
Math. Struct. in Comp. Science (2014), vol. 24, iss. 2, e240203, 37 pages. c© Cambridge University Press 2013

doi:10.1017/S0960129513000170

Higher-order psi-calculi†

JOACHIM PARROW, JOHANNES BORGSTRÖM,

PALLE RAABJERG and JOHANNES ÅMAN POHJOLA

Department of Information Technology, Uppsala University,

Uppsala, Sweden

Email: joachim.parrow@it.uu.se;johannes.borgstrom@it.uu.se;

palle.raabjerg@it.uu.se;johannes.aman-pohjola@it.uu.se.

Received 26 January 2011; revised 21 January 2013

In earlier work we explored the expressiveness and algebraic theory Psi-calculi, which form a

parametric framework for extensions of the pi-calculus. In the current paper we consider

higher-order psi-calculi through a technically surprisingly simple extension of the

framework, and show how an arbitrary psi-calculus can be lifted to its higher-order

counterpart in a canonical way. We illustrate this with examples and establish an algebraic

theory of higher-order psi-calculi. The formal results are obtained by extending our proof

repositories in Isabelle/Nominal.

Robin Milner – in memoriam

Robin Milner pioneered developments in process algebras, higher-order formalisms, and

interactive theorem provers. We hope he would have been pleased to see the different

strands of his work combined in this way.

1. Introduction

Psi-calculi form a parametric framework for extensions of the pi-calculus to accommodate

applications with complex data structures and high-level logics in a single general and

parametric framework with machine-checked proofs. In earlier papers (Bengtson et al.

2009; Bengtson and Parrow 2009; Johansson et al. 2010; Bengtson et al. 2010), we

have shown how psi-calculi can capture a range of phenomena such as cryptography

and concurrent constraints, investigated strong and weak bisimulation, and provided a

symbolic semantics. We claim that the theoretical development is more robust than in other

calculi of comparable complexity since we use a single inductive definition in the semantics

and because we have checked most results in the theorem prover Isabelle/Nominal (Urban

2008).

In the current paper, we extend the framework to include higher-order agents, that is,

agents that can send agents as objects in communication. As an example of a traditional

higher-order communication, the process aP .Q sends the process P along a and then

continues as Q. A recipient looks like a(X) . (R | X), receiving a process P and continuing

† This work was partly supported by the Swedish Research Council grant UPMARC.

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

J. Parrow, J. Borgström, P. Raabjerg and J. Åman Pohjola 2

as R | P , thus aP .Q | a(X) . (R | X) has a transition leading to Q | (R | P). Higher-

order computational paradigms date back to the lambda-calculus, and many different

formalisms are based on it. The first to study higher-order communication within a

process calculus was probably Thomsen (Thomsen 1989; Thomsen 1993), and the area

has been thoroughly investigated by Sangiorgi and others (Sangiorgi 1993; Sangiorgi

1996; Sangiorgi 2001; Jeffrey and Rathke 2005; Lanese et al. 2008; Damengeon et al.

2009; Lanese et al. 2010). There are several important problems related to type systems, to

encoding higher-order behaviour using an ordinary calculus and to the precise definition

of bisimulation ∼. To appreciate the latter, consider an agent bisimulating aP .Q. The

normal definition would require the same action aP leading to an agent that bisimulates

Q. In some circumstances this is too strong a requirement. For example, if we assume

P ∼ P ′, it is reasonable to let aP .Q ∼ aP ′ . Q even though they have different actions

since the only thing a recipient can do with the received object is to execute it, and here

bisimilar agents are indistinguishable.

1.1. Psi-calculi

In the following we assume familiarity with the basic ideas of process algebras based on

the pi-calculus, and explain psi-calculi using a few simple examples. In a psi-calculus, there

are data terms M,N, . . ., and we write MN .P to represent an agent sending the term

N along the channel M (which is also a data term), and continuing as the agent P . We

write K(λx̃)L .Q to represent an agent that can input along the channel K , receiving some

object matching the pattern λx̃L. These two agents can interact under two conditions:

(1) The two channels must be channel equivalent, as defined by the channel equivalence

predicate M
.↔ K .

(2) N must match the pattern, that is, N = L[x̃ := T̃] for some sequence of terms T̃ .

The receiving agent then continues as Q[x̃ := T̃].

Formally, a transition is of kind Ψ � P
α−→ P ′, meaning that when the environment

contains the assertion Ψ the agent P can do an action α to become P ′. An assertion

embodies a collection of facts, which resolve, among other things, the channel equivalence

predicate
.↔. To continue the example, we will have

Ψ � MN .P | K(λx̃)L .Q
τ−→ P | Q[x̃ := T̃]

exactly when N = L[x̃ := T̃] and Ψ � M
.↔ K . The latter says that the assertion Ψ entails

that M and K represent the same channel. In this way we can introduce an equational

theory over a data structure for channels. Assertions are also used to resolve the conditions

ϕ in the if construct: we have that

Ψ � if ϕ then P
α−→ P ′

if Ψ � ϕ and Ψ � P
α−→ P ′. In order to represent concurrent constraints and local

knowledge, assertions can be used as agents: the agent (|Ψ|) stands for an agent that

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

Higher-order psi-calculi 3

asserts Ψ to its environment. For example, in

P | (νa)((|Ψ|) | Q),

the agent Q uses all entailments provided by Ψ, while P only uses those that do not

contain the name a.

Assertions and conditions can, in general, form any logical theory. Also, the data terms

can be drawn from an arbitrary set. One of our major contributions has been to pinpoint

the precise requirements on the data terms and logic for a calculus to be useful in the

sense that the natural formulation of bisimulation satisfies the expected algebraic laws.

It turns out that it is necessary to view the terms and logics as nominal. This means

that there is a distinguished set of names, and for each term a well-defined notion of

support, which corresponds intuitively to the names occurring in the term. Functions and

relations must be equivariant, meaning that they treat all names equally. The logic must

have a binary operator to combine assertions, corresponding to the parallel composition

of processes, which must satisfy the axioms of an abelian monoid. Channel equivalence

must be symmetric and transitive. In order to define the semantics of an input construct,

there must be a function to substitute terms for names, but it does not matter exactly

what a substitution actually does to a term. These are all quite general requirements, so

psi-calculi accommodate a wide variety of extensions of the pi-calculus.

1.2. Higher-order psi-calculi

In one sense it is possible to have a naive higher-order psi-calculus without amending

any of the definitions. Data can be any set satisfying the requirements mentioned above.

In particular, we may include the agents among the data terms. Thus, the higher-order

output and input exemplified above are already present. What is lacking is a construct to

execute a received agent. A higher-order calculus usually includes the agent variables like

X among the process constructors, making it possible to write, for example, a(X) . (X | R),

which can receive any agent P and continue as P | R.

The route we shall take in this paper is more general and admits definitions of

behaviours as recursive expressions without the need to include a new syntactic category

of process variables and higher-order substitution. Instead, we introduce the notion of a

clause M ⇐ P , meaning that the data term M can be used as a handle to invoke the

behaviour of P in the agent run M. A sender can transmit the handle M in an ordinary

output aM, and a recipient can receive and run it as in a(x) . (run x | R).

Just like conditions, clauses are entailed by assertions. In this way we can use scoping

to get local definitions of behaviour. For example, let {Mb ⇐ R} be an assertion entailing

Mb ⇐ R where b is in the support of Mb. Then, in

P | (νb)(Q | (|{Mb ⇐ R}|))

the agent Q can use the clause, but P cannot since it is out of the scope of b.

Formally, the clauses do not represent an extension of the psi framework since they

can be included among the conditions. The only formal extension is the new agent form

invocation run M to invoke an agent represented by M, with the corresponding rule of

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

J. Parrow, J. Borgström, P. Raabjerg and J. Åman Pohjola 4

action

Invocation

Ψ � M ⇐ P Ψ � P
α−→ P ′

Ψ � run M
α−→ P ′

In this way, we can perform higher-order communication. In place of

aP .Q | a(X) . (X | R),

we write

(νb)(aMb . Q | (|{Mb ⇐ P }|)) | a(x) . (run x | R).

Until the left-hand component interacts along a, the scope of b prohibits the environment

from using the clause. After the interaction, this scope is extruded, and the recipient

can use Mb to invoke the received process. For example, if we let P = α . P ′ , the

communication results in a τ-transition, which can then be followed by an invocation:

(νb)(aMb . Q | (|{Mb ⇐ α . P ′}|)) | a(x) . (run x | R)
τ→

(νb)(Q | (|{Mb ⇐ α . P ′}|) | run Mb | R)
α→

(νb)(Q | (|{Mb ⇐ α . P ′}|) | P ′ | R).

In this way, we do not send the agent itself, but rather a way to make it appear. This

is reminiscent of the encoding of higher-order calculi into their first-order counterparts:

(νb)ab . (Q | ! b . P) | a(x) . R.

Here the trigger b is used in a normal communication to activate P . A purely syntactic

difference is that in this encoding, the invocation will trigger an execution of P in the place

from which it was sent, whereas in higher-order psi-calculi, the invocation rule means that

P will execute in the place where it is invoked. Therefore, when Mb is a handle for P , its

support must include that of P , which ensures that scope extrusions are enforced when a

name in the support of P is restricted and Mb is sent out of its scope.

Our work differs from previous work on higher-order calculi in one important respect.

Existing work (or at least the work we know of) explores fundamental constructions

in extremely parsimonious calculi to determine exactly what can be encoded with the

higher-order paradigm, or exactly how it can be encoded. Our aim, by contrast, is to

extend a very rich framework, which already contains arbitrarily advanced data types,

with a higher-order construct that facilitates the natural representation of applications.

1.3. Structure of the paper

In the next section, we recapitulate the definitions of psi-calculi from Bengtson

et al. (2009) and Bengtson et al. (2011). We give all necessary definitions to make the

paper formally self contained, and refer to our earlier work for motivation and intuition.

In Section 3, we present the smooth extensions to higher-order psi-calculi, namely, the

clauses and the invocation rule. This provides a general framework and admits many

different languages for expressing the clauses. As an example, we show how to express

process abstractions, and how we can construct a canonical higher-order calculus from a

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

Higher-order psi-calculi 5

first-order one by just adding a higher-order component to the assertions. In Section 4,

we explore the algebraic theory of bisimulation. We inherit the definitions verbatim from

first-order psi-calculi, so all properties will still hold. Moreover, we show that Sum and

Replication can be directly represented through higher-order constructs. We explore a

slightly amended bisimulation definition, which is more natural in a higher-order context.

All proofs of all theorems presented in this paper have been formalised in the interactive

theorem prover Isabelle, and we comment briefly on our experiences. Finally, we present

a comparison of alternative bisimulations and give our conclusions with some ideas for

further work.

