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Interfacial fluid mixing driven by an external acceleration or a shock wave are
common phenomena known as Rayleigh–Taylor instability and Richtmyer–Meshkov
instability, respectively. The most significant feature of these instabilities is the
penetrations of heavy (light) fluid into light (heavy) fluid known as spikes (bubbles).
The study of the growth rate of these fingers is a classical problem in fundamental
science and has important applications. Research on this topic has been very active
over the past half-century. In contrast to the well-known phenomena that spikes
and bubbles can have quantitatively, even qualitatively, different behaviours, we
report a surprising result for fingers in a two-dimensional system: in terms of scaled
dimensionless variables, all spikes and bubbles at any density ratio closely follow
a universal curve, up through a pre-asymptotic stage. Such universality holds not
only among bubbles and among spikes of different density ratios, but also between
bubbles and spikes of different density ratios. The data from numerical simulations
show good agreement with our theoretical predictions.

Key words: fingering instability, interfacial flows (free surface), multiphase flow

1. Introduction
Interfacial fluid mixing is a common phenomenon that occurs frequently in basic

science research and in engineering applications. Very often, the involved interface
is unstable and small disturbances at the interface grow to form nonlinear structures.
Particularly, the instabilities of the interface between two immiscible fluids, induced
by an external force or a shock wave, have been intensively studied due to their
essential role in understanding supernova explosions, inertial confinement fusion, etc.
The former instability is known as Rayleigh–Taylor (RT) instability (Rayleigh 1883;
Taylor 1950), and the latter one is known as Richtmyer–Meshkov (RM) instability
(Richtmyer 1960; Meshkov 1969). The nonlinear structures at the unstable interface
are known as spikes for the portion of heavy fluid penetrating into light fluid, and
known as bubbles for the portion of light fluid penetrating into heavy fluid. To
predict the growth rate of spikes and bubbles is very important for understanding the
dynamics of unstable interfaces.
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FIGURE 1. (Colour online) Sketch of different growth stages in RT instability, based on
the numerical result from Glimm et al. (2002).

The studies of RT and RM instabilities have a long history. General reviews on RT
and RM instabilities can be found in Sharp (1984) and Brouillette (2002). The results
for RT and RM instabilities in incompressible, irrotational and inviscid systems can
be traced from Hecht, Alon & Shvarts (1994), Zhang (1998), Glimm, Li & Lin
(2002), Goncharov (2002), Abarzhi, Glimm & Lin (2003), Mikaelian (2003) and
Sohn (2003, 2004). Many studies have showed that the development of RT instability
starts with a linear stage, and transits into a quasi-steady stage at late times. In the
quasi-steady stage, the growth rates of the fingers are insensitive to time for systems
with finite density ratios (see the solid curve in figure 1). Since most of the previous
experiments, numerical simulations and theoretical studies were performed up through
the quasi-steady stage, we will focus on the development of the instability in the
quasi-steady stage. New numerical studies (Glimm et al. 2002; Sohn 2011) on RT
instability suggested that, beyond this stage, the growth rate may experience a period
of re-acceleration, followed by a decrease (see the dashed curve in figure 1). Several
interpretations have been offered for this phenomenon, such as the geometric effect
of changes in finger tip curvature (Glimm et al. 2002), or strong vorticities at the
tails of bubbles and spikes (Sohn 2011). Since the understanding of the dynamics of
fingers in such a late stage is still progressing, we will not focus on the fingering
growth in this possible re-acceleration stage.

2. Different behaviours between spikes and bubbles

It is well known that spikes and bubbles can exhibit qualitatively different
behaviours. Spikes are more unstable than bubbles and consequently it is more
difficult to predict the behaviour of spikes. Even among fingers of the same type,
different fluid density ratios can lead to quantitatively different behaviours. The larger
the density ratio, the more unstable is the finger. In addition, the spike in a system
with an infinite density ratio shows completely different behaviour at late times from
those in systems with finite density ratios. For RM instability, the former attains a
constant velocity asymptotically while the latter decay with time; for RT instability,
the former asymptotically grows with a constant acceleration while the latter grow
with approximately constant velocities at the quasi-steady stage. These phenomena are
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FIGURE 2. (Colour online) Spike (solid curves) and bubble (dashed curves) velocities at
different Atwood numbers A from numerical simulations for RM instability (Sohn 2004).
The initial conditions are a0= 0.5 cm and v0= 0.8 cm ms−1, with A= 0,±0.3,±0.7,±1.

well illustrated in figures 2–4 for RM instability, and in figure 5 for RT instability. In
the captions of these figures, a0 is the initial amplitude of the interface perturbation,
v0 is the initial velocity, k is the wavenumber, λ is the wavelength and g is the
gravitational acceleration. The data for figures 2 and 5 are taken from Sohn (2004),
in which the numerical simulations were performed with the vortex method (E &
Hou 1990). The data for figure 3 are taken from Dimonte & Ramaprabhu (2010), and
the data for figure 4 are taken from Alon et al. (1995). To describe density ratios,
the Atwood number A = (ρ1 − ρ2)/(ρ1 + ρ2) is commonly used, where ρi (i = 1, 2)
denotes the density of fluid i. Conventionally only a positive Atwood number is used
for both spikes and bubbles of the same system, but in this paper we specifically
use the positive Atwood number for bubbles, and its negative counterpart for spikes
with the same density ratio. This allows us to express the results for both spikes and
bubbles by the same function in the later analysis.

In this study, we investigate both spikes and bubbles in systems with all density
ratios up through the quasi-steady stage, and report a very surprising result: by
appropriately scaling the physical quantities, the main behaviours of growth rates
of all fingers collapse onto a single curve. We call this curve ‘universal’ because it
applies (1) among bubbles of different density ratios, (2) among spikes of different
density ratios and (3) between bubbles and spikes of different density ratios.

The Layzer-type method has been extensively adapted in studying fingering
instabilities. This method was initially introduced by Layzer (1955) to study the
motion of a vacuum bubble in RT instability. The model was later extended by
Hecht et al. (1994) to study bubbles in RM instability and by Mikaelian (1998)
to study bubbles in cylindrical geometry. Zhang (1998) extended the model to the
spike. All these studies are for systems with infinite density ratios. Goncharov (2002)
generalized the method to finite density ratios. However, Mikaelian (2008) pointed out
the problems in Goncharov’s model: ‘The failure for spikes becomes perhaps obvious
for this model . . . it is well known that spikes are ‘sharper,’ i.e. have larger |η2|

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

64
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.641


50 Q. Zhang and W. Guo

 0.5

1.0

1.5

2.0

0 2 4 6 8 10

D
im

en
si

on
le

ss
 v

el
oc

ity

Dimensionless time

FIGURE 3. (Colour online) Spike (solid curves) and bubble (dashed curves)
velocities at different Atwood numbers A from numerical simulations for RM
instability (Dimonte & Ramaprabhu 2010). The initial condition is a0k = 0.125, with
A=±0.25,±0.5,±0.75,±0.88,±0.94,±0.98.
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FIGURE 4. (Colour online) Spike (solid curves) and bubble (dashed curves) velocities
at different Atwood numbers A from numerical simulations for RM instability (Alon
et al. 1995). The initial conditions are v0 = 1 cm ms−1 and λ = 1 cm, with A =
±0.2,±0.5,±0.9,−1.

than bubbles, especially at large A. (Goncharov’s) equation (4) is independent of A
and clearly predicts the wrong curvature for Goncharov’s spikes.’ Later Abarzhi et al.
(2003) and Sohn (2003) obtained similar growth rates with different approaches,
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FIGURE 5. (Colour online) Spike (solid curves) and bubble (dashed curves) velocities
at different Atwood numbers A from numerical simulations for RT instability. Blue
curves: vortex model results from Sohn (2004), with a0k = 0.5, v0 = 0 and A =
±0.05, ±0.3, ±0.7, ±1. Black curve (labelled as c.m.): conformal mapping result
from Menikoff & Zemach (1983), with the same initial conditions and A= 1.

however only for bubbles. Mikaelian (2003) proposed an analytic model for the
evolution of the bubble amplitude from the linear to the nonlinear regime. From
these works, we observe a list of characteristics that the finger curvature possesses:

(1) for infinite density ratio, the bubble curvature asymptotically tends to one-sixth
of the wavenumber (Hecht et al. 1994; Mikaelian 1998; Zhang 1998; Goncharov
2002; Abarzhi et al. 2003; Sohn 2003);

(2) for infinite density ratio, the spike curvature asymptotically tends to infinity
(Zhang 1998);

(3) the bubble curvature in the quasi-steady stage is insensitive to the density ratio
(Sohn 2004).

Based on these properties we will deduce the finger growth rate for a system with
any density ratio and show the universality of all fingers at late times, but before the
possible re-acceleration stage.

3. Theoretical formulation
We consider incompressible, inviscid and irrotational fluids with arbitrary density

ratio in two dimensions, whose governing equations (Layzer 1955) are

∇2φi(t, x, z)= 0, (3.1)

∂η

∂t
− ∂φi

∂x
∂η

∂x
+ ∂φi

∂z
= 0, at z= η, (3.2)

2∑
i=1

(−1)iρi

(
−gη+ ∂φi

∂t
− 1

2

[(
∂φi

∂x

)2

+
(
∂φi

∂z

)2
])
= f (t), at z= η. (3.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

64
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.641


52 Q. Zhang and W. Guo

Here z= η(t, x) is the vertical position of the interface at time t, g is the gravitational
acceleration, φi is the velocity potential, ρi is the fluid density, subscript i (i= 1, 2)
denotes the upper fluid and lower fluid, respectively, and f (t) is an arbitrary function
that depends only on time t.

In our configuration, a signed Atwood number is used to describe the density ratio.
To elaborate, when studying bubbles, we consider the heavy fluid is on top of the
light fluid with the acceleration pointing downwards. Therefore, the Atwood number
A= (ρ1− ρ2)/(ρ1+ ρ2)> 0 and g> 0 for bubbles. When studying spikes, we consider
the light fluid is on top of the heavy fluid with the acceleration pointing upwards.
Therefore, A < 0 and g < 0 for spikes. This setting allows us to consider only the
case of the finger penetrating from the lower fluid into the upper fluid for both finger
types (bubbles and spikes).

The shape of a finger tip (bubble or spike) is approximated as a parabola, η(t, x)=
z0(t)+ ξ(t)kx2. Here z0(t) and ξ(t) are the vertical position and the curvature of the
finger tip, respectively. In our configuration, the curvature is always non-positive, i.e.
ξ 6 0.

In theory, the velocity potential in phase 1 can be expressed in a series such as
φ1=

∑∞
j=1 a(j)1 (t) cos(jkx)e−jkz= a(1)1 (t) cos(kx)e−kz+∑∞j=2 a(j)1 (t) cos(jkx)e−jkz. This usual

standard perturbation expansion with modes k, 2k, 3k, . . . is good for early-time
behaviour, but not suitable for late-time approximation, since it is a divergent series
for large times. Since our study focuses on the late-time behaviour of single-mode
RT and RM instabilities, an approach that captures the dominant behaviour of
fingers at late times is needed. The works in Layzer (1955), Hecht et al. (1994),
Mikaelian (1998) and Zhang (1998) showed that, for A = 1, modelling the system
with only the primary mode k is sufficient to obtain a good approximation. However,
as pointed out by Mikaelian (2008), for a system with |A| 6= 1, still modelling
the system with only one mode had led to incorrect predictions for the asymptotic
curvature. Thus, it is necessary to model the collective behaviour of all modes beyond
the primary mode k. In our model, the first term a(1)1 (t) cos(kx)e−kz, abbreviated
as a1(t) cos(kx)e−kz, represents the dominant behaviour of the finger, and we
approximate the collective behaviour of all remaining terms

∑∞
j=2 a(j)1 (t) cos(jkx)e−jkz

by b1(t) cos(c(t)kx)e−c(t)kz. Note that in our approximation the coefficient c(t) depends
on the Atwood number A, which is different from other approximations. Most
approximations assume that the finger can be well expressed by the first few terms
of the series

∑n
j=1 a(j)(t) cos(jkx)e−jkz, and each frequency is proportional to k and

independent of A. Since we use an effective mode to represent the collective behaviour
of all remaining modes j= 2, 3, . . . , and the coefficients of these modes depend on
A, it follows that c(t) in our approximation must also depend on A. We comment that
c(t)k is not an approximation for only the first few terms in the expansion, and it is
not for the whole interface. It is a local approximation for the collective behaviour of
all remaining modes near the finger tip. Although the same functional form c(t, A, g)
is used for both bubbles and spikes, in our signed Atwood number notation, namely,
A> 0, g> 0 for bubbles and A< 0, g< 0 for spikes, we have cbb= c(t, |A|, |g|) and
csp = c(t, −|A|, −|g|). Therefore, the value of cbb is different from that of csp in a
system with a given density ratio. The velocity potential in phase 2 is approximated
in a similar way. Therefore, we write the velocity potentials in the following form:

