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We study the minimum degree necessary to guarantee the existence of perfect and almost-perfect
triangle-tilings in an n-vertex graph G with sublinear independence number. In this setting, we
show that if δ (G) � n/3+o(n), then G has a triangle-tiling covering all but at most four vertices.
Also, for every r � 5, we asymptotically determine the minimum degree threshold for a perfect
triangle-tiling under the additional assumptions that G is Kr-free and n is divisible by 3.
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1. Introduction

A triangle-tiling in a graph G is a collection T of vertex-disjoint triangles in G. We say that T is
perfect if |T |= n/3, where n is the order of G. A trivial necessary condition for the existence of a
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perfect triangle-tiling is that 3 divides n. We let V (T ) :=
⋃

T∈T V (T ) and say T covers U ⊆V (G)
(respectively v ∈ V (G)) when U ⊆ V (T ) (respectively v ∈ V (T )), so a perfect triangle-tiling
covers every vertex of the host graph. Given disjoint sets A and B which partition V (G), we say
that a triangle T in G is an A-triangle if T contains two vertices of A and one vertex of B, and
likewise that T is a B-triangle if T contains two vertices of B and one vertex of A. Observe that
if |A| = 1 (mod 3) and |B| = 2 (mod 3), there are no B-triangles in G and also there is no pair
of vertex-disjoint A-triangles in G, then G does not have a perfect triangle-tiling. In that case,
we call the ordered pair (A,B) a divisibility barrier in G (note that order is important here).
Similarly, if A ⊆ V (G) has size |A| � 2n/3 + r for some r > 0, but G[A] has no triangles, then
every triangle-tiling in G contains at most n−|A| � n/3− r triangles, and so leaves at least 3r
vertices uncovered. We call such a set A a space barrier.

The classical Corrádi–Hajnal theorem [3] states that if G has minimum degree δ (G) � 2n/3,
and n is divisible by 3, then G contains a perfect triangle-tiling. The minimum degree condition of
this result is easily seen to be best-possible by considering, for an arbitrary m ∈ N, the complete
tripartite graph G1(m) with vertex classes of size m− 1,m and m + 1. Indeed, G1(m) then has
n := 3m vertices and δ (G1(m)) � 2m− 1 = 2n/3− 1, but G1(m) has no perfect triangle-tiling,
as the union of the two largest vertex classes is a space barrier. Observe, however, that G1(m)
contains large independent sets. By proving the following theorem, Balogh, Molla and Sharifza-
deh [1] recently showed that the minimum degree condition can be significantly weakened if we
additionally assume that G has no large independent set. Throughout this paper we write α(G)
to denote the independence number of G.

Theorem 1.1 ([1, Theorem 1.2]). For every ω > 0 there exist n0,γ > 0 such that the following
holds for every integer n � n0 which is divisible by 3. If G is a graph on n vertices with δ (G) �
n/2+ωn and α(G) � γn, then G contains a perfect triangle-tiling.

For an arbitrary m ∈ N, the graph G2(m) consisting of two copies of K3m+2 intersecting
in a single vertex has n := 6m + 3 vertices, minimum degree δ (G2(m)) = 3m + 1 = �n/2�
and independence number two. Moreover, G2(m) has a divisibility barrier (A,B), where B is
the vertex set of one of the copies of K3m+2 and A = V (G2(m)) \ B, and so G2(m) does not
contain a perfect triangle-tiling. This example demonstrates that the minimum degree condition
of Theorem 1.1 is best-possible up to the ωn additive error term. Alon suggested that if one only
wants a triangle-tiling that covers all but a constant number of vertices, then perhaps the condition
δ (G) � (1/3+o(1))n is sufficient. In this paper, we show that this is indeed the case, by proving
that if δ (G) � (1/3 + o(1))n and α(G) = o(n), then G has a triangle-tiling covering all but
at most four vertices. Furthermore, under the additional assumptions that G has no divisibility
barrier and 3 divides n, we show that G contains a perfect triangle-tiling.

Theorem 1.2. For every ω > 0 there exist n0,γ > 0 such that if G is a graph on n � n0 vertices
with δ (G) � n/3+ωn and α(G) � γn, then

(a) G contains a triangle-tiling covering all but at most four vertices of G, and
(b) if 3 divides n and G contains no divisibility barrier, then G contains a perfect triangle-tiling.
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Observe that for an arbitrary m∈N, the graph G3(m) consisting of two disjoint copies of K3m+2

has n := 6m + 4 vertices, minimum degree δ (G3(m)) = 3m + 1 = n/2− 1 and independence
number two, but every triangle-tiling in G3(m) covers at most n−4 vertices. This demonstrates
that the conditions of Theorem 1.2 do not guarantee a triangle-tiling which leaves fewer than
four vertices uncovered. Furthermore, a straightforward construction demonstrates that the ωn
error term in the minimum degree condition of Theorem 1.2 cannot be removed completely. For
this we use the existence of triangle-free graphs on n vertices with independence number o(n)
and minimum degree ω(1), as exhibited by Erdős in [6]; we refer to such a graph as an Erdős
graph and denote it by ER(n). For an arbitrary m ∈ N we then form a graph G4(m) by taking the
complete bipartite graph whose vertex classes U and V have sizes 2m+1 and m−1 respectively,
and then placing copies of ER(|U |) and ER(|V |) on U and V respectively. The graph G4(m)
formed in this way has n := 3m vertices, minimum degree δ (G4(m)) � n/3+ω(1) and sublinear
independence number. Moreover, since U is a space barrier, G4(m) has no perfect triangle-tiling.

The relationship between the results in this paper and the Corrádi–Hajnal theorem is clearly
analogous to the relationship between Ramsey–Turán theory and Turán’s theorem, as Ramsey–
Turán theory is concerned with the maximum possible number of edges in an H-free graph on
n vertices with some upper bound on α(G). More precisely, in classical Ramsey–Turán theory
the principle object of study is the function RT(n,H,m), which is defined to be the maximum
number of edges in an H-free, n-vertex graph with independence number at most m, whenever
such a graph exists for n, H and m. The asymptotic value of RT(n,Kr,o(n)) was established for
odd r by Erdős and Sós [8] and for even r by Erdős, Hajnal, Sós and Szemerédi [7], giving the
following theorem.

Theorem 1.3 ([8, Theorem 1] and [7, Theorem 1]). For every r � 3, we define

fRT(r) :=

⎧⎪⎪⎨
⎪⎪⎩

r−3
r−1

if r is odd,

3r−10
3r−4

if r is even.

(a) For every ω > 0, there exists γ,n0 > 0 such that if G is a graph on n � n0 vertices with
α(G) � γn and with at least ( fRT(r)+ω)

(n
2

)
edges, then G contains a copy of Kr.

(b) For every ω > 0 and γ > 0, there exists n0 > 0 such that for every n � n0, there exists a Kr-free
graph G := GRT(n,r,ω,γ) on n vertices such that δ (G) � ( fRT(r)−ω)n and α(G) � γn.

Observe that for any r � 3, ω,γ > 0 and each sufficiently large n divisible by 6, the graph G5(n)
on n vertices consisting of the disjoint union of GRT(n/2− 1,r,ω,γ) and GRT(n/2 + 1,r,ω,γ)
is Kr-free, has minimum degree δ (G5(n)) � ( fRT(r)/2−ω)n and independence number at most
γn. However, as G5(n) contains a divisibility barrier, it has no perfect triangle-tiling. Although
the construction of GRT(n,r,ω,γ) was given in [8] (when r is odd) and [7] (when r is even), for
completeness, we describe GRT(n,r,ω,γ) at the end of Section 5.

By combining Theorems 1.2 and 1.3 we determine, for every r � 5, the asymptotic minimum
degree threshold for a perfect triangle-tiling in a Kr-free graph with sublinear independence
number; this is the following corollary.
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Corollary 1.4. For every r � 5 and ω > 0 there exist n0,γ > 0 such that the following holds for
every integer n � n0 which is divisible by 3. If G is a Kr-free graph on n vertices with

δ (G) �

⎧⎪⎨
⎪⎩

fRT(r)
2

n+ωn if r � 7,

n
3

+ωn if r ∈ {5,6},

and α(G) � γn, then G contains a perfect triangle-tiling.

Proof. Given ω > 0, choose γ small enough and n0 large enough to apply Theorem 1.2 with
the same constants there as here and so that we may apply Theorem 1.3(a) with 3γ and n0/3 in
place of γ and n0 respectively. We also insist that γn0 +2 � ωn0/2. Since fRT(r)/2 � 1/3 if and
only if r � 7, by Theorem 1.2(b) it suffices to prove that no Kr-free graph on n � n0 vertices with
δ (G) � ( fRT(r)/2)n+ωn and α(G) � γn contains a divisibility barrier. So let G be such a graph,
and suppose for a contradiction that (X ,Y ) is a divisibility barrier in G. Let A be the smaller of X
and Y , and let B be the larger, so |A| � n/2. By definition of a divisibility barrier, if A = Y then
there is no pair of vertex-disjoint B-triangles in G, whilst if A = X then there are no B-triangles in
G at all. It follows that at most one vertex a ∈ A has more than γn+2 neighbours in B, as given
two such vertices a,a′ ∈ A we could use the fact that α(G) � γn to choose an edge bc in N(a)∩B
and then an edge b′c′ in (N(a′)∩B) \ e to obtain a pair of vertex-disjoint B-triangles abc and
a′b′c′ in G. So at least |A|−1 vertices of A have at least δ (G)− γn−2 � ( fRT(r)/2)n+(ω/2)n
neighbours in A. So in particular |A| � ( fRT(r)/2)n � n/3. Moreover we have

e(G[A]) � 1
2
(|A|−1)

(
fRT(r)

2
+

ω
2

)
n =

n
2|A| ( fRT(r)+ω)

(
|A|
2

)
� ( fRT(r)+ω)

(
|A|
2

)
,

so G[A] contains a copy of Kr by Theorem 1.3(a). This contradicts our assumption that G was
Kr-free and so completes the proof.

Observe that the graph G = G4(m) given by the construction following Theorem 1.2 has n =
3m vertices, minimum degree at least n/3 + ω(1) and independence number o(n), and that G
contains a space barrier (and therefore does not contain a perfect triangle-tiling). Moreover, G is
K5-free since G[U ] and G[V ] are each triangle-free. This demonstrates that the minimum degree
condition in Corollary 1.4 is best-possible up to the ωn error term for r ∈ {5,6,7} (and that the
error term cannot be removed entirely in these cases). Furthermore, the graph G5(n) presented
after Theorem 1.3 shows that the minimum degree condition in Corollary 1.4 is best-possible up
to the ωn error term for r � 8 also.

In a K4-free graph, we can only construct space barriers when δ (G) < n/6, so it may be true
that, in a K4-free graph, the conditions δ (G) � (1/6 + o(1))n and α(G) = o(n) are sufficient to
guarantee a perfect triangle-tiling when n is divisible by 3; we discuss this further in Section 5.
Also in Section 5, we consider the problem of determining the minimum degree condition which
guarantees a perfect Kk-tiling in a graph with sublinear independence number when k � 4.
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1.1. Proof outline
To illustrate the proof ideas of this paper, we here outline the proof of Theorem 1.2(b). Let G
be a graph on n vertices with sublinear independence number and minimum degree somewhat
greater than n/3, where n is large and divisible by 3.