2. Psi-calculi

This section recapitulates the relevant parts of Bengtson et al. (2009) and Bengtson

et al. (2011).

We assume a countably infinite set of atomic names N ranged over by a, . . . , z. A

nominal set (Pitts 2003; Gabbay and Pitts 2001) is a set equipped with name swapping

functions written (a b), for any names a, b. An intuition here is that for any member

X, we have (a b) · X is X with a replaced by b and b replaced by a. Formally, a name

swapping is any function satisfying certain natural axioms such as (a b) · ((a b) · X) = X.

An important point of this is that even though we have not defined any particular syntax,

we can define what it means for a name to ‘occur’ in an element: it is simply that it can

be affected by swappings. The names occurring in this way in an element X constitute the

support of X, written n(X). We write a#X, pronounced ‘a is fresh for X’, for a 	∈ n(X). If

A is a set or a sequence of names, we write A#X to mean ∀a ∈ A . a#X. We require all

elements to have finite support, that is, n(X) is finite for all X. A function f is equivariant

if

(a b) · f(X) = f((a b) · X)

holds for all X, and similarly for functions and relations of any arity. Intuitively, this

means that all names are treated equally.

In the following, we write ã to mean a finite sequence of distinct names, a1, . . . , an.

The empty sequence is written ε and the concatenation of ã and b̃ is written ãb̃. When

occurring as an operand of a set operator, ã means the corresponding set of names

{a1, . . . , an}. We also use sequences of other nominal sets in the same way, except that we

then do not require that all elements in the sequence are pairwise different. We use A and

B to range over finite sets of names.

A nominal datatype is a nominal set together with a set of equivariant functions on it.

In particular, we shall consider substitution functions that substitute elements for names.

If X is an element of a datatype, the substitution X[ã := Ỹ] is an element of the same

datatype as X. Substitution is required to satisfy a kind of alpha-conversion law: if b̃#X, ã,

then X[ã := T̃] = ((b̃ ã) · X)[b̃ := T̃], where it is implicit that ã and b̃ have the same

length and (ã b̃) swaps each element of ã with the corresponding element of b̃. The name

preservation law

ã ⊆ n(N) ∧ b ∈ n(M̃) =⇒ b ∈ n(N[ã := M̃])

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

J. Parrow, J. Borgström, P. Raabjerg and J. Åman Pohjola 6

will be important for some substitutions. Apart from these laws, we do not require any

particular behaviour of substitution.

Formally, a psi-calculus is defined by instantiating three nominal datatypes and four

operators.

Definition 2.1 (psi-calculus parameters). A psi-calculus requires the three (not necessarily

disjoint) nominal datatypes

T the (data) terms, ranged over by M,N

C the conditions, ranged over by ϕ

A the assertions, ranged over by Ψ

and the four equivariant operators

.↔ : T × T → C Channel Equivalence

⊗ : A × A → A Composition

1 : A Unit

� ⊆ A × C Entailment

together with substitution functions [ã := M̃], substituting terms for names, on each of

T, C and A, where the substitution function on T satisfies name preservation.

The binary functions above will be written infix. Thus, if M and N are terms, then

M
.↔ N is a condition, pronounced ‘M and N are channel equivalent’ and if Ψ and

Ψ′ are assertions, then so is Ψ⊗Ψ′. We also write Ψ � ϕ, pronounced ‘Ψ entails ϕ’, for

(Ψ, ϕ) ∈ �.

Definition 2.2 (assertion equivalence). Two assertions are equivalent, written Ψ � Ψ′, if for

all ϕ, we have

Ψ � ϕ ⇔ Ψ′ � ϕ.

The requirements for valid psi-calculus parameters are as follows.

Definition 2.3 (requisites for valid psi-calculus parameters).

Channel Symmetry: Ψ � M
.↔ N =⇒ Ψ � N

.↔ M

Channel Transitivity: Ψ � M
.↔ N ∧ Ψ � N

.↔ L =⇒ Ψ � M
.↔ L

Compositionality: Ψ � Ψ′ =⇒ Ψ⊗Ψ′′ � Ψ′⊗Ψ′′

Identity: Ψ⊗1 � Ψ

Associativity: (Ψ⊗Ψ′)⊗Ψ′′ � Ψ⊗(Ψ′⊗Ψ′′)

Commutativity: Ψ⊗Ψ′ � Ψ′⊗Ψ.

Our requirements for a psi-calculus are that the channel equivalence is a partial equivalence

relation, that ⊗ is compositional and that the equivalence classes of assertions form an

abelian monoid.

Definition 2.4 (frame). A frame is of the form (νb̃)Ψ where b̃ is a sequence of names that

bind into the assertion Ψ. We identify the alpha variants of frames.

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

Higher-order psi-calculi 7

We use F and G to range over frames. Since we identify alpha variants, we can choose

the bound names arbitrarily. We will just write Ψ for (νε)Ψ when there is no risk of

confusing a frame with an assertion, and ⊗ to mean composition on frames defined by

(νb̃1)Ψ1⊗(νb̃2)Ψ2 = (νb̃1b̃2)Ψ1⊗Ψ2

where b̃1 # b̃2,Ψ2, and vice versa. We will also write (νc)((νb̃)Ψ) to mean (νcb̃)Ψ.

Definition 2.5. We define F � ϕ to mean that there exists an alpha variant (νb̃)Ψ of F

such that b̃#ϕ and Ψ � ϕ. We also define F � G to mean that for all ϕ, we have F � ϕ if

and only if G � ϕ.

Definition 2.6 (psi-calculus agents). Given valid psi-calculus parameters as in Defini-

tions 2.1 and 2.3, the psi-calculus agents P, ranged over by P ,Q, . . ., are of the following

forms.

0 Nil

MN .P Output

M(λx̃)N .P Input

case ϕ1 : P1 [] · · · [] ϕn : Pn Case

(νa)P Restriction

P | Q Parallel

!P Replication

(|Ψ|) Assertion.

Restriction binds a in P and Input binds x̃ in both N and P . We identify alpha equivalent

agents. An assertion is guarded if it is a subterm of an Input or Output. An agent is

assertion guarded if it contains no unguarded assertions. An agent is well formed if:

— in M(λx̃)N.P we have x̃ ⊆ n(N) is a sequence without duplicates;

— the agent P in a replication !P is assertion guarded; and

— the agents Pi in

case ϕ1 : P1 [] · · · [] ϕn : Pn

are assertion guarded.

In the Output and Input forms, M is called the subject and N the object. Output and Input

are similar to those in the pi-calculus, but arbitrary terms can function as both subjects

and objects. In the input M(λx̃)N.P , the intuition is that the pattern (λx̃)N can match any

term obtained by instantiating x̃, for example, M(λx, y)f(x, y).P can only communicate

with an output Mf(N1, N2) for some data terms N1, N2. This can be thought of as a

generalisation of the polyadic pi-calculus where the patterns are just tuples of (distinct,

bound) names. Another significant extension is that we also allow arbitrary data terms as

communication channels. Thus, it is possible to include functions that create channels.

The case construct works as expected by behaving as one of the Pi for which the

corresponding ϕi is true. We will sometimes abbreviate case ϕ1 : P1 [] · · · [] ϕn : Pn to

case ϕ̃ : P̃ , or if n = 1, to if ϕ1 then P1. In psi-calculi where a condition � exists such that

Ψ � � for all Ψ, we write P + Q to mean case � : P [] � : Q.

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

J. Parrow, J. Borgström, P. Raabjerg and J. Åman Pohjola 8

Input subjects are underlined to facilitate parsing of complicated expressions, but in

simple cases we will often omit the underline. In the traditional pi-calculus, terms are just

names, and its input construct a(x) . P can be represented as a(λx)x.P . In some of the

examples later in the paper we shall use the simpler notation a(x) . P for this input form,

and we will also sometimes omit a trailing 0, writing just MN for MN . 0.

In the standard pi-calculus, the transitions from a parallel composition P | Q can be

uniquely determined by the transitions from its components, but in psi-calculi the situation

is more complex. Here the assertions contained in P can affect the conditions tested in Q,

and vice versa. For this reason, we introduce the notion of the frame of an agent as the

combination of its top-level assertions, retaining all the binders. It is precisely this that

can affect a parallel agent.

Definition 2.7 (frame of an agent). The frame F(P) of an agent P is defined inductively

as follows:

F(0) = 1

F(M(λx̃)N.P) = 1

F(MN.P) = 1

F(case ϕ̃ : P̃) = 1

F(!P) = 1

F((|Ψ|)) = Ψ

F(P | Q) = F(P) ⊗ F(Q)

F((νb)P) = (νb)F(P).

Hence, an agent where all assertions are guarded has a frame equivalent to 1. In

the following, we will often write (νb̃P)ΨP for F(P), but note that this is not a unique

representation since frames are identified up to alpha equivalence.

The actions α that agents can perform are of three kinds: output, input and the silent

action τ. The input actions are of the early kind, meaning that they contain the object

received. The operational semantics consists of transitions of the form Ψ � P
α−→ P ′.

Intuitively, this transition means that P can perform an action α leading to P ′ in an

environment that asserts Ψ.

Definition 2.8 (actions).

The actions ranged over by α, β are of the following three kinds:

M(νã)N Output, where ã ⊆ n(N)

M N Input

τ Silent.

For actions, we refer to M as the subject and N as the object. We define

bn(M(νã)N) = ã

bn(α) = � if α is an input or τ.

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

Higher-order psi-calculi 9

In

Ψ � M
.↔ K

Ψ � M(λỹ)N.P
K N[ỹ:=L̃]−−−−−−→ P [ỹ := L̃]

Out

Ψ � M
.↔ K

Ψ � MN.P
KN−−→ P

Case

Ψ � Pi
α−→ P ′ Ψ � ϕi

Ψ � case ϕ̃ : P̃
α−→ P ′

Com

ΨQ⊗Ψ � P
M (νã)N−−−−−→ P ′ ΨP ⊗Ψ � Q

K N−−→ Q′ Ψ⊗ΨP ⊗ΨQ � M
.↔ K

Ψ � P | Q τ−→ (νã)(P ′ | Q′)
ã#Q

Par

ΨQ⊗Ψ � P
α−→ P ′

Ψ � P | Q α−→ P ′ | Q
bn(α)#Q Scope

Ψ � P
α−→ P ′

Ψ � (νb)P
α−→ (νb)P ′

b#α,Ψ

Open

Ψ � P
M (νã)N−−−−−→ P ′

Ψ � (νb)P
M (νã∪{b})N−−−−−−−→ P ′

b#ã,Ψ,M

b ∈ n(N)
Rep

Ψ � P | !P
α−→ P ′

Ψ � !P
α−→ P ′

Table 1. Operational semantics. Symmetric versions of Com and Par are elided.

