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Instabilities at the deformable free surface of a thin nematic liquid crystal film
can develop interesting patterns when exposed to an external electrostatic field. A
general linear stability analysis is performed involving the Ericksen–Leslie governing
equations for the dynamics of the nematic film coupled with the anisotropic Maxwell
stresses for the electric field to uncover the salient features of these instabilities. The
study reveals the coexistence of twin instability modes: (i) long-wave interfacial mode
– stimulated when the sole destabilizing influence of the electric field overcomes
the Frank bulk elasticity and surface tension force, and (ii) finite-wavenumber
mode – engendered by the combined destabilizing influence originating from the
anisotropic electric field and Ericksen stress, for the films with positive dielectric
anisotropy and weaker Frank bulk elasticity. The results reported here are in
contrast with the same obtained from the more frequently employed long-wave
approach. The air-to-liquid-crystal filling ratio between the electrodes as well as
thermodynamic parameters such as the dielectric anisotropy, Frank elasticity, and
director orientations across the film and boundaries are found to play crucial roles in
the selection of modes, whereas kinetic parameters such as Leslie viscosity coefficients
influence only the time scale of instability. Importantly, at higher field intensities a
symmetry-breaking Fréedericksz-type transition of director orientations is found to
happen, which also causes the transition of the dominant mode of instability from
the long-wave to the finite-wavenumber mode for films with relatively lower values
of Frank bulk elasticity and positive dielectric anisotropy.

Key words: instability, liquid crystals, thin films

1. Introduction

Free surface instabilities of a thin film prompted by surface tension gradients,
intermolecular forces, and electric or magnetic fields have been extensively studied
in the recent past owing to their importance in various applications such as coatings,
paints, solar or fuel cells, sensors, microfluidic devices, and self-cleaning surfaces

† Email address for correspondence: dipban@iitg.ernet.in
‡ Equal contribution from the authors.
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(de Gennes 1985; Van Oss et al. 1988; Craster & Matar 2009). In particular, the
electrohydrodynamic (EHD) instabilities of thin polymer films have received plenty
of attention because of the advantage of having remote control on the destabilizing
field in adjusting the spacing of the patterns decorated on a film surface. Chou and
co-researchers (Chou & Zhuang 1999; Chou, Zhuang & Guo 1999; Deshpande, Sun &
Chou 2001) led the way with the invention of lithographically induced self-assembly
(LISA), in which a polymer layer deformed into columnar structures while interacting
electrostatically with a confining mask. Almost simultaneously, Herminghaus (1999)
theoretically predicted that a thin dielectric film could indeed be unstable due to
an electrostatic interaction when confined by a thick conducting medium. Later,
pioneering experiments by Schäffer et al. (2000, 2001) showed that an external EHD
field could subdue the stabilizing capillary force to deform the flat free surface of a
soft polymeric film into columnar microstructures. Subsequent studies revealed that
a long-range order to these microstructures could be imposed when the bounding
electrodes were decorated with periodic physical or chemical patterns (Harkema &
Steiner 2005; Verma et al. 2005; Wu, Pease & Russel 2005; Dickey et al. 2006,
2008; Voicu, Harkema & Steiner 2006; Srivastava et al. 2010b).

Notably, the EHD instabilities of thin films having a thickness of a few microns
or less were found to be very different from their macroscopic analogues owing
to the diminishing gravitational influence on the time and the length scales with
miniaturization (Melcher & Taylor 1969; Saville 1997). For example, a dielectric
polymer film showed a non-oscillatory and long-wave interfacial mode of instability
under the influence of a destabilizing electric field when the smaller-wavelength modes
were stabilized by the surface tension of the free surface (Schäffer et al. 2001; Pease
& Russel 2003; Verma et al. 2005; Wu et al. 2005). Beyond the glass transition
point, accumulation of induced charges on the surface of a dielectric polymer film
generated the necessary Maxwell stresses to stimulate this type of EHD instability.
In comparison, a purely Hookean film showed a finite-wavenumber instability in
which the film surface deformed only beyond a critical EHD field strength (Arun
et al. 2006, 2009; Bandyopadhyay, Sharma & Shankar 2008; Sarkar, Sharma &
Shenoy 2008; Bandyopadhyay, Reddy & Sharma 2012). In this situation, while
the elasticity (surface tension) of the film stabilized some of the longer-wavelength
(shorter-wavelength) modes, the EHD stresses could only destabilize the modes
having intermediate wavelengths. The films with frequency-dependent elasticity were
found to behave more like viscous films under exposure to the electric field, with
the exception that they showed a significantly faster kinetics of deformation with an
increase in the relaxation time (Tomar et al. 2007; Bandyopadhyay, Reddy & Sharma
2012).

Instead of dielectric materials, the use of leaky dielectric films led to a significant
reduction in the length scale of instability because of the appearance of additional
destabilizing stress originating from the free-charge accumulation at the surface (Pease
& Russel 2002, 2003, 2004, 2006; Shankar & Sharma 2004; Craster & Matar 2005;
Mondal, Kumar & Bandyopadhyay 2013). Recent works revealed that replacing a
direct current (DC) field with an alternating one (AC) could also alter the length
and time scales of the EHD instabilities (Roberts & Kumar 2009, 2010). Further,
the use of multiple layers led the way towards fabricating complicated embedded,
encapsulated, and phase-inverted structures, with reduced pattern periodicity (Lin
et al. 2001, 2002a,b; Morariu et al. 2003; Leach et al. 2005; Dickey et al. 2006;
Bandyopadhyay et al. 2009; Bandyopadhyay, Sharma & Shankar 2010; Reddy,
Bandyopadhyay & Sharma 2010; Srivastava, Bandyopadhyay & Sharma 2010a;
Reddy, Bandyopadhyay & Sharma 2012).
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However, the aforementioned studies mainly focused either on viscous or elastic
or viscoelastic films having isotropic physical properties. Experimental studies on the
free surface instabilities of thin films composed of anisotropic materials such as liquid
crystals (LCs) under exposure to electric fields have been found to be rather limited in
the literature. The orientational order of the liquid crystals is in general quantified by
a ‘director’ field, which is the macroscopic average of the angles that the molecules
make with their long axis (Chandrasekhar 1992; de Gennes & Prost 1993). Thus far,
the major focus was on the areas of phase transition behaviours of ultrathin LC films
(Žumer & Doane 1986; Herminghaus et al. 1998; Vandenbrouck, Valignat & Cazabat
1999; Ravi, Mukherjee & Bandyopadhyay 2015) or on contact line instabilities of LC
droplets (Poulard & Cazabat 2005; Delabre, Richard & Cazabat 2009; Manyuhina,
Cazabat & Ben Amar 2010; Rey & Herrera-Valencia 2014). Faetti & Palleschi
(1985) and de Gennes & Prost (1993) were among the pioneers to show that the
surface of a macroscopic LC film could also deform into hill- and valley-shaped
structures when the director field was distorted by an external magnetic field. The
instability was the consequence of competition between the stabilizing capillary and
gravitational forces with the destabilizing Ericksen stress stimulated by the external
magnetic field. Yokoyama, Kobayashi & Kamei (1985) showed that even an AC
electric field acting perpendicular to a nematic–isotropic (NI) interface could also
produce periodic hill- and valley-shaped structures beyond a critical field strength.
Recent experimental studies Oswald (2010a,b) unveiled that the NI interface could
develop two different types of instabilities under exposure to an external AC electric
field: (i) in the first type, at lower field intensities, the instabilities were similar to the
that reported by de Gennes & Prost (1993), which was stimulated by the Ericksen
stress; and (ii) in the second type, at higher applied field intensities, the interface
shaped into undulated patterns resembling the EHD instabilities reported by Schäffer
et al. (2000). The length scales of these instabilities were correlated to the interplay
between the stabilizing thermal and capillary forces with the destabilizing Maxwell
stress originating from the electric field.

The theoretical understanding of the electric-field-induced instabilities of LC films
has also evolved over the years (Chandrasekhar 1992; de Gennes & Prost 1993;
Myers 2005; Münch et al. 2006). Among the early works, Raghunathan (1995)
studied analytically the influence of magnetic fields at the NI interface to explain
the experimental results obtained by Yokoyama et al. (1985), while Tavener et al.
(2000) employed the Ericksen–Leslie theoretical model (Frank 1958; Ericksen 1962,
1967; Chandrasekhar 1992; Leslie 1992; de Gennes & Prost 1993) to study the
electric-field-induced convective instabilities of thin nematic LC (NLC) films. Ben
Amar & Cummings (2001) and Cummings (2004) were among the pioneers to
theoretically model the free surface evolution of NLC droplets. They modified
the normal stress balance of the deforming free surface of NLC droplets with an
additional elastic stress term, which originated from Frank bulk elasticity of the
droplet. However, Carou et al. (2007) showed that, in the weakly elastic limit,
the aforementioned effect responsible for film stability was absent. Over the years,
different approaches (Tsuji & Rey 1997; Mechkov, Cazabat & Oshanin 2009; Lin
et al. 2013a,b) were employed to explain the weak to strong elastic effects of the
NLC droplets or films due to the orientational order alongside the effects of the
homeotropic, planar, and angular anchoring of the NLC molecules at the boundaries.
However, most of these studies employed the lubrication approximation to model
the NLC films or droplets. A comprehensive stability analysis of the Ericksen–Leslie
governing equations for NLC films or droplets with appropriate boundary conditions
has yet to appear in the literature.
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FIGURE 1. (Colour online) Schematic diagram of a nematic liquid crystal (NLC) film
deforming under the influence of an external electric field. The mean and the local
thicknesses of the NLC film are denoted by h0 and h(x, t), respectively, and the distance
between the electrodes is d. The anode and the film surface are separated by a dielectric
material such as air. The axes of the rod-like NLC molecules have been quantified by the
director, n, having components, nx = sin θ and nz = cos θ . Here, θ is the angle that the
director makes with the positive z-axis.

In the present work, we theoretically uncover the salient features of the electric-
field-induced free surface instabilities of a thin NLC film, as schematically shown in
figure 1. The Ericksen–Leslie equations coupled with the anisotropic Maxwell stress
for the electric field are linearized together with appropriate boundary conditions to
estimate the length and time scale of these instabilities. The numerical results are
validated against an approximate analytical long-wave analysis in the isotropic and
anisotropic limits. In particular, we focus on solving the director field with different
combinations of boundary conditions, such as homeotropic, angular, and planar, at the
NI (nematic–isotropic) and NS (nematic–solid) interfaces to reveal the influence of the
director orientations at the boundaries on the different modes of instability. The study
highlights that under exposure to the electric field the free surface of an NLC film
can be unstable by a pair of distinct long-wave and finite-wavenumber modes. For
example, at lower field intensities, a film with large Frank bulk elasticity or negative
dielectric anisotropy is expected to show a unimodal long-wave interfacial mode under
the sole influence of the EHD stress. In comparison, at higher field intensities, a film
with positive dielectric anisotropy can show a bimodal instability with the coexistence
of long-wave as well as finite-wavenumber modes under the destabilizing influence
arising from the Ericksen elastic stress and the anisotropic EHD stress. The results
are in contrast with the more frequently employed long-wave analysis, which can
only predict the existence of the long-wave interfacial mode of instability. The air-to-
liquid-crystal filling ratio between the electrodes as well as thermodynamic parameters
such as the dielectric anisotropy of the film, Frank bulk elasticity, and the director
orientations across the film are found to play crucial roles in the selection of the
modes, whereas kinetic parameters such as the Leslie viscosity coefficients influence
only the time scale of instability.

Notably, the NLC thin films with a deformable free surface can also show a
phenomenon similar to the Fréedericksz transition (FT) beyond a critical intensity
of the electric field. Thus far, the FT has been reported for LC films sandwiched
between a pair of electrodes in the absence of any free surface (Chandrasekhar
1992; de Gennes & Prost 1993). For such systems, the previous works employ
either long-wave stability analysis (Müller & Brand 2005; van der Beek et al.
2008; Gartland Jr. et al. 2010) or energy minimization techniques (de Gennes
& Prost 1993; Müller & Brand 2005) to predict the different characteristics of
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the FT when the external field was either a magnetic field (Fraden & Meyer
1986; Kuzma 1986; Rey 1991; Casquilho 1999) or an electric field (de Gennes
& Prost 1993; Chevallard & Clerc 2002). In comparison, the present study shows a
comprehensive stability analysis, including all the parameters, to uncover the details
of the electric-field-induced FT alongside the different modes of the free surface
instabilities of thin NLC films.

The paper is organized in the following manner. In § 2, the details of the governing
equations and boundary conditions are discussed. Brief outlines of the dimensionless
forms, linear stability analysis, the numerical methods, and an asymptotic analytical
analysis are presented in §§ 3–6. The results are analysed in detail in § 7, before the
conclusions are drawn in § 8. Three appendices have also been provided to elaborate
the complicated expressions and derivations employed in the different sections.

2. Theoretical model
Figure 1 schematically shows the deformation of a thin nematic LC film under

the influence of an external electrostatic field. The figure pictorially depicts the
presence of typical rod-like molecules inside the NLC film, which rests on one of
the electrodes, while the other electrode confines the film from the top, maintaining
an air gap above the free surface of the film. The orientational order of the liquid
crystal molecules is theoretically represented by a vector, namely the ‘director’, which
is the macroscopic average of the angles the liquid crystal molecules make with their
long axis (Chandrasekhar 1992; de Gennes & Prost 1993). The axes of the rod-like
NLC molecules stay nearly parallel, which leads to a long-range orientational order
quantified by the director vector n = {nx, nz}. A two-dimensional (2-D) Cartesian
coordinate system is employed for the formulation, with the origin fixed at the NS
interface. In the formulation, x and z are the coordinates parallel and normal to the
lower electrode, t represents time, the bold variables indicate vectors and tensors,
the subscripts separated by a comma from the variable denote partial differentiations
with respect to the subscripted variable, the over-dots denote material derivatives, and
subscripts x and z denote components of the vector or the tensor.