Our proof makes extensive use of the notion of a regular pair in G. Loosely speaking, this
is a pair (A,B) of vertex-disjoint subsets of V (G) such that the edges between A and B are
distributed in a ‘randomlike’ manner (see Section 2.1 for formal definitions). Now suppose that
(A,B) is a regular pair in G of density d (i.e. there are d|A| |B| edges between A and B), for some
not-too-small d and sets A and B of linear size. Most vertices v ∈ A then have approximately
d|B| neighbours in B. Since G has sublinear independence number, there must be an edge in the
neighbourhood of v, and this creates a triangle in G whose vertices are v and two neighbours of v
in B. The same argument with A and B reversed allows us to find triangles with two vertices in A
and one in B. It is not hard to see that, provided |A| and |B| differ by at most a factor of two, then
we can construct a triangle-tiling covering almost all of the vertices of A∪B by greedily choosing
and deleting triangles in this way (this is the first part of Lemma 3.1). Moreover, if (A,B) has
density greater than 1/2 and is super-regular, meaning that every vertex has neighbourhood of
typical size, and |A| and |B| differ by at most a little less than a factor of two, then Lemma 3.1
shows that we can in fact construct a triangle-tiling covering every vertex of A∪B (so long as 3
divides |A∪B|). The ability to find a spanning triangle-tiling in this set-up is one way we may
complete a perfect triangle-tiling in G at the end of the proof.

Another set-up in which we can find a spanning triangle-tiling is where we have pairwise
vertex-disjoint sets A,B,C ⊆V (G) whose sizes are linear and approximately equal to each other
such that (A,B), (B,C) and (A,C) are each super-regular pairs of not-too-small density and 3
divides |A∪B∪C|. Indeed, we first greedily find and remove triangles by the method described
above so that equally many vertices remain in each of A, B and C, and then apply the Blow-up
Lemma to find a triangle-tiling covering all remaining vertices of A, B and C by triangles each
using one vertex from each set. This argument is formalized by Lemma 3.2.

We begin the proof by a standard application of Szemerédi’s Regularity Lemma to find a
partition of G into a bounded number of clusters V1, . . . ,Vk of equal size and a small exceptional
set V0, and define a reduced graph R whose vertices are the clusters of G and whose edges
correspond to pairs of clusters which form regular pairs of not-too-small density in G. Then a
straightforward counting argument shows that either

(a) there is an edge ViVj of R for which the pair (Vi,Vj) has density somewhat more than 1/2, or
(b) R has minimum degree at least 2k/3. In particular, certainly there are clusters Vi,Vj and Vk

which form a triangle in R.

In case (a), by removing a small number of vertices from Vi and Vj (and adding these to the
exceptional set) we can make the pair (Vi,Vj) super-regular with density more than 1/2, achieving
the first set-up described above. Similarly in case (b) we can remove a small number of vertices
from each of Vi,Vj and Vk to achieve the second set-up described above. These two or three
clusters (according to which case we are in) form the ‘core’ of G. Our proof then proceeds by
iteratively removing vertex-disjoint triangles so as to cover every vertex outside the core and only
a small number of vertices within the core; we can then complete a perfect triangle-tiling in G by
finding a triangle-tiling spanning the remaining vertices of the core as described above.
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A key step in achieving this is the use of perfect fractional weighted matchings. The theory
for these is developed in Section 2.4, with the key conclusion being that since R has minimum
degree somewhat greater than k/3, we can partition all clusters outside the core into subclusters
of linear size, so that the subclusters form regular pairs (Ai,Bi) of not-too-small density and the
sizes of Ai and Bi differ by at most a little less than a factor of two (the crucial ratio for being
able to find a triangle-tiling covering almost all vertices of Ai ∪Bi as described above). We then
define an auxiliary reduced graph R∗ with a vertex vi corresponding to each pair (Ai,Bi) and a
final vertex v∗ corresponding to the core of G, with an edge of R∗ indicating that the corres-
ponding pairs (or perhaps triple, in the case of the core) include subsets of clusters of an edge
of R.

Suppose for simplicity that the reduced graph R is connected; it follows that R∗ is connected,
and using a theorem of Win (Theorem 2.7) we find a spanning tree T in R∗ of bounded maximum
degree. We take v∗ to be the root of T , and iteratively ‘work inwards’ from the leaves of T to v∗

to construct a perfect triangle-tiling in G, as follows. First we choose a leaf vi of T , and remove a
triangle-tiling in the corresponding pair (Ai,Bi) covering almost all vertices of this pair. Writing
v j for the parent of vi in T , we then remove a few more triangles to cover all uncovered vertices
of Ai ∪Bi as well as a small number of vertices in the pair (Aj,Bj) corresponding to v j. We then
delete the leaf vi from T , and iterate. At the end of this iteration only the root v∗ of T remains,
at which point we have constructed a triangle-tiling covering all vertices of T outside the core
as well as a small number of vertices of the core. We then find a perfect triangle-tiling within
the remaining vertices of the core (recall that the core was chosen so as to permit this step) to
complete the desired perfect triangle-tiling in G.

If instead R is not connected, then R has precisely two components (since δ (R) > k/3). After
allocating exceptional vertices appropriately, these components yield a partition of V (G) into
two parts, say X and Y . We may then use the fact that G contains no divisibility barrier to find
and remove at most two triangles from G so that following these deletions both |X | and |Y |
are divisible by 3. We then proceed exactly as above within each of G[X ] and G[Y ] (and the
corresponding components of R) to obtain perfect triangle-tilings in each of these subgraphs;
together with the removed triangles these form a perfect triangle-tiling in G, completing the
proof.

2. Notation and preliminary results

In this section we introduce various results which we will use in the proof of Theorem 1.2,
beginning with helpful notation. Given a graph G, we write |G| and e(G) for the number of
vertices and edges of G respectively. We write x = y± z to mean y− z � x � y + z, and [n] to
denote the set of integers from 1 to n. We omit floors and ceilings throughout this paper wherever
they do not affect the argument. We write x � y to mean that for every y > 0 there exists x0 > 0
such that the subsequent statements hold for x and y whenever 0 < x � x0. Similar statements
with more variables are defined similarly.

2.1. Regularity
In a graph G, for each pair of disjoint non-empty sets A,B ⊆ V (G) we write G[A,B] for the
bipartite subgraph of G with vertex classes A and B and whose edges are all edges of G with one
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endvertex in A and the other in B, and denote the density of G[A,B] by

dG(A,B) :=
e(G[A,B])
|A| |B| .

We say that G[A,B] is (d,ε)-regular if dG(X ,Y ) = d ± ε for every X ⊆ A and Y ⊆ B with |X | �
ε|A| and |Y | � ε|B|, and we write that G[A,B] is (�d,ε)-regular to mean that G[A,B] is (d′,ε)-
regular for some d′ � d. Also, we say that G[A,B] is (d,ε)-super-regular if G[A,B] is (�d,ε)-
regular, every vertex of A has at least (d − ε)|B| neighbours in B and every vertex of B has at
least (d−ε)|A| neighbours in A. The following well-known results are elementary consequences
of the definitions.

Lemma 2.1 (Slicing Lemma). For every d,ε,β > 0, if G[A,B] is (d,ε)-regular, and X ⊆ A
and Y ⊆ B have sizes |X | � β |A| and |Y | � β |B|, then G[X ,Y ] is (d,ε/β )-regular.

Lemma 2.2. For every d,ε > 0 with ε < 1/2, if G[A,B] is (�d,ε)-regular, then there are sets
X ⊆ A and Y ⊆ B with sizes |X | � (1− ε)|A|, and |Y | � (1− ε)|B| such that G[X ,Y ] is (d,2ε)-
super-regular.

We make use of Chernoff bounds on the concentration of binomial and hypergeometric distri-
butions in the following form.

Theorem 2.3 ([9, Corollary 2.3 and Theorem 2.10]). Suppose X has binomial or hyper-
geometric distribution and 0 < a < 3/2. Then P(|X −EX | � aEX) � 2e−(a2/3)EX .

The following lemma is similar to lemmas of Csaba and Mydlarz [4, Lemma 14] and Martin
and Skokan [13, Lemma 10]. It states that if we randomly select a collection of disjoint subsets
from each of the vertex classes of a super-regular pair, every pair of sets from different classes is
super-regular with high probability.

Lemma 2.4 (Random Slicing Lemma). Suppose that 1/n � β ,ε � d. Let G[A,B] be (d,ε)-
super-regular (respectively (d,ε)-regular) where |A|, |B| � n. Also let x1, . . . ,xs and y1, . . . ,yt be
positive integers each of size at least βn such that ∑i∈[s] xi � |A| and ∑ j∈[t] y j � |B|. If {X1, . . . ,Xs}
is a collection of disjoint subsets of A and {Y1, . . . ,Yt} is a collection of disjoint subsets of B
such that |Xi| = xi and |Yj| = y j for all i ∈ [s] and j ∈ [t] selected uniformly at random from

all such collections, then, with probability at least 1− e−Ω(n), G[Xi,Yj] is (d,ε ′)-super-regular
(respectively (d,ε ′)-regular) for all i ∈ [s] and j ∈ [t], where ε ′ := (33ε)1/5.

For completeness we present a proof of Lemma 2.4 in the Appendix. To make use of regularity
properties, we apply the degree form of Szemerédi’s Regularity Lemma (see [12, Theorem 1.10]).

Theorem 2.5 (Degree form of Szemerédi’s Regularity Lemma). For every ε > 0, real num-
ber d ∈ [0,1] and integers t and q there exist integers n0 and T such that the following statement
holds. Let G be a graph on n � n0 vertices, and let U1, . . . ,Uq be a partition of V (G) into q
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parts. Then there is a partition of V (G) into an exceptional set V0 and k clusters V1, . . . ,Vk, and
a spanning subgraph G′ ⊆ G such that

(a) t � k � T ,
(b) |V1| = |V2| = · · · = |Vk| and |V0| � εn,
(c) for every i ∈ [k] there exists j ∈ [q] such that Vi ⊆Uj,
(d) dG′(v) � dG(v)− (ε +d)n for all v ∈V (G),
(e) e(G′[Vi]) = 0 for all i ∈ [k], and
(f) for each distinct i, j ∈ [k] either G′[Vi,Vj] is (�d,ε)-regular or G′[Vi,Vj] is empty.

Theorem 2.5 as stated above is stronger than the form given in [12] in that it allows us to
specify an initial partition of V (G) and to insist that the clusters V1,V2, . . . ,Vk are each a subset of
some part of this partition (property (c) above). However, this statement follows from the same
proof, which proceeds iteratively by alternately refining a partition of V (G) and deleting some
vertices of V (G) (which are then placed in the exceptional set V0). So to prove Theorem 2.5 we
take our specified partition as the initial partition of this process.

2.2. Robustly-matchable sets
The following application of the Regularity Lemma is critical to the entire proof. Given a graph
G, a small A ⊆ V (G) and a small matching B ⊆ E(G), we form an auxiliary bipartite graph F
with vertex set A∪B in which there is an edge between a ∈ A and bc ∈ B if and only if abc is a
triangle in G. So matchings in F correspond to triangle-tilings in G. In this setting, Lemma 2.6
allows us to choose subsets X ⊆ A and Y ⊆ B such that if we can find a triangle-tiling in G that
covers every vertex of G except for the vertices incident to edges in Y and exactly |Y | of the
vertices in X , then we obtain a perfect triangle-tiling in G.

Lemma 2.6. Suppose that 1/n � φ � ε � d. Let F be a bipartite graph with vertex classes A
and B such that n/10 � |A|, |B| � n and dF(A,B) � d. Then there exist subsets X ⊆ A and Y ⊆ B
of sizes |X | = φn and |Y | = (1− ε)φn such that F [X ′,Y ] contains a perfect matching for every
subset X ′ ⊆ X with |X ′| = |Y |.

Proof. Let n0 and T be the integers returned by Theorem 2.5 given inputs ε , d′ := d/200 and
t = q = 2. We may assume that φ � 1/4T . We use Theorem 2.5 with initial partition U1 = A and
U2 = B to obtain a spanning subgraph F ′ ⊆F and a partition of V (F) into sets V0,V1, . . . ,Vk which
satisfy properties (a)–(f) of Theorem 2.5. In particular, by Theorem 2.5(d) at most (ε +d/200)n2

edges of F are not edges of F ′. Also, by Theorem 2.5(e) there are no edges in F ′[Vi] for any
i ∈ [k], and since |V0| � εn by Theorem 2.5(b), at most εn2 edges of F contain a vertex of V0.
Since

e(F) = dF(A,B)|A| |B| � d

(
n

10

)2

>

(
ε +

d
200

)
n2 + εn2,

there must exist distinct i, j ∈ [k] such that F ′[Vi,Vj] is non-empty, and since F is bipartite, by
Theorem 2.5(c) we may assume without loss of generality that Vi ⊆ A and Vj ⊆ B. Observe
that F ′[Vi,Vj] is (�d′,ε)-regular by Theorem 2.5(f). Write m for the common size of Vi and
Vj, so m = |V (F) \V0|/k � n/2T � 2φn by Theorem 2.5(a) and (b). By Lemma 2.2 we may
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delete at most εm vertices from each of V ′
i and V ′

j to obtain subsets V ′
i ⊆ Vi and V ′

j ⊆ Vj such
that F [V ′

i ,V
′
j ] is (d′,2ε)-super-regular. Having done so, choose X ⊆ V ′

i and Y ⊆ V ′
j uniformly at

random with sizes φn and (1− ε)φn respectively (this is possible since |V ′
i |, |V ′

j | � (1− ε)m �
φn). Then Lemma 2.4 tells us that F ′[X ,Y ] is (d′,ε ′)-super-regular with high probability, where
ε ′ := (66ε)1/5, so we may fix sets X and Y with this property. It then follows that every vertex
of X has at least (d′ − ε ′)|Y | � ε ′|X | neighbours in Y , whilst every set of at least ε ′|X | vertices
of X has at least (1− ε ′)|Y | � (1− 2ε ′)|X | neighbours in Y (where we say that a vertex y is a
neighbour of a set X ′ if y is a neighbour of some element of X ′). Finally, since every vertex of
Y has at least (d′ − ε ′)|X | > 2ε ′|X | neighbours in X , every set of at least (1−2ε ′)|X | vertices of
X has every vertex of Y as a neighbour. So Hall’s criterion is satisfied for every X ′ ⊆ X of size
|X ′| � |Y |, so for every X ′ ⊆ X with |X ′| = |Y | there is a perfect matching in F ′[X ′,Y ].

2.3. Spanning bounded degree trees
Our proof requires us to find a spanning tree of bounded maximum degree in the reduced graph
R of G. For this, we use the following theorem of Win [16].

Theorem 2.7. If k � 2 and R is a connected graph such that

∑
v∈S

d(v) � |R|−1 for every independent set S of size k,

then R contains a spanning tree T such that Δ(T ) � k. In particular, if R is a connected graph
with δ (R) � (|R|−1)/k, then R contains a spanning tree T with maximum degree at most k.

2.4. Fractional weighted matchings via linear programming
Recall from the proof outline that we will consider regular pairs of clusters of vertices of G and
use the regularity of each pair to find a triangle-tiling covering a given proportion of vertices
from each cluster. We want to choose these proportions so that collectively these triangle-tilings
cover (almost) all of the vertices of G. To do this we look for a generalized form of weighted
matching in the reduced graph; the proportion of vertices to be covered by a triangle-tiling within
a pair of clusters then corresponds to the weight in this matching of the corresponding edge of
the reduced graph.

A fractional matching w in a graph G assigns a weight we � 0 to each edge e ∈ E(G) such that
for every vertex u ∈ V (G) we have ∑e�u we � 1. In other words, if we consider each edge uv to
place weight wuv at each of u and v, then the the combined weight placed at each vertex is at most
one. This is a relaxation of an integer matching M, in which we insist that for each e ∈ E(G) we
have we = 1 (meaning that e ∈ M) or we = 0 (meaning that e /∈ M). Here we work with a more
general notion of an (η ,ξ )-weighted fractional matching, in which we consider each edge to
place different weights at each end, subject to the restriction that the ratio of these weights is at
most η : ξ . It is most natural to express these matchings in terms of directed graphs, as we can
then consider a directed edge −→uv of weight w−→uv to place weight ηw−→uv on its tail u and weight ξ w−→uv
on its head v; as before, we insist that the combined weight placed at each vertex is at most one.

Definition 2.8. Let Γ be a directed graph on n vertices and let η and ξ be positive real numbers.
An (η ,ξ )-weighted fractional matching w in Γ is an assignment of a weight w−→uv � 0 to each edge

https://doi.org/10.1017/S0963548318000196 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000196


458 J. Balogh, A. McDowell, T. Molla and R. Mycroft

−→uv of Γ such that for every vertex u ∈V (Γ) we have

∑
v∈N+

Γ (u)
ηw−→uv + ∑

v∈N−
Γ (u)

ξ w−→vu � 1. (2.1)

The total weight of w is defined to be W := ∑−→uv∈E(Γ)(η + ξ )w−→uv. By (2.1) we have W � n; we
say that w is perfect if W = n. Note that in this case we have equality in (2.1) for every vertex.

Given an undirected graph G, we consider (η ,ξ )-weighted fractional matchings in the directed
graph Γ formed by replacing every edge uv of G with both a directed edge −→uv from u to v and
a directed edge −→vu from v to u. In particular, a (1/2,1/2)-weighted fractional matching w in Γ
then corresponds to a fractional matching w′ in G (in the standard notion of fractional matching
as defined above). Indeed, given w, for each edge e = uv ∈ E(G) we may take w′

e = w−→uv + w−→vu.
In our proof we will instead consider (η ,ξ )-weighted fractional matchings in Γ where ξ is close
to twice as large as η . The advantage of this is shown by Lemma 2.10, which states that the
minimum degree condition on G needed to guarantee the existence of a perfect (η ,ξ )-weighted
fractional matching in Γ is then approximately n/3, well below the n/2 threshold needed to
guarantee the existence of a perfect fractional matching in G.

Let Γ be a directed graph on n vertices v1, . . . ,vn, and fix η ,ξ > 0. Then we define the (η ,ξ )-
weighted characteristic vector of an edge −→uv ∈ E(Γ) to be the vector χη ,ξ (−→viv j) ∈ R

n whose ith
coordinate is equal to η , whose jth coordinate is equal to ξ , and in which all other coordinates
are equal to zero. So an assignment w of non-negative weights to edges of Γ is an (η ,ξ )-weighted
fractional matching in Γ if and only if

∑
−−→viv j∈E(Γ)

w−−→viv j
χη ,ξ (−→viv j) � 1, (2.2)

where 1 is the vector in R
n with each coordinate equal to 1 and the inequality is treated pointwise.

As before, w is perfect if and only if we have equality for each coordinate.
To prove the existence of a (η ,ξ )-weighted fractional matching in a directed graph of high

minimum indegree, we use the following version of Farkas’ lemma, for which we need the
following definition; a vertex v ∈ R

n is a weighted sum of vectors in X = {x1, . . . ,xm} ⊆ R
n

if

v ∈
{ m

∑
i=1

λixi : λi � 0 for every i ∈ [m]
}

,

otherwise v is not a weighted sum of the vectors in X .

Lemma 2.9 (Farkas’ lemma). For every v ∈R
n and every finite X ⊆R

n, if v is not a weighted
sum of the vectors in X , then there exists y ∈ R

n such that y · x � 0 for every x ∈ X and y · v < 0.

We now give the main result of this section.

Lemma 2.10. For every η > 0, every directed graph Γ on n vertices with δ−(Γ) � ηn admits
a perfect fractional (η ,1−η)-matching. Furthermore, if η = p/q for positive integers p and
q, then we can assume that the weights of the matching are rational numbers with common
denominator D bounded above by some function of p, q and n.
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Proof. Let v1, . . . ,vn be an arbitrary ordering of the vertices of Γ. Then by (2.2), a perfect
(η ,1−η)-weighted fractional matching in Γ corresponds to a weighted sum of the vectors in

X := {χη ,1−η(−→viv j) : −→viv j ∈ E(Γ)}

that equals 1.
If we assume that Γ does not have a perfect (η ,1−η)-weighted fractional matching, then, by

Farkas’ lemma (Lemma 2.9), as 1 is not a weighted sum of the vectors in X , there exists a vector
y ∈R

n such that y ·1 < 0 but y ·χη ,1−η(−→viv j) � 0 for every −→viv j ∈ E(Γ). By reordering the vertices
if necessary, we may assume that y1 � · · · � yn.

Let i be maximal such that −→vivn ∈ E(Γ), so i � δ−(Γ) � ηn. Then

0 > y ·1 =
i

∑
j=1

y j +
n

∑
j=i+1

y j � iyi +(n− i)yn � ηnyi +(1−η)nyn = ny ·χη ,1−η(−→vivn) � 0,

a contradiction.
The second statement is implied by basic linear programming theory, if we take the perfect

fractional (η ,1−η)-matching to be one with the smallest possible number of non-zero weights,
as then w is a basic feasible solution.

Note that if a directed graph Γ admits a perfect (η ,ξ )-weighted fractional matching w with
η � ξ and η +ξ = 1, then α(Γ) � ξ n, because for every independent set A in Γ we have

|A| = ∑
a∈A

(
∑

b∈N+(a)
ηw−→

ab
+ ∑

b∈N−(a)
ξ w−→

ba

)
� ξ ∑

a∈A

(
∑

b∈N+(a)
w−→

ab
+ ∑

b∈N−(a)
w−→

ba

)
� ξW � ξ n,

where the initial equality holds since we have equality in (2.1), and the penultimate inequality
holds because (since A is an independent set) every edge of Γ contributes at most once to the sum.
This shows that the minimum indegree condition of Lemma 2.10 is best possible for η � 1/2,
since weaker conditions do not preclude the existence of independent sets of size greater than
(1−η)n.