In the rule Com, we assume that F(P) = (νb̃P)ΨP and F(Q) = (νb̃Q)ΨQ, where b̃P is fresh

for all of Ψ, b̃Q, Q,M and P , and that b̃Q is correspondingly fresh.

In the rule Par, we assume that F(Q) = (νb̃Q)ΨQ where b̃Q is fresh for Ψ, P and α.

In the rule Open, the expression ã ∪ {b} means the sequence ã with b inserted anywhere.

We also define

n(τ) = �

n(α) = n(N) ∪ n(M) if α is an output or input.

As in the pi-calculus, the output M(νã)N represents an action sending N along M and

opening the scopes of the names ã. Note, in particular, that the support of this action

includes ã. Thus M(νa)a and M(νb)b are different actions.

Definition 2.9 (transitions). The transitions are defined inductively in Table 1. We write

P
α−→ P ′ to mean 1 � P

α−→ P ′. The substitution in In is defined by induction

on agents, using substitution on terms, assertions and conditions for the base cases and

avoiding captures through alpha-conversion in the standard way.

Both agents and frames are identified by alpha equivalence. This means that we can

choose the bound names fresh in the premise of a rule. In a transition, the names in

bn(α) count as binding into both the action object and the derivative, and transitions are

identified up to alpha equivalence. This means that the bound names can be chosen fresh,

substituting each occurrence in both the object and the derivative. This is the reason why

bn(α) is in the support of the output action since otherwise it could be alpha-converted

in the action alone. Also, for the side conditions in Scope and Open, it is important that

bn(α) ⊆ n(α). In rules Par and Com, the freshness conditions on the involved frames will

ensure that if a name is bound in one agent, its representative in a frame is distinct from

names in parallel agents, and also in Par that it does not occur on the transition label.

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

J. Parrow, J. Borgström, P. Raabjerg and J. Åman Pohjola 10

3. Higher-order psi-calculi

We now proceed to formalise the extension to higher-order psi-calculi described in the

introduction. Technically, this means adopting a specific form of assertion and condition,

and extending the framework with a construct run M.

3.1. Basic definitions

In a higher-order psi-calculus, we use one particular nominal datatype of clauses:

Cl = {M ⇐ P : M ∈ T ∧ P ∈ P ∧ n(M) ⊇ n(P) ∧ P assertion guarded},

and the entailment relation is extended to

� ⊆ A × (C � Cl),

where we write

Ψ � ϕ for Ψ � (0, ϕ)

and

Ψ � M ⇐ P for Ψ � (1,M ⇐ P).

We amend the definition of assertion equivalence to mean that the assertions entail

the same conditions and clauses. This extension is not formally necessary since we could

instead adjoin Cl to the conditions, but calling M ⇐ P a ‘condition’ is a misnomer we

want to avoid.

Definition 3.1 (higher-order agents). The higher-order agents in a psi-calculus extend those

of an ordinary calculus with one new kind of agent:

run M Invoke an agent for which M is a handle.

We define F(run M) to be 1.

Finally, there is the following new transition rule.

Definition 3.2 (higher-order transitions). The transitions in a higher-order psi-calculus are

those that can be derived from the rules in Table 1 plus the additional rule

Invocation

Ψ � M ⇐ P Ψ � P
α−→ P ′

Ψ � run M
α−→ P ′

We are free to choose any language we want for the assertions as long as the

requirements in Definition 2.3 hold. We will now consider a few simple examples for

a language where assertions are finite sets of clauses and composition ⊗ corresponds to

union.

A higher-order communication is simply an instance of ordinary communication

inferred with the Com rule. As an example, if P ⇐ P is entailed by all assertions,

that is, an agent is always a handle for itself, then

aP .Q | a(x) . (run x | R)
τ−→ Q | run P | R[x := P].

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

Higher-order psi-calculi 11

This corresponds to sending the program code. A recipient can both execute it and use it

as data. For example, R can be if x = P ′ then . . ., checking if the received P is syntactically

the same as some other agent P ′. To prevent the latter (using it as data), we instead send

a handle M to represent P :

aM .Q | (|{M ⇐ P }|) | a(x) . (run x | R)
τ−→

Q | (|{M ⇐ P }|) | (run M | R[x := M]).

In Section 3.3, we shall define canonical higher-order calculi in which receiving a handle

M means that the code of P cannot be directly inspected: all that can be done with

the process P is to execute it. Thus, our semantics gives a uniform way to capture both

a direct higher-order communication, where the recipient gets access to the code, and

an indirect one where the recipient only receives the possibility of executing it. This is

different from all existing higher-order semantics known to us, and reminiscent of the way

encryption is represented in psi-calculi in Bengtson et al. (2011).

For another example, we will assume that there are shared private names between a

process P being sent and its original environment Q:

(νb)aM . (Q | (|{M ⇐ P }|)) α−→ Q | (|{M ⇐ P }|).

If b ∈ n(P), we also have b ∈ n(M), so b is extruded whenever M is sent, that is,

α = a(νb)M.

This means that wherever M is received, the shared link b to Q will still work.

As an example of an invocation, consider the following transition:

1� (νb)(Q | (|{Mb ⇐ α . P }|) | (νc)(run Mb | R))
α→

(νb)(Q | (|{Mb ⇐ α . P }|) | (νc)(P | R)).

A derivation of this transition uses the Invocation rule

{Mb ⇐ α . P } � Mb ⇐ α . P {Mb ⇐ α . P } � α . P
α−→ P

{Mb ⇐ α . P } � run Mb
α−→ P

Using Par and Scope, we get

{Mb ⇐ α . P } � (νc)(run Mb | R)
α−→ (νc)(P | R).

The conditions on Scope require both c#α and c#{Mb ⇐ α . P }, where the latter implies

c#P . Using Par, we have

1 � (|{Mb ⇐ α . P }|) | (νc)(run Mb | R)
α−→ (|{Mb ⇐ α . P }|) | (νc)(P | R),

and, finally, using Par and Scope, we again get the desired transition.

3.1.1. Example: Representing non-determinism. Since the same handle can be used to

invoke different agents, we can represent non-determinism. Instead of P + Q, we can

choose a#P ,Q and write

(νa)(run Ma | (|{Ma ⇐ P ,Ma ⇐ Q}|)).

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

J. Parrow, J. Borgström, P. Raabjerg and J. Åman Pohjola 12

We can represent the case construct by a unary if then as follows. In place of

case ϕ1 : P1 [] · · · [] ϕn : Pn,

we write (choosing a#Pi, ϕi)

(νa)(run Ma | (|{Ma ⇐ if ϕ1 then P1, · · · ,Ma ⇐ if ϕn then Pn}|)).

An intuitive reason that this works is that an invocation only occurs when a transition

happens.

3.1.2. Representing fixpoints and replication. Some versions of CCS and similar calculi

use a special fixpoint operator fixX . P , where X is an agent variable, with the rule of

action

Fix

P [X := fixX . P]
α−→ P ′

fixX . P
α−→ P ′

The substitution in the premise is of a higher-order kind, replacing an agent variable by

an agent. We can represent this as follows. Let the agent variable X be represented by a

term Ma with support n(P) ∪ {a} where a#P . Then fixX . P behaves exactly as

(νa)(run Ma | (|{Ma ⇐ P [X := run Ma]}|)).

In this way, replication !P can be seen as the fixpoint fixX . P |X, and replication can

be represented as

(νa)(run Ma | (|{Ma ⇐ P | run Ma}|)),
which is reminiscent of the encoding of replication in the higher-order pi-calculus. In

Section 4.2, we shall formulate the precise conditions on higher-order psi-calculi where

these encodings are possible.

3.2. Process abstractions and parameters

For a higher-order psi-calculus to be useful, there should be a high-level language for

expressing clauses. This can be achieved by choosing the psi-calculus parameters in a

suitable way, and without any further extension of our framework.

The following provides an example of such a language, which accommodates process

abstractions and application in the standard way. It assumes a binary operator on terms

•〈•〉; in other words, if M and N are terms, then so is M〈N〉.

Definition 3.3.

A parametrised clause is of the form M(λx̃)N ⇐ P , with x̃ binding in N and P . The

corresponding definition of entailment is

M(λx̃)N ⇐ P ∈ Ψ =⇒ Ψ � M〈N[x̃ := L̃]〉 ⇐ P [x̃ := L̃]

for all L̃ of the same length as x̃ such that

n(M〈N[x̃ := L̃]〉) ⊇ n(P [x̃ := L̃]).

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

Higher-order psi-calculi 13

With parametrised clauses, we can formulate recursive behaviour in a convenient way

since an invocation of M can be present in P . Consider, for example, the definitions for

an agent enacting a stack. The parameter of the stack is its current content, represented

as a list, and its behaviour is given by the two parametrised clauses

Stack(λx)x ⇐ Push(λy)y . run Stack〈cons(y, x)〉
Stack(λx, y)cons(x, y) ⇐ Pop x . run Stack〈y〉.

We use different fonts here to distinguish different kinds of terms; formally, this has no

consequence but it makes the agents easier to read. Stack, Push and Pop are just terms,

the first representing a handle and the other communication channels. To satisfy the

condition on the names in clauses, the support of Push and Pop must either be added to

the formal parameter in the clauses of Stack or to the support of the term Stack itself.

Finally, cons(M,N) is a term representing the usual list constructor.

Note that a non-empty stack matches both clauses. As an example, let Ψ contain these

two parametrised clauses and let nil be a term representing the empty list. For x = nil we

get

Ψ � Stack〈nil〉 ⇐ Push(λy)y . run Stack〈cons(y, nil)〉,
and thus

Ψ � run Stack〈nil〉 PushM−−−−−→ run Stack〈cons(M, nil)〉,
and this agent can continue in two different ways: one is

Ψ � run Stack〈cons(M, nil)〉 PushM ′
−−−−−→ run Stack〈cons(M ′, cons(M, nil))〉,

and the other is, using the second clause with x = M and y = nil,

Ψ � run Stack〈cons(M, nil)〉 PopM−−−−→ run Stack〈nil〉.

This kind of recursion is often a very convenient way to model iterative behaviour.

The earliest process algebras, such as CCS, use it extensively in applications. We say that

a clause M ⇐ P is universal if Ψ � M ⇐ P for all Ψ. In order to represent recursion

in the CCS way, it is enough to consider universal clauses. In higher-order psi-calculi,

we can additionally use local definitions since they reside in assertions where their names

can be given local scope. In this way, we gain the possibility of transmitting the agents

by sending the handles like Stack. We can represent a ‘stack factory’ which repeatedly

sends out the handle to recipients as !a Stack . 0. Each recipient will get its own stack,

which will develop independently of other copies. As formulated here, all stacks will use

the same channels Push and Pop, but private channels can be achieved by including their

names in the formal parameters of the clauses:

Stack(λi, o, x)i, o, x ⇐ i(λy)y . run Stack〈i, o, cons(y, x)〉
Stack(λi, o, x, y)i, o, cons(x, y) ⇐ ox . run Stack〈i, o, y〉.

Here each recipient must supply the terms to use for input and output channels as formal

parameters when invoking Stack. An alternative is to let each Stack carry those terms

and in an initial interaction reveal them to the recipient.

StackStart ⇐ c〈Push,Pop〉 . run Stack〈(Push,Pop, nil)〉.

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

J. Parrow, J. Borgström, P. Raabjerg and J. Åman Pohjola 14

Here the support of Push and Pop, call it b̃, must be included in the support of StackStart.

A recipient of StackStart must begin by receiving, along c, the terms for interacting with

the stack. In the stack factory, there is then a choice of where to bind b̃. For example,

(νb̃)!a StackStart . 0

represents a stack factory that produces stacks all working on the same private channels,

whereas

!(νb̃)a StackStart . 0

represents a factory producing stacks all working on different private channels.

3.3. Canonical higher-order instances

Given an arbitrary first-order psi-calculus C, we will now show how to lift it systematically

to a higher-order psi-calculus H(C). In earlier work (Bengtson et al. 2009), we demonstrated

psi-calculi corresponding to the pi-calculus, the polyadic pi-calculus and explicit fusions,

and we have also given calculi that capture the same phenomena as the applied pi-calculus

and concurrent constraints. Out of these, only the pi-calculus has previously been given

in a higher-order variant; our aim here is to lift all of them at the same time.

The main idea is to build H(C) by starting from C and adding the parametrised clauses

described above. An assertion of H(C) is thus a pair, where the first component is an

assertion in C and the second is a finite set of parametrised clauses. Composition of

assertions is defined component-wise, with identity element (1,�). Finally, we define

a notion of substitution on sets of process abstractions, which we do point-wise and

capture-avoiding using the substitution functions of C.

Parametrised clauses use a binary function on terms •〈•〉 : T×T → T. We could choose

this function to be standard pairing, if present in the term language, but our result holds

for any such equivariant function.

Definition 3.4 (canonical higher-order psi-calculi). Let a psi-calculus C be defined by the

parameters T,C,A,
.↔,⊗, 1,�. Let S be the set of finite sets of parametrised clauses as

defined above. The canonical higher-order psi-calculus H(C) extends C by adding the

run M agent and its semantic rule, and is defined by the parameters

TH,CH,AH,
.↔H,⊗H, 1H,�H,

where

TH = T

CH = C

AH = A × S
.↔H =

.↔
(Ψ1, S1)⊗H(Ψ2, S2) = (Ψ1⊗Ψ2, S1 ∪ S2)

1H = (1,�)

(Ψ, S) �H ϕ if Ψ � ϕ for ϕ ∈ C

(Ψ, S) �H M ⇐ P if ∃L̃, K, x̃, N, Q. n(M) ⊇ n(P) ∧ (K(λx̃)N ⇐ Q) ∈ S

∧ M = K〈N[x̃ := L̃]〉 ∧ P = Q[x̃ := L̃].

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

Higher-order psi-calculi 15

For substitution, assuming x̃#ỹ, L̃, we define

(M(λx̃)N ⇐ P)[ỹ := L̃]

to be

M[ỹ := L̃](λx̃)N[ỹ := L̃] ⇐ P [ỹ := L̃]

and

(Ψ, S)[x̃ := L̃]

to be

(Ψ[x̃ := L̃], {X[x̃ := L̃] | X ∈ S}).

As a simple example, we will construct a canonical higher-order psi-calculus corres-

ponding to the higher-order pi-calculus. A psi-calculus corresponding to the pi-calculus

was presented in Bengtson et al. (2009). Here the terms are just names, so lifting would

yield a calculus of limited use: in any clause a ⇐ P , we require n(a) ⊇ n(P), so only

agents with singleton sorts can be invoked. An extension to admit invocation of arbitrary

agents is to let the terms include tuples of names. Because of the requirement of closure

under substitution of terms for names, these tuples must then be nested. This yields the

psi-calculus Tup.

Definition 3.5 (the psi-calculus Tup).

T
def
= N ∪ {M̃ : ∀i.Mi ∈ T}

C
def
= {M = N : M,N ∈ T}

A
def
= {1}

M
.↔ N

def
= M = N

� def
= {(1,M,M) : M ∈ T}.

We define M〈N〉 as the pair M,N, and gain a canonical higher-order pi-calculus as

H(Tup). As a simple example, let

S = {M(λx̃)x̃ ⇐ P }

with

(1, S) � P [x̃ := L̃]
α−→ P ′.

We can then use M to invoke P with parameters L̃ as follows:

(1,�) � run M〈L̃〉 | (|1, S |) α−→ P ′ | (|1, S |).

Theorem 3.6. For all C and •〈•〉, H(C) is a higher-order psi-calculus.

The theorem amounts to showing that H(C) satisfies the requirement on the substitution

function we explained informally in Section 2 and set out formally in Bengtson et al. (2011),

and the requisites on the entailment relation in Definition 2.3. The proof has been verified

in Isabelle, where the challenge was more related to getting the nominal data type

constructions correct than expressing the proof strategy.

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

J. Parrow, J. Borgström, P. Raabjerg and J. Åman Pohjola 16

4. Algebraic theory

In this section, we establish the expected algebraic properties of bisimilarity and then

investigate the representations of Sum and Replication. We then define an alternative

definition of bisimulation for higher-order communication and establish that it enjoys the

same properties. The informal proof ideas for the most challenging part, that higher-order

bisimilarity is preserved by parallel composition, are explained in some detail. All proofs

have been formally checked in the interactive theorem prover Isabelle, and we briefly

comment on our experiences in doing so.

4.1. Bisimulation

We begin by recollecting the definition from Bengtson et al. (2009), which also provides

examples and intuitions.

Definition 4.1 (bisimulation). A strong bisimulation R is a ternary relation between

assertions and pairs of agents such that (Ψ, P , Q) ∈ R implies all of:

(1) Static equivalence:

Ψ⊗F(P) � Ψ⊗F(Q).

(2) Symmetry:

(Ψ, Q, P) ∈ R.

(3) Extension of arbitrary assertion:

∀Ψ′. (Ψ⊗Ψ′, P , Q) ∈ R

(4) Simulation:

For all α, P ′ such that

bn(α)#Ψ, Q,

there exists a Q′ such that

if Ψ � P
α−→ P ′ then Ψ � Q

α−→ Q′ ∧ (Ψ, P ′, Q′) ∈ R.

If R is a ternary relation between assertions and pairs of agents, we will sometimes write

Ψ � P R Q for (Ψ, P , Q) ∈ R. We define Ψ � P
.∼ Q to mean that there exists a strong

bisimulation R such that Ψ � P R Q, and write P
.∼ Q for 1 � P

.∼ Q.

Exactly the same definition applies for higher-order psi-calculi, where frame equivalence

means that two frames entail the same conditions and clauses.

In the following, we restrict attention to well-formed agents. The following composi-

tionality properties of strong bisimilarity for a higher-order calculus are the same as those

previously established for psi-calculi.

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

Higher-order psi-calculi 17

Theorem 4.2. For all Ψ:

Ψ � P
.∼ Q =⇒ Ψ � P | R .∼ Q | R (1)

Ψ � P
.∼ Q =⇒ Ψ � (νa)P

.∼ (νa)Q if a#Ψ. (2)

Ψ � P
.∼ Q =⇒ Ψ � !P

.∼ !Q (3)

∀i.Ψ � Pi
.∼ Qi =⇒ Ψ � case ϕ̃ : P̃

.∼ case ϕ̃ : Q̃ (4)

Ψ � P
.∼ Q =⇒ Ψ � MN.P

.∼ MN.Q. (5)

(∀L̃. Ψ � P [ã := L̃]
.∼ Q[ã := L̃]) =⇒ Ψ � M(λã)N.P

.∼ M(λã)N.Q if ã#Ψ. (6)

We say that a relation on agents is a congruence if it is preserved by all operators, that

is, as in Theorem 4.2, and additionally by input. Strong bisimilarity is not a congruence

since it is not preserved by input. As in similar situations, we get a congruence by closing

under all possible substitutions.

Definition 4.3. Ψ � P ∼ Q means that for all sequences σ of substitutions, we have

Ψ � Pσ
.∼ Qσ,

and we write P ∼ Q for 1 � P ∼ Q.

Theorem 4.4. For every Ψ, the binary relation {(P ,Q) : Ψ � P ∼ Q} is a congruence.

The usual structural laws hold for strong congruence.

Theorem 4.5. ∼ satisfies the following structural laws:

P ∼ P | 0

P | (Q | R) ∼ (P | Q) | R

P | Q ∼ Q | P

(νa)0 ∼ 0

P | (νa)Q ∼ (νa)(P | Q) if a#P

MN.(νa)P ∼ (νa)MN.P if a#M,N

M(λx̃)N.(νa)P ∼ (νa)M(λx̃)(N).P if a#x̃,M,N

case ϕ̃ : ˜(νa)P ∼ (νa)case ϕ̃ : P̃ if a#ϕ̃

(νa)(νb)P ∼ (νb)(νa)P

!P ∼ P | !P

These results are all concerned with strong bisimulation. The corresponding results for

weak bisimulation also hold, but we shall not set them out explicitly here.

Theorem 4.6. All results on the algebraic properties of weak bisimulation as defined and

presented in Bengtson et al. (2010) also hold in higher-order psi-calculi.

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

J. Parrow, J. Borgström, P. Raabjerg and J. Åman Pohjola 18

The proof ideas for all results in this subsection are similar to our previously published

results for (non-higher-order) psi-calculi, and the formal proofs in Isabelle required very

little modification.

4.2. Encoding operators

In this section, we will formalise the ideas from Section 3.1.2 and establish when the

operators Replication, Sum and n-ary case can be encoded. Recapitulating the idea of the

encoding of replication !P as

(νa)(run Ma | (|{Ma ⇐ P | run Ma}|)).

we immediately see that it needs an assertion {Ma ⇐ P | run Ma}, which, intuitively,

entails the clause Ma ⇐ P | run Ma and nothing else. We call such an assertion a

characteristic assertion for Ma and P | run Ma, and in the corresponding encoding of case

we need characteristic assertions for sequences of agents P̃ with a common handle. The

full definition is as follows.

Definition 4.7. In a higher-order calculus, for a finite sequence of agents P̃ = P1, . . . , Pn

and term M with n(P̃) ⊆ n(M), the assertion ΨM⇐P̃ is characteristic for M and P̃ if the

following hold for all agents Q, assertions Ψ and clauses and conditions ξ:

Ψ � M ⇐ Q implies n(M) ⊆ n(Ψ). (1)

Ψ⊗ΨM⇐P̃ � ξ iff (ξ = M ⇐ Pi ∨ Ψ � ξ). (2)

n
(
ΨM⇐P

)
= n(M). (3)

The first of these requirements is a general requirement on the calculus and makes

sure that an environment cannot bestow additional invocation possibilities to the handles

used in the encodings. For example, if we had 1 � Ma ⇐ Q, which would violate the

requirement, then clearly (νa)run Ma · · · can enact Q. In other words, our encoding of

!P could also enact Q. Requirement (1) excludes this possibility since a ∈ n(Ma) and

a 	∈ n(1) = �. The second requirement means that the characteristic assertion only has

the effect of entailing its own clauses, no matter how it is combined with other assertions.

The third requirement ensures that the characteristic assertion does not invent names that

do not occur in its handle.

Fortunately, characteristic assertions exist in most canonical higher-order calculi. We

need to restrict attention to calculi with a unit term () ∈ T such that n(()) = �, and

where the pairing function satisfies

M〈N〉 = M ′〈N ′〉 =⇒ M = M ′,

and we have for all T ∈ T ∪ A ∪ C, T [ε := ε] = T . The reason is technical: in a canonical

calculus, we use parametrised clauses, where the handles must be treated as distinct,

and in situations where no parameter is actually needed, we use () as a dummy and

communications give rise to empty substitutions. In assertions, we then write M ⇐ P

for the parametrised clause M(λε)() ⇐ P , and in processes run M for the invocation

run M().

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

Higher-order psi-calculi 19

Theorem 4.8. In a canonical higher-order calculus with unit term, pairing and empty

substitution as above, if n(P̃) ⊆ n(M) and P̃ 	= ε, the assertion

(1, {M ⇐ Pi : Pi ∈ P̃ })

is characteristic for M and P̃ .

The following formal theorems of the encodings hold for arbitrary higher-order calculi,

and are particularly relevant for canonical calculi where characteristic assertions can be

expressed easily.

Theorem 4.9. In a higher-order calculus with the + operator (that is, where there exists

a condition � – cf. the discussion following Definition 2.6), for all assertion guarded

P ,Q and names a#P ,Q and terms M with n(P ,Q, a) ⊆ n(M) and assertions ΨM⇐P ,Q

characteristic for M and P ,Q, we have

P + Q
.∼ (νa)(run M | (|ΨM⇐P ,Q|)).

Theorem 4.10. In a higher-order calculus, for all assertion guarded P̃ = P1, . . . , Pn,

conditions ϕ̃ = ϕ1, . . . , ϕn, names a#P̃ , ϕ̃ and terms M with n(P̃ , ϕ̃, a) ⊆ n(M) and

assertions

ΨM⇐if ϕ1 then P1 ,...,if ϕn then Pn

characteristic for M and the agent

if ϕ1 then P1, . . . , if ϕn then Pn,

we have

case ϕ1 : P1 [] · · · [] ϕn : Pn
.∼ (νa)(run M | (|ΨM⇐(if ϕ1 then P1),...,(if ϕn then Pn)|)).

Theorem 4.11. In a higher-order calculus, for all assertion guarded P , names a#P and

terms M with n(P , a) ⊆ n(M) and assertions ΨM⇐P | run M characteristic for M and

P | run M, we have

!P
.∼ (νa)(run M | (|ΨM⇐P | run M |)).

As an example of the encoding of Replication, consider a transition from

(νa)(run M | (|ΨM⇐P | run M |)).

This can only be by invocation where P | run M has a transition leading to P ′ | run M

and results in

(νa)(P ′ | run M | (|ΨM⇐P | run M |)).
Using Theorem 4.5 and a#P ′, we can rewrite this as

P ′ | (νa)(run M | (|ΨM⇐P | run M |)).

In other words, the transition corresponds precisely to the transition of !P derived from

P | !P .

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

J. Parrow, J. Borgström, P. Raabjerg and J. Åman Pohjola 20

Clearly, for these theorems to be applicable, there must exist terms M with large enough

support to represent handles. This is the case for, for example, H(Tup) in Section 3.3,

which has terms with arbitrarily large finite support.

4.3. Higher-order bisimulation

The standard notion of bisimilarity is often found unsatisfactory in higher-order process

calculi because it requires actions to match exactly: an action aP must be simulated by

an identical action. Therefore, if P 	= P ′, we will have aP . 0 	∼ aP ′ . 0 even if P ∼ P ′,

which spoils the claim for ∼ to be a congruence in the ordinary sense of the word.

In psi-calculi, the data terms can be anything, even processes, but here the distinction

between aP . 0 and aP ′ . 0 is necessary since the semantics allows a recipient to use the

received process in a variety of ways. For example, there are psi-calculi where it is possible

to receive a process and test whether it is syntactically equal to another process, as in

a(x) . if x = Q then . . ., or to subject it to pattern matching in order to find its outermost

operator – this corresponds to inspecting the process code.

In a higher-order process calculus, we can instead transmit the possibility of invoking

a process, as in (νb)aMb . (|{Mb ⇐ P }|). A recipient of Mb has no other use for this handle

than to invoke P . Therefore, if P
.∼ P ′, it is reasonable to expect the two processes

Q = (νb)aMb . (|{Mb ⇐ P }|)
Q′ = (νb)aMb . (|{Mb ⇐ P ′}|)

to be bisimilar since it should not matter which of P or P ′ is invoked. But with the

current definition of bisimilarity, Q 	 .∼ Q′. Consider a transition from Q that opens the

scope of b. The resulting agent is simply (|{Mb ⇐ P }|). The corresponding transition from

Q′ leads to (|{Mb ⇐ P ′}|). These are not bisimilar since they are not statically equivalent:

{Mb ⇐ P } 	� {Mb ⇐ P ′} since they do not entail exactly the same clauses.

This suggests that a slightly relaxed version of bisimilarity is more appropriate, where

we weaken static equivalence to require bisimilar (rather than identical) entailed clauses.

Definition 4.12 (HO-bisimulation). A strong HO-bisimulation R is a ternary relation

between assertions and pairs of agents such that (Ψ, P , Q) ∈ R implies all of:

(1) Static equivalence:

(a) ∀ϕ ∈ C. Ψ⊗F(P) � ϕ ⇒ Ψ⊗F(Q) � ϕ

(b) ∀(M ⇐ P ′) ∈ Cl.

Ψ⊗F(P) � M ⇐ P ′ ⇒ ∃Q′. Ψ⊗F(Q) � M ⇐ Q′ ∧ (1, P ′, Q′) ∈ R.

(2) Symmetry:

(Ψ, Q, P) ∈ R.

(3) Extension of arbitrary assertion:

∀Ψ′. (Ψ⊗Ψ′, P , Q) ∈ R.

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

Higher-order psi-calculi 21

(4) Simulation:

For all α, P ′ such that bn(α)#Ψ, Q, there exists a Q′ such that

if Ψ � P
α−→ P ′ then Ψ � Q

α−→ Q′ ∧ (Ψ, P ′, Q′) ∈ R.

We define Ψ � P
.∼ho

Q to mean that there exists a strong HO-bisimulation R such that

Ψ � P R Q, and write P
.∼ho

Q for 1 � P
.∼ho

Q.

The only difference between bisimulation and HO-bisimulation is in Clause (1), which

here is split into different requirements for conditions and clauses.

Theorem 4.13. In a higher-order psi-calculus, for all assertion guarded P ,Q and terms M

with n(P ,Q) ⊆ n(M) with characteristic assertions ΨM⇐P and ΨM⇐Q, we have

P
.∼ho

Q ⇒ (|ΨM⇐P |) .∼ho

(|ΨM⇐Q|).

The proof boils down to showing that

{(Ψ, (|ΨM⇐P |), (|ΨM⇐Q|)) : Ψ ∈ A, P
.∼ho

Ψ Q} ∪ .∼ho

is a HO-bisimulation. The only non-trivial part is static equivalence. In order to prove

this, we use Definition 4.7(2), which says that Ψ⊗ΨM⇐P � ξ if and only if (ξ = M ⇐
P ∨ Ψ � ξ). The proof holds for all calculi with characteristic assertions, and, in

particular, it holds for canonical calculi by Theorem 4.8.

In the rest of this section, we will study the algebraic properties of HO-bisimulation in

arbitrary calculi (not only canonical ones). The original bisimulation is still a valid proof

technique.

Theorem 4.14. Ψ � P
.∼ Q =⇒ Ψ � P

.∼ho

Q.

The proof is that
.∼ is a HO-bisimulation: take Q′ = P ′ in Clause (1b). Thus, we

immediately get a set of useful algebraic laws.

Corollary 4.15.
.∼ho

satisfies all the structural laws of Theorem 4.5.

HO-bisimulation is compositional in the same way as ordinary bisimulation:

Theorem 4.16. For all Ψ, we have:

Ψ � P
.∼ho

Q =⇒ Ψ � P | R .∼ho

Q | R. (1)

Ψ � P
.∼ho

Q =⇒ Ψ � (νa)P
.∼ho

(νa)Q if a#Ψ (2)

Ψ � P
.∼ho

Q =⇒ Ψ � !P
.∼ho

!Q if guarded(P ,Q) (3)

∀i.Ψ � Pi
.∼ho

Qi =⇒ Ψ � case ϕ̃ : P̃
.∼ho

case ϕ̃ : Q̃ if guarded(P̃ , Q̃) (4)

Ψ � P
.∼ho

Q =⇒ Ψ � MN.P
.∼ho

MN.Q. (5)

(∀L̃. Ψ � P [ã := L̃]
.∼ho

Q[ã := L̃]) (6)

=⇒ Ψ � M(λã)N.P
.∼ho

M(λã)N.Q if ã#Ψ.

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

J. Parrow, J. Borgström, P. Raabjerg and J. Åman Pohjola 22

Combining Theorems 4.16 and 4.13, we get the desired result for our motivating

example: in a canonical higher-order psi calculus, we have

P
.∼ho

P ′ ⇒ (νb)aMb . (|ΨMb⇐P |) .∼ho

(νb)aMb . (|ΨMb⇐P ′ |).

We can characterise higher-order bisimulation congruence in the usual way as follows.

Definition 4.17. We have

Ψ � P ∼ho Q

if and only if for all sequences σ of substitutions, we have

Ψ � Pσ
.∼ho

Qσ.

We write P ∼ho Q for 1 � P ∼ho Q.

Theorem 4.18. For every Ψ, the binary relation {(P ,Q) : Ψ � P ∼ho Q} is a congruence.

Theorem 4.19. ∼ho satisfies the following structural laws:

P ∼ho P | 0

P | (Q | R) ∼ho (P | Q) | R
P | Q ∼ho Q | P
(νa)0 ∼ho 0

P | (νa)Q ∼ho (νa)(P | Q) if a#P

MN.(νa)P ∼ho (νa)MN.P if a#M,N

M(λx̃)N.(νa)P ∼ho (νa)M(λx̃)(N).P if a#x̃,M,N

case ϕ̃ : ˜(νa)P ∼ho (νa)case ϕ̃ : P̃ if a#ϕ̃

(νa)(νb)P ∼ho (νb)(νa)P

!P ∼ho P | !P .

4.4. Informal proofs

Most of the proofs closely follow the corresponding results in the original psi-calculi. In

this section, we present the most challenging part, where new proof ideas are needed for

Theorem 4.16 (1), to show that higher-order bisimilarity is preserved by parallel. A major

complication is that the Invocation rule can be used multiple times during the derivation

of a transition. Another complication is that the relation {(P | R,Q | R) : P
.∼ho

Q} is no

longer a bisimulation since if P and Q are different, their assertions can enable different

invocations in R, so a transition from R leads to agents outside the relation. In the proof,

we therefore work with bisimulation up to transitivity (Sangiorgi 1998). For technical

reasons, in the proofs, we additionally parametrise the transitive closure on a set of names

that must not appear in processes.

The proof of compositionality for ordinary bisimulation is described in some detail

in Bengtson et al. (2011) and Johansson (2010), which should also be referred to for

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

Higher-order psi-calculi 23

motivating examples and a discussion of the proof structure. Here we will focus on the

main differences arising for the higher-order case, including the use of up-to techniques.

Definition 4.20 (up-to techniques). We define up to union with HO-bisimilarity (U), up to

restriction (R) and up to transitivity (T) by induction as follows:

U(R) := R ∪ .∼ho

R(R) := {(Ψ, (νã)P , (νã)Q) : ã#Ψ ∧ (Ψ, P , Q) ∈ R}
T (R) := R ∪ {(Ψ, P , R) : (Ψ, P , Q) ∈ T (R) ∧ (Ψ, Q, R) ∈ T (R)}.

A HO-bisimulation up to S is defined as a HO-bisimulation, except that the derivatives

after a simulation step or an invocation should be related by S(R) instead of R.

Definition 4.21 (HO-bisimulation up-to). If S is a function from ternary relations to

ternary relations, then R is a bisimulation up to S if R satisfies Definition 4.12 with S(R)

substituted for R in clauses (1b) and (4).

The up-to techniques of Definition 4.20 are sound.

Theorem 4.22. If R is a HO-bisimulation up to T ◦ U ◦ R, then R ⊆ .∼ho

.

Proof. The proof is standard. We have if R is a HO-bisimulation up to T ◦U ◦R, then

T (U(R(R))) is a HO-bisimulation and R ⊆ T (U(R(R))).

The inductive proofs of the following technical lemmas often require a strengthening

of the notion of transitivity by parametrising on a finite set of names that are fresh for

the processes under consideration and therefore must be avoided.

Definition 4.23 (name-avoiding transitivity). If R is a ternary relation, then Ta(R) is

inductively defined as follows:

Ta(R) := {(B,Ψ, P , Q) : B#P ,Q ∧ Ψ � P R Q} ∪
{(B,Ψ, P , R) : (B,Ψ, P , Q) ∈ Ta(R) ∧ (B,Ψ, Q, R) ∈ Ta(R))}.

If R′ = Ta(R), we write Ψ �B P R′ Q for (B,Ψ, P , Q) ∈ R′.

We write F � P R Q if F = (νx̃)Ψ such that Ψ � P R Q and x̃#P ,Q.

Note that Ψ � P (T (R)) Q if and only if Ψ �� P (Ta(R)) Q.

In the remainder of the proof, we will work with the candidate relation S defined by

S := {(Ψ, P |R,Q|R) | Ψ ⊗ F(R) � P
.∼ho

Q}.

We will first show that S is a HO-bisimulation up to T ◦ U ◦ R. The compositionality of

higher-order bisimulation then follows using the soundness of the up-to techniques. We

write S for Ta(U(R(S))). The proof begins by showing some closure properties of S that

are used in the induction cases of the main lemmas. We then recall some technical lemmas

from Bengtson et al. (2011) about the choice of subjects in transitions. The main lemmas

(Lemma 4.28 and 4.29) concern the simulation case of the definition of HO-bisimilarity,

in particular, transitions of R and communications between P and R, respectively.

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

J. Parrow, J. Borgström, P. Raabjerg and J. Åman Pohjola 24

The following closure properties of S hold. Intuitively, S is:

— a congruence with respect to parallel composition and restriction;

— preserved by bisimilarity;

— monotonic in B and Ψ modulo �.

Lemma 4.24. If Ψ �B P S Q, then:

(1) If

Ψ � Ψ′ ⊗ ΨR

F(R) = (νb̃R)ΨR

b̃R ⊆ B

B#R

b̃R#Ψ′, R,

then

Ψ′ �
B\b̃R (P | R) S (Q | R).

(2) If a#Ψ, then

Ψ �B (νa)P S (νa)Q.

(3) If

Ψ � P ′ .∼ P

Ψ � Q
.∼ Q′

B#P ′, Q′,

then

Ψ �B P ′ S Q′.

(4) Ψ ⊗ Ψ′ �B P S Q.

(5) Ψ �B\B′ P S Q.

(6) If Ψ � Ψ′, then

Ψ′ �B P S Q.

Proof. The proof is by induction on the definition of Ta.

We now recall three lemmas used in the compositionality proof for first-order bisimil-

arity (Bengtson et al. 2011). In their statements we assume that F(P) = (νb̃P)ΨP . These

lemmas have been proved to hold for higher-order psi-calculi too. The first of them states

that when performing a non-tau transition, the frame of the process grows such that the

bound names in the frame and the action can be chosen fresh for an arbitrary finite set

of names B.

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

Higher-order psi-calculi 25

Lemma 4.25 (frame grows when doing transitions).

(1) If

Ψ � P
MN−−→ P ′

b̃P#P ,N, B,

then

∃Ψ′, b̃P ′ ,ΨP ′

such that

F(P ′) = (νb̃P ′)ΨP ′

ΨP⊗Ψ′ � ΨP ′

b̃P ′#B, P ′.

(2) If

Ψ � P
M (νã)N−−−−→ P ′

b̃P#P , ã, B

ã#P , B,

then

∃p,Ψ′, b̃P ′ ,ΨP ′

such that

F(P ′) = (νb̃P ′)ΨP ′

ΨP ′ � (p · ΨP)⊗Ψ′

b̃P ′#B, P ′, N, ã

(p · ã)#B, P ′, N, b̃P ′

p ⊆ ã × (p · ã).

The second lemma states that given a non-tau transition of P and a finite set of names

B that are fresh for P , we can find a term K that is channel-equivalent to the subject of

the transition such that B is fresh for K .

Lemma 4.26 (find fresh subject).

B#P ∧

Ψ � P
α−→ P ′ (where α 	= τ) ∧

b̃P#Ψ, P , subj(α), B =⇒ ∃K. B#K ∧ Ψ⊗ΨP � K
.↔ subj(α).

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

J. Parrow, J. Borgström, P. Raabjerg and J. Åman Pohjola 26

The third lemma states that if a process P performs a non-tau transition, and K is

channel-equivalent to the subject of the transition, then P can perform the same transition

with K as subject.

Lemma 4.27 (subject rewriting).

Ψ � P
α−→ P ′ ∧

ΨP⊗Ψ � K
.↔ M ∧

b̃P#Ψ, P , K,M =⇒ Ψ � P
α′

−→ P ′

when

α = M (νã)N

α′ = K (νã)N

or

α = MN

α′ = K N.

We can now show our main technical lemma, which, intuitively, states that if P and

Q are bisimilar in the environment of R, and R makes a transition in the environment

of P , then R can make the same transition in the environment of Q, leading to S-related

derivatives. The proof makes use of a set B of names that are required to be fresh, which

grows in the induction case. A similar lemma applies in first-order psi-calculi (Bengtson

et al. 2011), where the derivatives are always syntactically equal (not just related by S).

Lemma 4.28 (frame switching lemma).

Ψ ⊗ ΨR � P
.∼ho

Q ∧
Ψ ⊗ ΨP � R

α−→ RP ∧
F(P) = (νb̃P)ΨP ∧
F(Q) = (νb̃Q)ΨQ ∧
F(R) = (νb̃R)ΨR ∧

b̃P#α,Ψ, R ∧
b̃Q#α,Ψ, R ∧

b̃R#α, b̃P , b̃Q,Ψ, P , Q, R ∧
bn(α)#Ψ, P , Q, R ∧

B#Ψ, P , Q, R, obj(α), RP , b̃R =⇒ ∃RQ.Ψ ⊗ ΨQ � R
α−→ RQ

∧ Ψ �B (P |RP) S (Q|RQ)

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

Higher-order psi-calculi 27

Proof. The proof is by induction on the derivation of the transition of R. The base

cases are as in Bengtson et al. (2011), and we will only show some of the interesting

induction cases here:

— Inv

In this case, R = run M and F(R) = 1 and the transition is derived like

Invocation

Ψ ⊗ ΨP � M ⇐ R1 Ψ ⊗ ΨP � R1
α−→ RP

Ψ ⊗ ΨP � run M
α−→ RP

By induction, there is R′ such that

Ψ ⊗ ΨQ � R1
α−→ R′

Ψ �B (P |RP) S (Q|R′).

Since

Ψ ⊗ 1 � P
.∼ho

Q,

there is R2 such that

Ψ ⊗ ΨQ � M ⇐ R2

1 � R1
.∼ho

R2.

Hence,

Ψ ⊗ ΨQ � R1
.∼ho

R2,

so there is RQ such that

Ψ ⊗ ΨQ � R2
α−→ RQ

Ψ ⊗ ΨQ � R′ .∼ho

RQ.

By the definition of S , we then get

Ψ � (Q|R′) S (Q|RQ).

Since

B#R, obj(α),

we get B#RQ, so

Ψ �B (Q|R′) S (Q|RQ).

By transitivity, we then get

Ψ �B (P |RP) S (Q|RQ).

— Scope

In this case,

F((νb)R) = (νb)F(R)

where

F(R) = (νb̃R)ΨR,

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

J. Parrow, J. Borgström, P. Raabjerg and J. Åman Pohjola 28

so

F((νb)R) = (νbb̃R)ΨR.

We assume that b#b̃R . Since bb̃R#(νb)R, we then have b̃R#R. The transition is derived

like

Scope

Ψ ⊗ ΨP � R
α−→ RP

Ψ ⊗ ΨP � (νb)R
α−→ (νb)RP

b#α,Ψ ⊗ ΨP

By induction, we get that there exists RQ such that

Ψ ⊗ ΨQ � R
α−→ RQ

Ψ �B∪{b} (P |RP) S (Q|RQ).

Using Scope,

Ψ ⊗ ΨQ � (νb)R
α−→ (νb)RQ.

Using Lemma 4.24, we then get

Ψ �B (P |(νb)RP) S (Q|(νb)RQ).

— Par

In this case,

F(R1 | R2) = (νb̃R1
b̃R2

)ΨR1
⊗ΨR2

with

b̃R1
#b̃R2

,ΨR2

b̃R2
#b̃R1

,ΨR1
.

The transition is derived like

Par

ΨR2
⊗Ψ⊗ΨP � R1

α−→ RP

Ψ⊗ΨP � R1 | R2
α−→ RP | R2

bn(α)#R2

We know that

b̃P#Ψ, R1 | R2,

and that

b̃R1
b̃R2

#R1 | R2, b̃P ,

so we also have

b̃P#ΨR2
⊗Ψ, R1

b̃R1
#ΨR2

⊗Ψ, R1.

By induction, we get RQ such that

ΨR2
⊗Ψ⊗ΨQ � R1

α−→ RQ

ΨR2
⊗ Ψ �

B∪b̃R2

(P |RP) S (Q|RQ).

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

Higher-order psi-calculi 29

We then derive

Par

ΨR2
⊗Ψ⊗ΨQ � R1

α−→ RQ

Ψ⊗ΨQ � R1 | R2
α−→ RQ | R2

bn(α)#R2

Finally, using Lemma 4.24, we get

Ψ �B (P |RP |R2) S (Q|RQ|R2).

— Com

In this case,

F(R1 | R2) = (νb̃R1
b̃R2

)ΨR1
⊗ΨR2

with

b̃R1
#b̃R2

,ΨR2
,

and vice versa. The transition is derived like

Com

ΨR2
⊗Ψ⊗ΨP � R1

M (νã)N−−−−→ RP1

ΨR1
⊗Ψ⊗ΨP � R2

K N−−→ RP2 Ψ⊗ΨP⊗ΨR1
⊗ΨR2

� M
.↔ K

Ψ⊗ΨP � R1 | R2
τ−→ (νã)(RP1 | RP2)

We assume that b̃P#ã (otherwise α-convert ã as necessary). Since b̃P#R1 | R2, we get

b̃P#N. However, we cannot use the induction hypothesis directly since we do not

know that b̃P#M and b̃P#K , respectively.

Let B1 = b̃P ∪ b̃R2
. We have

b̃R1
#ΨR2

,Ψ,ΨP , R1,M, B′.

By Lemma 4.26, we get that there exists M ′ such that B1#M ′ and

Ψ⊗ΨP⊗ΨR1
⊗ΨR2

� M
.↔ M ′.

Similarly, by applying Lemma 4.26 to the transition of R2, we get K ′ such that

b̃P b̃R1
#K ′ and

Ψ⊗ΨP⊗ΨR1
⊗ΨR2

� K
.↔ K ′.

By symmetry and transitivity of
.↔, we then get

Ψ⊗ΨP⊗ΨR1
⊗ΨR2

� M ′ .↔ K ′.

By Lemma 4.27, we get

ΨR2
⊗Ψ⊗ΨP � R1

K ′ (νã)N−−−−−→ RP1

ΨR1
⊗Ψ⊗ΨP � R2

M ′ N−−−→ RP2.

By induction, we get

ΨR2
⊗Ψ⊗ΨQ � R1

K ′ (νã)N−−−−−→ RQ1

ΨR1
⊗Ψ⊗ΨQ � R2

M ′ N−−−→ RQ2

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

J. Parrow, J. Borgström, P. Raabjerg and J. Åman Pohjola 30

such that

ΨR2
⊗ Ψ �

B∪b̃R2

(P |RP1) S (Q|RQ1)

ΨR1
⊗ Ψ �

B∪b̃R1

(P |RP2) S (Q|RQ2).

Since b̃P#K ′,M ′, we get

Ψ⊗F(P)⊗ΨR1
⊗ΨR2

� M ′ .↔ K ′.

From

Ψ⊗ΨR1
⊗ΨR2

� P
.∼ho

Q,

we then get

Ψ⊗F(Q)⊗ΨR1
⊗ΨR2

� M ′ .↔ K ′.

Finally, we get

Ψ⊗ΨQ⊗ΨR1
⊗ΨR2

� M ′ .↔ K ′,

which allows the derivation

Com

ΨR2
⊗Ψ⊗ΨQ � R1

K ′ (νã)N−−−−−→ RQ1

ΨR1
⊗Ψ⊗ΨQ � R2

M ′ N−−−→ RQ2 Ψ⊗ΨQ⊗ΨR1
⊗ΨR2

� M ′ .↔ K ′

Ψ⊗ΨQ � R1 | R2
τ−→ (νã)(RQ1 | RQ2)

We now assume

F(RP2) = (νb̃RP2
)ΨRP2

F(RQ1) = (νb̃RQ1
)ΨRQ1

with

b̃RQ1
#b̃RP2

b̃RQ1
b̃RP2

#Ψ, P , Q, R,N.

Since ΨRP2
� ΨR2

⊗ Ψ2 for some Ψ2, we have

ΨRP2
⊗ Ψ �

B∪b̃R2

(P |RP1) S (Q|RQ1)

by Lemma 4.24. So we have

Ψ �B (P |RP1 | RP2) S (Q|RQ1 | RP2)

by Lemma 4.24 (1). Similarly,

Ψ �B (P |RQ1 | RP2) S (Q|RQ1 | RQ2).

By the symmetry of
.∼ho

, we get

Ψ ⊗ ΨR � Q
.∼ho

P ,

and by extension of arbitrary assertion (Definition 4.12.(3)), we get

Ψ ⊗ ΨRQ1
⊗ ΨRP2

� Q
.∼ho

P .

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

Higher-order psi-calculi 31

By the definition of S , we get

Ψ � (Q | RQ1 | RP2) S (P | RQ1 | RP2).

Since B#R1, N, we then have

Ψ �B (Q | RQ1 | RP2) S (P | RQ1 | RP2).

By transitivity of S , we then get

Ψ �B (P | RP1 | RP2) S (Q | RQ1 | RQ2).

Finally, using Lemma 4.24, we get

Ψ �B P | (νã)(RP1 | RP2) S Q | (νã)(RQ1 | RQ2),

which completes this case.

A variant of Lemma 4.28 treats the case where R makes a transition in the environment

of P that can communicate with a transition of P in the environment of R. The processes

R and Q can then perform matching transitions, leading to S-related derivatives.

Lemma 4.29 (subject switching lemma).

Ψ ⊗ ΨR � P
.∼ho

Q ∧
F(P) = (νb̃P)ΨP ∧
F(Q) = (νb̃Q)ΨQ ∧
F(R) = (νb̃R)ΨR ∧

Ψ ⊗ ΨR � P
M (νã)N−−−−→ P ′ ∧

Ψ ⊗ ΨP � R
MN−−→ RP ∧

Ψ ⊗ ΨP ⊗ ΨR � K
.↔ M ∧

b̃P#R,M,N,Ψ, P , Q ∧
b̃Q#R,M,N,Ψ, P , Q ∧

b̃R#K,N,Ψ, P , b̃P ,ΨP , Q, b̃Q,ΨQ, R ∧
ã#M,Ψ, P , Q, R, b̃P , b̃Q ∧
B#P ,Q, R,N, ã, b̃P , b̃Q, P

′

=⇒ ∃M ′, RQ, Q
′.

b̃R, B#M ′ ∧
Ψ ⊗ ΨQ ⊗ ΨR � K

.↔ M ′ ∧
Ψ ⊗ ΨQ � R

M ′ N−−−→ RQ ∧
Ψ ⊗ ΨR � Q

M (νã)N−−−−→ Q′ ∧
Ψ ⊗ ΨP �B (P ′ | RP) S (Q′ | RQ).

Proof. The proof is by induction on the transition of R, and is similar to the proof of

Lemma 4.28.

The statement of Lemma 4.29 also needs to hold for output transitions of R, mutatis

mutandis. We can then show the desired result.

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

J. Parrow, J. Borgström, P. Raabjerg and J. Åman Pohjola 32

Theorem 4.30. S is a HO-bisimulation up to T ◦ U ◦ R.

Proof sketch. We assume

Ψ � P |R S Q|R,
that is,

Ψ ⊗ F(R) � P
.∼ho

Q.

Symmetry, extension with arbitrary assertion and static equivalence of conditions follow

from the same properties of
.∼ho

. Static equivalence of clauses up to T ◦ U ◦ R follows

from the static equivalence of clauses of Ψ ⊗ F(R) � P
.∼ho

Q.

We prove simulation up to T ◦U ◦R by case analysis on the derivation of the transition

of P | R, recalling that

Ψ � P ′ (T (R)) Q′

if and only if

Ψ �� P ′ (Ta(R)) Q′.

We have:

— Par-L

This case follows from the bisimilarity of P and Q.

— Par-R

In this case,

Ψ ⊗ ΨP � R
α−→ RP .

By Lemma 4.28, we have

Ψ ⊗ ΨQ � R
α−→ RQ

with

Ψ �� P | RP S Q | RQ.

— Com-L

In this case,

Ψ ⊗ ΨR � P
K (νã)N−−−−→ P ′

Ψ ⊗ ΨP � R
MN−−→ RP

Ψ ⊗ ΨP ⊗ ΨR � K
.↔ M

b̃P#K

b̃R#M.

We may assume that ã#ΨR .

By bisimilarity,

Ψ ⊗ ΨR � Q
K (νã)N−−−−→ Q′

with

Ψ ⊗ ΨR � P ′ .∼ho

Q′.

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

Higher-order psi-calculi 33

By Lemma 4.29, there are M ′, RQ with b̃R#M ′ such that

Ψ ⊗ ΨQ ⊗ ΨR � K
.↔ M ′

Ψ ⊗ ΨQ � R
M ′ N−−−→ RQ

Ψ �� (P ′ | RP) S (Q′ | RQ).

Finally, by Lemma 4.24, we get

Ψ �� (νã)(P ′ | RP) S (νã)(Q′ | RQ).

— Com-R

This case is the same as Com-L.

It now follows that Theorem 4.16(1) holds.

Corollary 4.31. P
.∼ho

Ψ Q =⇒ P | R .∼ho

Ψ Q | R.

Proof. Assume that F(R) = (νb̃R)ΨR with b̃R#Ψ, P , Q. By extension of arbitrary

assertion, we get

P
.∼ho

Ψ⊗ΨP
Q,

so

Ψ � (P |R) S (Q|R)

by the definition of S . By Theorems 4.30 and 4.22, we then get S ⊆ .∼ho

, so P | R .∼ho

Ψ Q | R.

4.5. Formal proofs

All theorems in this paper have been machine-checked with the interactive theorem prover

Isabelle. The proof scripts (Åman-Pohjola and Raabjerg 2012) are adapted and extended

from Bengtson’s formalisation of psi-calculi (Bengtson 2010). These constitute 63,334 lines

of Isabelle code; Bengtson’s code is 37,417 lines. The bulk of the new code is related to

Theorems 4.11 and 4.16, which have quite involved proofs that depart significantly from

Bengtson’s. It is interesting to observe how wildly the effort involved in conducting the

proofs varies. We will briefly recount our experiences here.

With only minor modifications to Bengtson’s proofs, we were able to re-prove all of

the meta-theoretical results for psi-calculi (Theorems 4.2, 4.4, 4.5, and 4.6) in a matter of

days. We believe that situations like these, where results need to be re-established under

slightly different definitions, are among those where theorem provers truly shine.

By contrast, HO-bisimulation (Theorems 4.14, 4.16, and 4.13) is an example of where a

small change to the definitions can give rise to man-months of work rather than days. This

is because certain technical lemmas on which the old proofs depend are no longer valid

in the context of HO-bisimulation. Hence, completely new proofs and proof ideas had to

be developed. However, with HO-bisimulation in place, HO-congruence (Theorem 4.17)

was mechanised in a matter of minutes.

The proofs related to canonical instances and the encoding of operators (viz. Theor-

ems 3.6, 4.9, 4.10, and 4.11) also required man-months of work, but for different reasons.

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

J. Parrow, J. Borgström, P. Raabjerg and J. Åman Pohjola 34

Here, simple and intuitive proof ideas turned out to be cumbersome to mechanise. In the

case of Theorem 3.6, the encoding of canonical instances is complicated and unintuitive,

because of the necessity to side-step certain technical restrictions in the framework: for

example, nominal datatype definitions cannot depend on locale parameters. Theorem 4.11

required almost 9,000 lines of proof script, even though the proof is conceptually

simple. The main problem is the unwieldy candidate relation used for the proof, which

includes many assumptions about the underlying psi-calculus. Moreover, it is closed

under parallel composition and restriction, which significantly increases the size of the

transition derivation trees we must follow and the amount of manual alpha-conversion

we must perform, respectively. We believe that a much shorter proof can be obtained if

a bisimulation up-to context technique is used instead, but we do not currently have a

proof that such a technique is sound.

4.6. Comparing higher-order equivalences

Our definition of HO-bisimilarity is technically non-trivial, so we will provide some

motivation for it in this section. Our primary concern was not to depart too much from

the original bisimilarity since we have invested a substantial effort in an Isabelle proof

repository and would like to re-use as much as possible. Therefore, our approach is to

amend the original definition as little as possible in order to validate Theorem 4.13.

Even so, there are a number of alternatives in the precise formulation of Clause (1b).

The current definition requires in the conclusion that R(1, P ′, Q′), that is, that P ′ and

Q′ are again bisimilar in the assertion 1, which by Clause (3) is the same as requiring

∀Ψ.R(Ψ, P ′, Q′). As a consequence, the following strengthening of Theorem 4.13 (note the

assertions Ψ) is not true in general:

Ψ � P
.∼ho

Q ⇒ Ψ � (|ΨM⇐P |) .∼ho

(|ΨM⇐Q|).

We have failed to define a version of higher-order bisimilarity where this holds. An

obvious attempt is to adjust Clause (1b) to use (Ψ, P ′, Q′) ∈ R, that is, with Ψ in place

of 1, but with this we fail to prove Theorem 4.16 (1), that is, that bisimilarity is preserved

by parallel composition. The reason is that our proof strategy using the relation S in

Section 4.4 relies on the fact that

Ψ⊗Ψ′ � P
.∼ Q ⇒ Ψ � (|Ψ′|) | P .∼ (|Ψ′|) | Q.

This holds for ordinary bisimulation and for higher-order bisimulation, but will fail if

Clause (1b) uses (Ψ, P ′, Q′) ∈ R. The counterexample is somewhat artificial and it remains

to be seen whether we can formulate a subset of higher-order calculi where this property

holds, or if there is a different proof strategy for Theorem 4.16.1 that does not require the

property, and involving another candidate bisimulation relation.

Another possibility would be to include even more information in the assertion, as in

(Ψ⊗F(P), P ′, Q′) ∈ R. In this case, we instead fail to establish that HO-bisimilarity is

transitive; again we do not know if there is a counterexample. The problems are highly

technical and are mainly concerned with how freshness conditions are propagated in the

proofs.

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

Higher-order psi-calculi 35

The definition does not aspire to full abstraction with respect to observational criteria,

and in this way it is very different from most existing work on higher-order calculi. It

can immediately be seen that it is not complete in any sensible respect: the agents 0

and (|{M ⇐ 0}|) should be indistinguishable from an observation viewpoint since neither

has a transition and M ⇐ 0 does not give M any invocation possibilities, yet they fail

bisimilarity on Clause (1b). On the other hand, it is straightforward to establish soundness

for reasonable criteria. For example, say that a process P has the barb M if P has a

transition with subject M, and that a congruence relation is barbed if related agents have

the same barbs. Clause (4) in Definition 4.12 then directly gives us that HO-bisimilarity

is barbed.

5. Conclusion

We have defined higher-order psi-calculi in a smooth extension from ordinary psi-calculi,

meaning that we can re-use many of the mechanised proofs. Ordinary psi-calculi can be

lifted in a systematic way to higher-order counterparts, yielding higher-order versions of

the applied pi-calculus and the concurrent constraint pi-calculus.

We have also integrated the proofs with our existing proof repositories based on

Isabelle/Nominal. In some cases, this process is surprisingly easy, but in others there

are roadblocks related to the exact working of nominal datatypes with complicated

constructors and locales. However, we regard this effort as worthwhile. For the main

results, like Theorem 4.16, it is not efficient to embark on manual proofs, particularly

as manual proofs in psi-calculi are notoriously error-prone because of their length, the

number of cases to check and the numerous side conditions related to freshness of names.

There are several interesting avenues to explore. An obvious one is higher-order weak

bisimulation and congruence. Here an immediate problem is that we can encode Sum, and

therefore the usual example that weak bisimulation is not preserved by Sum may imply

that it is not preserved by Parallel. For example, suppose we define weak higher-order

bisimulation by adapting the weak bisimulation from Bengtson et al. (2010) in the same

way as we do here for strong bisimulation. In other words, we require that a clause needs

a weakly bisimilar clause. Now consider the agents

P = (|{M ⇐ τ . a . 0}|)
Q = (|{M ⇐ a . 0}|)
R = run M | (|{M ⇐ b . 0}|).

Here we have that P and Q are weakly higher-order bisimilar but P |R and Q|R are not.

This indicates that a less straightforward definition will be necessary. An obvious attempt

is to require that clauses are weakly congruent (rather than weakly bisimilar), and this

requires that both weak congruence and weak bisimilarity are defined in one simultaneous

co-inductive definition since each depends on the other.

The relationship between a calculus and its canonical higher-order counterpart should

also be investigated. For example, bisimilarity on first-order processes is hopefully the

same, and perhaps there is an interesting class of calculi where the canonical higher-order

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

J. Parrow, J. Borgström, P. Raabjerg and J. Åman Pohjola 36

calculus can be encoded. Finally, higher-order calculi should be combined with other

extensions of the psi-calculi framework. We have successfully integrated higher-order

calculi and ordinary bisimulation with the broadcast extension presented in Borgström

et al. (2011). Here the total effort in the formalisation was roughly half a day, mainly

to textually combine the proof files. This is a striking advantage of using formal proof

repositories. We could also extend our recent work on sort systems (Borgström et al.

2013) to a higher-order setting.

In the invocation rule, the handle M must be exactly the same in the premise (where

it occurs in M ⇐ P) and conclusion (where it occurs in run M). This means that we

cannot directly describe the extraction of handles from complicated data structures. For

example, consider one process defining two clauses Mi ⇐ Pi, and then sending the pair of

the handles 〈M1,M2〉. A receiving process might want to receive the pair and invoke its

first element. Expressing this as a(x) . run π1(x) will not work. After the communication of

〈M1,M2〉, this becomes run π1(〈M1,M2〉), but the environment contains M1 ⇐ P1 and not

π1(〈M1,M2〉) ⇐ P1. What would be necessary here is a rewriting theory of projections,

with axioms such as π1(〈M1,M2〉) → M1, to be used in the entailment relation.

Most cases of simple extractions, such as projections, can be handled by pattern

matching, as in the case a(λx, y)〈x, y〉 . run x. In more complicated structures, such as the

representation of the encryption and decryption of handles, pattern matching will not

be sufficient, and we must include information about the evaluation of handles in the

assertions, where scoping can be used to make them local. This device is already present

for communication subjects as the channel equivalence predicate. It remains to be seen if

it is feasible to introduce a similar relation for handles.

Acknowledgements

We are very grateful to Magnus Johansson and Björn Victor for constructive and inspiring

discussions.

References

Åman Pohjola, J. and Raabjerg, P. (2012) Isabelle proofs for higher-order psi-calculi. Proof

scripts for higher-order psi-calculi. (Available at http://www.it.uu.se/research/group/

mobility/theorem/hopsi.tar.gz.)

Bengtson, J. (2010) Formalising process calculi, Ph.D. thesis, Uppsala University.

Borgström, J., Gutkovas, R., Parrow, J., Victor, B. and Åman Pohjola, J. (2013) A Sorted Semantic

Framework for High-Level Concurrency.

Borgström, J. et al. (2011) Broadcast psi-calculi with an application to wireless protocols. In:

Barthe, G., Pardo, A. and Schneider, G. (eds.) Proceedings SEFM. Springer-Verlag Lecture Notes

in Computer Science 7041 74–89.

Bengtson, J., Johansson, M., Parrow, J. and Victor, B. (2009) