom being an initial hypergraph. Each grammar produc-
tion is of the form p = (I, r, &, sr), where [and r are attrib-
uted hierarchical hypergraphs with the same number of
external nodes equipped with ordering relations, £ is a pre-
dicate of applicability, and sr is a set of semantic rules that
specify the way in which values of attributes assigned to
hyperedges of [are transferred to the attributes assigned
to hyperedges of r.

Let N and T denote sets of nonterminal and terminal labels,
respectively. Let A=V U E be a set of atoms of H, where
H denotes a family of attributed hierarchical hypergraphs
over N U T. Let Iby be a hyperedge labeling function.

https://doi.org/10.1017/50890060408000097 Published online by Cambridge University Press

DEFINITION 5.2. A hierarchical hypergraph grammar over
N and T is a system G = (V, E, P, X), where

1. Vs a finite set of nodes,

2. E=Ey U Er is afinite set of hyperedges, with a child
nesting partial function ch: E — P(A), where lby: Ex
— N assigns nonterminal labels to hyperedges of Ex,
whereas lby: Er — T assigns terminal labels to hyper-
edges of Er,

3. Pis afinite set of productions of the form p = (I, r, &, sr)
satisfying the following conditions:

e /and r are attributed hierarchical hypergraphs of the
same type composed of nodes of V and hyperedges
of EN U ET,

e /[contains at least one hyperedge of Ex,

e & H — {TRUE, FALSE} is a predicate of applic-
ability,

e sris a set of semantic rules defining values of attri-
butes assigned to hyperedges of r.

4. X is a hyperedge of Ex with its source and target nodes
and such that ch(X) = @ and called an axiom of G. W

Our design agents use context-free hierarchical hypergraph
grammars.

DEerINITION 5.3. A context-free hierarchical hypergraph
grammar is a system G = (V, E, P, X), where P is a finite
set of productions of the form p = (I, r, &, sr) and such that
[contains only one hyperedge of Ey.]

ExaMPLE 5.2. Some productions of a context-free hierarch-
ical hypergraph grammar generating structures describing

https://doi.org/10.1017/S0890060408000097

A grammar-based multiagent system

Kitchen

0

Kitchen
-
P8 Kitchen
> —

135

P9

o m
g
® 3

P10

0

Fig. 4. A context-free hierarchical hypergraph grammar generating structures of kitchen layouts.

kitchen layouts are presented in Figure 4 (the predicates of ap-
plicability and semantic rules are omitted for the sake of sim-
plicity; they can be found in grammar rules shown later). The
first two productions enable the agent to create a kitchen layout
with or without the eating place. The third and fourth produc-
tions enable the agent to locate a sink and a dishwasher near it
or only a sink, respectively. The next two productions allow to
fix a required number of sideboards, which should be placed
close to each other. The productions p7 and p8 allow to add a
counter and a stool, respectively. The last two productions enable
the agent to locate a table and some chairs in the eating place.ll

The production p can be applied to a hierarchical hyper-
graph H if its predicate of applicability is satisfied. The appli-
cation of p consists in substituting r for a hypergraph iso-
morphic with [, replacing external nodes of the hypergraph
being removed isomorphic with nodes of ext; by the corre-
sponding external nodes of ext, and determining values of at-
tributes of r according to semantic rules of sr.

DeriniTION 5.4. Let G = (V, E, P, X) be a context-free hier-
archical hypergraph grammar and /', 1" be two attributed hyper-
graphs, where /" is said to be directly derivable from /' (' =
K" if there exists a production p = (I, r, &, sr) of G such that &
is satisfied for /', h is a subgraph of &' isomorphic with /, and
h" is isomorphic with the result of replacing 4 in /' by r, substi-
tuting external nodes of / by the corresponding external nodes
of r and assigning values to attributes of r according to sr. W

https://doi.org/10.1017/50890060408000097 Published online by Cambridge University Press

The language generated by a given context-free hierarchi-
cal hypergraph grammar is a set of hypergraphs generated
starting from the grammar axiom and such that all their hyper-
edges have terminal labels.

DeriNiTION 5.5. Let G = (V, E, P, X) be a context-free hier-
archical hypergraph grammar. The language generated by G is
aset L(G)={h € H|X =* h and Ve € E}lb,(e) € T}. |

A hierarchical hypergraph grammar of each agent is
equipped with a control diagram. A control diagram, which
determines the order in which grammar productions can be
applied, is a directed graph whose nodes are labeled by names
of productions. Moreover, there are two distinguished nodes,
the initial one with no edges coming into it and the final one
with no edges coming out of it, labeled by 7 and F, respec-
tively. If a subgraph isomorphic with the left-hand side of a
production that should be used is not found in a generated hy-
pergraph, the production will not be applied.

DEerFINITION 5.6. A programmed hierarchical hypergraph
grammar is a pair Gp = (G, CD), where G is a hierarchical
hypergraph grammar and CD is a control diagram for G. W

ExaMPLE 5.3. A control diagram for a hierarchical hyper-
graph grammar generating structures of kitchen layouts is pre-
sented in Figure 5. Each path from the node labeled 7 to the
node labeled F represents one possible way of obtaining a
hypergraph representing a potential arrangement. Application

https://doi.org/10.1017/S0890060408000097

136

G.S lusarczyk

Fig. 5. A control diagram for a hypergraph grammar generating structures of kitchen layouts.

of a production sequence p2, p3, p6, p7, p8, p9, 4 x p10
results in the hypergraph shown in Figure 3a. |

It should be noted that although a control diagram for a
hypergraph grammar determines the order in which the pro-
ductions should be applied, it still leaves the possibility of
producing a variety of design alternatives as a great or even
infinite number of paths leading to different solutions can
be specified.