3. Triangle-tilings in regular pairs and triples

As described in the proof outline, the proof of Theorem 1.2 proceeds by iteratively constructing
a triangle-tiling in G which covers all of the vertices outside of a small ‘core’ subset of vertices
but leaves most vertices inside this ‘core’ uncovered. This gives a perfect triangle-tiling in G,
because the ‘core’ is robust in the sense that it has a perfect triangle-tiling after the removal of
any sufficiently small set of vertices (provided that the number of vertices remaining is divisible
by 3). Depending on the structure of the graph G, this ‘core’ will either consist of sets A and B
which form a super-regular pair with density greater than 1/2, or of sets A, B and C which form
three super-regular pairs, each with density bounded below by a small constant.

We begin with the case where the ‘core’ consists of a super-regular pair of density greater than
1/2 (part (c) of Lemma 3.1). Let G be a graph whose vertex set is the disjoint union of sets A and
B. Recall that a triangle T in G is an A-triangle if T contains two vertices of A and one vertex of
B, and likewise that T is a B-triangle if T contains two vertices of B and one vertex of A.
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Lemma 3.1. Suppose that 1/n � γ � ε � φ ,ε ′ � d � ω . Let A and B be disjoint sets of
vertices with n/3 + ωn � |A|, |B| � 2n/3−ωn and |A∪B| = n, and let G be a graph on vertex
set V := A∪B with α(G) � γn. Then the following statements hold.

(a) If G[A,B] is (�d,ε)-regular then G admits a triangle-tiling covering all but at most 2εn
vertices of G. Moreover, for every a and b with 2a + b � |A| − εn and a + 2b � |B| − εn,
there is a triangle-tiling in G which consists of a A-triangles and b B-triangles.

(b) If G[A,B] is (d,ε)-super-regular then, for every S ⊆ A of size |S| = φn for which |A \ S|+
|B|+ �φε ′n� is divisible by 3, there is a triangle-tiling in G which covers every vertex of
G[V \S] and which covers precisely �φε ′n� vertices of S.

(c) If n is divisible by 3 and G[A,B] is (1/2 + d,ε)-super-regular, then G contains a perfect
triangle-tiling.

Proof. For (a) the triangles may be chosen greedily. Indeed, suppose that we have already
chosen a triangle-tiling T consisting of at most a A-triangles and at most b B-triangles; then
T covers at most 2a + b vertices of A, and at most a + 2b vertices of B. Taking A′ = A \V (T )
and B′ = B \V (T ), we find that |A′|, |B′| � εn. Since G[A,B] is (�d,ε)-regular it follows that
dG(A′,B′) � d − ε , therefore some vertex x ∈ A′ has at least (d − ε)|B′| � (d − ε)εn > γn
neighbours in B′. Since α(G) � γn it follows that some two of these neighbours are adjacent,
giving a B-triangle which can be added to T . The same argument with the roles of A′ and B′

reversed yields instead an A-triangle which may be added to T . This proves the second statement
of (a); the first follows by setting a = 1

3 (2|A|− |B|− εn) and b = 1
3 (2|B|− |A|− εn).

Next, for (b), let z := �φε ′n�, t4 := �z/2� and z′ := z− 2t4 ∈ {0,1}, so we will construct a
triangle-tiling that covers all of (A\S)∪B and exactly z = 2t4 +z′ vertices of S. Let B′

1 ⊆B consist
of all vertices in B with fewer than (d − ε/φ)|S| neighbours in S; since G[S,B] is (�d,ε/φ)-
regular we have |B′

1| � (ε/φ)n. Form B1 by adding at most two arbitrarily selected vertices from
B\B′

1 to B′
1 so that |B\B1|−t4 is divisible by 3. Since G[A,B] is (d,ε)-super-regular, every vertex

of B1 has at least (d−ε)|A|− |S|� dn/3 > 2|B1|+ γn neighbours in A\S. Since α(G) � γn, we
may greedily form a triangle-tiling T1 of A-triangles in G of size |B1| which covers every vertex of
B1 and does not use any vertex from S. We now select uniformly at random a subset B2 ⊆B\B1 of
size |B2| = t4. Since every vertex in A has at least (d− ε)|B|− |B1| � dn/3 neighbours in B\B1,
Theorem 2.3 implies that, with probability 1− o(1), every vertex of A has at least (φε ′d/7)n
neighbours in B2. Fix a choice of B2 for which this event occurs. Let S′ be an arbitrarily selected
subset of S of size z′ (so S′ is either empty or a singleton) and let A′ := (A\ (S∪V (T1)))∪S′ and
B′ := B\ (B1 ∪B2). Recall that, by assumption, |A\S|+ |B|+ z is divisible by 3, so

|A′|+ |B′| = |A\S|+ z′ + |B|− |B2|− |V (T1)| = (|A\S|+ |B|+ z)− (3t4 + |V (T1)|)

is divisible by 3. Since |B′| is divisible by 3 by our selection of B1 and B2, it follows that |A′| is
divisible by 3 as well. Let

t3 :=
⌊

φε ′d
15

n

⌋
, a :=

2
3
|A′|− 1

3
|B′| and b :=

2
3
|B′|− 1

3
|A′|− t3.

Since G[A′,B′] is (�d,ε/2)-regular, (a) implies that there is a triangle-tiling T2 in G[A′ ∪B′] such
that A′′ := A′ \V (T2) and B′′ := B′ \V (T2) have sizes precisely |A′′| = |A′| − (2a + b) = t3 and
|B′′|= |B′|−(a+2b) = 2t3. Since by the choice of B2 each vertex of A′′ has at least (φε ′d/7)n >
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2|A′′|+ γn neighbours in B2, we may greedily form a triangle-tiling T3 in G[A′′ ∪B2] consisting
of exactly t3 B-triangles which covers every vertex of A′′ and which covers precisely 2t3 vertices
of B2. At this point we have obtained a triangle-tiling T1∪T2∪T3 in G which covers every vertex
of A except for those in S \ S′ and every vertex of B except for the precisely 2t3 vertices in B′′

and the precisely t4 − 2t3 vertices in B2 \V (T3). Therefore, in total, precisely t4 vertices of B
remain uncovered, each of which has at least (d−ε/φ)|S|−|S′|> 2|B2|+γn neighbours in S\S′

by the choice of B1. We may therefore greedily form a triangle-tiling T4 of A-triangles in G
which covers all the remaining uncovered vertices in B and precisely 2t4 vertices of S \S′. Then
T1 ∪T2 ∪T3 ∪T4 is the claimed triangle-tiling.

Finally, since none of the assumptions for (c) involve φ or ε ′, we may assume that φ � ε ′. We
also assume without loss of generality that |B| � |A|. Since α(G) � γn, we may greedily form a
matching M of size at least (|B|− γn)/2 � n/10 in G[B]. Fix such a matching M, and form an
auxiliary bipartite graph H with vertex classes A and M where a ∈ A and e = xy ∈ M are adjacent
if and only if xyz is a triangle in G. Note that for every edge e = xy ∈ M we have that

degH(e) = |NG(x)∩NG(y)∩A| � 2((1/2+d)− ε)|A|− |A| � d|A|,

so H has density at least d. By Lemma 2.6, applied to H with ε ′ here in place of ε there, we may
choose subsets X ⊆ A and M′ ⊆ M such that |X | = φn, |M′| = (1− ε)φn and such that H[X ′,M′]
contains a perfect matching for every subset X ′ ⊆ X with |X ′| = |M′|. Let B′ := B \V (M′) and
n′ := |A|∪ |B′|. Then, since we assumed that |B| � |A|, we have n′/3+ωn′ � |A|, |B′| � 2n′/3−
ωn′, so we can apply (b) to G[A∪B′] with A, B′ and X in place of A, B and S respectively to
obtain a triangle-tiling T1 in G which covers every vertex of G except for the vertices of V (M′)
and precisely (1− ε ′)φn vertices of X . So, taking X ′ to be the vertices of X not covered by
T1, we have |X ′| = |M′|. By the choice of X and M′ it follows that H[X ′,M′] contains a perfect
matching, which corresponds to a perfect triangle-tiling T2 in G[X ′ ∪V (M′)]. This gives a perfect
triangle-tiling T1 ∪T2 in G.

We now turn to the case where the ‘core’ consists of three sets which form three super-regular
pairs, for which the following lemma is analogous to Lemma 3.1.

Lemma 3.2. Suppose that 1/n � γ,ε � d,ω , and that 3 divides n. Let V1,V2 and V3 be disjoint
sets of vertices with |Vi| � n/6+ωn for each i ∈ [3] such that V :=

⋃
i∈[3]Vi has size |V | = n. Let

G be a graph on vertex set V with α(G) � γn such that G[Vi,Vj] is (d,ε)-super-regular for each
distinct i, j ∈ [3]. Then G contains a perfect triangle-tiling.

To prove Lemma 3.2 we use the celebrated Blow-up Lemma of Komlós, Sárközy and Sze-
merédi [11] to obtain a perfect triangle-tiling. For simplicity, we state this only in the (very)
special case that we use. Note that our definition of super-regularity differs slightly from theirs,
but it is not hard to show that the two definitions are equivalent up to some modification of the
constants involved (see e.g. [14, Fact 2]), so the validity of Theorem 3.3 is unaffected.

Theorem 3.3 (Blow-up Lemma for triangle-tilings). Suppose that 1/n � ε � d. Let A,B
and C be disjoint sets of vertices with |A| = |B| = |C| = n, and let G be a graph on vertex set
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V := A ∪ B ∪C such that G[A,B], G[B,C] and G[C,A] are each (d,ε)-super-regular. Then G
contains a perfect triangle-tiling.

The proof of Lemma 3.2 proceeds by iteratively deleting triangles from G with two vertices
in one cluster and one in another cluster, until the same number of vertices remain in each
cluster. We complete the proof by applying the Blow-up Lemma to obtain a perfect triangle-
tiling covering all remaining vertices.

Proof of Lemma 3.2. Throughout this proof we perform addition on subscripts modulo 3.
For each i ∈ [3], the fact that G[Vi,Vi+1] is (d,ε)-super-regular implies that each vertex v ∈ Vi

has |N(v)∩Vi+1| � (d − ε)|Vi+1| � dn/6. So if we choose uniformly at random a set Zj ⊆Vj of
size ωn for each j ∈ [3], then |N(v)∩Zi+1| is hypergeometrically distributed with expectation at
least dωn/6. By Theorem 2.3 the probability that v has fewer than dωn/7 neighbours in |Zi+1|
declines exponentially with n, and likewise the same is true of the probability that v has fewer
than dωn/7 neighbours in |Zi+2|. Taking a union bound, with positive probability it holds that
for each i ∈ [3] every vertex v ∈Vi has at least dωn/7 neighbours in each of Zi+1 and Zi+2. We fix
such an outcome of our random selection of the sets Zj, and define X0

i = Vi \Zi for each i ∈ [3].
Without loss of generality we may assume that

n
6

� |X0
1 | � |X0

2 | � |X0
3 | �

2n
3

−3ωn.

We now proceed by an iterative process. At time step t � 0, if we have |Xt
1| = |Xt

2| = |Xt
3|

then we terminate. Otherwise, we choose a triangle xyz in G with x ∈ Xt
2 and y,z ∈ Xt

3 (we shall
explain shortly why this will always be possible). We then set Y t+1

j := Xt
j \ {x,y,z} for j ∈ [3]

and define Xt+1
1 ,Xt+1

2 and Xt+1
3 such that {Xt+1

1 ,Xt+1
2 ,Xt+1

3 } = {Y t+1
1 ,Y t+1

2 ,Y t+1
3 } and |Xt+1

1 | �
|Xt+1

2 | � |Xt+1
3 |, before proceeding to the next time step t +1.

Suppose that this procedure does not terminate prior to some time step T . Using the fact
that 3 divides n it is easily checked that we must then have |Xt+2

3 | − |Xt+2
1 | � |Xt

3| − |Xt
1| − 3

for each t ∈ [T − 2]. In other words, the size difference between the smallest and largest set
decreases by at least 3 over each two time steps. Similarly we find that |Xt

1|− |Xt+2
1 | � 1 for each

t ∈ [T − 2], meaning that the smallest set size decreases by at most 1 over each two time steps.
Furthermore, if at some time t we have 0 < |Xt

3|−|Xt
1|< 3, then (since 3 divides n) we must have

|Xt
1|+ 2 = |Xt

2|+ 1 = |Xt
3|, whereupon the procedure will terminate at time t + 1. It follows that

the procedure must terminate at some time T , and moreover that

T � 2
3
(|X0

3 |− |X0
1 |) � 2

3

((
2n
3

−3ωn

)
− n

6

)
=

n
3
−2ωn.

This implies that at each time t < T we have

|Xt
3| � |Xt

2| � |Xt
1| � |X0

1 |−
⌈

t
2

⌉
� |X0

1 |−
T
2

� ωn,

and so throughout the procedure it is always possible to pick a triangle as desired. Indeed,
G[Xt

2,X
t
3] is (�d,ε/ω)-regular by the Slicing Lemma (Lemma 2.1), so some vertex of Xt

2 has
at least (d−ε/ω)|Xt

3|� ωdn/2 neighbours in Xt
3. Since α(G) � γn < ωdn/2 some two of these

neighbours must be adjacent, giving the desired triangle.

https://doi.org/10.1017/S0963548318000196 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000196


Triangle-Tilings in Graphs Without Large Independent Sets 463

After the procedure terminates, define V ′
i := XT

i ∪Zi for each i ∈ [3]. Then |V ′
1|= |V ′

2|= |V ′
3|�

2ωn, so by Lemma 2.1 and our choice of the sets Zj it follows that G[V ′
i ,V

′
j ] is (dω/7,ε/2ω)-

super-regular for each distinct i, j ∈ [3]. By Theorem 3.3 there is a perfect triangle-tiling in
G[

⋃
i∈[3]V

′
i ]; together with the triangles selected by the iterative procedure this gives a perfect

triangle-tiling in G.

4. Proof of Theorem 1.2

In this section we prove Theorem 1.2. The following lemma is the central part of the proof,
showing that if a graph G can be decomposed into clusters which form regular and super-regular
pairs, indexed by a graph R which admits a bounded degree spanning tree, then by ‘working
inwards’ from the leaves of the tree we can form a perfect triangle-tiling in G.

Lemma 4.1. Suppose that 1/m � γ � 1/k � ε � d,ω . Let G be a graph whose vertex set is
partitioned into k sets V1, . . . ,Vk, and let R be a graph with vertex set [k] which admits a spanning
tree T of maximum degree at most 10. Suppose also that the following statements hold.

(a) |V1| � (1− ε)m.
(b) V1 admits either a partition into parts A1 and B1 with |A1|, |B1| � (1/3 + ω)|V1| such that

G[A1,B1] is (1/2+d,ε)-super-regular, or a partition into A1,B1 and C1 with |A1|, |B1|, |C1|�
(1/6+ω)|V1| such that G[A1,B1], G[A1,C1] and G[B1,C1] are each (d,ε)-super-regular.

(c) For each 2 � i � k, (1− ε)m � |Vi| � m and Vi admits a partition into parts Ai and Bi with
|Ai|, |Bi| � (1/3+ω)m such that G[Ai,Bi] is (d,ε)-super-regular.

(d) If i j ∈ E(R), then at least m/5 vertices of Vi have at least dm/5 neighbours in Vj.
(e) α(G) � γm.

Then G contains a triangle-tiling covering all but at most two vertices of G.

Proof. Introduce new constants φ and ε ′ with ε � φ � ε ′ � d and iterate the following
process. Pick a leaf of T other than vertex 1, say vertex i, and let j be the neighbour of i in T .
We will show that there exists a triangle-tiling in G[Vi ∪Vj] that covers every vertex of Vi and
at most 2φm vertices of Vj. We then delete the vertices covered by this tiling from G and delete
vertex i from T . We proceed in this way until only vertex 1 of T remains. We then arbitrarily
delete at most two further vertices of V1 so that the number of remaining vertices in V1 is divisible
by three. Since, at this point, we have removed at most 2φm ·Δ(T )+2 � 21φm � ε ′m/7 vertices
from V1, by (a), (b) and (e) there exists a bipartition or tripartition of the remaining vertices of V1

which satisfies the conditions of Lemma 3.1(c) or Lemma 3.2 respectively (with ω/2, ε ′ and 2γ
in place of ω , ε and γ respectively). In either case there is a perfect triangle-tiling in the graph
induced by the remaining vertices of V1, which together with the deleted triangle-tilings gives a
triangle-tiling in G covering every vertex except for the at most two deleted vertices.

It therefore suffices to show that we can find the desired triangle-tiling in G[Vi ∪Vj] at each
step of this process. To this end, let S′ be the set of remaining vertices of Vi which have at
least dm/6 neighbours remaining in Vj. Observe that previous deletions can have removed at most
2φm ·Δ(T ) � dm/30 vertices from each of Vi and Vj, so by (d) we have |S′|� m/6, and by (c) the
remaining vertices of Vi can be partitioned into parts Ai and Bi with |Ai|, |Bi|� (1/3+ω/2)m such
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that G[Ai,Bi] is (d,ε ′)-super-regular. Without loss of generality we may assume that |S′ ∩Ai| �
|S′ ∩Bi|, so |S′ ∩Ai| � |S′|/2 � m/12 and we can arbitrarily select S ⊆ S′ ∩Ai of size φm. Now
we may use Lemma 3.1(b) (again with ω/2, ε ′ and 2γ in place of ω , ε and γ respectively) to find
a triangle-tiling T in G[Vi] which covers every vertex of Vi \S. Since each uncovered vertex has
at least dm/6 � 2φm + γm neighbours in Vj, we may greedily extend T to a triangle-tiling T ′

in G which covers every vertex of Vi and which covers at most 2φm vertices of Vj.

It now suffices to show that for every graph G satisfying the conditions of Theorem 1.2, we can
delete triangles and/or vertices from G to obtain a subgraph whose structure meets the conditions
of Lemma 4.1. The following lemma shows how to do this under the additional assumption that
G has no large sparse cut; this assumption is useful as it allows us to assume that the reduced
graph R of G is connected, and so has spanning trees of bounded maximum degree. For this we
make the following definition: given a graph G and a partition {A,B} of V (G), we say that an
edge of G is (A,B)-crossing if it has one endvertex in A and one endvertex in B.

Lemma 4.2. For every ω,ψ > 0 there exist n0,γ > 0 such that the following statement holds.
Let G be a graph on n � n0 vertices with δ (G) � n/3+ωn and α(G) � γn. Suppose additionally
that for every partition {A,B} of V (G) with |A|, |B| � n/3 there are at least ψn2-many (A,B)-
crossing edges of G. Then G contains a triangle-tiling covering all but at most two vertices of G
(so in particular, if 3 divides n then G contains a perfect triangle-tiling).

Proof. Introduce new constants satisfying the following hierarchy:

1/n � γ � 1/D � 1/T � 1/t � ε ′ � ε � d � ω,ψ.

Then we may assume that n and T are large enough to apply Theorem 2.5 with constants ε ′/2,d, t
and q = 1. We also assume without loss of generality that ω−1 is an integer, and define D′ :=
30ω−1(D!). Let G be as in the statement of the lemma, and apply Theorem 2.5 to G to obtain a
spanning subgraph G′ ⊆ G, an integer k′ with t � k′ � T , an exceptional set U0 of size at most
ε ′n/2 and clusters U1, . . . ,Uk′ of equal size. We now remove at most D′ vertices from each cluster
so that the number of remaining vertices in each cluster is divisible by D′, and add all removed
vertices to the exceptional set U0. Since the total number of vertices moved in this way is at
most D′k′ � 30ω−1(D!)T � ε ′n/2, and at most D′ � ε ′n/2T � ε ′/2|Ui| vertices are removed
from each cluster Ui, by Lemma 2.1 the resulting partition of V (G) into U0,U1, . . . ,Uk′ has the
following properties.

(i) |U0| � ε ′n and |U1| = |U2| = · · · = |Uk′ | =: m′, where D′ divides m′.
(ii) dG′(v) � dG(v)− (ε ′ +d)n � n/3+2ωn/3 for all v ∈V (G).

(iii) e(G′[Ui]) = 0 for all i ∈ [k′].
(iv) For each distinct i, j ∈ [k′] either G′[Ui,Uj] is (�d,ε ′)-regular or G′[Ui,Uj] is empty.

In particular (i) implies that (1−ε ′)n/k′ � m′ � n/k′. We form the reduced graph R on vertex set
[k′] in the usual way, that is, with i j ∈ E(R) if and only if e(G′[Ui,Uj]) > 0. For each i ∈ [k′] the
number of edges of G′ with an endvertex in Ui is at least m′(n/3+2ωn/3) by (ii). Also, by (iii)
there is no edge in G′[Ui], and by (i) there are at most at most m′ε ′n edges in G′[U0,Ui]. Since for
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each j ∈ [k′] there are at most (m′)2 edges in G′[Ui,Uj], it follows that

δ (R) � m′(n/3+2ωn/3)−m′ε ′n
(m′)2

�
(

1
3

+
2ω
3

− ε ′
)

n
m′ �

(
1
3

+
ω
2

)
k′. (4.1)

Now consider a partition {AR,BR} of [k′] with |AR|, |BR| � δ (R), and define A := U0 ∪
⋃

i∈AR
Ui

and B :=
⋃

i∈[k′]\BR
Ui. Then

|A|, |B| � δ (R)m′ �
(

1
3

+
ω
2

)
k′ · (1− ε ′)n

k′
� n

3
,

so by assumption G has at least ψn2-many (A,B)-crossing edges. By (ii) at most (d + ε ′)n2

edges of G are not in G′, and by (i) at most ε ′n2 edges of G intersect U0, so G′ contains at least
ψn2−(d +ε ′)n2−ε ′n2 > 0 edges which are (A,B)-crossing but do not intersect U0. Let Ui and Uj

be clusters containing the endvertices of some such edge; then i j is an (AR,BR)-crossing edge of
R. In other words, for every partition {AR,BR} of [k′] with |AR|, |BR| � δ (R) there is an (AR,BR)-
crossing edge of R. Since every connected component of R has size at least δ (R), it follows that
R is connected.

We now form a set V1 from which we shall form the ‘core’ set of vertices mentioned in
the proof overview at the beginning of Section 3. Suppose first that there exist i, j ∈ [k′] with
d(G′[Ui,Uj]) � 2/3. Then G′[Ui,Uj] is (�3/5,ε ′)-regular by (iv). In this case we define V1 :=
Ui ∪Uj, and for convenience of notation later we define X1 := Ui and Y1 := Uj. Now suppose
instead that d(G′[Ui,Uj]) < 2/3 for every i, j ∈ [k′], that is, that each G′[Ui,Uj] has at most
2(m′)2/3 edges. Then we have an extra factor of 2/3 in the denominator of the second term
of (4.1), so we have δ (R) � k′/2, and so R contains a triangle i j� by Mantel’s theorem. In this
case we take V1 := Ui ∪Uj ∪U� and set X1 := Ui, Y1 := Uj, and Z1 := U�. We define an auxiliary
graph R0 to be the subgraph of R formed by deleting vertices i and j in the former case, and by
deleting vertices i, j and � in the latter case.

Since ω−1 is an integer, we may write η := 1/3+ω/10 as a rational number with denominator
L := 30 ·ω−1. Let

−→
R0 be the directed graph formed from R0 by replacing each edge by a pair of

edges, one in each direction. Then by Lemma 2.10, we can find a perfect (η ,1−η)-weighted
fractional matching w in

−→
R0 in which all weights are rational, and the least common denominator

L′ of all weights is bounded above by a function of |V (R0)| and L, that is, a function of k′ and ω .
Since k′ � 1/T and we assumed that 1/D � 1/T,ω , we may assume that L′ � D, so L′ divides
D!, and so D!w−→

i j
is an integer for every

−→
i j ∈ −→

R0. Define m := m′/D!, and observe that that since

D′ = D!L divides m′ by (i), both m and ηm are integers.
We now partition each cluster not contained in V1 into parts of size ηm and (1−η)m according

to the weights in w, using the following probabilistic argument. For every i ∈V (R0), we select a
partition Ui of Ui uniformly at random from all such partitions in which exactly ∑ j∈N+(i) D!w−→

i j

sets are of size ηm and exactly ∑ j∈N−(i) D!w−→
ji

sets are of size (1−η)m. Since w is a perfect

fractional (η ,1−η)-weighted matching, by (2.1) we have

ηm ∑
j∈N+(i)

D!w−→
i j

+(1−η)m ∑
j∈N−(i)

D!w−→
ji

= D!m = m′ = |Ui|,

so we can indeed partition Ui in this way. We also consider the two or three clusters contained in
V1 to be partitioned into a single part. That is, for each i ∈ [k′]\V (R0) we set Ui to be the trivial
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partition {Ui} of Ui. Now consider any edge i j ∈ E(R), and recall that G′[Ui,Uj] is (�d,ε ′)-
regular by (iv), so by Lemma 2.4†, with probability at least 1− e−Ω(n) we have that G′[U ′

i ,U
′
j] is

(�d,ε)-regular for every U ′
i ∈ Ui and for every U ′

j ∈ U j. Taking a union bound over all of the at

most
(k′

2

)
edges of R we find that with positive probability this property holds for every edge of

R. Fix a choice of partitions Ui for i ∈ [k′] for which this is the case.
We now define another auxiliary graph R1 with vertex set

⋃
i∈[k′]Ui in which, for each distinct

i, j ∈ [k′], each X ∈ Ui and each Y ∈ U j, there is an edge XY if and only if G′[X ,Y ] is (�d,ε)-
regular. Observe that by our choice of partitions Ui the graph R1 is then a blow-up of R, formed
by replacing each vertex i ∈ [k′] by a set of |Ui| vertices and replacing each edge i j ∈ E(R) by
a complete bipartite graph between the corresponding sets. In particular, R1 is connected. Also
note that for each distinct i, j ∈ [k′] with i j /∈ E(R), each X ∈ Ui and each Y ∈ U j, the graph
G′[X ,Y ] is empty by (iv).

Next, for every edge
−→
i j ∈ E(

−→
R0), we define si j := D! ·w−→

i j
. We then label si j of the sets in Ui

of size ηm as X1
i j, . . . ,X

si j

i j
and label si j of the sets in U j of size (1−η)m as Y 1

i j, . . . ,Y
si j

i j
. Since Ui

has exactly ∑ j∈N+(i) si j sets of size ηm and exactly ∑ j∈N−(i) s ji sets of size (1−η)m, we may do

this so that for each i ∈ [k′] each set in Ui is uniquely labelled. We now relabel the sets X �
i j and Y �

i j

for
−→
i j ∈ E(

−→
R0) and � ∈ si j as X2, . . . ,Xk and Y2, . . . ,Yk respectively, where

k−1 := ∑
−→
i j∈E(

−→
R0)

si j = D! ∑
−→
i j∈E(

−→
R0)

wi j = D!|V (R0)|

since w is perfect, so k′ � k � D!k′. Then for each 2 � � � k our choice of partition implies that
G′[X�,Y�] is (�d,ε)-regular; we define V� := X� ∪Y�, and observe that |V�| = m.

We now define a final auxiliary graph R∗ with vertex set [k] in which i j is an edge of R∗ if and
only if e(G′[Vi,Vj]) > 0. Observe that R∗ is then a contraction of R1, in which the vertices of R1

corresponding to the sets X1 and Y1 (and Z1 if defined) are contracted to the single vertex 1 of R∗,
and for 2 � i � k the vertices of R1 corresponding to Xi and Yi are contracted to the single vertex
i of R∗. So, since R1 is connected, R∗ is connected also. Now suppose that i j is an edge of R∗.
Since G′[Vi,Vj] is non-empty there must exist sets S ∈ {Xi,Yi,Zi} and T ∈ {Xj,Yj,Zj} such that
G′[S,T ] is non-empty (ignore Zi unless i = 1 and Z1 exists, and likewise for Zj). We then have
S ∈ Ui′ and T ∈ U j′ for some i′, j′ ∈ [k′], so ST is an edge of R1, and so G′[S,T ] is (�d,ε)-regular.
Also, a similar calculation to (4.1) shows that we must have δ (R∗) � k/3, so by Theorem 2.7
there is a spanning tree T in R∗ with Δ(T ) � 3.

To recap, at this point we have a formed a partition {U0,V1, . . . ,Vk} of V (G) and a graph R∗

with vertex set [k] which contains a spanning tree of maximum degree at most 3, such that the
following statements hold.

(v) V1 admits either a partition {X1,Y1} with |X1| = |Y1| = m′ such that G′[X1,Y1] is (�3/5,ε ′)-
regular, or a partition {X1,Y1,Z1} with |X1|= |Y1|= |Z1|= m′ such that G′[X1,Y1], G′[X1,Z1]
and G′[Y1,Z1] are each (�d,ε ′)-regular.

(vi) For each 2 � i � k, we have |Vi|= m and Vi admits a partition {Xi,Yi} with |Xi|, |Yi|� ηm =
(1/3+ω/10)m such that G′[Xi,Yi] is (�d,ε)-regular.

† Note that m is much smaller than ε ′m′ (since D is much larger than 1/ε ′) so we must use the Random Slicing Lemma
(Lemma 2.4) here, as opposed to, say, the standard Slicing Lemma (Lemma 2.1).
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(vii) If i j ∈ E(R∗), then there are sets S ⊆Vi and T ⊆Vj with |S| � |Vi|/3 and |T | � |Vj|/3 such
that G′[S,T ] is (�d,ε)-regular.

If we are in the first case of (v), then by Lemma 2.2 we may choose subsets A1 ⊆ X1 and
B1 ⊆Y1 with |A1|, |B1|� (1−ε ′)m′ such that G′([A1,B1]) is (3/5,2ε ′)-super-regular, and we then
define W1 := A1 ∪B1. If we are instead in the second case, by three applications of Lemma 2.2
we may choose subsets A1 ⊆ X1, B1 ⊆ Y1 and C1 ⊆ Z1 with |A1|, |B1|, |C1| � (1− 2ε ′)m′ such
that G′([A1,B1]), G′([B1,C1]) and G′([C1,A1]) are each (d,3ε ′)-super-regular, and we then define
W1 := A1 ∪B1 ∪C1.

Next, for each 2 � � � k, by (vi) and Lemma 2.2 we may choose subsets A� ⊆ X� and B� ⊆ Y�

with |A�| � (1− ε)|X�| and |B�| � (1− ε)|Y�| such that G′[A�,B�] is (d,2ε)-super-regular, and
define W� := A�∪B�. Finally, define W0 := U0 ∪

⋃
i∈[k]Vi \Wi. Then {W0,W1, . . . ,Wk} is a partition

of V (G) and, since |Wi| � (1− ε)|Vi| for each i ∈ [k], we have |W0| � 2εn.
Write W0 := {x1, . . . ,xq}, so q � 2εn. To complete the proof we greedily form a triangle-

tiling T = {T1, . . . ,Tq} such that xi ∈ Ti for each i ∈ [q] and |V (T )∩Wj| � 20ε|Wj| for each
j ∈ [k]. To see that this is possible, suppose that we have already chosen triangles T1, . . . ,Ts−1

for some s ∈ [q], let X :=
⋃

i∈[s−1]V (Ti) be the set of vertices covered by these triangles, and
let the set X ′ consist of all vertices in sets Wi with |X ∩Wi| � 18ε|Wi| (that is, from which the
previously chosen triangles cover more than a 18ε-proportion of the vertices). Then we have
18ε|X ′| � |X | � 3q � 6εn, so |X ′| � n/3, and so xs has at least δ (G)− |X | − |X ′| − |W0| �
ωn− 10εn � ωn/2 neighbours not in X , X ′ or W0, so (since α(G) � γn < ωn/2) two of these
neighbours must be adjacent, giving the desired triangle Ts containing xs. Having chosen Ts in
this way for every s ∈ [q] to obtain T , observe that since we chose each Ts to avoid every set Wi

from which at least 18ε|Wi| vertices were covered by previously chosen triangles, we must have
|V (T )∩Wi| � 20ε|Wi| for each i ∈ [k], as desired.

Finally, for each i ∈ [k] define A′
i := Ai \V (T ), B′

i := Bi \V (T ), V ′
i := Wi \V (T ). Also define

V ′ := V (G) \V (T ) and H := G[V ′]. We claim that the graphs H and R∗ and the partition
{V ′

1 . . . ,V ′
k} of V (H) meet the properties of Lemma 4.1 with ε∗ := 200ε , ω ′ := ω/20 and γ ′ :=

2γk′(D!) in place of ε , ω and γ respectively and with m,d and k playing the same role there as
here. Indeed, our constant hierarchy allows us to assume that 1/m � γ ′ � 1/k � ε∗ � d � ω ′,
as required. Also observe that for each i∈ [k] we have |V ′

i |� |Vi|−20ε|Vi|−ε|Vi|= (1−21ε)|Vi|,
so certainly |V ′

i | � (1− ε∗)m for each i ∈ [k]. So Lemma 4.1(a) holds, and Lemmas 4.1(b) and
4.1(c) follow immediately from our choice of sets A� and B� (and possible C1). Also, for each
i j ∈ E(R∗) by (vii) there exist sets S ⊆ V ′

i and T ⊆ V ′
j with |S| � |V ′

i |/4 and |T | � |V ′
j |/4 such

that G′[S,T ] is (�d,2ε)-regular, which implies that at least (1−2ε)|S| � m/5 vertices in S have
at least (d −2ε)|T | � dm/5 neighbours in T , so Lemma 4.1(d) holds. Last of all, Lemma 4.1(e)
holds since α(H) � α(G) � γn � γ(2k′m′) = γ ′m. So we may apply Lemma 4.1 to obtain a
triangle-tiling covering all but at most two vertices of H; together with T this yields a triangle-
tiling in G covering all but at most two vertices.

Finally, to complete the proof of Theorem 1.2 it remains only to consider graphs G which
admit a large sparse cut. In this case we show that can remove a small number of vertices to
obtain two vertex-disjoint subgraphs GA and GB of G whose vertex sets partition V (G) and each
of which satisfies a stronger minimum degree condition. We then apply Theorem 1.1 to obtain
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a perfect triangle-tiling in each of GA and GB (alternatively, one could note that the stronger
minimum degree conditions preclude either GA or GB from having a large sparse cut and apply
Lemma 4.2).

Proof of Theorem 1.2. Fix ω > 0 and choose n0 sufficiently large and γ sufficiently small
for Lemma 4.2 with ω2/40 in place of ψ and also so that we can apply Theorem 1.1 with ω/2,
n0/3 and 3γ in place of ω , n0 and γ respectively. Now let G be a graph on n � n0 vertices
with δ (G) � n/3 + ωn and α(G) � γn. If for every partition {A,B} of V (G) with |A|, |B| �
n/3 there are at least ω2n2/40-many (A,B)-crossing edges of G, then G contains a triangle-
tiling covering all but at most two vertices by Lemma 4.2, so we are done. So we may assume
that for some partition {A,B} of V (G) with |A|, |B| � n/3 there are fewer than ω2n2/40-many
(A,B)-crossing edges. Fix such a partition with the smallest number of (A,B)-crossing edges.
Note that we cannot have |A| � n/3 + 1, as then there would be at least |A|(δ (G)− n/3− 1) �
(n/3) · (ωn−1) � ωn2/4-many (A,B)-crossing edges. It follows that every vertex x ∈ A lies in
at most deg(x)/2-many (A,B)-crossing edges, as otherwise moving a from A to B would yield
a partition of V (G) with parts of size at least n/3 and with fewer (A,B)-crossing edges. So we
must have δ (G[A]) � δ (G)/2 � n/6+ωn/2, and the same argument with B in place of A shows
that δ (G[B]) � n/6+ωn/2.

Our proof now diverges according to whether we are proving conclusion (a) or conclusion (b)
of Theorem 1.2. For conclusion (a) we simply choose arbitrarily a set S of at most four vertices
of G so that |A \ S| and |B \ S| are each divisible by 3. For conclusion (b) we instead use our
additional assumptions that G has no divisibility barrier and that 3 divides n. Indeed, the latter
implies that we must have one of the following three cases.

(a) |A| ≡ |B| ≡ 0 (mod 3). In this case we take S = /0.
(b) |A| ≡ 1 (mod 3) and |B| ≡ 2 (mod 3). Since (A,B) is not a divisibility barrier, either G

contains an B-triangle or a pair of vertex-disjoint A-triangles, and we take S to be the vertices
covered by some such triangle or pair of triangles.

(c) |A| ≡ 2 (mod 3) and |B| ≡ 1 (mod 3). Since (B,A) is not a divisibility barrier, either G
contains an A-triangle or a pair of vertex-disjoint B-triangles, and we take S to be the vertices
covered by some such triangle or pair of triangles.

Observe that in all cases we have |S| � 6 and that both |A\S| and |B\S| are divisible by 3. The
remaining part of the proof is the same for both cases.

Let XA ⊆ A consist of all vertices of A with degG[A](x) < n/3+ωn/2. Then each vertex of XA is

contained in more than ωn/2-many (A,B)-crossing edges, and since there are at most ω2n2/40-
many (A,B)-crossing edges in total, each with one vertex in A, it follows that |XA| � ωn/20.
Since α(G) � γn and δ (G[A]) � n/6 � 2|XA|+ |S|+ γn we may greedily form a triangle-tiling
TA of size at most |XA| in G[A] which covers every vertex of XA but which does not intersect S.
We then define A′ := A\ (V (TA)∪S), GA := G[A′] and nA := |A′|. Then δ (GA) � n/3+ωn/2−
|V (TA)| − |S| � n/3 + ωn/3, so n/3 + ωn/3 � nA � 2n/3. It follows that GA is a graph on nA

vertices with δ (GA) � nA/2+ωnA/2 and α(GA) � γn � 3γnA. Also nA is divisible by 3 (since 3
divides each of |A\S| and |V (TA)|), so GA contains a perfect triangle-tiling T ′

A by Theorem 1.1.
By exactly the same argument with B in place of A we obtain a triangle-tiling TB in G[B] and a

graph GB on vertex set B′ := B\ (V (TB)∪S) which contains a perfect triangle-tiling T ′
B. Finally,
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for conclusion (a) observe that T := TA ∪TB ∪T ′
A ∪T ′

B is then a triangle-tiling in G covering all
vertices outside S, that is, all but at most four vertices of G, and for conclusion (b) note that
adding the triangle or triangles covering S to T gives a perfect triangle-tiling in G.

5. Constructions and questions

Many of the ideas of this section are due to Balogh, Molla and Sharifzadeh [1], but we include
them here for completeness.

We first consider the problem of finding perfect Kk-tilings instead of perfect triangle-tilings.
By slightly modifying the construction of G4(m) given in the Introduction we can give lower
bounds for this question.

Question 5.1. Let k � 4 and let G be an n-vertex graph with α(G) = o(n). What is the best-
possible minimum degree condition on G that guarantees a perfect Kk-tiling in G?

The construction is slightly different depending on the parity of k � 4. We start with the odd
case, so let k = 2(�− 1)+ 1 for some integer � � 3. Consider the complete �-partite graph with
one part V1 of size n/k− 1, another part V2 of size 2n/k + 1 and the remaining parts V3, . . . ,V�

each of size 2n/k, and place the Erdős graph ER(|Vi|) on each of the parts Vi. When k = 2� for
some integer � � 1, the construction is essentially the same but we have one part of size 2n/k+1,
one part of size 2n/k−1 and the remaining parts are each of size 2n/k. In either case we obtain
a graph G with δ (G) � (1−2/k)n + ω(1), sublinear independence number and no Kk-factor. It
is worth noting that in the odd case the graph G is Kk+2-free and in the even case G contains
no Kk+1.

We feel that the following is another interesting related question.

Question 5.2. Let G be an n-vertex K4-free graph with α(G) = o(n). What is the best-possible
minimum degree condition on G that guarantees a perfect triangle-tiling in G?

We use a modified version of the Bollobás–Erdős graph [2] to construct a K4-free graph
without a perfect triangle-tiling and with high minimum degree. For every large even n, the
Bollobás–Erdős graph is an n-vertex, K4-free graph with sublinear independence number, which
we denote by BE(n). The vertex set of BE(n) is the disjoint union of two sets V1 and V2 of
the same order such that the graphs G[V1] and G[V2] are triangle-free and every vertex in V1

has at least (1/4− o(1))n neighbours in V2 and every vertex in V2 has at least (1/4− o(1))n)
neighbours in V1. To construct our example, start with BE(4n/3+2) and then remove a randomly
selected subset of size n/3+2 from one of the two parts. Note that the two parts now have sizes
n/3− 1 and 2n/3 + 1, the resulting graph clearly is K4-free and since the larger part is a space
barrier, it has no perfect triangle-factor. Furthermore, with high probability, the minimum degree
is (1/6−o(1))n. We conjecture that (1/6+o(1))n is the proper minimum degree condition.

Conjecture 5.3. For every ω > 0 there exist γ,n0 > 0 such that every K4-free graph on n � n0

vertices with δ (G) � n/6+ωn and α(G) � γn contains a perfect triangle-tiling.
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Using methods similar to those used in our proof of Theorem 1.2 we can show that every graph
G which satisfies the conditions of Conjecture 5.3 has a triangle-tiling covering almost all of the
vertices of G. More precisely, we can show that for 1/n � γ � ω , if G is a K4-free graph on n
vertices with δ (G) � (1/6+ω)n and α(G) � γn, then G contains a triangle-tiling which covers
all but at most ωn vertices. What follows is a brief sketch of the argument.

Apply Theorem 2.5 with γ � ε � d �ω to obtain a spanning subgraph G′ ⊆G, an exceptional
set V0 and clusters V1, . . . ,Vk of equal size m. Define the corresponding reduced graph R on vertex
set [k] in the usual way. The fact that G is K4-free implies the following two important facts about
these clusters and the graph R. (These facts were first observed by Szemerédi in [15].)

(a) There is no pair i, j ∈ [k] for which G′[Vi,Vj] is (1/2+d,ε)-regular, and
(b) R is triangle-free.

Using a standard argument, it is not hard to see that (a) and the fact that δ (G) � (1/6 + ω)n
together imply that δ (R) � k/3. So R must be connected, as otherwise Mantel’s theorem would
give a triangle in the smallest connected component of R, contradicting (b). By a result of
Enomoto, Kaneko and Tuza [5], the fact that R is a connected graph on k vertices with δ (R) � k/3
implies that R contains �|R|/3� vertex-disjoint copies of P2 (the path on three vertices). In a
manner similar to the proof of Lemma 3.1, for each such path i jk we can use the fact that
α(G) � γn to greedily construct a triangle-tiling covering all but at most 3.1εm of the vertices
of G[Vi ∪Vj ∪Vk], where each triangle has one vertex in Vj, the central cluster in the path, and the
other two vertices either both in Vi or both in Vk. The union of these �|R|/3� triangle-tilings is
then a triangle-tiling in G which covers all but at most ωn vertices.

We can generalize Question 5.2 in the following way.

Question 5.4. Let k � 3 and let G be an n-vertex Kk+1-free graph with α(G) = o(n). What is
the best-possible minimum degree condition on G that guarantees a perfect Kk-tiling in G?

When k is even, we have already shown that the minimum degree must be at least ((k−2)/k+
o(1))n. When k = 2�+ 1 � 5, we form G by starting with the complete �-partite graph that has
one part V1 of size 3n/k + 1, one part V2 of size 2n/k− 1, and the remaining parts, V3, . . . ,V�,
each of size 2n/k. In V1, we place BE(|V1|) on V1, and, for every 2 � i � �, we place a copy of
ER(|Vi|) on Vi. We then have

δ (G) �
(

k−3
k

+
1
4
· 3

k
−o(1)

)
n =

(
4k−9

4k
−o(1)

)
n.

Furthermore, G has sublinear independence number, is Kk+1-free, and has no perfect Kk-tiling,
because each copy of Kk in G has at most three vertices in V1.

Finally, for r � 3, ω,γ > 0 and for sufficiently large n, we give the construction of G :=
GRT(n,r,ω,γ) from Theorem 1.3(b). For odd r the construction was first given in [8] and for
even r the construction is from [7]. We say that a partition V1, . . . ,V� of the vertices of a graph is
equitable if ||Vi|− |Vj|| � 1 for all 1 � i < j � �.

When r = 2� + 1 is odd, we let V1, . . . ,V� be an equitable partition of V (G) and form the
complete �-partite graph with vertex classes V1, . . . ,V�. For every i ∈ [�], we then place a copy of
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ER(|Vi|) on Vi, so

δ (G) � n−
⌈

n
�

⌉
�

(
r−3
r−1

−ω
)

n.

We can assume that n is large enough so that for each i ∈ [�] the independence number of G[Vi] is
at most γn, which implies that α(G) � γn. Note that G is Kr-free, as G[Vi] is K3-free for i ∈ [�].

When r = 2� is even, we let U1, . . . ,U3�−2 be a equitable partition of V (G), so

|Ui| ∈
{⌊

2n
3r−4

⌋
,

⌈
2n

3r−4

⌉}

for every i ∈ [3�−2]. Let

V1 := U1 ∪U2 ∪U3 ∪U4 and Vi := U3i−1 ∪U3i ∪U3i+1 for 2 � i � �−1,

and form the complete (�−1)-partite graph with vertex classes V1, . . . ,V�−1. On V1, we then place
a copy of BE(|V1|) and assume n is large enough so that G[V1] has minimum degree at least(

1
4
−ω

)
|V1| � |V1|−

(
6

3r−4
+ω

)
n

and independence number at most γn. For every 2 � i � �− 1, we place a copy of ER(|Vi|) on
Vi and we ensure that n is large enough so that the independence number of G[Vi] is at most γn.
Because every vertex in G is adjacent to all but at most (6/(3r−4)+ω)n vertices of G, we have
that

δ (G) �
(

3r−10
3r−4

−ω
)

n.

Further, α(G) � γn and G is Kr-free as G[V1] is K4-free and each subgraph G[V2], . . . ,G[V�−1] is
K3-free.
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Appendix

The purpose of this appendix is to prove Lemma 2.4. The lemma is essentially a corollary to the
following two theorems of Kohayakawa and Rödl [10]. For this we use the following notation.
Let G be a bipartite graph with vertex classes A and B, and define d := d(G[A,B]). Then for any
ε we define DAB(ε) to be the graph with vertex set A in which x,x′ ∈ A are adjacent if and only if

|NG(x)|, |NG(x′)| > (d − ε)|B| and |NG(x)∩NG(x′)| < (d + ε)2|B|.

Theorem A.1 ([10, Theorem 45]). Let 0 < ε < 1, and let G[A,B] be a bipartite graph with
|A| � 2/ε . If e(DAB(ε)) > (1 − 5ε)|A|2/2, then G[A,B] is (d,(16ε)1/5)-regular, where d :=
d(G[A,B]).
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Theorem A.2 ([10, Theorem 46]). Let 0 < ε < 1, and let G[A,B] be a bipartite graph with
|B| � 1/d, where d := d(G[A,B]). If G[A,B] is (d,ε)-regular, then e(DAB(ε)) � (1−8ε)|A|2/2.

The following two similar lemmas do most of the remaining work required to complete the
proof.

Lemma A.3. Suppose that 1/n � ξ � ξ ′ and that 1/n � β . Let G[A,B] be a bipartite graph
such that |A|, |B| � n, and let x1, . . . ,xs and y1, . . . ,yt be positive integers each of size at least βn
such that ∑i∈[s] xi � |A| and ∑ j∈[t] y j � |B|. If {X1, . . . ,Xs} is a collection of disjoint subsets of A
and {Y1, . . . ,Yt} is a collection of disjoint subsets of B with |Xi| = xi and |Yj| = y j for all i ∈ [s]
and j ∈ [t] selected uniformly at random from all such collections, then, with probability at least
1− e−Ω(n), for every i ∈ [s], j ∈ [t], x,x′ ∈ A and y,y′ ∈ B we have

(a) |NG(x)∩Yj|/y j = |NG(x)|/|B|±ξ ,
(b) |NG(y)∩Xi|/xi = |NG(y)|/|A|±ξ ,
(c) |NG(x)∩NG(x′)∩Yj|/y j = |NG(x)∩NG(x′)|/|B|±ξ ,
(d) |NG(y)∩NG(y′)∩Xi|/xi = |NG(y)∩NG(y′)|/|A|±ξ , and
(e) d(G[Xi,Yj]) = d(G[A,B])±ξ ′.

Proof. Note that at most t(|A|+ |A|2)+ s(|B|+ |B|2) � 2β−1(n + n2) random variables of the
form |NG(x)∩Yj|, |NG(y)∩Xi|, |NG(x)∩NG(x′)∩Yj| and |NG(y)∩NG(y′)∩Xi|, where i ∈ [s],
j ∈ [t], x,x′ ∈ A and y,y′ ∈ B, are hypergeometrically distributed, so the fact that (a)–(d) hold
with probability 1− eΩ(n) follows directly from Theorem 2.3 by taking a union bound. For (e),
let � := ξ−1/2 and define

Dk :=
{

v ∈ A : 2(k−1)ξ � |N(v)|
|B| < 2kξ

}

for each k ∈ [�]. Then, with probability 1− eΩ(n), for every i ∈ [s] and k ∈ [�], we have that

|Dk ∩Xi|
xi

=
|Dk|
|A| ±ξ 2.

Fix a choice of X1, . . . ,Xs and Y1, . . . ,Yt , for which (a)–(d) hold and this event occurs. Note that
for every k ∈ [�], v ∈ Dk, and j ∈ [t],

|NG(v)|
|B| = (2k−1)ξ ±ξ so

|NG(v)∩Yj|
y j

= (2k−1)ξ ±2ξ .

We compute d(G[A,B]) to be

1
|A| ∑

k∈[�]
∑

v∈Dk

|NG(v)|
|B| = ∑

k∈[�]

(
((2k−1)ξ ±ξ ) · |Dk|

|A|

)
=

(
∑

k∈[�]
(2k−1)ξ

|Dk|
|A|

)
±ξ .
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Then for any i ∈ [s] and j ∈ [t] we have

d(G[Xi,Yj]) =
1
xi

∑
k∈[�]

∑
v∈Dk∩Xi

|NG(v)∩Yj|
y j

= ∑
k∈[�]

(
((2k−1)ξ ±2ξ ) ·

( |Dk|
|A| ±ξ 2

))

=
(

∑
k∈[�]

(2k−1)ξ
|Dk|
|A|

)
± (�2ξ 3 +2ξ +2�ξ 3) = d(G[A,B])±ξ ′,

so (e) holds.

Lemma A.4. Suppose that 1/n � ξ � ξ ′ and 1/n � β , and that x1, . . . ,xs are positive integers
each of size at least βn such that ∑i∈[s] xi � n. If G is a graph on n vertices and {X1, . . . ,Xs}
is a collection of disjoint subsets of V (G) with |Xi| = xi for all i ∈ [s] selected uniformly at
random from all such collections, then, with probability at least 1− e−Ω(n), for every i ∈ [s] and
x,x′ ∈V (G) we have

(a) |NG(x)∩Xi|/xi = |NG(x)|/n±ξ ,
(b) |NG(x)∩NG(x′)∩Xi|/xi = |NG(x)∩NG(x′)|/n±ξ , and
(c) 2e(G[Xi])/x2

i = 2e(G)/n2 ±ξ ′.

Proof. It is straightforward to modify the proof of Lemma A.3 to prove this lemma; we omit
the details.

Now we give the proof of Lemma 2.4.

Proof of Lemma 2.4. Introduce a new constant η with 1/n � η � ε . Suppose that G[A,B] is
(d,ε)-regular, let d∗ := d(G[A,B]), so d∗ = d ± ε , and define D := DAB(ε). Note that, by The-
orem A.2, we have that 2e(D)/|A|2 � 1−8ε . We apply Lemma A.3 to G[A,B] and Lemma A.4
to D, with ξ ′ replaced by η in each case, to find that with probability 1− e−Ω(n) our random
selection satisfies the conclusions of each of these lemmas. We fix such an outcome of our
random selection, and consider any i ∈ [s] and j ∈ [t]. Define di j := d(Xi,Yj), so di j = d∗±η , and

di j = d ± (ε +η). (A.1)

We also have that

2e(D[Xi])
x2

i

� 2e(D)
|A|2 −η � 1−8ε −η � 1−5(2ε).

Recall that, if xx′ ∈ E(D[Xi]), then

|NG(x)|
|B| ,

|NG(x′)|
|B| > d∗ − ε and

|NG(x)∩NG(x′)|
|B| < (d∗ + ε)2,

so

|NG(x)∩Yj|
y j

,
|NG(x′)∩Yj|

y j
> (d∗ − ε)−η > di j −2ε,
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and, as we can assume η is small enough so that η1/2 +η < ε ,

|NG(x)∩NG(x′)∩Yj|
y j

< (d∗ + ε)2 +η < (di j +η + ε)2 +(ε −η)2 < (di j +2ε)2.

This proves that xx′ ∈ E(DXiYj
(2ε)), so D[Xi] is a subgraph of DXiYj

(2ε). Hence, by Lemma A.1

with d and ε replaced by di j and 2ε , respectively, G[Xi,Yj] is (di j,(32ε)1/5)-regular, and is
therefore (d,(32ε)1/5 +2ε)-regular, because, by (A.1), d = di j ±2ε . Since we can assume that ε
is small enough so that (32ε)1/5 +2ε � (33ε)1/5, it follows that G[Xi,Yj] is (d,(33ε)1/5)-regular.

Clearly, if G[A,B] is (d,ε)-super-regular, then, by (a) and (b) of Lemma A.3, we can also
ensure that G[Xi,Yj] is (d,(33ε)1/5)-super-regular for each i ∈ [s] and j ∈ [t].
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pp. 395–404.
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