φi(t, x, z)= ai(t) cos(kx)e(−1)ikz + bi(t) cos(c(t)kx)e(−1)ic(t)kz, i= 1, 2. (3.4)

We comment that ai(t), bi(t), c(t), z0(t) and ξ(t) are also functions of A and g. For
conciseness, we do not display them explicitly.
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By substituting expression (3.4) into (3.2) and expanding the resulting equations
through the order of x2, we obtain:

dz0

dt
+ (−1)ik(ai e(−1)ikz0 + bi c e(−1)ic kz0)= 0, (3.5)

2
dξ
dt
+ 6k2ξ (ai e(−1)ikz0 + bi c2 e(−1)ic kz0)

− (−1)ik2(ai e(−1)ikz0 + bi c3 e(−1)ic kz0)= 0, i= 1, 2. (3.6)

One can solve for ai and bi explicitly from (3.5) and (3.6). After substituting the
resulting expressions into (3.3), one can obtain an ordinary differential equation for
the term proportional to x2:

F1

[
16
(

dξ
dt

)2

− 10ckv
dξ
dt
+ c2k2v2

]
+ 2F2

dξ
dt

dc
dt

+F3kv
dc
dt
+ F4

(
2F4kAgξ − 2F5

d2ξ

dt2
+ F6k

dv
dt

)
= 0. (3.7)

Here v = dz0/dt is the velocity of the finger tip, and

F1 = A(c+ 1)2 − 12 ξ(c+ 1)+ 36A ξ 2, (3.8)
F2 = (c+ 1)2 − 12 Aξ(c+ 1)+ 36 ξ 2, (3.9)
F3 = (c+ 1)2 + 6A ξ(c2 − 1)− 36 ξ 2(2c+ 1)+ 216A ξ 3, (3.10)
F4 = (c+ 1)2 − 36 ξ 2, (3.11)
F5 = c+ 1− 6A ξ, (3.12)
F6 = c2 + c+ 2A ξ(c2 − c+ 1)− 72A ξ 3. (3.13)

The results from numerical simulations (Tryggvason 1988; Sohn 2004) and from
theoretical analysis (Alon et al. 1995; Goncharov 2002) showed that, in the quasi-
steady state, spikes have approximately constant velocities in RT instability with finite
density ratios. Only in an infinite density ratio system, i.e. A = −1, does the spike
approach free fall asymptotically. Therefore, we will consider the fingers with A ∈
(−1, 1] in our analysis. If a theoretical model is consistent, one would expect that
its solution should have the property that, as A→−1, it approaches the behaviour of
spikes in an infinite density ratio system. As we will see later, our solution indeed
has this important consistency property.

We now examine the velocity of the finger in the quasi-steady stage. It has been
shown that both the velocity and the curvature of the finger tip are insensitive to
time in this stage (Glimm et al. 2002; Sohn 2004), namely, dv/dt= 0, dξ/dt= 0 and
dc/dt= 0. From this property, we obtain an equation from (3.7) for RT instability in
the quasi-steady stage:

v2
qs =−

2Agξqs (cqs + 1+ 6 ξqs)
2(cqs + 1− 6 ξqs)

2

kc2
qs[(36ξ 2

qs + (cqs + 1)2)(1+ A)− (cqs + 1+ 6 ξqs)2] , (3.14)

where the constants vqs and ξqs stand for the quasi-steady velocity and the quasi-steady
curvature, respectively. The right-hand side of (3.14) must be non-negative for all
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values of A. In this equation, A and g share the same sign, and ξqs is always non-
positive. Therefore, to maintain a non-negative v2

qs it is required that

(36ξ 2
qs + (cqs + 1)2)(1+ A)− (cqs + 1+ 6 ξqs)

2 > 0, for all A ∈ (−1, 1], (3.15)

which is equivalent to

A (36+ q2)− 12q > 0, for all A ∈ (−1, 1], (3.16)

where q= (cqs + 1)/ξqs. In the case of spikes, i.e. when A< 0, the solution of (3.16)
is

6
A
(1+

√
1− A2)6 q 6

6
A
(1−

√
1− A2). (3.17)

In particular, (3.17) must hold in the neighbourhood of A=−1, which gives

q=−6+ o(1), (3.18)

namely, cqs/ξqs=−6− 1/ξqs+ o(1)=−6+ o(1), since 1/ξqs= o(1) by property (2) at
the end of § 2. Therefore, we obtain cqs = −6 ξqs(1 + o(1)) in the neighbourhood of
A = −1. To the leading-order approximation, we will approximate cqs by −6ξqs. We
now determine the behaviour of ξqs near A=−1. After approximating cqs by −6ξqs,
a condition for ξqs can be deduced from (3.15):

72ζ 2 − 12ζ
√

1+ A+ (1+ A)> 1, (3.19)

where ζ = ξqs
√

1+ A. In the neighbourhood of A = −1, the left-hand side of (3.19)
will be determined by the leading term:

72ζ 2 > 1. (3.20)

The equality in (3.19) holds for the case in which the expression inside the square
bracket in the denominator of (3.14) tends to zero. This corresponds to the largest
growth rate for the spike near A=−1. Therefore, to obtain the most unstable growth
rate, we require 72ζ 2 = 1, i.e.

ξqs =−
√

2
12
√
(1+ A)

, as A→−1. (3.21)

Equation (3.21) suggests that ξqs(A) should have a Laurent series in terms of
√

1+ A,
and we will keep only the three leading terms, namely,

ξqs(A)=−
√

2
12
(1+ A)−1/2 + d0 + d1(1+ A)1/2. (3.22)

Property (1) of § 2 requires, when A= 1, that ξqs(1)=−1/6, which means

− 1
12 + d0 +

√
2d1 =− 1

6 . (3.23)

To capture property (3), we take (dξqs/dA)|A=1 = 0, which provides another equation:

1
48
+
√

2
4

d1 = 0. (3.24)
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Equations (3.23) and (3.24) give d0 = 0 and d1 = −1/(12
√

2). Thus, we obtain the
quasi-steady curvature

ξqs(A)=− 1
12

(√
2

1+ A
+
√

1+ A
2

)
=− 3+ A

12
√

2(1+ A)
(3.25)

from (3.22), and the quasi-steady velocity

vqs(A)=
(

Ag
3k

8
(1+ A)(3+ A)

[3+ A+√2 (1+ A)1/2]2
[4(3+ A)+√2 (9+ A)(1+ A)1/2]

)1/2

(3.26)

from (3.14) for RT instability. We comment that the result given by (3.26) is valid
for both spikes (A< 0, g< 0) and bubbles (A> 0, g> 0).

As given by (3.26) vqs is the velocity at the quasi-steady stage. The leading-order
contribution at early times is just the initial condition v0. It is desirable to have an
asymptotic matched solution for both early and quasi-steady stages. To achieve this,
we approximate ξ(t) by ξqs and c(t) by −6ξqs. This is motivated by the analytical
results for A = 1 (Mikaelian 1998; Zhang 1998). Equations (4) and (7) in Zhang
(1998) show that ξ(t) approaches its asymptotic value much faster than v(t) does: ξ(t)
approaches its asymptotic value at the rate of e−3kz0 ; v(t) approaches its asymptotic
value at the rate of e−[3kz0−ln(kz0)]/2, which is much slower than e−3kz0 . Therefore, it is
reasonable to approximate ξ(t) as a constant. Since, in our analysis, the asymptotic
value of c(t) is related to that of ξ(t), it is reasonable to approximate c(t) as a constant
as well. Under these approximations, (3.7) becomes

dv
dt
=−αk(v2 − v2

qs), (3.27)

where

α = 3
4

(1+ A)(3+ A)

[3+ A+√2(1+ A)1/2]
[4(3+ A)+√2 (9+ A)(1+ A)1/2]
[(3+ A)2 + 2

√
2 (3− A)(1+ A)1/2] , (3.28)

which is a function of the Atwood number A. Therefore, a matched solution for v can
be obtained by integrating (3.27) from 0 to t.

4. Universality of fingers at all density ratios
For RM instability, we take the limit g→ 0 in (3.27) and obtain

dv
dt
=−αkv2, (4.1)

and the matched solution is
v = v0

1+ αkv0t
, (4.2)

where v0 denotes the initial velocity. When A = 1, the expression given by (4.2)
recovers the results shown by Mikaelian (1998) and Buttler et al. (2012).

If we introduce the scaled dimensionless variables

uRM = v

v0
, τRM = αkv0t, (4.3a,b)
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FIGURE 6. (Colour online) Comparison between universality curve given by (4.4) and
scaled data from figure 2 for RM instability at different Atwood numbers. The solid curves
are the scaled spike velocities, and the dashed curves are the scaled bubble velocities. Red
curve: universality model prediction. Blue curves: vortex model results from Sohn (2004)
with a0 = 0.5 cm v0 = 0.8 cm ms−1 and A = 0, ±0.3, ±0.7, 1. Black curve and green
curve: a0= 0 and v0= 0.5 cm ms−1, with A= 1. The black curve (labelled as c.m.) is the
conformal mapping result from Menikoff & Zemach (1983), and the green curve is the
vortex model result from Sohn (2004).

then (4.2) can be written as

uRM = 1
1+ τRM

. (4.4)

It is completely unexpected that, despite the different behaviours among fingers
with various Atwood numbers, and even the qualitative distinctions between spikes
and bubbles, the growth rates of all finger tips, up through the quasi-steady stage,
can be approximately described by a single equation in terms of the appropriately
scaled dimensionless variables given by (4.3). This equation is independent of finger
types and of the Atwood number. This means that, in terms of scaled variables, the
dominant behaviours of the growth rates of all fingers (both spikes and bubbles) at
all Atwood numbers follow a universal curve for systems governed by (3.1)–(3.3).
Furthermore, the result of the bubble growth rate at any specific Atwood number
can be used to predict (through scaling) not only the bubble growth rates at other
Atwood numbers, but also the spike growth rates at all Atwood numbers. Similarly,
one can also use the result of a spike to do such predictions. This implies that, to
study the growth rates for both finger types and for all Atwood numbers, one only
needs to study the behaviour of one finger at any Atwood number. This is particularly
important and useful for numerical simulations and experiments, since it is highly
time-consuming and also possibly expensive to perform studies for multiple Atwood
numbers up through the nonlinear stage.

To verify our prediction on universality, we apply (4.3) to scale all the results from
numerical simulations shown in figures 2–4, and compare the scaled results with our
prediction given by (4.4). The comparison results are presented in figures 6–8. All
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FIGURE 7. (Colour online) Comparison between universality curve given by (4.4)
and scaled data from figure 3 for RM instability at different Atwood numbers. The
solid curves are the scaled spike velocities, and the dashed curves are the scaled
bubble velocities. Red curve: universality model prediction. Blue curves: numerical
results (FLASH) from Dimonte & Ramaprabhu (2010), with a0k = 0.125 and A =
±0.25,±0.5,±0.75,±0.88,±0.94,±0.98.

results from three sets of data show that the scaled data are in good agreement with
our universality curve. The scaled results also show that, in terms of scaled time,
longer simulations are needed for spikes with large Atwood numbers to reach the
quasi-steady stage. This may not be obvious in the original unscaled data.

The scaling technique can also be applied to RT instability. By expressing (3.27) in
terms of the scaled dimensionless variables

uRT = v

vqs
and τRT = αkvqst, (4.5a,b)

we obtain a universal curve for the scaled velocity in RT instability:

uRT = 1− r e−2τRT

1+ r e−2τRT
, (4.6)

where r= [1− uRT(0)]/[1+ uRT(0)].
Figure 9, the scaled version of figure 5, also shows the similarity and the

universality between the growth rate of spikes and that of bubbles at different
Atwood numbers for RT instability. Despite the different developments in the early
stage, the scaled physical quantities for all fingers are gradually approaching the
same universality curve. The agreement between the theoretical prediction and the
scaled numerical data for RT instability shown in figure 9 is not as good as those
for RM instability shown in figures 6–8. This is due to several reasons. (1) The
fingers in RT instability are driven by gravity, and therefore are more unstable than
those in RM instability. Thus, it is much harder to carry out the simulations for
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FIGURE 8. (Colour online) Comparison between universality curve given by (4.4) and
scaled data from figure 4 for RM instability at different Atwood numbers. The solid curves
are the scaled spike velocities, and the dashed curves are the scaled bubble velocities.
Red curve: universality model prediction. Blue curves: numerical results (LEEOR2D)
from Alon et al. (1995), with v0 = 1 cm ms−1, λ= 1 cm and A=±0.2,±0.5,±0.9.

RT instability to the asymptotic regime. They need a larger computational domain
and longer computing time. Owing to these difficulties, in terms of scaled time, the
numerical simulations for RT instability were actually terminated earlier than those
for RM instability. (2) Since in terms of scaled time the simulations for RT instability
are shorter than those for RM instability, they contain more transient effects, which
are not included in our model. (3) In the numerical simulations presented by Sohn
(2004), a numerical desingularization parameter is introduced to avoid singularities
in computation, which reduces the growth rates. Therefore, the numerical data are
consistently below our theoretical prediction. For the same reason, the numerical
results shown in figure 6 are also slightly lower than our theoretical prediction. In
particular, figure 9 shows that the simulation for the spike at A=−0.7 ends too soon
and has not approached the quasi-steady stage yet. Therefore, we call for further
numerical studies of RT instability in late times, especially for spikes with large
Atwood numbers.

5. Discussion
Our derivation is based on A∈ (−1, 1]. However, one would expect that a consistent

theoretical model should have the property that in the limit A→−1 the solution of
the model approaches the known behaviour for A=−1, namely, it should recover the
behaviour of spikes in an infinite density ratio system. We now examine this limit. In
the limit A→−1, α given by (3.28) tends to 0. Consequently, the scaled times τRM
and τRT given by (4.3) and (4.5) tend to 0 as well. This shows that, for both RM
and RT instabilities, the asymptotic behaviour of spikes in an infinite density ratio
system corresponds to the point τ = 0 on our universality curve. For RM instability,
since τRM → 0, (4.4) becomes uRM = 1, namely, v = v∞ = v0. This agrees with the
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FIGURE 9. (Colour online) Comparison between universality curve given by (4.6) and
scaled data from figure 5 for RT instability at different Atwood numbers. The solid curves
are the scaled spike velocities, and the dashed curves are the scaled bubble velocities.
Red curve: universality model prediction. Blue curves: vortex model results from Sohn
(2004), with a0k = 0.5, v0 = 0 and A = ±0.05, ±0.3, ±0.7, 1. Black curve (labelled as
c.m.): conformal mapping result from Menikoff & Zemach (1983), with the same initial
conditions and A= 1.

prediction of v∞ = v0[(6ξ0 + 3)/(6ξ0 + 1)]1/2 given by Zhang (1998), since in our
analysis ξ0 = ξ∞ =∞. For RT instability, by taking the limit A→−1 in (3.27), we
obtain duRT/dτ = 1, namely, dv/dt = dv/dt|t=∞ = |g| in terms of unscaled variables.
This expression also agrees with the prediction given by Zhang (1998), and recovers
the free-fall behaviour of RT spikes in an infinite density ratio system. This shows
that our derivation based on A∈ (−1, 1] indeed recovers the known results for A=−1.
Therefore, our theory is for all density ratios.

For an initial interface randomly perturbed by many different modes, a turbulent
mixing zone forms at late times. It has been shown that the size of the turbulent
mixing zone has certain important scaling behaviour at late times (Alon et al. 1995;
Dimonte & Schneider 2000; Poujade & Peybernes 2010; Thornber et al. 2010;
Tritschler et al. 2014). It is known that the dynamics of a mixing zone is governed
by the growth of each individual mode and by the interaction between adjacent
bubbles. In this paper the universal scaling behaviour for single-mode RT and RM
instabilities is shown. If one can further establish a scaling behaviour for bubble
interaction, then potentially one could provide a better understanding of the scaling
behaviour of turbulent mixing zones.

Acknowledgement

The work of Q.Z. was supported by the Research Grants Council of the Hong Kong
Special Administrative Region, China (project CityU 11303714).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

64
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.641


60 Q. Zhang and W. Guo

REFERENCES

ABARZHI, S. I., GLIMM, J. & LIN, A.-D. 2003 Dynamics of two-dimensional Rayleigh–Taylor
bubbles for fluids with a finite density contrast. Phys. Fluids 15 (8), 2190–2197.

ALON, U., HECHT, J., OFER, D. & SHVARTS, D. 1995 Power laws and similarity of Rayleigh–Taylor
and Richtmyer–Meshkov mixing fronts at all density ratios. Phys. Rev. Lett. 74 (4), 534–537.

BROUILLETTE, M. 2002 The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34 (1), 445–468.
BUTTLER, W. T., ORÓ, D. M., PRESTON, D. L., MIKAELIAN, K. O., CHERNE, F. J., HIXSON,

R. S., MARIAM, F. G., MORRIS, C., STONE, J. B., TERRONES, G. & TUPA, D. 2012 Unstable
Richtmyer–Meshkov growth of solid and liquid metals in vacuum. J. Fluid Mech. 703, 60–84.

DIMONTE, G. & RAMAPRABHU, P. 2010 Simulations and model of the nonlinear Richtmyer–Meshkov
instability. Phys. Fluids 22 (1), 014104.

DIMONTE, G. & SCHNEIDER, M. 2000 Density ratio dependence of Rayleigh–Taylor mixing for
sustained and impulsive acceleration histories. Phys. Fluids 12 (2), 304–321.

E, W. & HOU, T. Y. 1990 Homogenization and convergence of the vortex method for 2-D Euler
equations with oscillatory vorticity fields. Commun. Pure Appl. Maths 43 (7), 821–855.

GLIMM, J., LI, X.-L. & LIN, A.-D. 2002 Nonuniform approach to terminal velocity for single mode
Rayleigh–Taylor instability. Acta Math. Appl. Sinica 18 (1), 1–8.

GONCHAROV, V. 2002 Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability
at arbitrary Atwood numbers. Phys. Rev. Lett. 88 (13), 134502.

HECHT, J., ALON, U. & SHVARTS, D. 1994 Potential flow models of Rayleigh–Taylor and Richtmyer–
Meshkov bubble fronts. Phys. Fluids 6, 4019–4030.

LAYZER, D. 1955 On the instability of superposed fluids in a gravitational field. Astrophys. J. 122,
1–12.

MENIKOFF, R. & ZEMACH, C. 1983 Rayleigh–Taylor instability and the use of conformal maps for
ideal fluid flow. J. Comput. Phys. 51 (1), 28–64.

MESHKOV, E. E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid
Dyn. 4, 101–104.

MIKAELIAN, K. O. 1998 Analytic approach to nonlinear Rayleigh–Taylor and Richtmyer–Meshkov
instabilities. Phys. Rev. Lett. 80 (3), 508–511.

MIKAELIAN, K. O. 2003 Explicit expressions for the evolution of single-mode Rayleigh–Taylor and
Richtmyer–Meshkov instabilities at arbitrary Atwood numbers. Phys. Rev. E 67 (2), 026319.

MIKAELIAN, K. O. 2008 Limitations and failures of the Layzer model for hydrodynamic instabilities.
Phys. Rev. E 78 (1), 015303.

POUJADE, O. & PEYBERNES, M. 2010 Growth rate of Rayleigh–Taylor turbulent mixing layers with
the foliation approach. Phys. Rev. E 81 (1), 016316.

RAYLEIGH, LORD 1883 Investigation of the character of the equilibrium of an incompressible heavy
fluid of variable density. Proc. Lond. Math. Soc. 14, 170–177.

RICHTMYER, R. D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun.
Pure Appl. Maths 13 (2), 297–319.

SHARP, D. H. 1984 An overview of Rayleigh–Taylor instability. Physica D 12 (1), 3–18.
SOHN, S.-I. 2003 Simple potential-flow model of Rayleigh–Taylor and Richtmyer–Meshkov instabilities

for all density ratios. Phys. Rev. E 67 (2), 026301.
SOHN, S.-I. 2004 Vortex model and simulations for Rayleigh–Taylor and Richtmyer–Meshkov

instabilities. Phys. Rev. E 69 (3), 036703.
SOHN, S.-I. 2011 Late-time vortex dynamics of Rayleigh–Taylor instability. J. Phys. Soc. Japan 80

(8), 084401.
TAYLOR, G. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to

their planes. I. Proc. R. Soc. Lond. A 201 (1065), 192–196.
THORNBER, B., DRIKAKIS, D., YOUNGS, D. L. & WILLIAMS, R. J. R. 2010 The influence of

initial conditions on turbulent mixing due to Richtmyer–Meshkov instability. J. Fluid Mech.
654, 99–139.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

64
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.641


Universality of finger growth with all density ratios 61

TRITSCHLER, V. K., OLSON, B. J., LELE, S. K., HICKEL, S., HU, X. Y. & ADAMS, N. A. 2014 On
the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface.
J. Fluid Mech. 755, 429–462.

TRYGGVASON, G. 1988 Numerical simulations of the Rayleigh–Taylor instability. J. Comput. Phys.
75 (2), 253–282.

ZHANG, Q. 1998 Analytical solutions of Layzer-type approach to unstable interfacial fluid mixing.
Phys. Rev. Lett. 81 (16), 3391–3394.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

64
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.641

	Universality of finger growth in two-dimensional Rayleigh–Taylor and Richtmyer–Meshkov instabilities with all density ratios
	Introduction
	Different behaviours between spikes and bubbles
	Theoretical formulation
	Universality of fingers at all density ratios
	Discussion
	Acknowledgement
	References