In the present study, the nematic films are assumed to be incompressible and
isothermal. Further, owing to the thinness of the LC films, we neglected the terms
associated with the local and convective accelerations. Thus, in the absence of gravity,
the following director field constraint, mass conservation equation, equations of
motion, and balance of couples describe the dynamics of a NLC film under exposure
to an external electrostatic field (Frank 1958; Ericksen 1962, 1967; Chandrasekhar
1992; Leslie 1992; Lin et al. 2013a,b),

n · n= 1, (2.1)
∇ · u= 0, (2.2)

∇ · (−pI +ΠE)+∇ · (τ +M)= 0, (2.3)
λn− ∂F/∂n+∇ · (∂F/∂∇n)+G+ g= 0. (2.4)

Equation (2.1) is the constraint imposed on the director field and the Lagrange
multiplier λ ensures the same in (2.4) (Stephen & Straley 1974; Tavener et al.
2000; Rey & Denn 2002; Lin et al. 2013a,b). In a two-dimensional (2-D) Cartesian
coordinate framework, the director vector, n, can be expressed as n {sin θ, cos θ},
which satisfies (2.1), where θ is the angle the director makes with the positive z-axis.
Here the notations u {u,w}, ΠE, M , and τ correspond to the velocity vector, Ericksen
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elastic stress tensor, Maxwell stress tensor for the electric field and hydrodynamic
stress tensor for the flow field, respectively; curly bracketed symbols denote the
velocity vector components. The notation p denotes pressure, I denotes identity
matrix, and ∇ is the gradient operator. In these expressions, the variables for the
Frank free energy (F), the external director body force due to electric field (G), and
the intrinsic director body force (g) are defined as (Chandrasekhar 1992; Tavener
et al. 2000; Lin et al. 2013a,b)

F = (1/2)k11(∇ · n)2 + (1/2)k22(n · ∇× n)2 + (1/2)k33(n×∇× n)2

+ (1/2)(k22 + k24)∇ · ((n · ∇)n− (∇ · n)n), (2.5)

G= ε0εd(E · n)E, (2.6)
g=−λ1N− λ2(e · n). (2.7)

The symbol, ε0 represent the dielectric permittivity of free space and εd(= ε‖− ε⊥)

is the difference in the dielectric constants of the film measured along (ε‖) and normal
(ε⊥) to the nematic axis (de Gennes & Prost 1993). The notations, k11, k22, k33, and
(k22 + k24) are the splay, twist, bend, and saddle-splay elastic constants, respectively.
Equation (2.5) reduces to a simpler form, F = (1/2)Kf [(∇ · n)2 + |∇ × n|2], in
the limit of one constant approximation, k11 = k22 = k33 = Kf , where the notation Kf

represents the bulk elastic constant of the liquid crystal film (de Gennes & Prost 1993;
Lin et al. 2013a,b). It may be noted here that in the present study we considered
the Frank free energy in the limit of one constant approximation for the strong
anchoring case. In this condition, the saddle splay disappears from the governing
equations and boundary conditions because: (i) it does not enter in the governing
equations as it appears as a divergence term; (ii) it disappears from the normal
stress boundary condition during linearization; (iii) it cancels out from the balance
of couples, while Dirichlet boundary conditions for strong anchoring are imposed
at the boundaries. However, we considered the influence of the saddle splay for the
weak anchoring case where it makes an appearance in the boundary condition for the
polar director orientation at the free surface. In (2.7) the strain tensor is defined as
e= (∇u+∇uT)/2, the rotation vector is defined as N= ṅ−ω · n, and the spin tensor
is defined as ω= (∇u−∇uT)/2. The Ericksen elastic stress tensor, ΠE, is defined as
(Lin et al. 2013a)

ΠE =−(∂F/∂∇n) · (∇n)T. (2.8)

The constitutive relation for a nematic LC film is defined as (Chandrasekhar 1992;
Tavener et al. 2000; Rey & Denn 2002; Lin et al. 2013a,b)

τ = α1e : nnnn+ α2nN+ α3Nn+ α4e+ α5nn · e+ α6e · nn, (2.9)

where the ith Leslie viscosity coefficient is denoted by the symbol αi. The rotational
viscosity and the irrotational torque coefficient (Chandrasekhar 1992; Tavener et al.
2000; Rey & Denn 2002; Lin et al. 2013a,b) in (2.9) are defined as λ1= α3− α2 and
λ2=α6−α5. The sixth Leslie viscosity coefficient, α6, is evaluated from the Onsager–
Parodi relation, λ2 = α6 − α5 = α2 + α3. The Maxwell stresses originating from the
external electric field are defined as (Yokoyama et al. 1985; Qian & Sheng 1998)

M = [DE− 1
2(D ·E)I]. (2.10)
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In (2.10) the electric displacement field is defined as D= ε0[ε⊥E+ εd(E · n)n], while
the electric field E=−∇ψ , where ψ denotes the electric field potential.

The nematic film is assumed to be resting on a non-slipping and impermeable
electrode at z= 0

u= 0. (2.11)

At the NI interface, z= h(x, t), the normal and the tangential stress balances together
with the kinematic condition are enforced as the boundary conditions

ns · (−p0I +Ma) · ns − ns · (−pI +ΠE + τ +M) · ns = γ κ, (2.12)
ns ·Ma · ts − ns · (ΠE + τ +M) · ts = 0, (2.13)

h,t + u · ∇sh=w. (2.14)

The subscript ‘a’ denotes the variables corresponding to the bounding fluid air. The
symbols p0, h, γ and κ =−∇s ·ns denote the ambient gas pressure, the film thickness,
the surface tension, and the curvature of the deforming free surface. The notations
∇s, ns, and ts denote the surface gradient operator, unit outward normal, and tangent
vectors, (I − nn) · ∇, ∇(z− h)/|∇(z− h)|, and (1, hx)/

√
1+ h2

x , respectively.
Strong anchoring boundary conditions for the director field, n, are imposed at the

NS and NI interfaces. Planar (θ1, θ2 = 90◦) or homeotropic (θ1, θ2 = 0◦) or angular
(θ1 = θ

◦

1 , θ2 = θ
◦

2 ) boundary conditions are enforced at the NS (z= 0) and NI (z= h)
interfaces as

n · z= cos θ1, (2.15)
n · ts = cos θ2. (2.16)

Here the notation z is the unit vector in the z-direction. The notations θ1 and θ2 are
the fixed director angles at the respective boundaries. The nematic film is assumed to
be non-conducting with a dielectric anisotropy originating from the difference in the
dielectric constants in the directions parallel and normal to the applied field. Thus, the
governing equation of an irrotational electric field (∇×E= 0) for a nematic film can
be written as

∇ ·D= 0. (2.17)

The irrotational (∇×Ea= 0) electric field for the purely dielectric isotropic bounding
film can be described through the following Laplace equation

∇
2ψa = 0. (2.18)

Constant potential boundary conditions are enforced for the electric field at the
cathode (z= 0) and anode (z= d)

ψ = 0 and ψa =ψ0. (2.19a,b)

The normal and the tangential component balances (Oswald 2010a) for the electric
field are enforced as boundary conditions at the NI free surface (z= h)

Da · ns =D · ns and Ea · ts =E · ts. (2.20a,b)
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3. Dimensionless form
3.1. Equations for general analysis

The dimensional governing equations and boundary conditions are converted to
dimensionless forms employing the variables (X, Z, H, D) = (x, z, h, d)/h0;
T = t[ε0ψ

2
0/2µh2

0]; (U, W) = (u, w)[2µh0/ε0ψ
2
0 ]; (P, P0) = (p, p0)[2h0/ε0ψ

2
0 ];

Λ = 2λh2
0/ε0ψ

2
0 ; Λi = λi/µ; and (Ψ , Ψa) = (ψ, ψa)/ψ0. It may be noted here that

the Newtonian viscosity (α4/2=µ) is employed to scale the equations. The resulting
dimensionless continuity equation for the nematic film can be written as

U,X +W,Z = 0. (3.1)

The dimensionless X- and Z-components of equations of motion are

−P,X + (A1U,X + A2U,Z + A3W,X + A4W,Z),X + (B1U,X),Z

+ (B2U,Z + B3W,X + B4W,Z),Z − E−1
r θ,X(θ,XX + θ,ZZ)

− (E−1
r /2)(θ

2
,X + θ

2
,Z),X − εdθ,X[(Ψ

2
,X −Ψ

2
,Z) sin 2θ + 2 cos 2θ Ψ,XΨ,Z] = 0, (3.2)

−P,Z + (C1U,X +C2U,Z +C3W,X +C4W,Z),X + (D1U,X),Z

+ (D2U,Z +D3W,X +D4W,Z),Z − E−1
r θ,Z(θ,XX + θ,ZZ)

− (E−1
r /2)(θ

2
,X + θ

2
,Z),Z − εdθ,Z[(Ψ

2
,X −Ψ

2
,Z) sin 2θ + 2 cos 2θ Ψ,XΨ,Z] = 0. (3.3)

In the above expressions the dimensionless parameter, Er = ε0ψ
2
0/2Kf , signifies the

ratio of the applied electric field force to the bulk elastic resistance of the nematic
film. The complicated expressions for the variables Ai, Bi, Ci, and Di are separately
provided in appendix A. These variables are made dimensionless by employing
(Ai, Bi, Ci, Di) = (ai, bi, ci, di)/µ. The dimensionless X- and Z-components of the
balances of the couples are

Λ sin θ + E−1
r [(θ,XX + θ,ZZ) cos θ − (θ 2

,X + θ
2
,Z) sin θ ]

+ 2εd(sin θ Ψ 2
,X + cos θ Ψ,XΨ,Z)+ (Λ1/2) cos θ U,Z

− (Λ1/2) cos θ W,X − (Λ2/2)[2 sin θ U,X + cos θ(U,Z +W,X)] = 0, (3.4)
Λ cos θ − E−1

r [(θ,XX + θ,ZZ) sin θ + (θ 2
,X + θ

2
,Z) cos θ ]

+ 2εd(cos θ Ψ 2
,Z + sin θ Ψ,XΨ,Z)− (Λ1/2) sin θ U,Z

+ (Λ1/2) sin θ W,X − (Λ2/2)[2 cos θ W,Z + sin θ(U,Z +W,X)] = 0. (3.5)

Detailed steps for obtaining (3.1)–(3.5) are provided in appendix B. The first terms in
(3.4) and (3.5) are eliminated to obtain the following balance of couples (Lin et al.
2013a,b)

E−1
r (θ,XX + θ,ZZ)+ εd(sin 2θ [Ψ 2

,X −Ψ
2
,Z] + 2 cos 2θ Ψ,XΨ,Z)

+ (Λ1/2)(U,Z −W,X)− (Λ2/2)[cos 2θ(U,Z +W,X)− 2 sin 2θ W,Z] = 0. (3.6)

The non-dimensional no-slip and impermeability boundary conditions at the NS
interface (Z = 0) are obtained as

U =W = 0. (3.7)

The dimensionless normal and tangential stress balances together with the kinematic
condition at NI interface (Z =H) are obtained as
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P− P0 + E−1
r θ

2
,Z − (D1U,X +D2U,Z +D3W,X +D4W,Z)

+ [εd(sin 2θH,X − cos2 θ)− ε⊥]Ψ
2
,Z +Ψ

2
a,Z =−ΓH,XX, (3.8)

E−1
r (θ

2
,ZH,X + θ,Xθ,Z)− (B1U,X + B2U,Z + B3W,X + B4W,Z)= 0, (3.9)

H,T +UH,X =W. (3.10)

In (3.8) the dimensionless number, Γ = 2γ h0/ε0ψ
2
0 , signifies the ratio of the capillary

to the electric field forces. The dimensionless governing equations for the electric field
for nematic film and air are obtained as

[(ε⊥ + εd sin2 θ)Ψ,X],X + [(ε⊥ + εd cos2 θ)Ψ,Z],Z

=−(εd/2)[(sin 2θ Ψ,Z),X + (sin 2θ Ψ,X),Z], (3.11)

Ψa,XX +Ψa,ZZ = 0. (3.12)

The dimensionless electric field boundary conditions at the cathode (Z= 0) and anode
(Z =D) are obtained as

Ψ = 0 and Ψa = 1. (3.13a,b)

The non-dimensional normal and tangential component balances of electric field at the
NI free surface (Z =H) are obtained as

(ε⊥Ψ,Z −Ψa,Z)+ εd cos2 θ Ψ,Z + (εd/2) sin 2θ(Ψ,X −H,XΨ,Z)= 0, (3.14)
(Ψ,X +H,XΨ,Z)− (Ψa,X +H,XΨa,Z)= 0. (3.15)

Strong anchoring boundary conditions for the director field, n, are imposed at the NS
interface and at the free surface (Lin et al. 2013a,b). For this purpose, planar (θ1, θ2=

90◦), homeotropic (θ1, θ2 = 0◦), or angular (θ1 = θ
◦

1 , θ2 = θ
◦

2 ) conditions are enforced
at the NS interface (Z = 0) and the NI (Z =H) interface as

cos θ = cos θ1, (3.16)
sin θ +H,X cos θ = cos θ2. (3.17)

It may be noted here that both long-wave (LWLSA) and general (GLSA) linear
stability analyses have been performed simultaneously in the following sections
employing the non-dimensional governing equations and boundary conditions. The
analytical eigenvalues obtained through the LWLSA helped in validating the GLSA
results in the long-wave limit. For this purpose, a scaling analogous to the lubrication
approximation has been applied to the set of aforementioned governing equations and
the boundary conditions, which provides a single framework for both LWLSA and
GLSA to identify the time and the length scales of the instabilities.

3.2. Equations for long-wave analysis
In order to perform the LWLSA, initially, (3.1)–(3.17) have been rescaled by
employing the parameters (X̂, Ẑ) = (δ1X, Z), (Û, δ1Ŵ) = (U, W)/δ1, and T̂ = δ2T ,
in which δ1 = 1/Γ 1/2 and δ2 = δ

2
1 . Although the rescaled quantities are denoted by

hats, however, the final form of the variables are shown without the hats to ensure
that the equation appears less complicated. Following this, the leading-order terms of
the rescaled governing equations and boundary conditions are retained to derive the
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evolution equation for the NI interface (Ben Amar & Cummings 2001; Cummings
2004; Lin et al. 2013a,b). The long-wave X- and Z-components of the equations of
motion, balance of couples, and the electric field potential for the nematic film and
air are

(P+ (E−1
r /2)θ

2
,Z),X = (B2U,Z),Z, (3.18)

(P+ (E−1
r /2)θ

2
,Z),Z = 0, (3.19)

E−1
r θ,ZZ = 0, (3.20)

[(ε⊥ + εd cos2 θ)Ψ,Z],Z = 0, (3.21)
Ψa,ZZ = 0. (3.22)

Leading-order no-slip and impermeable boundary conditions for the velocity field and
the grounded electric field potential are applied at the NS interface (Z = 0) as

U =W =Ψ = 0. (3.23)

The long-wave kinematic condition (Cummings 2004), normal and tangential stress
balances, and the balances of the normal and tangential components of the electric
field at the NI interface (Z =H) are

H,T +U,SH,X =W,S, (3.24)
P= P0 −H,XX − (E−1

r /2)θ
2
,Z + (ε⊥ + εd cos2 θ)Ψ 2

,Z −Ψ
2

a,Z, (3.25)
U,Z = 0, (3.26)

(ε⊥ + εd cos2 θ)Ψ,Z =Ψa,Z, (3.27)
Ψ =Ψa. (3.28)

Here, the subscript ‘S’ is a dummy variable in the kinematic condition, which has
been used to simplify the integration,

∫ H
0 U dZ=

∫ H
0 U,S(H− S) dS, (Cummings 2004).