We are interested in a language that is generated by the
cooperating agents that not only simultaneously develop differ-
ent parts of a derived hypergraph but also delegate the deriva-
tion of some parts to other agents. Let Gpy, . . ., Gp, denote
context-free programmed hierarchical hypergraph grammars
of design agents. The generation of a hypergraph representing
a solution starts from the axiom X; of the manager agent’s
grammar Gp; and in the first step one of its productions is
used. Then it can invoke other agents and the derivation pro-
cess can take place in parallel. When an agent Ag; obtains a
message in the form of a hyperedge 4 it identifies 4 with the
axiom X; of its grammar and starts the local derivation process.
In each step an agent Ag; either performs a rewriting step on a
locally derived hypergraph using one of the productions of a
grammar Gp; or replace a hyperedge in this hypergraph by a
hierarchical hypergraph generated by the earlier invoked agent.

Let H denote a family of attributed hierarchical hyper-
graphs over NU T.

DEFINITION 5.7. Leth, i, h", g € H. A derivation process
in a multiagent design system with agents equipped with pro-
grammed context-free hierarchical hypergraph grammars
Gpi, . . ., Gp, is composed of direct derivations of the two
following forms:

1. A" is directly derivable from 4’ (W' = |h") using one of
the productions of Gp;, | <i < n, as specified in Defini-
tion 5.4.

2. K" is directly derivable from /' (h' =, h") if there exists
a hyperedge / in A'(isomorphic with axiom X; of Gp;,
1<I<n, g is an attributed hierarchical hypergraph
generated starting from X;, and 4" is isomorphic with
the result of replacing & in &' by g and substituting
external nodes of i by the corresponding external
nodes of g. |

The language generated by a multiagent design system is
a set of hypergraphs, where all hyperedges have terminal

https://doi.org/10.1017/50890060408000097 Published online by Cambridge University Press

labels, and generated by different agents starting from the
axiom X, of the grammar Gp; of the manager design agent.

DEerFINITION 5.8. Let DAS be a multiagent design system
with context-free programmed hierarchical hypergraph gram-
mars Gpy, . .., Gp,.

The language generated by DAS is a set L(DAS) = {h €
H|X1:>1 hl{:>1, :>2}* h and Ve € E), lbh(e) S T} |

6. A SEMANTIC MODEL OF A GRAMMAR-
BASED MULTIAGENT DESIGN SYSTEM

Each agent Ag of the design system has a context-free pro-
grammed hierarchical hypergraph grammar Gp generating
hypergraph representations of design solutions and a database
B of facts concerning the subtask for which it is responsible.
For example, an agent that designs a house interior has a set of
architectural norms, like the minimal surface of rooms and
their best geographical location, in its database.

Let a pair LK = (Gp, B) represent a local knowledge of an
agent.

DEerINITION 6.1. A grammar-based design agent DA =
(Ag, LK) is defined as an intelligent agent Ag = (Int, A, o,
ps M, X, @) equipped with a domain-dependent local knowl-
edge LK = (Gp, B). [|

A design process takes place in a specified context that
changes with time. This context is expressed by the environ-
ment in which agents act and predicates describing design
criteria. In addition, agents inform and provide a context for
one another. When the agent requires a cooperation it invokes
other agents with the design requirements encoded in mes-
sage attributes. Their values each time can be different
according to new predicates.

Let GS denote a set of multiagent design system global states.

DEFINITION 6.2. A context of a multiagent design system
is defined as a tuple y = (Env, g, ¢), where Env is the system
environment, gy € GS is the initial global state, and i is a set
of predicates describing design criteria (functional require-
ments and constraints). [|

A collection of grammar-based design agents, a specified
context and a communication buffer together constitute a
grammar-based multiagent design system.

DEerINITION 6.3. A grammar-based multiagent design
system is a tuple DAS = (y, Mg, DA, . . . ,DA,), where

https://doi.org/10.1017/S0890060408000097

A grammar-based multiagent system

v is a context of a multiagent design system, Mp is a message
buffer used by agents and the environment, and DA, . . .,
DA, are grammar-based design agents. |

As mentioned, the world W of design agents is as a set of
hypergraphs that are generated by all agents in a parallel
way. The multiagent design system works in the following
way. Being in the initial global state the environment sends
the message send(hy, 1, 0), where 0 and 1 denote the envi-
ronment and the manager agent, respectively, and 4 is the hy-
peredge with well-specified values of all its attributes. At the
next step the manager agent starts the hypergraph derivation
process by identifying hy with the axiom of its grammar. In
the successive steps it applies appropriate grammar rules or
delegates further derivation to other agents by sending messages.

A set of each design agent’s internal states Int is a set of hy-
pergraphs derived using productions of its hierarchical hyper-
graph grammar. Each internal state int* corresponds to a hy-
pergraph generated after k steps of derivation. The set of an
agent actions A = A; U Ag contains internal actions Ay and ac-
tions in the form o' = send(p, j, n) € Ag, where u denotes a
message of a set M of messages, j is the identifier of the agent
to which the message is sent, and n is the identifier of an agent
that sends the message. The set M contains three types of mes-
sages: an error message, a generated hypergraph, which is re-
turned to the agent that earlier requested cooperation, and a
hyperedge with specified values of all attributes, which corre-
sponds to delegating a design subtask to the other agent. Each
internal action a’ € Ay changes the current internal state of an
agent by applying a hypergraph grammar rule to the hyper-
graph being derived, by replacing a hyperedge of the hyper-
graph with an obtained hypergraph, or by storing a complete
solution and starting generation of a new one. In addition, A
contains a special null action that corresponds to the agent
performing no action.

In the sensing process a design agent searches the buf-
fer for messages addressed to it. Thus, if the agent DA,
performed an action send(w, i, j), then the agent DA; in
the k step of its run obtains the message as the result of
sensing process o. Then the kind of the obtained message
o is determined in the perception process p. In the next
step, in the internal state changing process the values of
design variables are updated according to the kind of
the obtained message. u is always in the form of an
attributed hypergraph. If this hypergraph is empty, the
message means that the agent DA; was unable to perform
a delegated subtask. Therefore, the hyperedge in the hy-
pergraph generated by the agent DA; that was to be fur-
ther developed by the agent DA; remains unchanged. If
1 has the form of a hypergraph containing more elements
than one nonhierarchical hyperedge, it means that the
agent DA; has returned a hypergraph corresponding to a
subtask solution. In this case the appropriate hyperedge
in the hypergraph generated by the agent DA, is replaced
by w. If w in the form of such a hypergraph is obtained
by the environment, then it represents a complete solution

https://doi.org/10.1017/50890060408000097 Published online by Cambridge University Press

137

of a given design task, and is added to the global database
of solutions. If w has the form of one hyperedge, it means
that the agent DA; delegated a subtask to the agent DA;.
Then the values of design variables in the short-term mem-
ory are updated according to the values of attributes of u, u
is identified with the axiom of the agent’s grammar Gp; and
the generation of a new hypergraph is started.

Before each step of a hypergraph derivation an agent eval-
uates its current internal state representing a partial solution
and selects an action in a decision making process y. As a re-
sult of the next grammar rule application, the internal state of
the agent is changed. When no further rule can be applied and
the derived hypergraph 4 does not belong to the language
generated by the agent (h & L(Gp;)), a message in the form
of an empty hypergraph is sent to the agent DA; by which
the considered one was invoked. If & € L(Gp;), the message
= his sent to the agent DA;. If the cooperation of the other
agent is needed, a message in the form a hyperedge, which
should be further developed by the agent DA, is sent to the
message buffer.

The agent’s evaluation capability depends on the pos-
sessed knowledge. This evaluation is based on the design
knowledge included in the database of facts concerning the
subtask it is responsible for and values of hypergraph attri-
butes describing requirements and constraints specified in
the design context. The agent evaluates both partial and com-
plete solutions. The results of partial solutions evaluation in-
fluence the agent decisions about required modifications and
the direction of further search for solutions.

Each design agent DA, has in its database B; an interpreta-
tion /; for hierarchical hypergraphs of L(Gp;). The interpreta-
tion determines the possible ways of mapping an attributed
hierarchical hypergraph into graphical models by specifying
a semantic meaning of hypergraph elements. It assigns geo-
metrical objects to hyperedges representing artifact compo-
nents, and establishes a correspondence between relational
hyperedges and relations between these objects. The interpre-
tation enables the agents to appropriately arrange object
components and create a visualization of the whole designed
object.

DeriNiTION 6.4. Let H = (Ey, Vy, sy, ty, lby, atty,
exty, chy) be an attributed hierarchical hypergraph over
2 = EC U ER.

An interpretation for H is a function /= (Ic, Ir), where

1. Ic: Ec x 3¢ — O, where O is a finite set of geometric
objects, assigns objects to labeled component hyper-
edges,

2. Ix: Er x 2r — R, where R is a finite set of relations
between geometric objects, assigns relations to labeled
relational hyperedges. This function enables to cor-
rectly assign transformations that should be applied to
geometric objects represented by component hyper-
edges when a hierarchical hypergraph visualization is
created. |

https://doi.org/10.1017/S0890060408000097

138

ExampLE 6.1. The interpretation for the hierarchical
hypergraph shown in Figure 3a assigns icons representing
appropriate pieces to all component hyperedges according to
their labels. A set of icons representing a fridge, cooker,
sink, stool, table, counter, sideboard, and a dishwasher (from
left to right) is shown in Figure 6. Then the transformations
being compositions of translations and rotations are assigned
to component hyperedges in a way that enable location of
the icons according to the relations specified by relational
hyperedges and values of the component hyperedge attribute
location described in Example 5.1. They ensure that the
cooker, fridge, and sink are located by the wall, the cooker is
placed far from the fridge, table, chairs, and so forth. Three
graphical models corresponding to the considered hypergraph

are shown later. |

Let Gpy, . . ., Gp, denote hierarchical hypergraph gram-
mars of design agents DA, ...,DA, and I, . . ., I, denote
agents’ interpretations for elements of L(Gp)), . . ., L(Gp,),
respectively. For each hypergraph /i of L(Gp;), I;(h) is called
a graphical model of 4.

The interpretation / for the DAS is definedas /=1, U - - - U
I,. The global database DB of the system contains hypergraphs
belonging to the language L(DAS) generated by a DAS with
grammars Gpy,. . ., Gp,. Thus, I(L(DAS)) denotes a set of
all graphical models reachable by the grammar-based multi-
agent design system.

DErFINITION 6.5. Let 7 be an interpretation for the
predicates of ¢ over I(L(DAS)). An interpreted design
system Ipas generated by the structure DAS is a triple
(DB, I, m). |

STATEMENT 6.1. Given an interpreted design system
IDAS = (DB, I, 7T).

A hypergraph i € DB is a valid design solution in respect
to ¢ € i if the manager design agent DAy, which starts the
generation of solutions and sends the generated ones to the
environment, knows that the formula ¢ is satisfied for 4. In
other words, (Ipas, h)|= Ky ¢ < m(e(I(g))) = true for all g
isomorphic with 4. |

STATEMENT 6.2. An interpreted design system Ipps gener-
ates design solutions consistent with the design criteria if Vh
S DBVQD S l,lf(IDAS,]’l)|= KMQD. |

The agents of a grammar-based multiagent design system
jointly solve a problem by modifying the contents of a global
database. Thus, computations are situated and connected to
the context through interaction.

e oL
I P .

Fig. 6. Icons representing kitchen pieces. [A color version of this figure can
be viewed online at www.journals.cambridge.org]

https://doi.org/10.1017/50890060408000097 Published online by Cambridge University Press

G.S lusarczyk

7. CREATIVE DESIGN WITH INTELLIGENT
GRAMMAR-BASED AGENTS

At the beginning of the design process all the information
needed to perform a design task is supplied by the designer
who has to take into account all needs of the client. Input in-
formation includes a description of the estate, garden, garage,
and rooms required in the house, as well as the style and types
of furniture. The global database of generated solutions can
be empty or include some prototypical solutions of similar
tasks, whereas the communication buffer where messages
from agents are stored is empty.

7.1. The estate manager design agent

The requirements and constraints of the design project are
specified in the initial state of the environment as values of
attributes of the initial hyperedge. The manager agent, which
is responsible for the whole design task, is expected to gener-
ate the arrangements of the whole estate using rules of the
given hypergraph grammar, combine it with furnished floor
layouts and garden arrangements generated by other agents,
and return task solutions to the environment.

At the outset of the design the environment sends a mes-
sage to the manager agent in the form of an attributed hyper-
edge. The perception process of the manager agent consist of
reading and storing attributes of this hyperedge describing the
design requirements, like the number of rooms in the layout,
their area and shape, the area and the features of the garden,
the necessity of creating a garage. The internal state of the
agent is changed by updating the values of design variables
(stored in the initial state of agent’s short-term memory)
and identifying the obtained hyperedge with the axiom of
the agent’s grammar. Thus, the new internal state is obtained
and the agent starts the hypergraph derivation process using
grammar rules.

ExampLE 7.1. Two selected productions of a hierarchical
hypergraph grammar of the estate manager agent with predi-
cates ¢ determining the conditions of their applicability are
presented in Figure 7b. Some semantic rules defining the
way in which values of attributes of the right-hand sides are
inherited from the ones of the left-hand sides are shown.
The first production is applied if a garage should be present
and the garden should be accessible from the north side of
the house. The second production allows the agent to generate
an estate without a garage and with the garden accessible from
the east side of the house. The hyperedge labels House Inte-
rior and Garden indicate that the design of these parts will be
delegated to other agents. |

On the basis of the current internal state the agent either
chooses a local action or sends a message. A local action con-
sists in applying a grammar rule that corresponds to the spe-
cified values of design variables.

ExampLE 7.2. Let us assume that the manager agent ob-
tains an initial hyperedge shown in Figure 7a with fixed

https://doi.org/10.1017/S0890060408000097

A grammar-based multiagent system

e
House
Estate

(a)

House Estate
p1
el

House
Estate >

house_area(e1)
room_number(e1)
garage_area(e1)
garden_area(e1)
garden_location(e1)

area(e2)=house_area(e1)
room_number(e2)=
room_number({e1)
area(e3)=garden_area(e1)
area(ed4)=garage_area(e1)

&: garage_area(e1) >0
garden_location(e1)=N

house_area(e)=150m’
room_number(e)= 3
garage_area(e)=0m’
garden_area(e)=60m’
garden_location(e)=E

139

house_area(e1)
room_number(e1)
garage_area(e1)
garden_area(e1)
garden_location(e1)

House Estate

p2
el

House
Estate ’

area(e2)=house_area(e1)
room_number(e2)=
room_number(e1)

&: garage_area(e1) = 0 area(e3)=garage_area(e1)

garden_location(e1)=E

(b)

Fig. 7. (a) A hyperedge with design requirements and (b) two rules of a hierarchical hypergraph grammar of the manager design agent.

values of hyperedge attributes, which reflect the require-
ments concerning the area of a house, garden, and garage,
the number of bedrooms, and the garden location. Given
this set of example constrains the agent searches for a feasi-
ble layout of the estate. The values of the attributes obtained
from the environment make the agent apply the second
production. |

When the solution being generated does not satisfy the
required conditions the agent sends an “error” message in
the form of an empty hypergraph to the environment. If
the agent finds in the generated hypergraph a hyperedge
with a label House Interior or Garden, which indicates
that the cooperation of another agent is needed, it sends a
message in the form of this hyperedge with the current val-
ues of its attributes to the agent, which should generate an
arrangement for the space corresponding to the found label.
As the agent sensors scan the message buffer it can easily spot
the solution returned by the earlier invoked agent. Then it takes
the other local action and combines the returned arrangement
with the solution generated by itself by replacing the earlier
sent hyperedge with the obtained hypergraph.

7.2. The house interior design agent

The house interior design agent generates structures of
floor layouts. It starts the generation of a hypergraph after
obtaining a message in the form of a hyperedge labeled
House Interior.

ExampLE 7.3. Some rules of a hierarchical hypergraph
grammar of an agent generating house interiors are shown
in Figure 8. The attributes of component hyperedges of
both sides of productions, some semantic rules, and predi-
cates of applicability are depicted for the first three produc-
tions. All relational hyperedges represent accessibility
between the rooms. The first production divides the floor

https://doi.org/10.1017/50890060408000097 Published online by Cambridge University Press

area into three functional units, a hall, a kitchen, and an
antechamber under the condition that there is more than
60 m? to be used. The second and third production allow us
to choose a layout with one or two bedrooms in the first sleep-
ing area. The fourth production adds a living room connected
with a terrace. The productions p5 and p6 enable the agent to
obtain different layouts composed of two rooms, a shower,
and a small hall. The former rule gives a possibility to locate
the shower between the rooms, whereas the latter one allows
the shower to be adjacent to the one room only, but to have
two entrances, one from the halll and the second from the
room. A control diagram for this hypergraph grammar is
shown later. |

After each step of derivation the house interior design
agent evaluates the partial solutions, which are possible to
obtain by using admissible grammar rules in respect to the
information in the database and requirements specified in
the design context.

ExampLE 7.4. Let us assume that the agent generating
floor layouts obtained a hyperedge e labeled House Interior
with house_area(e) = 150 m?, room_number(e)=3. Then
these values are given to the attributes of the grammar axiom,
which is isomorphic with the left-hand side of the first pro-
duction. After application of this production the value of
the attribute room_number of the hyperedge labeled Sleep-
ingl is equal to 1 and therefore in the next step the second
production is applied. A hypergraph generated by the gram-
mar according to the mentioned criteria is shown in Figure 9,
whereas one of the possible floor layouts corresponding to
this hypergraph is shown in Figure 10a.

The considered grammar contains two productions: one
generating two rooms and another generating three rooms
in the Sleepingl area, both applicable when the value of
room_number attribute is greater than 1. In such a case, the
agent selects a production to be applied on the basis of the

https://doi.org/10.1017/S0890060408000097

140

G.S lusarczyk

area(e3) e3

area(e2) e2

Sleeping2

room_number(e2) =
room_number(e1) -
room_number(e4)

—

house_area(e1)
room_number(e1)

&: house_area(e1) > 60m’

area(e2) =

2area(e1)/3
:
p e p3
Sleeplng1

area(e1)
room_number(e1)

&: room_number(e1) = 1 bathroom

area(e3) = area(e1)/3

?
pé Clorace)
@cQ
T —

p6

SIeeplngZ

area(e?) o7

room_number(e1)
&: room_number(e1) > 1

4
rea(e5) area(ed) e4

Sleeping1)—e

room_number(e4) =
room_number(e1) /2

area(eb)
a2 ed
o (oom -+ room -+
+ area(e2) = area(ed) =
Sleeplng1 @O area(e1)/2 area(e1)/3
area(e1) e3

area(e3) = area(e1)/6

@*@,

Fig. 8. Some of the rules of a hypergraph grammar generating structures of floor layouts.

current value of the attribute area of the hyperedge Sleeping 1.
If this value is smaller than 30 m?, the agent creates only two
rooms using production p3. After application of this produc-
tion the agent evaluates the obtained hypergraph using its da-
tabase. It checks if the values of the attribute area of both
hyperedges labeled room are in the range specified for a
bedroom area in the database. If they are smaller than the
stored norms an error message is sent to the manager agent.

The hypergraph generated using productions p3 and p5, ac-
cording to the design requirements including four bedrooms
and a shower accessible from two sides, together with the cor-
responding floor layout are presented later. |

At each step the agent applies the most promising grammar
production selected from the set of rules that can be used at
this point of derivation or sends a message to the other agent.

Fig. 9. A hypergraph generated by the hypergraph grammar from Figure 8.

https://doi.org/10.1017/50890060408000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000097

A grammar-based multiagent system

141

Fig. 10. (a) A floor layout corresponding to the hypergraph from Figure 9 and (b) a floor layout with a kitchen arrangement. [A color
version of this figure can be viewed online at www.journals.cambridge.org]

If the generated hypergraph contains hyperedges labeled by
elements of the set {/iving-room, room, bath-room, kitchen}
the house interior design agent delegates tasks to the agents
generating furniture arrangements for appropriate types of
spaces in the house. Then it combines the returned arrange-
ments with the solution generated by itself. The floor layout
combined with a kitchen arrangement (a fridge, cooker, sink,
dishwasher, counter, stool, two sideboards, and a table with
four chairs) is shown in Figure 10b.

7.3. The furniture arrangement design agents

There are four agents generating furniture arrangements in the
system. They produce layouts for livingrooms, bedrooms, bath-
rooms, and kitchens. Each of them is invoked by the house
interior design agent when the appropriate hyperedge label oc-
curs in the hypergraph generated by this agent.

The knowledge bases of these agents contain sets of icons
(graphic representations) corresponding to the predefined fur-
niture and equipment. The values of the attributes assigned to
these icons specify the shape, color, and location of the furni-
ture or equipment.

ExampLE 7.5. Two-dimensional graphic representations
of a furniture set in the knowledge base of an agent generating
arrangements for living rooms are shown later. They corre-
spond to a couch, armchair, table, bookcase, coffee table, tele-
vision set, chair, wardrobe, and a cupboard. |

When an arrangement agent senses the message in the
communicating buffer it reads the attributes describing the
design criteria (like the area of the space, the location of doors
and windows) in the perception process. Then it starts genera-
tion of the arrangement using a given hypergraph grammar
and a knowledge base where the information about furniture
and equipment for the given space is stored.

https://doi.org/10.1017/50890060408000097 Published online by Cambridge University Press

Asthe behavior of all furniture arrangement agents is similar,
it will be explained on the example of the kitchen arrangement
agent. Its database of equipment contains information about a
sink, dishwasher, cooker, fridge, sideboard, counter, stool, ta-
ble, and chair. Analogously as the manager and the house inter-
ior design agents, the furniture arrangement agent after each
step of derivation also evaluates the partial solutions possible
to obtain in respect to the given requirements and makes the de-
cision about the action that is to be taken next.

ExampLE 7.6. The agent’s hypergraph grammar generat-
ing structures describing kitchen layouts is presented in
Figure 4. A production that generates a hypergraph with a
hyperedge representing an eating place in the kitchen is
used only when the value of the attribute area assigned to
the hyperedge Kitchen (rule p2) is greater than 10 m”. In
the opposite case, there would not be enough space for all
needed equipment or the arrangement of furniture would
not be comfortable.]

Hypergraphs obtained in the derivation process and repre-
senting partially specified solutions can be mapped into graphi-
cal models using a given hypergraph interpretation (Grabska
et al., 2003). Thus, each furniture arrangement design agent
has the following three types of rules: hypergraph grammar
rules, which are used to generate hypergraphs representing
pieces arrangements; interpretation rules, which enable the
agent to map a generated hypergraph into a graphical model
by assigning semantic information to hypergraph elements;
and constrain rules, which describe the possible sizes and orien-
tations of geometric primitives of a database by specifying ad-
missible scaling and rotations.

Evaluation of partial solutions enables the agent to select
the grammar rule, which should be used in the next derivation
step, take decisions about required modifications or find some
new design concepts and requirements. If some modifications

https://doi.org/10.1017/S0890060408000097

142

G. S‘lusarczyk

Fig. 11. Three different kitchen arrangements compatible with the same criteria. [A color version of this figure can be viewed online at

www.journals.cambridge.org]

of the generated solution are required, modifying rules, which
can be added to the hypergraph grammar, may be used
(élusarczyk, 2004). When new design ideas or requirements
emerge the agent can create new grammar rules and add them to
the control diagram (Grabska et al., 2006c). The inspec-
tion of partial solutions at successive stages of the design pro-
cess allows the agent to evaluate many possible variants of
component arrangements and to choose the proper direction
of search.

Each arrangement design agent generates a set of solutions
that are compatible with the initial requirements. This set can
be treated as the contents of the agent’s long-term memory.
Therefore, when the house interior design agent invokes an
arrangement agent for the second time with the same initial
requirements it can behave in a reactive manner returning
one of the earlier generated solutions. However, in case of
new initial requirements it has to start the generation again.

ExawmpLE 7.7. Three different kitchen arrangements gen-
erated for the same the criteria specification (an eating place
with a table and chairs, a dishwasher near a sink, a fridge far

from the cooker, and at last two sideboards and one counter)
are presented in Figure 11. |

Grammar-based design agents can effectively assist the in
the design process. They not only cooperate with each other
but also dynamically react to changes in the design context.

ExampLE 7.8. Three examples of the results obtained
using five cooperating grammar-based agents to the problem
of designing house interiors with furniture arrangements are
shown in Figure 12. The rooms of the floor layout from
Figure 10a are filled with different furniture arrangements. l

8. IMPLEMENTATION OF THE SYSTEM

The prototype multiagent design system is written in Java,
and enables us to verify the proposed approach. It contains
one module for each agent type. In each module the designer
can define the agent’s hypergraph grammar and add to a
database constrains concerning geometric primitives corre-
sponding to component hyperedges. The interface window
of the agent that generates floor layouts of a house is shown

Fig. 12. Three different furniture arrangements for the same floor layout. [A color version of this figure can be viewed online at

www.journals.cambridge.org]

https://doi.org/10.1017/50890060408000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000097

A grammar-based multiagent system

LayoutDesigner

File Rule Grammar Floor outline

Grammar: | Fioor layout ¥ Rule:|3:rule3 v
= =
B area(et) B area(e2)=area(et)/2
A | room_number(e1) A area(e3)=area(e1)/6
v ¥V area(ed)=area(e1)/3
L] L
w W
x x

 Generation: [E— 1'!‘_i

e — i
®]
N % room ;10
v o H s bathroom : 9
u{') = kitchen : 8
“% antechamber: 7
x @ @ % hall2: 6
= shower: 5
% room 4
e % room : 3
= |ivingroom : 2
9 @ ool =~ haiit ;1
-
o) -
© ?

O Pattern design

(3) Floor layout design

- .E;
% ;

o-(room Ye——s(Croom)-+

—

~dOE B

ol L

Fig. 13. An interface of a floor layout design agent. [A color version of this figure can be viewed online at www.journals.cambridge.org]

in Figure 13. In its upper part the designer defines a hyper-
graph grammar of the agent. One of the productions of this
grammar is presented in the right-hand side panel. On the
left-hand side of the upper part of the window the attributes
and semantic rules of productions are specified. A control
diagram for the hypergraph grammar can be defined and
edited in the bottom left-hand side panel.

When the manager agent is activated and the system
starts to work, the designer can switch between the win-
dows of different agents. In the bottom right-hand side
panel the hypergraph generated by a given agent, its graphi-
cal model, or both views together with the transparent hy-
pergraph on the top of the layout can be seen. A hypergraph
generated by a house interior design agent together with a
layout being its graphical model is presented on the right-
hand side of Figure 13. The labels of hyperedges are listed
on the left of the hypergraph. The same panel with a furni-
ture layout for a living room generated by one of the ar-
rangement agents is shown in Figure 14a. Some icons rep-
resenting furniture of this agent database are shown on the
right-hand side of this panel.

The bottom right-hand side panel of the agent’s window
is also used to present hypergraphs obtained after replacing
some hyperedges by hypergraphs generated by cooperating
agents and their graphical interpretations. A panel with a
floor layout of a house with a living room filled with furni-

https://doi.org/10.1017/50890060408000097 Published online by Cambridge University Press

ture, which corresponds to the hypergraph generated by the
house interior design agent, where the hyperedge labeled
living_room was replaced by a hypergraph returned by the
living room arrangement agent, is shown in Figure 14b.
In the present version of the system a graphical layout is cre-
ated by locating first one primitive representing a room and
then successively fitting others one by one to the previously
located ones. There is no constraints solver used but all even-
tual inconsistencies can be modified in a free-hand mode.

9. CONCLUSIONS

Cooperating grammar-based design agents seem to be prom-
ising assistants in the process of creative design. In this
paper a grammar-based multiagent design system was pre-
sented. Solutions created by such a design system can be
easily adapted to the clients’ individual needs without the
designer intervention. The proposed semantic model of a
design system enables agents to check whether generated
hypergraphs representing design solutions are consistent
with the design criteria. The interpretation of hypergraphs
generated by the system allows the designer to view and
evaluate graphical models of solutions.

A multiagent system with a collection of communicating
interface design agents can model diverse requirements and
constrains characteristic for dynamic design context. Context

https://doi.org/10.1017/S0890060408000097

144

FlatDesigner

File Edit View Generate

hRaw k‘u\.*ﬁ"@“-‘* “a+ an

G. S‘lusarczyk

CEE

r\-l»:;r Space

== ivingroom : 1

ol

L, o

Filg Edit View Genesate

RAN ESERESESE DT BN

Moded bs visible

(a)

Model s visible

(b)

Fig. 14. (a) A furniture layout of a living room and (b) a floor layout of a house with a furnished living room. [A color version of this figure

can be viewed online at www.journals.cambridge.org]

drives the design process by the influence on the way in
which the agent makes the decisions: which rule to apply,
when and where to apply it, when to terminate the generation,
and which design solution to select. Thus, design require-
ments drive the solution development at each step of the gen-
eration process. Interaction with other agents and the
feedback from the environment make the successful design
possible.

In this paper we focused on systems composed of agents
with one type of grammars. In our future work we intend to
extend this approach to incorporate agents equipped with
nonvisual descriptive grammars and working on the global
database of already created designs. Such agents could, for
example, compute quantitative or qualitative information about
designs generated by other agents. They could query the data-
base to find the most plausible designs, estimate the costs of
building and furnishing the designed houses, and arranging
the planned gardens, evaluate the accessibility of needed mate-
rials and garden plants. They should also be able to search the
database for already existing solutions to a problem similar to a
given new one.

As an agent’s decision method for choosing goals is based
on current information about the design task, the agent should
be capable of learning and abstracting knowledge. Therefore,
we intend to equip design agents with a learning function.
On the basis of the evaluation notes given by other agents,
environment, or the designer to hypergraphs representing gen-

https://doi.org/10.1017/50890060408000097 Published online by Cambridge University Press

erated solutions the agent will learn which sequences of gram-
mar productions are preferred and modify the control diagram
by updating weights determining the probability of production
application.

In the present version of the system the agents cooperate
and inform each other about the impossibility of finding valid
solutions, but they do not negotiate. In the future, we would
like the agents to have more influence on the other agents’
decisions. For example, the furniture arrangement agent should
be able to make the floor layout design agent move some doors
or windows.

REFERENCES

Agarwal, M., Cagan, J., & Constantine, G.C. (1999). Influencing generative
design through continuous evaluation: associating costs with the coffee-
maker shape grammar. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing 13, 253-275.

Borkowski, A., & Grabska, E. (1995). Representing design by composition
graphs. In IABSE Colloquium, Knowledge Support Systems in Civil Engi-
neering, IABSE Reports, pp. 27-36, Zurich.

Cagan, J. (2001). Engineering shape grammars. In Formal Engineering Design
Synthesis (Antonsson, E.K., & Cagan, J., Eds.). Cambridge: Cambridge
University Press.

Cagdas, G. (1996). A shape grammar: the language of traditional Turkish
houses. Environment and Planning B 23, 443-464.

Campbell, M., Cagan, J., & Kotovsky, K. (1998). A-design: theory and im-
plementation of an adaptive agent-based method of conceptual design. In
Artificial Intelligence in Design’98 (Gero, J.S., & Sudweeks, F., Eds.),
pp- 579-598. Dordrecht: Kluwer.

https://doi.org/10.1017/S0890060408000097

A grammar-based multiagent system

Campbell, M., Cagan, J., & Kotovsky, K. (1999). A-design: an agent-based
approach to conceptual design in a dynamic environment. Research in
Engineering Design 11, 172-192.

Canamero, D. (1997). Modeling motivations and emotions as a basis for
intelligent behavior. Proc. Ist Int. Conf. Autonomous Agents, pp.
148-155, Marina del Rey, CA.

Carlson, C., Woodbury, R., & McKelvey, R. (1993). An introduction to
structure and structure grammars. Environment and Planning B 18,
417-426.

Drewes, F., Hoffmann, D., & Plump, D. (2000). Hierarchical graph transfor-
mation. Proc. FOSSACS 2000, Lecture Notes in Computer Science, Vol.
1784, pp. 98-113.

Dzeroski, S. (2002). Relational reinforcement learning for agents in worlds
with objects. Proc. Symp. Adaptive Agents and Multi-Agent Systems
(AISB’02), pp. 1-8.

Fagin, R., Halpern, J.Y., Moses, Y., & Vardi, M.Y. (1995). Reasoning About
Knowledge. Cambridge, MA: MIT Press.

Gaborit, P., Potet, A., & Sayettat, C. (1990). Semantics and validation proce-
dures of a multi-modal logic for formalization of multi-agent universes.
Proc. 9th European Conf. Artificial Intelligence, pp. 289-291. Stock-
holm: Pitman.

Gero, J.S., & Kannengiesser, U. (2002). The situated function-behaviour—
structure framework. In Artificial Intelligence in Design’02 (Gero, J.S.,
Ed.), pp. 89-104. Dordrecht: Kluwer.

Gero, J.S., & Kannengiesser, U. (2003). Towards a framework for agent-
based product modelling. Int. Conf. Engineering Design, ICED’03, pp.
1621-1622, Stockholm.

Grabska, E., Slusarczyk, G., & Papiernik, K. (2003). Interpretation of objects
represented by hierarchical graphs. Proc. Conf. Computer Recognition
Systems, KOSYR’03, pp. 287-293, Wroctaw, Poland.

Grabska, E., §1usarczyk, G., & Grzes, P. (2005). Dynamic design with the use
of intelligent agents. Proc. 4th Int. Conf. Computer Recognition Systems,
CORES’05, pp. 827-834. Berlin: Springer.)

Grabska, E., Grzesiak-Kope¢, K., Lembas, J., Lachwa, A., & Slusarczyk, G.
(2006a). Hypergraphs in diagrammatic design. In Computer Vision
and Graphics (Wojciechowski, K., et al., Eds.), pp.111-117. Berlin:
Springer.)

Grabska, E., Grzesiak-Kope¢, K., & Slusarczyk, G. (2006b). Designing floor-
layouts with the assistance of curious agents. In ICCS 2006 Part III,
Lecture Notes in Computer Science (Alexandrov, V.A., et al., Eds.), Vol.
3993, pp. 883-886. Berlin: Springer.

Grabska, E., Grzesiak-Kope¢, K., & Slusarczyk, G. (2006¢). Visual creative
design with the assistance of curious agents. In Proc. 4th Int. Conf. Dia-
grammatic Representation on Inference, Diagrams 2006, Lecture Notes
in Computer Science (Baker-Plummer, D., et al., Eds.), Vol. 4045, pp.
218-220. Stanford, CA: Springer.

Grecu, D.L., & Brown, D.C (2000). Expectation formation in multi-agent de-
sign systems. In Artificial Intelligence in Design’00 (Gero, J.S., Ed.),
pp-651-671. Dordrecht: Kluwer.

Habel, A., & Kreowski, H.J. (1987). Some structural aspects of hypergraph
languages generated by hyperedge replacement. In Lecture Notes in Com-
puter Science, Vol. 247, pp. 207-219. Berlin: Springer—Verlag.

Kokoszka, A., Bielecki, A., & Holas, P. (2001). Mental organization accord-
ing to metabolism of information and its mathematical description. Infer-
national Journal of Neuroscience 107, 173—184.

Lander, S.E. (1997). Issues in multiagent design systems. IEEE Expert 12,
18-26.

Longenecker, S.N., & Fitzhorn, P.A. (1991). A shape grammar for non-
manifold modeling. Research in Engineering Design 3, 159-170.

https://doi.org/10.1017/50890060408000097 Published online by Cambridge University Press

145

McCormack, J.P., & Cagan, J. (2002). Designing inner hood panels through a
shape grammar based framework. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing 16, 273-290.

Myers, L., & Pohl, J. (1994). ICDM: integrated cooperative decision making-
in practice. Tools With Artificial Intelligence. Proc. 6th Int. Conf., pp.
608-614.

Paun, Gh., & Salomaa, A. (Eds.). (1999). Grammatical Models of Multi-
Agent Systems. Amsterdam: Gordon & Breach.

Rosenman, M., & Gero, J.S (1999). Evolving designs by generating useful
complex gene structures. In Evolutionary Design by Computers (Bentley,
P.J., Ed.), pp. 345-364. San Francisco, CA: Morgan Kaufmann.

Saunders, R. (2001). Curious design agents and artificial creativity. PhD

_ Thesis. University of Sydney.

Slusarczyk, G. (2003). Hierarchical hypergraph transformations in engineer-

_ ing design. Journal of Applied Computer Science 11, 67-82.

Slusarczyk, G. (2004). Heuristic methods and hierarchical graph gram-
mars in design. Visual and Spatial Reasoning in Design III, pp. 45—
66, University of Sydney, Key Centre of Design Computing and
Cognition.

Soman, A., & Campbell, M. (2002). A grammar-based approach to sheet
metal design. Proc. DETC’02 ASME Design Engineering Technical
Conf., pp. 1-9, Montreal.

Sosa, R., & Gero, J.S. (2004). A computational framework for the study of
creativity and innovation in design: effects of social ties. In Design Com-
puting and Cognition’04 (Gero, J.S., Ed.), pp. 499-517. Dordrecht:
Kluwer.

Stiny, G., & Mitchell, W.J. (1980). The grammar of paradise: on the genera-
tion of Mughul gardens. Environment and Planning B 7, 209-226.
Suh, N.P. (1990). The Principles of Design. New York: Oxford University

Press.

Traverso, P., & Spalazzi, L. (1995). A logic for acting, sensing and planning.
Proc. 14th Int. Joint Conf. Artificial Intelligence, pp. 1941-1949,
Montreal.

Wooldridge, M.J (1995). This is MYWORLD: the logic of an agent oriented
DAl testbed. Intelligent Agents: Proc. ECAI’94 Workshop on Agent The-
ories, Architectures and Languages, Lecture Notes in Artificial Intelli-
gence (Wooldridge, M., & Jennings, N.R., Eds.), Vol. 890, pp. 160-
178. Amsterdam: Springer—Verlag.

Wooldridge, M.J. (1999). Intelligent agents. In Multiagent Systems: A Mod-
ern Approach to Distributed Artificial Intelligence (Weiss, G., Ed.),
pp. 27-77. Cambridge, MA: MIT Press.

Wooldridge, M.J., & Lomuscio, A. (2000). Multi-agent VSK logic. Proc. 7th
European Workshop on Logics in Artificial Intelligence (JELIAI-2000).
Berlin: Springer—Verlag.

Velasquez, J.D., & Maes, P. (1997). Cathexis: a computation model of emo-
tions. Proc. Ist Int. Conf. Autonomous Agents, pp. 518-519, Marina del
Rey, CA.

Grazyna Slusarczyk received her PhD degree from the Insti-
tute of Fundamental Technological Research PAS in 1999.
She is a Lecturer in the Department of Design and Computer
Graphics, Faculty of Physics, Astronomy, and Applied Com-
puter Science, Jagiellonian University. Her research interests
include graph transformations, computer-aided graphic de-
sign, and multiagent systems in design.

https://doi.org/10.1017/S0890060408000097