The boundary condition for the electric field at the anode (Z =D) is

Ψa = 1. (3.29)

The director orientation boundary conditions (3.16)–(3.17) at the substrate (Z= 0) and
at the NI interface (Z=H) for any anchoring conditions are reduced in the long-wave
domain as

θ = θ1 and θ = θ2. (3.30a,b)

The final form of evolution equation is (Ben Amar & Cummings 2001; Cummings,
Lin & Kondic 2011; Lin et al. 2013a,b)

H,T − I(H3P,X),X = 0, (3.31)

where I is expressed as I = 2(θ2 − θ1)
−3
∫ θ2

θ1
((θ2 − ζ )

2)/(k1 + k2 sin2 ζ − 2α̂1 sin4 ζ ) dζ ,
in which k1 = 2 − α̂2 + α̂5, k2 = 2(α̂1 + α̂2 + α̂3), and ζ = θ1 + [(θ2 − θ1)/H]S are
constants. The dimensionless Leslie coefficients are expressed as α̂i = 2αi/α4. The
steps of the derivation are shown in appendix C. The normal stress balance (3.25)
and the evolution equation (3.31) are found to be consistent with the works from Lin
et al. (2013a,b). Although the approaches adopted for all the previous studies (Ben
Amar & Cummings 2001; Cummings et al. 2011; Lin et al. 2013a,b) are similar, Lin
et al. (2013a,b) clarified that the jump in the pressure should be balanced by both the
surface tension and elasticity terms, as shown in (3.25).
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4. Linear stability analysis
LWLSA and GLSA are performed based on the small-deformation kinematics

of the NI interface in response to small-amplitude perturbations to the quiescent
base state of the nematic film. Thus, the X- and Z-directional velocities are
non-existent, Ū = W̄ = 0, and the film thickness is constant at H̄ = 1. The
governing equations and the boundary conditions are perturbed by employing the
normal linear modes, Û = Ũ(Z) exp[ΩT + iKX], Ŵ = W̃(Z) exp[ΩT + iKX], P̂ =
P̄ + P̃(Z) exp[ΩT + iKX], [Ψ , Ψa] = [Ψ̄ (Z), Ψ̄a(Z)] + [Ψ̃ (Z), Ψ̃a(Z)] exp[ΩT + iKX],
H = H̄ + H̃(Z) exp[ΩT + iKX], and θ = θ̄ (Z) + θ̃ (Z) exp[ΩT + iKX]. Here the
symbols K and Ω represent the dimensionless wavenumber of perturbations and
growth coefficient, respectively. The variables with an over-bar represent the base-state
physical quantities. The variables Ai, Bi, Ci, and Di shown in appendix A are converted
into the base-state variables Āi, B̄i, C̄i, and D̄i when θ is replaced by the base-state
variable, θ̄ , in the expressions. The variables Ũ, W̃, P̃, θ̃ , Ψ̃a, Ψ̃ , and H̃ represent the
perturbed X-velocity, Z-velocity, pressure, director orientation, electric field potential
in the film, and the electric field potential of the bounding fluid, respectively. The
necessary and sufficient condition for the system to be unstable (stable) is Re[Ω]> 0
(Re[Ω]< 0).

We have also performed the derivations when considering the general form of the
director, n {sin θ cosφ, sin θ sinφ, cos θ}, where φ is the azimuthal angle of the vector
n about the axis θ = 0. The azimuthal angle φ is perturbed by employing the normal
linear mode φ = φ̃(Z) exp[ΩT + iKX], where φ̃ represents the perturbed azimuthal
angle. In such a scenario, linearizing the governing equations and boundary conditions
leads to the same set of base-state and perturbed equations as well as the boundary
conditions, as presented below.

4.1. Base-state analysis
At the base state, the governing equations for electric fields at the nematic film and
air are obtained as

[(ε⊥ + εd cos2 θ̄ )Ψ̄,Z],Z = 0, (4.1)
Ψ̄a,ZZ = 0. (4.2)

The boundary conditions for the electric field at the electrodes (Z= 0 and Z=D) are
derived as

Ψ̄ = 0 and Ψ̄a = 1. (4.3a,b)

The boundary conditions for the electric field at the NI interface (Z= H̄) are obtained
as

(ε⊥ + εd cos2 θ̄ )Ψ̄,Z = Ψ̄a,Z, (4.4)
Ψ̄ = Ψ̄a. (4.5)

The governing equation for the director orientation is

θ̄,ZZ − Erεd sin 2θ̄ Ψ̄ 2
,Z = 0. (4.6)

The director orientation boundary conditions at the NS (Z = 0) and NI interfaces
(Z = H̄) are obtained as

θ̄ = θ1 and θ̄ = θ2. (4.7a,b)
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In order to obtain the base-state solutions, initially (4.2) is solved analytically for
Ψ̄a. Following this, the coupled equations (4.1) and (4.6) are solved numerically by
employing the fourth-order Runge–Kutta method to obtain Ψ̄ and θ̄ , after enforcing
the boundary conditions (4.3)–(4.5) and (4.7a,b).

4.2. Perturbed-state analysis
The linearized mass and momentum balance equations (3.1)–(3.3) lead to the
following ordinary differential equations (ODEs)

iKŨ + W̃,Z = 0, (4.8)

−K2P̃+ LX
1 W̃,ZZZ + LX

2 W̃,ZZ + LX
3 W̃,Z + LX

4 W̃ + LX
5 θ̃,Z = 0, (4.9)

iKP̃,Z + LZ
1 W̃,ZZZ + LZ

2 W̃,ZZ + LZ
3 W̃,Z + LZ

4 W̃ + LZ
5 θ̃,ZZ + LZ

6 θ̃,Z + LZ
7 θ̃ + LZ

8 Ψ̃,Z + LZ
9 Ψ̃ = 0.

(4.10)

For the sake of brevity, the complicated expressions for the coefficients LX
i and LZ

i
are provided in appendix A. Eliminating the perturbed pressure from (4.9)–(4.10) and
using (4.8), the following fourth-order ODE is obtained for the nematic film

L1W̃,ZZZZ +L2W̃,ZZZ +L3W̃,ZZ +L4W̃,Z +L5W̃ +L6θ̃,ZZ +L7θ̃ +L8Ψ̃,Z +L9Ψ̃ = 0. (4.11)

The expressions for the coefficients Li are provided in appendix A. The linearized
no-slip and non-permeability boundary conditions at the NS interface (Z = 0) are

W̃,Z = W̃ = 0. (4.12)

At the NI interface (Z = H), the linearized kinematic equation and the normal and
tangential stress balances are obtained as

H̃ = W̃/Ω, (4.13)

Ω−1SN
1 W̃ + SN

2 W̃,ZZZ + SN
3 W̃,ZZ + SN

4 W̃,Z

+ SN
5 W̃ + SN

6 θ̃,Z + SN
7 θ̃ + SN

8 Ψ̃,Z + SN
9 Ψ̃a,Z = 0, (4.14)

Ω−1ST
1 W̃ + ST

2 W̃,ZZ + ST
3 W̃,Z + ST

4 W̃ + ST
5 θ̃ = 0. (4.15)

The complicated expressions for the coefficients of the normal (SN
i ) and tangential

(ST
i ) stress balances are provided in appendix A. The linearized equation (3.6) for the

balances of couples leads to the following ODE:

I1W̃,ZZ + I2W̃,Z + I3W̃ + I4θ̃,ZZ + I5θ̃ + I6Ψ̃,Z + I7Ψ̃ = 0. (4.16)

The complicated expressions for the coefficients Ii are provided in appendix A. The
linearized boundary conditions for director angle at NS (Z = 0) and NI (Z = H)
interfaces are obtained as

θ̃ = 0, (4.17)

θ̃ + iKδ1W̃/Ω = 0. (4.18)
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The linearized equations for the electric field potential of the nematic film and air are
derived as

J1θ̃,Z + J2θ̃ + J3Ψ̃,ZZ + J4Ψ̃,Z + J5Ψ̃ = 0, (4.19)

Ψ̃a,ZZ + J6Ψ̃a = 0. (4.20)

The complicated expressions for the coefficients Ji are provided in appendix A. The
linearized boundary conditions for the electric field potentials at the cathode (Z = 0)
and anode (Z =D) are evaluated as

Ψ̃ = 0 and Ψ̃a = 0. (4.21a,b)

The linearized normal and the tangential component balances at the NI interface (Z=
H) are evaluated as

Ω−1SE
1 W̃ + SE

2 θ̃ + SE
3 Ψ̃,Z + SE

4 Ψ̃ + Ψ̃a,Z = 0, (4.22)

(Ψ̄,Z − Ψ̄a,Z)W̃ +Ω(Ψ̃ − Ψ̃a)= 0. (4.23)

The complicated expressions for the coefficients SE
i are provided in appendix A.

The variables W̃, θ̃ , Ψ̃ , and Ψ̃a are coupled in the governing equations (4.11),
(4.16), (4.19), and (4.20) and the boundary conditions (4.12)–(4.15), (4.17), (4.18),
and (4.21)–(4.23). These expressions are solved numerically to obtain the time and
length scales for the electric-field-induced free surface instabilities of nematic films.

4.3. Long-wave analysis
The kinematic equation (3.31) obtained from the lubrication approximation can also
be linearized by employing the aforementioned normal linear modes to obtain the
following dispersion relation from the LWLSA (Lin et al. 2013a):

Ω =−I(K4
+K2Φe,H +K2E−1

r (θ2 − θ1)
2). (4.24)

Here the symbols K and Ω represent the wavenumber and growth coefficient of
instability. The notation Φe(= (ε⊥ + εd cos2 θ)Ψ 2

,Z − Ψ 2
a,Z) is the dimensionless

conjoining pressure due to the electrostatic interaction, obtained from (3.25). The
dispersion relation (4.24) provides a preliminary estimate on the length and the
time scales of the electric-field-induced instabilities of dielectrically anisotropic thin
nematic films.

In addition to this, the perturbed-state governing equations (4.11), (4.16), (4.19), and
(4.20) for the GLSA and the boundary conditions (4.12)–(4.15), (4.17), (4.18), and
(4.21)–(4.23) can also be reduced to the long-wave form when terms of order δ1 or
higher order of δ1 are neglected and only the leading-order terms are retained. We
term this methodology as reduced general linear stability analysis (RGLSA) in the
present study. In such a scenario, the reduced long-wave governing equations take the
following forms:

16B̄2W̃,ZZZZ + 16B̄2,ZW̃ZZZ + 4B̄2,ZZW̃,ZZ +K2E−1
r θ̄,Z θ̃,ZZ − 2K2εd sin 2θ̄ θ̄,ZΨ̄,ZΨ̃,Z = 0,

(4.25)

iKE−1
r θ̃,ZZ = 0, (4.26)
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2(εd sin 2θ̄ Ψ̄,Z)θ̃,Z − 4(ε⊥ + εd cos2 θ̄ )Ψ̃,ZZ + (εd sin 2θ̄ θ̄,Z)Ψ̃,Z = 0, (4.27)

Ψ̃a,ZZ = 0. (4.28)

Further, the RGLSA boundary conditions at the NS interface (Z = 0) are obtained as

W̃ = W̃,Z = Ψ̃ = θ̃ = 0. (4.29)

The RGLSA boundary conditions at NI interface (Z =H) are obtained as

Ω−1K4W̃ − 8B̄2W̃,ZZZ − 4B̄2,ZW̃,ZZ − 2K2E−1
r θ̄,Z θ̃,Z

+ 4K2(ε⊥ + εd cos2 θ̄ )Ψ̄,ZΨ̃,Z + 2K2Ψ̄a,ZΨ̃a,Z = 0, (4.30)

4ΩB̄2W̃,ZZ = 0, (4.31)

θ̃ = 0, (4.32)
Ω(2(ε⊥ + εd cos2 θ̄ )Ψ̃,Z + Ψ̃a,Z)= 0, (4.33)

(Ψ̄,Z − Ψ̄a,Z)W̃ +Ω(Ψ̃ − Ψ̃a)= 0. (4.34)

The RGLSA boundary conditions for electric field at anode (Z =D) is

Ψ̃a = 0. (4.35)

Numerical solution of the RGLSA governing equations (4.25)–(4.28) along with the
boundary conditions (4.29)–(4.35) is expected to reproduce the results obtained from
the dispersion relation (4.24) in the long-wave limit.

The dispersion relation from the LWLSA equation (4.24) can be reduced for
an isotropic thin liquid film in the following manner. First, setting the dielectric
anisotropy, εd = 0, which reduces the electrostatic conjoining pressure to the form
Φei = εiΨ

2
,Z − Ψ

2
a,Z , where εi is the dielectric permittivity of the isotropic liquid film.

Thereafter, all the Leslie viscosity coefficients are set to zero, α̂i(i 6= 4) = 0, except
the one corresponding to the Newtonian viscosity, µ= α4/2. Following this, Kf is set
to zero to ensure E−1

r = 0. Enforcing all these conditions on (4.24) helps in obtaining
the following dispersion relation in the long-wave limit of an isotropic film deforming
under the influence of an electric field (Verma et al. 2005):

Ω =−(K4
+K2Φei,H)/3. (4.36)

The analytical solution of the GLSA for an isotropic liquid film deforming under
an electric field is available in the literature (Bandyopadhyay et al. 2009). Again,
the GLSA and RGLSA for the nematic liquid film can be reduced to the case for
an isotropic film when we enforce the same set of conditions as mentioned in the
previous paragraph for the LWLSA. The analytical solutions of these isotropic cases
have been used to validate the numerical results.

5. Numerical method

The coupled governing equations (4.11), (4.16), (4.19), and (4.20) together with
the boundary conditions (4.12)–(4.15), (4.17), (4.18), and (4.21)–(4.23) form an
eigenvalue problem that is solved numerically by employing the spectral collocation
method (Orszag 1971; Gottlieb & Orszag 1977; Weideman & Reddy 2000) to obtain
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the linear growth rate (Ω) and the corresponding wavenumber (K) for the unstable
modes. For this purpose, the computational domain is mapped into a space (−1, 1)
with the help of the transformations ξ = 2Z − 1 and χ = (−2Z +D+ 1)/(D− 1) for
the equations corresponding to the nematic film and air, respectively. The transformed
governing equations motion and electric field are derived as

16L1W̃,ξξξξ + 8L2W̃,ξξξ + 4L3W̃,ξξ + 2L4W̃,ξ + L5W̃ + L6θ̃,ξξ + L7θ̃ + L8Ψ̃,ξ + L9Ψ̃ = 0,
(5.1)

4I1W̃,ξξ + 2I2W̃,ξ + I3W̃ + 4I4θ̃,ξξ + I5θ̃ + 2I6Ψ̃,ξ + I7Ψ̃ = 0, (5.2)

2J1θ̃,ξ + J2θ̃ + 4J3Ψ̃,ξξ + J4Ψ̃,ξ + J5Ψ̃ = 0, (5.3)

(4/(D− 1)2)Ψ̃a,χχ + J6Ψ̃a = 0. (5.4)

The transformed boundary conditions at the NS interface (ξ =−1) are evaluated as

W̃ = W̃,ξ = Ψ̃ = θ̃ = 0. (5.5)

The transformed boundary conditions at the NI interface (ξ = 1 and χ = 1) are
obtained as

Ω−1SN
1 W̃ + 8SN

2 W̃,ξξξ + 4SN
3 W̃,ξξ + 2SN

4 W̃,ξ + SN
5 W̃

+ 2SN
6 θ̃,ξ + SN

7 θ̃ + 2SN
8 Ψ̃,ξ − SN

9 (2/(D− 1))Ψ̃a,χ = 0, (5.6)

Ω−1ST
1 W̃ + 4ST

2 W̃,ξξ + 2ST
3 W̃,ξ + ST

4 W̃ + ST
5 θ̃ = 0, (5.7)

Ωθ̃ + iKδ1W̃ = 0, (5.8)
Ω−1SE

1 W̃ + SE
2 θ̃ + 2SE

3 Ψ̃,ξ + SE
4 Ψ̃ − (2/(D− 1))Ψ̃a,χ = 0, (5.9)

(2Ψ̄,ξ + (2/(D− 1))Ψ̄a,χ)W̃ +Ω(Ψ̃ − Ψ̃a)= 0. (5.10)

The transformed boundary condition for electric field at the anode (χ =−1) is

Ψ̃a = 0. (5.11)

The subscripts ξ and χ with a preceding comma in the transformed governing
equations and boundary conditions denote ordinary differentiation. The base-state
variables are evaluated numerically in the (0, H̄) domain and mapped into the
transformed (−1, 1) domain. Following this, the four transformed ODEs (5.1)–(5.4)
and boundary conditions (5.5)–(5.11) are expanded in terms of Chebyshev polynomials
Tn(Z). For N Chebyshev polynomials, four ODEs and ten boundary conditions form
a (4N)× (4N) matrix from which the eigenvalues are obtained. The accuracy of the
code for the GLSA is validated against the eigenvalues obtained from the LWLSA in
the long-wave limit. The accuracy of the code is also improved by varying the number
of polynomials (∼ 50) and eliminating any spurious eigenvalues. The aforementioned
methodology is also employed to perform the RGLSA by numerically solving the
leading-order governing equations (4.25)–(4.28) and boundary conditions (4.29)–(4.35).
The GLSA results are validated against the analytical eigenvalues obtained from the
LWLSA as well as the numerically evaluated eigenvalues from the RGLSA in order
to ensure the accuracy of the GLSA results. The parameter Ωm is obtained by finding
the maximum of Ω with variation in K, which signifies the time scale (Ω−1

m ) of
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the fastest-growing mode of instability. The wavenumber, Km, corresponding to Ωm
provides the length scale of the fastest growing mode, Λm.

Similar to the LWLSA isotropic dispersion relation (4.36), the above set of GLSA
governing equations (5.1)–(5.4) and boundary conditions (5.5)–(5.11) are also reduced
(setting εd = Kf = α̂i(i 6= 4) = 0) for an isotropic liquid film, solved numerically,
and then validated against the results obtained analytically in the previous work
(Bandyopadhyay et al. 2009).

6. Analytical asymptotic analysis
In order to verify the accuracy of the numerical analysis shown in § 5, we have

performed an analytical asymptotic (AA) analysis of the equations shown in § 4
to obtain an analytical solution for the systems where the director orientations are
planar (or homeotropic) in both the NI and NS interfaces and the film is dielectrically
isotropic, εd = 0. In this limit, the fourth-order ODE, balances of couples, and the
governing equations for the electric field potential of the nematic film and air, as
shown in the (4.11), (4.16), (4.19), and (4.20), respectively, reduce to

W̃,ZZZZ −Q1K2W̃,ZZ +Q2K4W̃ = 0, (6.1)

δ1α̂2W̃,ZZ +K2δ3
1 α̂3W̃ + iKE−1

r θ̃,ZZ − iK3δ2
1E−1

r θ̃ = 0, (6.2)

Ψ̃,ZZ −K2δ2
1 Ψ̃ = 0, (6.3)

Ψ̃a,ZZ −K2δ2
1 Ψ̃a = 0. (6.4)

The expressions for the coefficients Qi are provided in appendix A. In this limit, the
boundary conditions from the equations (4.12), (4.17), and (4.21) at the NS interface
(Z = 0) can be written as

W̃,Z = W̃ = θ̃ = Ψ̃ = 0. (6.5)

Again, the boundary conditions in (4.14), (4.15), (4.18), (4.22), and (4.23) at the NI
interface (Z =H), using (4.13), reduce to the forms

2K4W̃ +Ω(−(α̂2 + α̂5 + 2)W̃,ZZZ +K2δ2
1(6+ 2α̂1 + α̂2)W̃,Z)

+ΩK2δ2
1(3α̂5 + 2α̂3)W̃,Z +Ω

(
4εK2

1+ ε(D− 1)

)
(Ψ̃,Z − Ψ̃a,Z)= 0, (6.6)

(α̂5 − α̂2 + 2)W̃,ZZ +K2δ2
1(α̂2 + α̂5 + 2)W̃ = 0, (6.7)

Ω θ̃ + iKδ1W̃ = 0, (6.8)
ε Ψ̃,Z − Ψ̃a,Z = 0, (6.9)

(Ψ̄,Z − Ψ̄a,Z)W̃ +Ω(Ψ̃ − Ψ̃a)= 0, (6.10)

where ε is the dielectric permittivity of the film. At the anode (Z =D) the boundary
condition (4.21) for the electric field potential is

Ψ̃a = 0. (6.11)

The expressions of base-state variables shown in (6.1)–(6.11) are obtained by solving
the following base-state governing equations for electric fields at the nematic film and
air

Ψ̄,ZZ = Ψ̄a,ZZ = θ̄,ZZ = 0. (6.12)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

72
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.727


480 K. Mondal, A. Ghosh, J. Chaudhuri and D. Bandyopadhyay

The boundary conditions applied for the base-state solutions at the electrodes (Z = 0
and Z =D) are

Ψ̄ = 0 and Ψ̄a = 1. (6.13a,b)

The boundary conditions applied for the base-state solutions at the NI interface
(Z = H̄) are

ε Ψ̄,Z = Ψ̄a,Z, (6.14)
Ψ̄ = Ψ̄a. (6.15)

The boundary conditions for the base-state director orientations at the NS (Z= 0) and
NI interfaces (Z = H̄) are

θ̄ = 0◦ or θ̄ = 90◦. (6.16a,b)

The base-state solutions from the above set of (6.12)–(6.16a,b) are

Ψ̄ = Z/(1+ ε(D− 1)), (6.17)
Ψ̄a = (1+ ε(Z − 1))/(1+ ε(D− 1)), (6.18)

θ̄ = 0◦ or θ̄ = 90◦. (6.19a,b)

The analytical solutions for the variables W̃, Ψ̃ , and Ψ̃a are obtained from (6.1), (6.3),
and (6.4) as

W̃ = R1 exp(β1KZ)+ R2 exp(−β1KZ)+ R3 exp(β2KZ)+ R4 exp(−β2KZ), (6.20)

Ψ̃ = R7 exp(δ1KZ)+ R8 exp(−δ1KZ), (6.21)

Ψ̃a = R9 exp(δ1KZ)+ R10 exp(−δ1KZ), (6.22)

where the expressions for the coefficients βi are provided in appendix A. The
analytical solution for θ̃ is obtained after replacing equation (6.20) into (6.2), which
involves two constants, R5 and R6. The solution is not provided along with the text
due to its complexity and length. Following this, the expressions for the variables W̃,
θ̃ , Ψ̃ , and Ψ̃a are replaced in the ten boundary conditions (6.5)–(6.11). Subsequently,
ten homogeneous linear algebraic equations are obtained with the ten unknowns
Ri (i = 1 − 10). Equating the determinant of the coefficient matrix of the set of
homogeneous equations to zero, the general dispersion relation is obtained for the
system where the director orientations are planar (or homeotropic) in both the NI and
NS interfaces and the film is dielectrically isotropic. Since the mathematical operations
for these formulations are significantly cumbersome, the commercial software package
MATHEMATICATM is used to derive the expressions and then solve the determinant
to obtain the dispersion relation. The linear growth rate (Ω) and the corresponding
wavenumber (K) for the unstable modes are analytically evaluated by incorporating
the different property values, which are kept similar to the numerical analysis shown
in § 5.
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7. Results and discussion
The orientations of the molecules across thin LC films are in general very different

from the alignment of the LC molecules near the boundaries. Almost all the surfaces
compel the LC molecules to orient specifically near the rigid boundaries. Apparently,
the LC molecules can have three different types of anchoring at the boundaries: planar
(θi = 90◦), homeotropic (θi = 0◦), and angular (θi > 0◦). The anchoring conditions
at the boundaries can be anywhere from strong to weak based on the mechanical
or chemical treatment of the solid surfaces before the experiments (Oswald 2010a,b).
When a soft and deformable LC film is exposed to an external electrostatic field, a
part of the destabilizing force is expended in disrupting the director orientations of the
LC film while the other part is employed to engender deformation of the film. In such
a scenario, the response of the LC molecules to the applied electric field depends on
the dielectric anisotropy of the material. For example, the induced charge separation
of the LC molecules is expected to be aligned in the direction of the applied field
when εd > 0, whereas the LC materials with εd < 0 ensure charge separation in the
direction normal to the applied field. Thus, nCB (4-n-alkyl-cyanobiphenyl) LC films
with εd > 0 are expected to show a more spontaneous EHD instability as compared
to similar isotropic films where εd ∼ 0. In contrast, LC films composed of PAA (p-
azoxyanisole) with εd < 0 may require a larger EHD stress for deformation of the
NI interface (de Gennes & Prost 1993). In view of the above, we summarize the
influences of the Frank elasticity, dielectric anisotropy, Ericksen stress, and anchoring
of LC molecules at the boundaries on the length and time scales of the electric-field-
induced instabilities of NLC films.

7.1. Validations
We initiate the discussion on the results with some analytical validations of the
numerical results. Figure 2 compares and contrasts the variations in the linear growth
coefficient (Ω) with wavenumber (K) from the present analysis with some of the
cases available in the literature. Curves 1 and 2 in panel (a) correspond to the
results obtained for an isotropic film from the analytical dispersion relation available
in the literature for both LWLSA (Verma et al. 2005) and GLSA (Bandyopadhyay
et al. 2009), respectively. The steps to obtain these isotropic cases for both LWLSA
along with RGLSA and GLSA are presented at the end of §§ 4.3 and 5, respectively.
Circular symbols indicate that the present analysis can exactly reproduce these
eigenvalues from the GLSA employed when the parameters are set in such a manner
that the film is isotropic (solid line 2) and also when only the terms pertinent to
long-wave analysis are retained in the RGLSA (solid line 1). Panel (b) shows the
validation of the eigenvalues obtained from the LWLSA, RGLSA, and GLSA for an
NLC film. The circular symbols on the solid curve 1 obtained from the analytical
equation (4.24) nearly match with the eigenvalues obtained from the RGLSA, as
shown by the solid curve 1. Further, the numerical results obtained from the GLSA
are plotted as solid line 2 in panel (b). The curves suggest that the LWLSA or
RGLSA predictions match with GLSA only in the long-wave regime (K→ 0), while
they deviate significantly with increasing in K. The plots show the necessity of GLSA
over LWLSA or RGLSA when the length scale shifts to the shorter-wavelength regime
(K > 1). The solid line in panel (c) shows the numerically obtained eigenvalues from
the GLSA, shown in § 5, in the limit where the director orientations are planar (or
homeotropic) in both the NI and NS interfaces and the film is dielectrically isotropic.
Enforcing such conditions on the director orientations and the electric field, in § 6, we
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FIGURE 2. (Colour online) Results obtained from LWLSA, RGLSA, GLSA, and AA
showing the variation of Ω with K. The symbols are obtained from the analytical solutions
(Lin et al. 2013a; Verma et al. 2005; Bandyopadhyay et al. 2009) whereas the solid lines
are obtained from the numerical solutions. (a) Results from RGLSA (lighter shade, solid
line 1) and GLSA (darker shade, solid line 2) when the film is isotropic, d = 2 µm,
h = 1.5 µm; ψ = 20 V , µ = α4/2 = 0.0425 Pa s, Kf = εd = α̂i(i 6= 4) = 0, and εi = 6.
The square (red) and circular (blue) symbols are obtained from the analytical solutions
of the LWLSA and GLSA of the isotropic cases, respectively. (b) Results from LWLSA
(square (red) symbols on the solid line 1), RGLSA (lighter shade, solid line 1) and GLSA
(darker shade, solid line 2) for a nematic film when εd = 0.5. The director orientations at
the NS (Z= 0) and NI (Z= 1) interfaces are planar (θ1= 90◦), and homeotropic (θ2= 0◦),
respectively. (c) Results from AA (delta (blue) symbols) and GLSA (darker shade, solid
line 1) for a nematic film when εd = 0 and ε = 6. The director orientations at the NS
(Z= 0) and NI (Z= 1) interfaces are either planar (θ1= 90◦ and θ2= 90◦) or homeotropic
(θ1 = 0◦ and θ2 = 0◦). The other parameters necessary for the plots are shown in table 1.

Variables Values

α1 (Pa s) 0.0065
α2 (Pa s) −0.007
α3 (Pa s) −0.001
α4 (Pa s) 0.085
α5 (Pa s) 0.05
γ (N m−1) 0.03
Kf (pN) 5.0
ε⊥ 6.0
εa 5.0
h0 (µm) 1.5
d (µm) 2.0
Ψ (V) 20

TABLE 1. Typical parametric values used in the calculations for the nematic film
(Stephen & Straley 1974; de Gennes & Prost 1993; Stewart 2004).

showed that another set of eigenvalues can be evaluated by employing the analytical
asymptotic (AA) analysis, as depicted by the symbols in panel (c). A comparison
between the analytical and numerical eigenvalues obtained from the AA and GLSA,
respectively, in panel (c) again confirms the accuracy of the numerical code.

7.2. Importance of GLSA, dielectric anisotropy, and bulk elasticity
A series of Ω versus K plots in the following figure 3 highlight the usefulness
as well as limitations of the long-wave analysis with the change in the anchoring
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near the boundaries. Further, figures 4 and 5 show the effects of thermodynamic
parameters, such as dielectric anisotropy (εd) and Frank bulk elastic constant (Kf ),
and kinetic parameters, such as the Leslie viscosity coefficients (αi), on the length and
the time scales of the electric-field-induced instabilities of thin NLC films. However,
before we discuss these aspects, an analysis on the following expressions of the
normal and tangential stress balance in (3.8) and (3.9) at the NI interface can provide
useful insights into understanding the different forces responsible for the interfacial
deformation of NLC films under an electric field,

P− P0 + E−1
r θ

2
,Z − (D1U,X +D2U,Z +D3W,X +D4W,Z)

+ [[εd(sin 2θH,X − cos2 θ)− ε⊥]Ψ
2
,Z +Ψ

2
a,Z] =−ΓH,XX, (7.1)

E−1
r (θ

2
,ZH,X + θ,Xθ,Z)− (B1U,X + B2U,Z + B3W,X + B4W,Z)= 0. (7.2)

For example, the third term in the expression of normal stress balance (7.1) is known
as the Frank bulk elasticity (ΠES) (Vandenbrouck et al. 1999), which together with
the surface tension term in the right-hand side restricts any interfacial deformation
of an NLC film. The bracketed fourth term in this expression is the nematodynamic
components of the normal stress balance having the Leslie viscosity coefficients, while
the bracketed fifth term corresponds to the destabilizing EHD stress (ΠEF). Equation
(7.1) clearly indicates that NLC films with εd > 0 or εd < 0 are expected show a very
different type of EHD instability as compared to the same observed for isotropic
films (εd = 0). The other important parameter to notice is the bracketed first term in
the expression of tangential stress balance (7.2) corresponding to the elastic Ericksen
stress (de Gennes & Prost 1993), which facilitates the interfacial deformation of an
NLC film. The bracketed second term in (7.2) shows nematodynamic components of
the tangential stress balance having Leslie viscosity coefficients. Equations (7.1) and
(7.2) together suggest that the interfacial deformation of a thin nematic film under
the influence of an electric field can be significantly different from the same of an
isotropic film owing to the presence of the additional stabilizing term originating from
the Frank elasticity and the destabilizing terms originating from the anisotropic EHD
and Ericksen stresses. In the following discussions, the base-state expressions for
anisotropic EHD force per unit volume (FEF =ΠEF,Z) and elastic Ericksen force per
unit volume (FES=ΠES,Z) have been used to estimate the strength of the destabilizing
influences at the NI interface in the presence of an electric field and analyse the
GLSA results,

FEF = [2Ψa,ZΨa,ZZ + εd sin 2θ Ψ 2
,Zθ,Z − 2(ε⊥ + εd cos2 θ)Ψ,ZΨ,ZZ], (7.3)

FES = 2E−1
r θ,Zθ,ZZ. (7.4)

An extensive comparison between analytical eigenvalues obtained from the LWLSA
(orange or lighter shade) and the numerical eigenvalues obtained from the GLSA
(black or darker shade) has also been carried out for the electric-field-induced
instabilities of the LC films, as summarized in figure 3. The first column of panels
(a–d) schematically show the typical director orientations considered inside the NLC
films such as homeotropic–homeotropic (H–H, θ1 and θ2 = 0◦), homeotropic–planar
(H–P, θ1 = 0◦ and θ2 = 90◦), planar–homeotropic (P–H, θ1 = 90◦ and θ2 = 0◦), and
planar–planar (P–P, θ1 and θ2 = 90◦), respectively, at the NS and NI boundaries. The
remaining columns in the figure correspond to NLC films with different NLC to air
filling ratios between the electrodes (ν = h0/d) undergoing EHD instabilities.
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FIGURE 3. (Colour online) Comparison of LWLSA (lighter shade, curve 1) and
GLSA (darker shade, curve 2) curves for the variation of growth coefficient (Ω) with
wavenumber (K) of a nematic film for different filling ratios, ν = h0/d = 1/D. In (a–d)
column i shows the nematic films with homeotropic–homeotropic (H–H, θ1 and θ2 = 0◦),
homeotropic–planar (H–P, θ1 = 0◦ and θ2 = 90◦), planar–homeotropic (P–H, θ1 = 90◦ and
θ2 = 0◦), and planar–planar (P–P, θ1 and θ2 = 90◦) director orientations, respectively, at
the NS and NI boundaries. Columns ii, iii, and iv are plots for ν = 0.25, 0.5, and 0.75,
respectively, with εd = 0.5. The other necessary parameters for the plots are shown in
table 1.

The plots suggest that the analytical eigenvalues match fairly well with the
numerical ones in the long-wave limit, (K → 0). However, in the plots (bii), (cii),
(aiii), and (aiv–div), the difference in the analytical and numerical eigenvalues become
prominent at larger values of K. Panels (a,d) show that when the director orientation
across the nematic film is uniform (θ,Z = 0), the LWLSA and GLSA eigenvalues
matched fairly well at smaller filling ratios ν 6 0.5 when the EHD stress at the NI
interface is relatively weaker. However, at higher filling ratios, ν > 0.5, as the EHD
stress at the NI interface become relatively stronger the eigenvalues obtained from
the GLSA deviate significantly from the same obtained from the LWLSA. It may be
noted here that this phenomenon is true even for an isotropic film, as reported by a
number of previous works (Bandyopadhyay et al. 2009). The results from this figure
show that at higher field intensities the EHD instabilities of thin films require GLSA
rather than LWLSA for accurate predictions of the eigenvalues corresponding to the
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FIGURE 4. (Colour online) The results from GLSA when the dielectric anisotropy (εd)
and Frank bulk elastic constant (Kf ) of the NLC film are varied. The solid curve ‘i’
(lighter shade) shows a comparative plot for an isotropic film deforming under electric
field. (ai–di) Show the NLC films with H–H, H–P, P–H, and P–P director orientations,
respectively, at the NS and NI boundaries. In (aii–cii) the curves 1–3 (darker shade)
represent εd =−0.7, 0, and 5, respectively, when ε⊥= 6 and ν= 0.75. In (dii), the curves
1–3 (darker shade) represent ε⊥ = 5, 6, and 7, respectively, when ε‖ = 10 and ν = 0.75,
and the curve ‘i’ (lighter shade) corresponds to an isotropic film having εi= 6. Column iii
corresponds to the filling ratio ν= 0.25 in which the curves 1–3 (darker shade) correspond
to Kf = 3 pN, 9 pN, and 15 pN, respectively, when εd= 5. The other necessary parameters
for the plots are shown in table 1.

unstable modes. The deviation of LWLSA from GLSA is more prominent when the
director orientation across the film is non-uniform (θ,Z 6= 0), as shown by the plots in
panels (b,c).

Figure 4 shows the typical Ω versus K plots when the dielectric anisotropy (εd)

and bulk elastic constant (Kf ) are varied. Again, panels (ai–di) schematically show the
typical director orientations H–H, H–P, P–H, and P–P at the NS and NI boundaries
of the NLC films. Panels (aii–dii) show the effects of εd, and panels (aiii–diii) show
the effect of Kf . Panels (aii–cii) suggest that as compared to an isotropic film (curve
‘i’), the NLC film with isotropic dielectric properties (curve 2, εd = 0) is always more
stable owing to the reduction in the magnitude of the dominant growth coefficient
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FIGURE 5. (Colour online) The GLSA plots showing the influence of Leslie viscosity
coefficients (αi). Panels (ai–di) show the NLC films with H–H, H–P, P–H, and P–P
director orientations at the NS and NI boundaries. Panels (aii–dii) correspond to
Kf , α4, α1 6= 0 and α2, α3, α5 = 0 in which the curves 1–3 represent α1 = 0.003 Pa s,
0.006 Pa s, and 0.009 Pa s, respectively. Panels (aiii–diii) correspond to Kf , α4, α2 6= 0 and
α1, α3, α5=0 where curves 1–3 represent α2=−0.007 Pa s,−0.014 Pa s, and −0.021 Pa s,
respectively. Panels (aiv–div) correspond to Kf , α4, α3 6= 0 and α1, α2, α5 = 0 in which
curves 1–3 represent α3=−0.001 Pa s,−0.004 Pa s, and −0.007 Pa s, respectively. Panels
(av–dv) correspond to Kf , α4, α5 6= 0 and α1, α2, α3 = 0 in which curves 1–3 represent
α5 = 0.03 Pa s, 0.05 Pa s, and 0.07 Pa s, respectively. The other necessary parameters
for the plots are shown in table 1.

(Ωm). In this situation, the destabilizing forces have to overcome the additional
Frank bulk elasticity of the NLC film, which leads to larger time (smaller Ωm) and
length (smaller Km) scales of instability as compared to a purely isotropic film. A
comparison between curves 1 and 2 suggests that the dominant length (Λm= 2π/Km)

and time (1/Ωm) scales can be significantly larger for NLC films with negative
(εd < 0) dielectric anisotropy than NLC films with an isotropic dielectric property.
In contrast, curves 2 and 3 suggest that the dominant length and time scales can
be significantly smaller for NLC films with positive (εd > 0) dielectric anisotropy as
compared to NLC films with an isotropic dielectric property. The condition εd > 0
ensures an easier alignment of the NLC molecules and subsequent charge separation
near the NI and NS interfaces along the direction of the applied electric field, which
facilitates the electric-field-induced deformation of the NI interface. Whereas, for the
condition εd < 0, the induced charge separation in the normal direction of the applied
electric field acts against the electric-field-induced deformation of the NI interface.

Panels (aii–dii) also show that the director orientations at the NI and NS interfaces
play crucial roles in modulating the dominant time and length scales of the EHD
instabilities. For example, when all the molecules are oriented towards the direction of
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the electric field and εd > 0 [curve 3 in panel (aii)], smaller time and length scales of
instability are observed. In fact, when the molecules at the NI interface are oriented
in the direction of the electric field [curve 3 in panel (cii)], we observe similar length
and time scales of instability as observed for the case in the plot (aii). Panels (aii)
and (cii) together suggest that the anchoring condition at the NI (NS) interface has
more (less) significance on the length and time scales of the EHD instabilities of
the NLC films. In comparison, curve 3 of panels (bii) and (dii) show that when the
director orientation is planar at the NI interface, the length and time scales are much
larger than the aforementioned cases because of the larger expense of EHD stresses
for orienting the molecules towards the direction of the electric field.

The curves in panels (aiii–diii) show the effect of Ericksen stress on the dominant
length and time scales of the electric field induced instabilities of the NLC films.
Previously, (7.1) and (7.2) suggested that the effect of Ericksen stress is a function
of the director orientation along the nematic axis (θ,Z). Thus, a uniform director
orientation (θ,Z = 0) across the film is expected to show negligible influence of
Ericksen stress, as can be observed in panels (aiii) and (diii). However, panels (biii)
and (ciii) suggest that when there is a variation in θ,Z across the film, the Ericksen
stress can have a significant destabilizing influence. For example, when the films
are thinner (ν = 0.25), the destabilizing effect of the Ericksen elastic stress is more
pronounced at larger values of θ,Z near the NI interface. In such a situation, the
dominant length and time scales reduce and the destabilizing effect enhances with an
increase in the magnitude of Kf , as shown by curves 1–3.

Apart from the previously discussed thermodynamic parameters, kinetic parameters
such as the Leslie viscosity coefficients (αi where i = 1, 2, 3, and 5) can also have
some influence on the electric-field-induced instabilities of the NLC films. In figure 5,
panels (ai–di) show nematic films with H–H, H–P, P–H, and P–P anchoring conditions
at the NS and NI boundaries, while the renaining panels show the effects of αi under
different anchoring conditions at the NI and NS interfaces. It may be noted here that
α4/2 is the Newtonian viscosity of the films and has a finite value in all the plots. The
plots suggest that the Leslie viscosity coefficients can change the magnitude of the
dominant time scale of the EHD instabilities of thin nematic films. Further, the plots
suggest that the effects of α2 and α5 are more pronounced than the others. Importantly,
all the Leslie viscosity coefficients do not influence the length scale, as previously
observed for other kinetic parameters such as the viscosity and relaxation time of a
viscous or viscoelastic film (Tomar et al. 2006; Bandyopadhyay, Reddy & Sharma
2012). However, a comparison between the GLSA and LWLSA results also suggests
that the effects of the terms associated with the Leslie viscosity coefficients (Bi and
Di) in the (7.1) and (7.2) can be significant and should be included in analysing the
stability of NLC thin films. For example, the differences in the dominant time scale
obtained for the LWLSA and GLSA in figure 3 can be attributed to the presence
(absence) of the Leslie viscosity coefficients in the GLSA (LWLSA).

In brief, figures 3–5 reveal quite a few interesting facts related to the electric-
field-induced instabilities of thin NLC films. Firstly, they show the effects of
thermodynamic parameters such as the dielectric anisotropy, Frank bulk elasticity,
and Ericksen elastic stress on tuning the time and length scales of such instabilities.
Secondly, they emphasize the importance of GLSA over LWLSA to uncover the
diverse stability paradigms. Lastly, the plots show the effects of the director
orientations across the film, anchoring conditions near the interfaces, and Leslie
viscosity coefficients while analysing such instabilities.
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7.3. Different EHD modes from GLSA
Most of the previous theoretical works on the free surface instabilities of thin NLC
films could only predict the presence of the long-wave (LW) interfacial mode owing
to the use of lubrication approximations in the analyses (Ben Amar & Cummings
2001; Cummings 2004; Cummings, Lin & Kondic 2011; Lin et al. 2013a,b). In the
previous section, we have highlighted the limitations of the LWLSA over the GLSA
in predicting the unstable modes of the electric field induced instabilities of NLC
films even in that limit. Importantly, the discussions on the figures 2–5 are largely
restricted to uncovering the LW modes of such instabilities employing the proposed
GLSA. However, many recent experimental studies have predicted the presence of
multiple instability modes for NLC films under the influence of an external electric
field (Oswald 2010a,b). Herein, the proposed GLSA is able to predict the existence of
finite-wavenumber (FW) modes alongside the LW modes for the electric-field-induced
free surface instabilities of NLC films. Since the major focus of this study is to
identify the influence of the electric field, Ericksen stress, dielectric anisotropy, and
Frank bulk elasticity of the NLC film on the mode selection, we restrict our study to
a few dimensionless parameters such as Er, the gradient of the director angle (θ,Z),
the filling ratio (ν), and the dielectric anisotropy (εd). The following insights on
these parameters can elucidate discussions associated with the following figures. For
example, a higher value of Er signifies either exposure to a strong electric field or
a weak Frank bulk elasticity inside the NLC film. Similarly, a higher (lower) value
of θ,Z near the NI interface signifies the presence of a strong (weak) destabilizing
Ericksen stress, which may facilitate (impede) the free surface deformations of the
NLC films. In contrast, a higher value of θ,Z inside the film with larger values of Kf
can also empower the restoring influence of Frank bulk elasticity, which may restrict
any free surface deformation of the NLC films. A higher value of εd ensures easy
alignment of NLC molecules towards the direction of the electric field while a higher
ν ensures a higher EHD stress at the NI interface to facilitate deformation.

We initiate the discussions with the situation when the NS and NI interfaces of the
NLC film has H–H anchoring conditions, as shown in figure 6(a). Clearly, the director
orientations across the NLC film ensure the absence of the Ericksen elastic stress and
Frank bulk elasticity because θ,Z = 0. Thus, in this case, panel (b) shows the presence
of the LW mode of instability only, which has similarity with the electric field induced
instabilities of the isotropic thin films (Schäffer et al. 2000; Verma et al. 2005). Panels
(c,d) show the variations in Ωm and Λm with Er and εd, respectively. Panels (b–d)
together suggest that the dominant length and time scales of the LW mode reduce
with increasing strength of the destabilizing electric field (higher Er) and increasing
dielectric anisotropy of the film (higher εd).

Figure 7 shows the GLSA results when the director fields at the NS and NI
interfaces have homeotropic–angular orientations (H–A, θ1 = 0◦ and θ2 = 45◦), as
schematically shown in the diagram S1 of panel (a). Panel (a) shows the variation
in the director orientation (θ̄) across the film while panel (b) shows the variation of
Ω with K at different values of Er. Curve 1 in panels (a,b) suggests that when the
variation in the director orientation (θ,Z) near the NI interface is relatively small the
instability manifests by the LW mode. Curves 2–5 in panel (b) suggest that with a
progressive increase in Er an additional FW mode of instability appears at higher
wavenumbers. Curves 1 and 6 in panel (a) suggest that the magnitude of θ,Z near
the NI interface increases with Er because the NLC molecules in the bulk orient
more in the direction of the applied electric field at higher electric field strength
(ψ0), whereas molecules at the boundary retain their orientation as enforced in the
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FIGURE 6. (Colour online) The GLSA results of a nematic film with H–H (θ1 = 0◦ and
θ2 = 0◦) orientations at the NS and NI boundaries when ν = 0.75. (a) Variation of the
director orientation at the base state (θ̄) along the Z-axis as schematically also shown by
the diagram S1. (b) Typical Ω versus K curves for this case, where curves 1–5 represent
Er = 354.2, 796.9, 1416.6, 2213.5, and 3187.4, respectively, when εd = 9. (c,d) Variations
of Ωm and Λm with Er and εd, respectively. In (c) Kf = 5 pN and εd = 9, whereas in
(d) Er = 2213.5. The other essential parameters used for these plots are shown in table 1.

boundary condition. In such a situation, the dominant time (reduction in Ωm) and
length (increase in Λm) scales are found to increase because of the increase in the
bulk elasticity of the NLC film (third term in (7.1)), as shown by curves 2–4 in panel
(b). However, curves 4 and 5 in panel (b) suggest that, beyond a critical value of
Er=Ec

r , an increase in the Ericksen stress near the NI interface fuels up the FW mode
of instability. Panels (c,e) show the increase in the force per unit volume associated
with the Ericksen stress (F,ES, equation (7.4)) with Er. In this case, the sharp increase
in θ,Z and θ,ZZ near Z = 1 dominates the decaying nature of FES with E−1

r . The plots
also indicate the progressive decrease in the EHD force (FEF) with Er progressively
makes the LW mode a subdominant mode while the FW mode becomes the dominant
mode. The broken lines in panels (d, f ) suggest that in this case the dominant length
and time scales corresponding to the LW mode progressively increase with Er. In
comparison, the solid lines in these plots suggest that after the appearance (e.g. for
panels (d, f ), Ec

r = 6510.3 and 8570.7, respectively) a progressive reduction in the
time and length scales for the FW instability with increasing Er.

Importantly, the LW mode is the dominant mode at lower values of Er where
the instability showed unimodal Ω versus K curves in panel (b). In comparison, at
moderately high values of Er, bimodal Ω versus K plots are observed in which the
LW mode is still dominant while the FW mode is the subdominant mode. The FW
(LW) mode becomes the dominant (subdominant) mode beyond a threshold value of
Er. The LW (FW) mode fuelled up by the external electric field (Ericksen Stress)
is progressively shifted towards the longer- (shorter-)wavelength regime while the
intermediate wavenumber showed stability under the influence of the Frank bulk
elasticity inside the NLC film.
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FIGURE 7. (Colour online) The results obtained from GLSA of an NLC film (εd = 9
and ν = 0.75) with H–A (θ1 = 0◦ and θ2 = 45◦) director orientations at the NS and NI
boundaries. (a) Variations of θ̄ at the base state along the Z-axis with Er, as schematically
shown in diagram S1. The curves 1 (blue) and 6 (green) represent Er = 3689.2 and
11067.5, respectively. (b) Variation of Ω with K corresponding to panel (a) to depict the
transition from unimodal (curve 1 – LW mode, blue) to bimodal (curve 6 – both LW and
FW modes, green). The curves 2–5 represent Er= 6148.6 (black), 7378.3 (orange), 8513.5
(olive), and 10061.4 (red), respectively. (c–f ) Variations of FEF, FES, Ωm, and Λm with Er
when Ψ0= 50 V and Kf = 1 pN. The other necessary parameters for these plots are shown
in table 1.

Neutral stability curves for the NLC film discussed in figure 7 are presented in
figure 8. Panels (a–d) show the variations in the critical wavenumber (K) with Er

at constant ψ0, Er at constant Kf , ν, and εd, respectively. In all these plots, the
wavenumbers corresponding to the FW mode are enclosed by the solid lines between
the neutral wavenumbers KF

1 and KF
2 , whereas the same for the LW modes are

enclosed by the broken lines having neutral wavenumbers KL
1 and KL

2 . Panel (a)
shows the presence of LW until Ec

r , and beyond this limit the additional FW mode
appears, as previously discussed in figure 7. Panels (a,b) together show that the FW
mode can be fuelled up either by reducing the bulk elasticity of the NLC film or
by increasing the external field strength. Further, panels (c,d) show even increasing ν
and ε for an NLC film can cause the transition from unimodal to bimodal instability
for NLC films under exposure to an electric field.
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FIGURE 8. Neutral stability curves obtained from GLSA of an NLC film with H–A (θ1=

0◦ and θ2 = 45◦) orientations at the NS and NI boundaries. (a–d) Variation of critical
wavenumber (K) with Er when ψ0 = 50 V, Er when Kf = 1 pN, ν when εd = 9, and εd
when ν = 0.75, respectively. εd and ν are kept constant at εd = 9 and ν = 0.75 for panels
(a,b) whereas Er = 11067.5 is kept constant for panels (c,d). Other parameters used for
these plots are shown in table 1.

In brief, figures 6–8 together highlight that a competition between the restoring
Frank bulk elasticity of the NLC films with the destabilizing Ericksen stress near the
NI interface can fuel up bimodal LW and FW modes of instability. A dominant LW
mode prevails when the influence of the bulk elasticity of the NLC films is more
prominent and only the electric field can destabilize the free surface of the NLC film.
In comparison, the FW mode is dominant when the combined effects of the Ericksen
and EHD stresses are more pronounced.

Figure 9 shows GLSA results for an NLC film with H–P orientation at the NS and
NI interfaces as shown in panel (a). Panel (a) also shows that for the condition εd >
0 more molecules are oriented along the direction of the electric field except in the
immediate vicinity of the NI interface, where a sharp change of director orientation
takes place from homeotropic to planar, causing a large value of Ericksen stress at
higher field intensities. Panel (b) shows a transition of modes from unimodal (curve
2) to bimodal (curve 1) with increasing Er. In comparison, panel (c) shows that when
εd<0 the molecules are mostly oriented along the normal direction to the applied field
except for the zone near the NS interface, where a sharp change of director orientation
takes place from planar to homeotropic. Importantly, the uniform planar orientations
in the near vicinity of the NI interface subdue the Ericksen stress even at higher field
intensities. Thus, in this situation, only the LW mode of instability is observed when
εd < 0, as shown by curves 1 and 2 in panel (d).

Briefly, figures 6–9 reveal that an NLC film with positive dielectric anisotropy
can show a bimodal instability when the combined effects of the Ericksen and EHD
stresses subdue the Frank bulk elasticity and the surface tension forces. The figures
also suggest that films with negative dielectric anisotropy and larger magnitudes of
Frank bulk elasticity can only show the LW interfacial mode, especially when the
magnitude of the Ericksen stress is small across the film.
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FIGURE 9. (Colour online) The results from GLSA of an NLC film with H–P orientation
(θ1= 0◦ and θ2= 90◦) at the NS and NI boundaries. (a,c) Variations of θ̄ along the Z-axis
when εd = 9 and −0.1, respectively, and Er = 3689.2, also schematically shown by the
diagram S1 in both the plots. (b,d) Variation of Ω with K. Curve 1 of both (b) (green)
and (d) (olive) correspond to curve 1 of (a) (green) and (c) (olive), respectively. Curve
2 of (b) (red) represents Er = 1106.8 and εd = 9, and curve 2 of (d) (blue) represents
Er = 3689.2 and εd = −0.5, when ν = 0.75. Other parameters used for these plots are
shown in table 1.

7.4. Fréedericksz-type transition for NLC films
Interestingly, the GLSA can also predict a Fréedericksz-type transition (FTT) (Fraden
& Meyer 1986; Kuzma 1986; Chandrasekhar 1992; de Gennes & Prost 1993; Müller
& Brand 2005) when the director fields at the NS and NI interfaces are in P–P
anchoring conditions. The FTT is in general observed when an LC film is sandwiched
between a pair of electrodes and under the influence of an external electric field. In
such a situation, the uniform director field (θ,Z = 0) across the film transforms into
a non-uniform (θ,Z 6= 0) field across the film beyond a critical strength of external
magnetic or electric field (Chandrasekhar 1992; de Gennes & Prost 1993; Müller
& Brand 2005). However, the GLSA uncovers that a similar FTT can also be
observed for an NLC film with a free deformable surface. For the NLC films with
a free surface, the FTT is expected to occur simultaneously with the free surface
deformation, which makes the phenomenon somewhat different from the same when
the NLC film is confined between a pair of rigid electrodes. Figure 10 shows results
from the GLSA when the director fields at the NS and NI interfaces are in P–P
anchoring conditions. The schematic diagrams S1 and S2 show the orientations of
the molecules across the NLC film before and after the transition. Curves 1 and 2 in
panel (a) also show the variation in the base-state orientation of the NLC molecules
across the film. Panels (b,d) together show the sole existence of the LW mode at
lower values of Er when the orientations of all the molecules across the film are
planar (θ,Z = 0). However, at higher values of Er there is a transition of orientations
of the molecules across the film, as depicted by the schematic diagrams and the
curves in panel (a). In such a situation, θ,Z near the NI interface becomes finite,
which causes the Ericksen stress to fuel up the FW mode alongside the LW mode.
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FIGURE 10. (Colour online) GLSA results of an NLC film with P–P orientations (θ1=90◦
and θ2= 90◦) at the NS and NI boundaries when εd = 9 and ν= 0.75. (a) Curves 1 (blue)
and 2 (olive) show the variation of θ̄ along the Z-axis at Er = 3543.1 and 3689.2, which
is also schematically shown by the diagrams S1 and S2. (b) Curves 1 (blue) and 2 (olive)
show the variation of Ω with K corresponding to (a). (c,d) Variations of FEF, FES, Ωm, and
Λm with Er when Kf = 3 pN. Typical dimensional parameters for these plots are shown
in table 1.

The abrupt changeover of the director orientations across the film with increasing
Er is also indicated by the discontinuities in panel (c), where the values of FEF and
FES show discontinuities. At higher values of Er, the director orientations across the
bulk of the film becomes homeotropic because of the influence of the electric field
on an NLC film with εd > 0, while the director orientations remain planar near the
boundaries. Thus, with the increase in Er, the FTT is observed with the appearance
of the FW mode of instability alongside the LW mode. The broken lines in panel (d)
suggest that the dominant time scales corresponding to the LW mode progressively
reduce with Er before the FTT takes place. However, after the FTT the dominant
length scales corresponding to the LW mode progressively reduce with increasing Er.
Conversely, the solid lines in the same plots show the appearance of the FW mode
beyond Ec

r (= 3689.2) and a progressive reduction in both the time and the length
scales of the FW instability with increasing Er. In fact, after the FTT, the FW mode
is found to dominate over the LW mode and shift the electric-field-induced instability
of the NLC films towards the shorter-wavelength regime with increasing Er.

Figure 11 shows that the filling ratio (ν) and dielectric constant of the film
perpendicular to the nematic axis (ε⊥) can also play crucial roles in stimulating the
FTT when Er is kept constant. Again, the discontinuities in panels (a,b) indicate
the onset conditions for the FTT. The plots suggest that when ψ0 and Kf are kept
constant the changeover of the modes and the FTT can also happen with a change
in ν and ε⊥. An increase in ν may facilitate the FTT owing to the enhancement of
the net destabilizing EHD stress. In comparison, the enhancement of ε⊥ may fuel up
the LW mode of the EHD instability before the FTT, as shown by the broken line in
panel (b). Importantly, enhancement of ε⊥ also resists the FTT taking place because
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FIGURE 11. (Colour online) (a,b) Variations of Ωm and Λm with ν and ε⊥, respectively,
when Er is kept constant at 3689.2. (c,d) Variation of critical Er (Ec

r) for FTT with ν and
ε⊥, respectively. Typical dimensional parameters for these plots are shown in table 1.

alignment of the nematic axis towards the electric field enforces charge separation
normal to the same.

Panels (a,b) show the sole existence of the LW mode (broken line) at lower values
of ν and ε⊥ when the orientations of all the molecules across the film are planar
(θ,Z = 0). However, at higher values of ν and ε⊥, the FTT stimulates the appearance
of the FW mode (solid line) of instability alongside the LW mode. The broken lines
in panel (a) suggest that the dominant time scales corresponding to the LW mode
progressively reduce with the variation in ν before the FTT takes place. The solid
lines show that both the time and the length scales of the FW mode of instability
reduce with increasing ν. After the FTT, the FW mode dominates over the LW mode.
The broken lines in panel (b) show that with the enhancement of ε⊥ the LW mode
of the EHD instability largely dominates over the FW mode before and after the
FTT. However, near the transition, the FW mode becomes dominant for a very small
range of ε⊥. Panels (c,d) summarize the variation in the critical Er(Ec

r) for the FTT
with ν and ε⊥. These plots suggest that a higher EHD stress at higher values of ν
can cause the FTT at a much smaller value of Ec

r , whereas enhancement of ε⊥ may
increase the Ec

r required for the FTT owing to the induced charge separation normal
to the electric field after the rotation of the nematic axis due to the FTT. Concisely,
figures 10 and 11 together show the influence of various thermodynamic parameters
such as applied voltage, Ericksen stress, film thickness, and dielectric anisotropy of
the materials on the possible modes of instability, and subsequently on the FTT.

Thus far, we considered only strong anchoring boundary conditions at the NS
and NI interfaces. However, the NLC molecules can also show weak anchoring
(Raghunathan 1995; Barbero, Evangelista & Madhusudana 1998; Guan & Yang 2003;
Otten & van der Schoot 2009; Zhang, Zhang, Zhu & Xuan 2011), especially near the
NI interface. This effect can be incorporated in the GLSA using the Rapini–Papoular
surface energy density as the weak anchoring energy, which can be written as
Fs = (1/2)τ0[1+ ω(n · ns)

2
], where the anchoring strength of the director at the free

surface is defined as wp = τ0ω (Rapini & Papoular 1969; Cummings 2004; Stewart
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2004). Consequently, the boundary condition at the NI interface (z = h) (2.16) is
replaced by (Jenkins & Barratt 1974)

σn− (∂F/∂∇n) · ns − ∂Fs/∂n= 0, (7.5)

where σ is an arbitrary scalar. Eliminating the scalar term from the X- and
Z-components of the (7.5), the following free surface weak anchoring boundary
condition at the NI interface (Z =H) is obtained

θ,Z + δ1K24 sin 2θ θ,X − δ2
1θ,XH,X − ErWp(2δ1 cos 2θH,X + sin 2θ(1− δ2

1H2
,X))= 0, (7.6)

Here, the dimensionless parameter Wp=wph0/ε0ψ
2
0 signifies the ratio of the anchoring

force at the interface to the force applied by the electric field. The notation
K24(= k24/Kf ) represents one of the non-dimensional saddle-splay elastic constants.
Equation (7.6) has been used in place of (3.17) during the weak anchoring analysis,
which is perturbed by employing the normal linear modes shown in § 4 to obtain the
following base- and perturbed-state conditions at Z = H̄ and Z =H

θ̄,Z − ErWp sin 2θ̄ = 0, (7.7)

2iKδ1ErWp cos 2θ̄W̃ −Ωθ̃,Z −Ω(iKδ1K24 sin 2θ̄ − 2ErWp cos 2θ̄ )θ̃ = 0. (7.8)

Equations (7.7) and (7.8) are employed in place of (4.7b) and (4.18) for the weak
anchoring analysis. While performing the numerical analysis, as shown in § 5, (7.8)
has been transformed into the ξ and χ space at the NI interface (ξ = 1 and χ = 1)
as

2iKδ1ErWp cos 2θ̄W̃ − 2Ωθ̃,ξ −Ω(iKδ1K24 sin 2θ̄ − 2ErWp cos 2θ̄ )θ̃ = 0. (7.9)

Equation (7.9) has been employed for the weak anchoring analysis instead of (5.8),
which was previously employed to perform the strong anchoring case at the NI
interface. It may also be noted here that, in this formulation, the saddle-splay term,
K24, is considered. Barring these modifications, all the other governing equations and
the boundary conditions are kept unchanged while weak anchoring analysis is carried
out. The set of governing equations and boundary conditions for the weak anchoring
analysis suggest that the higher to lower values of the parameter wp indicate weak
to strong anchoring conditions at the NI interface. Figure 12 shows results from
the GLSA with the P–W orientation at the interfaces, which means strong planar
anchoring (P) at the NS interface and weak anchoring (W) at the NI interface.
Curves 1 and 2 in panel (a) also show the variations in the base-state orientations of
the NLC molecules, while the schematic diagrams S1 and S2 show the orientations
of the molecules across the NLC film before and after the FTT. Panels (b,c) show
the existence of an LW mode at Er = 41.5 for θ,Z = 0, whereas at Er = 43 there is a
rapid change in Ω with variations in the orientation of the molecules across the film
due to FTT. The abrupt changeover of the director orientation across the film with
increasing Er is also indicated by the discontinuities in panel (c).

As compared to the results shown in the figure 10 for the strong anchoring P–P
boundary conditions at the interfaces, enforcing the P–W boundary condition at
the NS and NI interfaces leads to the following changes: (i) only the LW mode
is observed while the finite-wavenumber instability is absent even after the FTT
(figure 12b); (ii) after the FTT, the director orientation across the bulk and at the NI
interface align towards the electric field (diagram S2); (iii) the magnitude of θ,Z near
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FIGURE 12. (Colour online) GLSA results of an NLC film with P–W orientations (θ1 =

90◦ and θ2 =W) at the NS and NI boundaries. (a) Curves 1 (blue) and 2 (olive) show
the variation of θ̄ along the Z-axis at Er = 41.5 and 43.0, respectively, which is also
schematically shown by the diagrams S1 and S2. (b) Curves 1 (blue) and 2 (olive)
show the variation of Ω with K corresponding to panel (a). The parameters, wp = 2 ×
10−7 N m−1 (McGinn et al. 2013), Kf = 3 pN, and k24 = 0.6 pN are kept constant in
these plots. (c,d) Variations of Ωm and Λm with Er. The wp values used for these plots
are 2× 10−7 N m−1 and 2× 10−10 N m−1. The circular and square symbols in panel (d)
correspond to the strong anchoring condition, P–P. The other necessary parameters for the
plots are shown in table 1.

the NI interface becomes negligible owing to the movement of the boundary as well
as bulk molecules towards the electric field due to the weak anchoring condition,
which reduces the magnitude of the Ericksen stress to suppress the inception of the
FW mode; (iv) the FTT happens at a much lower value of Er = 43 (panels b and c).
When the other parameters are kept similar, the voltage necessary for the transition
is approximately 5.4 V for the P–W case as compared to 50 V for the P–P case.
Interestingly, while at the higher values of wp we observe all the aforementioned
attributes related to the P–W case, the same system can asymptotically reproduce the
results related to the P–P case (symbols, panel d) having strong anchoring boundary
conditions at smaller values of wp (solid line, panel d). In brief, figure 12 shows
some of the salient features of the EHD instabilities of NLC films and FTT when a
weak anchoring boundary condition is enforced at the NI interface.

7.5. Analysis for wave vector perpendicular to director orientation
Owing to the 2-D nature of the present GLSA formalism, the wave vector is
always restricted in the direction of the director orientation during the free surface
deformation. In one of the seminal contributions, Raghunathan (1995) showed a
methodology in which the influence of the director orientation perpendicular to the
wave vector can be theoretically analysed under a 2-D framework. The formulation of
Raghunathan (1995) can be extended to the proposed GLSA in the following manner:
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FIGURE 13. (Colour online) GLSA results with the perturbation of the wave vector along
the y-direction with both the P–P (θ1= 90◦ and θ2= 90◦) (a–c) and the H–H (θ1= 0◦ and
θ2 = 0◦) (d–f ) orientations at the NS and NI boundaries when εd = 9 and ν = 0.75. (a)
Curves 1 (blue) and 2 (olive) show the variation of θ̄ along the Z-axis at Er= 3543.1 and
3689.2, respectively, which is also schematically shown by the diagrams S1 and S2. (b)
Curves 1 (blue) and 2 (olive) show the variation of Ω with K corresponding to panel (a).
(d) Variation of director orientation at the base state (θ̄) along the Z-axis as schematically
also shown in the diagram S1. (e) Ω versus K curves for this case where curves 1–5
represent Er = 354.2, 796.9, 1416.6, 2213.5, and 3187.4, respectively. (c, f ) Variations of
Ωm and Λm with Er. Other parameters used for these plots are shown in table 1.

(i) the governing equations and the boundary conditions in the y- and z-directions
are considered and made dimensionless following the procedure mentioned in § 3.1;
(ii) the base-state governing equations and boundary conditions are considered in
the x- and z-directions following the methodology mentioned in § 4.1; (iii) the
dimensionless governing equations and boundary conditions are linearized employing
the normal linear modes, V̂= Ṽ(Z) exp [ΩT + iKYY], Ŵ= W̃(Z) exp [ΩT + iKYY], P̂=
P̄+ P̃(Z) exp [ΩT + iKYY], [Ψ ,Ψa] = [Ψ̄ (Z), Ψ̄a(Z)] + [Ψ̃ (Z), Ψ̃a(Z)] exp [ΩT + iKYY],
H = H̄ + H̃(Z) exp [ΩT + iKYY], θ = θ̄ (Z) + θ̃ (Z) exp [ΩT + iKYY], and φ =

φ̃(Z) exp [ΩT + iKYY], where KY is the wavenumber of perturbations in the
Y-direction and φ is the azimuthal angle of the director orientation. The linearized
governing equations and boundary conditions for this analysis are shown in
appendix D; (iv) the set of ODEs are numerically solved by employing the same
procedure discussed in § 5.

Figure 13 shows the results obtained from this analysis, which are compared and
contrasted with the results previously shown in figures 6 and 10. Panels (a–c) suggest
that for the case with P–P orientations at the NI and NS interfaces, the Ec

r for
FTT remain exactly same as was previously predicted in figure 10(d). In addition,
the regime for Λm also remains the same in figures 10(d) and 13(c). Crucially, the
values of Ω and Ωm are found to be marginally higher in the present case than the
one shown in figures 10(b) and 10(d), which indicates that at the perturbed state
the director orientation is perhaps more favourable in the y-direction than in the
x-direction, when the base state of the system is in the x–z plane. However, relatively
higher values of Ω and Ωm in the present case can also be attributed to the absence of
the azimuthal base state (φ̄), which provides a more (less) facile director orientation
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in the perturbed state towards the normal (parallel) direction of the base state. Further,
the magnitudes of Ω and Ωm shown in panels (d–f ) suggest that even in the absence
of the FTT, for the EHD instabilities, the director orientation at the perturbed state
is more favourable in the y-direction than in the x-direction. However, again, for the
EHD modes the regime for Λm remain same in figures 6(c) and 13( f ). It is important
to note here that, in the present analysis, perhaps the absence of the azimuthal base
state (φ̄) has made the director orientation in the perturbed state energetically more
favourable in the normal direction to the base state. These occurrences can only be
conclusively established when a comprehensive 3-D analysis with base-state polar and
azimuthal director orientations (θ̄ and φ̄) is performed on the present system, which
we keep as a future scope of research work.

8. Conclusions

The different modes of the electric field induced free surface instabilities of a thin
nematic film have been explored through a comprehensive linear stability analysis.
The Ericksen–Leslie governing equations for the dynamics of the nematic film
together with the Maxwell stresses for the anisotropic electric field are linearized
with appropriate boundary conditions to identify the time and the length scales. The
major conclusions are:

(i) The study emphasizes the importance of general linear stability analysis over the
most widely employed long-wave analysis to uncover the diverse stability paradigms
of thin nematic films. In particular, the reported results suggest that thermodynamic
parameters such as the dielectric anisotropy of the film, strength of external electric
field, Frank elasticity, and Ericksen elastic stress play crucial roles in changing the
time and length scales of the electric-field-induced instabilities of nematic films, while
kinetic parameters such as the Leslie viscosity coefficients can only influence the time
scale of the same.

(ii) The study reveals the presence of a pair of instability modes for the free surface
instabilities of nematic films under an electric field. The long-wave interfacial mode
is dominant when the sole destabilizing influence of the electric field subdues the
Frank elasticity and surface tension. The finite-wavenumber mode is stimulated by
the combined destabilizing influences originating from the anisotropic electric field
and Ericksen stress for the films with positive dielectric anisotropy and weaker Frank
elasticity.

(iii) A nematic film with positive dielectric anisotropy can show a bimodal
instability with a long-wave interfacial mode and a shorter-wavelength finite-
wavenumber mode when the combined effects of the Ericksen and electrohydrodynamic
stresses subdue to Frank bulk elasticity and the surface tension forces. The long-wave
mode is found to be the dominant mode in the bimodal instability at lower
electric field strength or for films with larger Frank bulk elasticity. In contrast,
the finite-wavenumber mode is found to be the dominant mode at higher field electric
intensities where the Ericksen stress is significantly high. In comparison, the films
with negative dielectric anisotropy show the long-wave interfacial mode of instability.

(iv) A FTT is observed for the films with positive dielectric anisotropy with a
base-state planar–planar arrangement at the boundaries. The transition is associated
with the change in the director orientations across the film as well as the induced
charge separation along the direction of the field with increasing field intensity. The
transition is also associated with a changeover of the instability from unimodal to
bimodal because, at higher field intensities, the variation in the director orientations
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across the film helps in fuelling up the finite-wavenumber mode alongside the long-
wave interfacial mode.

(v) Strong to weak anchoring conditions at the NI interface are found to have
significant influence on the onset conditions of the FTT as well as on the modes of
the electric field induced instabilities of the nematic liquid crystal film. Further, an
analysis on the possibility of an unstable wave vector in the perturbed state normal
to the director orientation in the base state showed that although the predictions
associated with the electrohydrodynamic instabilities and FTT remain nearly similar,
the director orientation at the perturbed state can be energetically more (less)
favourable in the normal (parallel) direction of the base state. This occurrence
can be attributed to the absence of the azimuthal base state in the formulation shown.
A more comprehensive 3-D analysis in the presence of the base-state polar and
azimuthal director orientations may usher in more clarity on this aspect, which is
perhaps beyond the scope of the present work.

Concisely, the study uncovers a number of intriguing aspects of the free surface
instabilities of thin nematic films under the influence of an external electric field,
which has not been explored so far. As a future scope of work, apart from 3-D
analysis with the consideration of a generic director orientation, the proposed
theoretical model can be extended to systems having defects on the free surface
or at the substrate–film interface (Berreman 1972; Fukuda, Yoneya & Yokoyama
2007).
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Appendix A. Expressions of the complicated variables

The variables Ai, Bi, Ci, and Di, in the dimensionless equations of motions (3.2)
and (3.3) are

A1 = (α̂1 sin4 θ + α̂4 + (α̂5 + α̂6) sin2 θ), (A 1)
A2 = sin 2θ(2α̂1 sin2 θ − α̂2 − α̂3 + α̂5 + α̂6)/4, (A 2)
A3 = sin 2θ(2α̂1 sin2 θ + α̂2 + α̂3 + α̂5 + α̂6)/4, (A 3)

A4 = α̂1 sin2 2θ/4; (A 4)
B1 = sin 2θ(α̂1 sin2 θ + α̂5)/2, (A 5)

B2 = ((α̂1 sin2 2θ/2)+ (α̂5 − α̂2) cos2 θ + (α̂3 + α̂6) sin2 θ + α̂4)/2, (A 6)
B3 = ((α̂1 sin2 2θ/2)+ (α̂2 + α̂5) cos2 θ + (α̂6 − α̂3) sin2 θ + α̂4)/2, (A 7)

B4 = sin 2θ(α̂1 cos2 θ + α̂6)/2; (A 8)
C1 = sin 2θ(α̂1 sin2 θ + α̂6)/2, (A 9)

C2 = ((α̂1 sin2 2θ/2)+ (α̂2 + α̂5) sin2 θ + (α̂6 − α̂3) cos2 θ + α̂4)/2, (A 10)
C3 = ((α̂1 sin2 2θ/2)+ (α̂5 − α̂2) sin2 θ + (α̂6 + α̂3) cos2 θ + α̂4)/2, (A 11)

C4 = sin 2θ(α̂1 cos2 θ + α̂5)/2; (A 12)
D1 = α̂1 sin2 2θ/4, (A 13)

D2 = sin 2θ(2α̂1 cos2 θ + α̂2 + α̂3 + α̂5 + α̂6)/4, (A 14)
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D3 = sin 2θ(2α̂1 cos2 θ − α̂2 − α̂3 + α̂5 + α̂6)/4, (A 15)

D4 = (α̂1 cos4 θ + α̂4 + (α̂5 + α̂6) cos2 θ). (A 16)

In the above expressions the dimensionless variables α̂i = 2αi/α4.
The expressions for the variables LX

i , LZ
i , and Li in the linearized equations (4.9)–

(4.11) are provided as follows,

LX
1 = B̄2, (A 17)

LX
2 = iKδ1(Ā2 + B̄1 − B̄4)+ B̄2,Z, (A 18)

LX
3 =−K2δ2

1(Ā1 − Ā4 − B̄3)+ iKδ1(B̄1 − B̄4),Z, (A 19)

LX
4 = iK3δ3

1Ā3 + δ
2
1K2B̄3,Z, (A 20)

LX
5 =−K2E−1

r θ̄,Z; (A 21)
LZ

1 = δ1D̄2, (A 22)

LZ
2 = iKδ2

1(C̄2 + D̄1 − D̄4)+ δ1D̄2,Z, (A 23)

LZ
3 =−K2δ3

1(C̄1 − C̄4 − D̄3)+ iKδ2
1(D̄1 − D̄4),Z, (A 24)

LZ
4 = iK3δ4

1C̄3 +K2δ3
1D̄3,Z, (A 25)

LZ
5 = 2iKE−1

r θ̄,Z, (A 26)

LZ
6 = iKE−1

r θ̄,ZZ, (A 27)

LZ
7 =−iK3δ2

1E−1
r θ̄,Z − 2iKεd cos 2θ̄ θ̄,ZΨ̄ 2

,Z, (A 28)

LZ
8 =−2iKεd sin 2θ̄ θ̄,ZΨ̄,Z, (A 29)

LZ
9 =−2K2δ1εd cos 2θ̄ θ̄,ZΨ̄,Z; (A 30)

L1 = B̄2, (A 31)

L2 = iKδ1(Ā2 + B̄1 − B̄4 − D̄2)+ 2B̄2,Z, (A 32)

L3 =−K2δ2
1(Ā1 − Ā4 − B̄3 − C̄2 − D̄1 + D̄4)

+ iKδ1(Ā2 + 2(B̄1 − B̄4)− D̄2),Z + B̄2,ZZ, (A 33)

L4 = iK3δ3
1(Ā3 + C̄1 − C̄4 − D̄3)+ iKδ1B̄1,ZZ

−iKδ1B̄4,ZZ −K2δ2
1(Ā1 − Ā4 − 2B̄3 − D̄1 + D̄4),Z, (A 34)

L5 =K4δ4
1C̄3 + iK3δ3

1(Ā3 − D̄3),Z +K2δ2
1B̄3,ZZ, (A 35)

L6 =K2E−1
r θ̄,Z, (A 36)

L7 =−K4δ2
1E−1

r θ̄,Z − 2K2εd cos 2θ̄ θ̄,ZΨ̄ 2
,Z, (A 37)

L8 =−2K2εd sin 2θ̄ θ̄,ZΨ̄,Z, (A 38)

L9 = 2iK3δ1εd cos 2θ̄ θ̄,ZΨ̄,Z. (A 39)
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The expressions for the variables SN
i and ST

i in the linearized equations (4.14) and
(4.15) are provided as follows,

SN
1 =K4

− iK3δ1εd sin 2θ̄ Ψ̄ 2
,Z, (A 40)

SN
2 =−B̄2, (A 41)

SN
3 =−iKδ1(Ā1 + B̄1 − B̄4 − D̄2)− B̄2,Z, (A 42)

SN
4 =K2δ2

1(Ā1 − Ā4 − B̄3 − D̄1 + D̄4)− iKδ1(B̄1 − B̄4),Z, (A 43)

SN
5 =−iK3δ3

1(Ā3 − D̄3)−K2δ2
1B̄3,Z, (A 44)

SN
6 =−K2E−1

r θ̄,Z, (A 45)

SN
7 =−K2εd sin 2θ̄ Ψ̄ 2

,Z, (A 46)

SN
8 = 2K2(ε⊥ + εd cos2 θ̄ )Ψ̄,Z, (A 47)

SN
9 =−2K2Ψ̄a,Z; (A 48)

ST
1 =K2E−1

r θ̄
2
,Z, (A 49)

ST
2 =−B̄2, (A 50)

ST
3 =−iKδ1(B̄1 − B̄4), (A 51)

ST
4 =−K2δ2

1B̄3, (A 52)

ST
5 =K2E−1

r θ̄,Z. (A 53)

The expressions for the variables Ii in the linearized equation (4.16) are provided
as follows,

I1 = δ1(Λ1 −Λ2 cos 2θ̄ )/2, (A 54)
I2 =−iKδ2

1Λ2 sin 2θ̄ , (A 55)

I3 =−K2δ3
1(Λ1 +Λ2 cos 2θ̄ )/2, (A 56)

I4 =−iKE−1
r , (A 57)

I5 = iK3δ2
1E−1

r + 2iKεd cos 2θ̄ Ψ̄ 2
,Z, (A 58)

I6 = 2iKεd sin 2θ̄ Ψ̄,Z, (A 59)
I7 = 2K2δ1εd cos 2θ̄ Ψ̄,Z. (A 60)

The expressions for the variables Ji in the linearized equations (4.19) and (4.20) are
provided as follows,

J1 = εd sin 2θ̄ Ψ̄,Z, (A 61)
J2 = εd sin 2θ̄ Ψ̄,ZZ + 2εd cos 2θ̄ θ̄,ZΨ̄,Z − iKδ1εd cos 2θ̄ Ψ̄,Z, (A 62)

J3 =−(ε⊥ + εd cos2 θ̄ ), (A 63)
J4 = εd sin 2θ̄ θ̄,Z − iKδ1εd sin 2θ̄ , (A 64)

J5 =K2δ2
1(ε⊥ + εd sin2 θ̄ )− iKδ1εd cos 2θ̄ θ̄,Z, (A 65)

J6 =−K2δ2
1 . (A 66)

The expressions for the variables SE
i in the linearized equation (4.22) are provided

as follows,

SE
1 = iKδ1εd sin 2θ̄ Ψ̄,Z/2, (A 67)
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SE
2 = εd sin 2θ̄ Ψ̄,Z, (A 68)

SE
3 =−(ε⊥ + εd cos2 θ̄ ), (A 69)

SE
4 =−iKδ1εd sin 2θ̄/2. (A 70)

The expressions for the variables Qi in the linearized equation (6.1) are provided as
follows,

Q1 = 2δ2
1(2+ α̂1 + α̂3 + α̂5)/(α̂5 − α̂2 + 2), (A 71)

Q2 = δ
4
1(2+ α̂2 + 2α̂3 + α̂5)/(α̂5 − α̂2 + 2). (A 72)

The expressions for the variables βi in the linearized equation (6.20) are provided
as follows,

β1 =

√
(Q1 −

√
Q2

1 − 4Q2)/2, (A 73)

β2 =

√
(Q1 +

√
Q2

1 − 4Q2)/2. (A 74)

It may be noted here that the long-wave scaling, δ1, assumes the value 1 for GLSA.

Appendix B. Derivation of mass conservation equation and equations of motion
In a 2-D Cartesian coordinate framework the director vector, n, can be expanded as

n≡{nx, nz}≡ {sin θ, cos θ}, which satisfies (2.1). The strain tensor, spin tensor, and the
rotational vector can be expanded in terms of the velocity field as (Lin et al. 2013a)

e=

[
u,x (u,z +w,x)/2

(u,z +w,x)/2 w,z

]
, ω=

[
0 (u,z −w,x)/2

−(u,z −w,x)/2 0

]
, (B 1a,b)

N≡ {Nx,Nz} ≡ {cos θ [θ̇ − (u,z −w,x)/2],− sin θ [θ̇ − (u,z −w,x)/2]}. (B 2)

Under the Stokes flow assumption, the rotational vector shown in (B 2) reduces to

N≡ {Nx,Nz} ≡ {−cos θ(u,z −w,x)/2, sin θ(u,z −w,x)/2}. (B 3)

Equations (2.5)–(2.9) can be expanded as (Lin et al. 2013a)

F= (Kf /2)(θ 2
,x + θ

2
,z), (B 4)

G≡ {Gx,Gz} ≡ {ε0εd(sin θψ2
,x + cos θψ,xψ,z), ε0εd(sin θψ,xψ,z + cos θψ2

,z)}, (B 5)

g≡ {gx, gz}
T
≡

{
((λ1 − λ2)u,z − (λ1 + λ2)w,x)(cos θ/2)− λ2 sin θu,x
((λ1 − λ2)w,x − (λ1 + λ2)u,z)(sin θ/2)− λ2 cos θw,z

}
, (B 6)

ΠE =

[
ΠExx ΠExz
ΠEzx ΠEzz

]
, (B 7)

where

ΠExx =−Kf θ
2
,x, (B 8)

ΠExz =−Kf θ,xθ,z, (B 9)
ΠEzx =−Kf θ,xθ,z, (B 10)
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ΠEzz =−Kf θ
2
,z, (B 11)

τ =

[
τxx τxz
τzx τzz

]
, (B 12)

where

τxx = a1u,x + a2u,z + a3w,x + a4w,z, (B 13)
τxz = b1u,x + b2u,z + b3w,x + b4w,z, (B 14)
τzx = c1u,x + c2u,z + c3w,x + c4w,z, (B 15)
τzz = d1u,x + d2u,z + d3w,x + d4w,z. (B 16)

Here the variables ai, bi, ci, and di are the dimensional forms, which are made
dimensionless by employing (Ai, Bi, Ci, Di) = (ai, bi, ci, di)/µ. The electric field
displacement and the Maxwell stress tensor in (2.10) can be expanded as

D≡ {Dx,Dz}
T
≡

{
−(ε⊥ + εd sin2 θ)ψ,x − (εd/2) sin 2θψ,z
−(ε⊥ + εd cos2 θ)ψ,z − (εd/2) sin 2θψ,x

}
, (B 17)

M =

[
Mxx Mxz
Mzx Mzz

]
, (B 18)

where

Mxx = (ε0/2)(ε⊥ + εd sin2 θ)ψ2
,x − (ε0/2)(ε⊥ + εd cos2 θ)ψ2

,z, (B 19)

Mxz = ε0(ε⊥ + εd sin2 θ)ψ,xψ,z + (ε0εd/2) sin 2θψ2
,z, (B 20)

Mzx = ε0(ε⊥ + εd cos2 θ)ψ,xψ,z + (ε0εd/2) sin 2θψ2
,x, (B 21)

Mzz =−(ε0/2)(ε⊥ + εd sin2 θ)ψ2
,x + (ε0/2)(ε⊥ + εd cos2 θ)ψ2

,z. (B 22)

The dimensional forms of the mass conservation, x- and z-directional equations of
motion and x- and z-components of the balances of couple, shown in (2.2)–(2.4), can
be expanded as

u,x +w,z = 0, (B 23)
−p,x + (ΠExx),x + (ΠEzx),z + (τxx),x + (τzx),z + (Mxx),x + (Mzx),z = 0, (B 24)
−p,z + (ΠExz),x + (ΠEzz),z + (τxz),x + (τzz),z + (Mxz),x + (Mzz),z = 0, (B 25)
λnx − ∂F/∂nx + (∂F/∂(∂nx/∂x)),x + (∂F/∂(∂nx/∂z)),z +Gx + gx = 0, (B 26)
λnz − ∂F/∂nz + (∂F/∂(∂nz/∂x)),x + (∂F/∂(∂nz/∂z)),z +Gz + gz = 0. (B 27)

The dimensionless equations (3.1)–(3.5) are obtained by initially replacing the
variables (B 1)–(B 22) in (B 23)–(B 27) and then converting the equations into the
dimensionless forms with the help of the non-dimensional variables mentioned in
§ 3.1.

Appendix C. Derivation of the thin film equation
Equation (3.24) can be rewritten as

H,T +

(∫ H

0
U,S(H − S) dS

)
,X

= 0. (C 1)
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Equation (3.18) leads to the following expression after integration and using the
relation,

∫ H
0 U dZ =

∫ H
0 U,S(H − S) dS,

U,S = P,X(S−H)/B2. (C 2)

From equations (C 1) and (C 2) we can obtain

H,T −

(∫ H

0
P,X(H − S)2/B2 dS

)
,X

= 0. (C 3)

Here the variables B2 = (k1 + k2 sin2 θ − 2α̂1 sin4 θ)/2, k1 = 2 − α̂2 + α̂5 and k2 =

2(α̂1+ α̂2+ α̂3). Solving equation (3.20) with the boundary conditions from (3.30) we
can obtain

θ = ((θ2 − θ1)/H)S+ θ1. (C 4)

Replacing the expression of B2 and θ in (C 3) and then considering the variable, ζ =
((θ2 − θ1)/H)S+ θ1, we can obtain

H,T − 2
(∫ θ2

θ1

H3(θ2 − ζ )
2

(θ2 − θ1)3(k1 + k2 sin2 ζ − 2α̂1 sin4 ζ )
dζP,X

)
,X

= 0. (C 5)

Equation (C 5) can be rewritten as

H,T − I(H3P,X),X = 0, (C 6)

where I = 2(θ2 − θ1)
−3
∫ θ2

θ1
(θ2 − ζ )

2/k1 + k2 sin2 ζ − 2α̂1 sin4 ζ dζ .

Appendix D. Linearized equations for wave vector perpendicular to director
orientation

D.1. Base-state equations
All the base-state governing equations and boundary conditions for the electric field
remain same as discussed in § 4.1. The governing equation for the polar angle (θ̄)
and corresponding boundary conditions also remain the same as provided in § 4.1. The
base-state value of the azimuthal angle (φ̄) is a constant and assumed to be zero.

D.2. Perturbed-state equations
D.2.1. Governing equations:

The governing equations of the perturbed variables, W̃, θ̃ , φ̃, Ψ̃ , and Ψ̃a are as
follows,

η̄1W̃,ZZZZ + 2η̄1,ZW̃,ZZZ − (K2
Yδ

2
1(η̄2 − η̄3 − η̄4 + η̄5)− η̄1,ZZ)W̃,ZZ

−K2
Yδ

2
1(η̄2 − 2η̄3 + η̄5),ZW̃,Z +K2

Y(K
2
Yδ

4
1 η̄6 + δ

2
1 η̄3,ZZ)W̃

+K2
Y(E

−1
r θ̄,Z θ̃,ZZ − θ̄,Z(δ

2
1K2

YE−1
r + 2εdΨ̄,Z cos 2θ̄ Ψ̄,Z)θ̃)

− 2K2
YεdΨ̄,Z sin 2θ̄ θ̄,ZΨ̃,Z = 0, (D 1)

(1/2)δ2
1Λ2 sin 2θ̄W̃,Z + E−1

r θ̃,ZZ − (E−1
r K2

Yδ
2
1 + 2εd cos 2θ̄ Ψ̄ 2

,Z)θ̃

− 2εd sin 2θ̄ Ψ̄,ZΨ̃,Z = 0, (D 2)
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(1/2)δ1 cos θ̄ (Λ1 −Λ2)W̃,ZZ − (1/2)K2
Yδ

3
1 cos θ̄ (Λ1 +Λ2)W̃

− iKYE−1
r (sin θ̄ φ̃,ZZ + 2 cos θ̄ θ̄,Zφ̃,Z −K2

Yδ
2
1 sin θ̄ φ̃)+ 2K2

Yδ1εd cos θ̄ Ψ̄,ZΨ̃ = 0, (D 3)

εd sin 2θ̄ Ψ̄,Z θ̃,Z + (εd sin 2θ̄ Ψ̄,ZZ + 2εd cos 2θ̄ θ̄,ZΨ̄,Z)θ̃ − (1/2)iKYδ1εd sin 2θ̄ Ψ̄,Zφ̃

− (ε⊥ + εd cos2 θ̄ )Ψ̃,ZZ + εd sin 2θ̄ θ̄,ZΨ̃,Z +K2
Yδ

2
1ε⊥Ψ̃ = 0, (D 4)

Ψ̃a,ZZ −K2
Yδ

2
1Ψ̃a = 0. (D 5)

D.2.2. Boundary conditions:
The boundary conditions at NS interface (Z = 0) are

W̃,Z = W̃ = θ̃ = φ̃ = Ψ̃ = 0. (D 6)

The boundary conditions at NI interface (Z =H) are

Ωη̄1W̃,ZZZ +Ωη̄1,ZW̃,ZZ −ΩK2
Yδ

2
1(η̄2 − η̄3 + η̄5)W̃,Z

− (K4
Yδ

2
1Γ −ΩK2

Yδ
2
1 η̄3,Z)W̃ +ΩK2

YE−1
r θ̄,Z θ̃,Z +ΩK2

Yεd sin 2θ̄ Ψ̄ 2
,Z θ̃

− 2ΩK2
Y(ε⊥ + εd cos2 θ̄ )Ψ̄,ZΨ̃,Z + 2ΩK2

YΨ̄a,ZΨ̃a,Z = 0, (D 7)

Ωδ1η̄1W̃,ZZ − (K2
YE−1

r θ̄
2
,Z −ΩK2

Yδ
3
1 η̄3)W̃ −ΩK2

YE−1
r θ̄,Z θ̃ = 0, (D 8)

θ̃ = 0, (D 9)
Ω sin θ̄ φ̃ + iKYδ1 cos θ̄W̃ = 0, (D 10)

(ε⊥ + εd cos2 θ̄ )Ψ̃,Z − εd sin 2θ̄ Ψ̄,Z θ̃ − Ψ̃a,Z = 0, (D 11)

(Ψ̄,Z − Ψ̄a,Z)W̃ +Ω(Ψ̃ − Ψ̃a)= 0. (D 12)

The boundary condition for electric field at the anode (Z =D) are

Ψ̃a = 0. (D 13)

It may be noted here that the long-wave scaling, δ1, assumes the value 1 for GLSA.

D.3. Coefficients of the governing equations and boundary conditions:

η̄1 = (−α̂2 cos2 θ̄ + α̂4 + α̂5 cos2 θ̄ )/2, (D 14)
η̄2 = α̂4, (D 15)

η̄3 = (α̂2 cos2 θ̄ + α̂4 + α̂5 cos2 θ̄ )/2, (D 16)
η̄4 = (−α̂3 cos2 θ̄ + α̂4 + α̂6 cos2 θ̄ )/2, (D 17)
η̄5 = α̂1 cos4 θ̄ + α̂4 + (α̂5 + α̂6) cos2 θ̄ , (D 18)
η̄6 = (α̂3 cos2 θ̄ + α̂4 + α̂6 cos2 θ̄ )/2. (D 19)
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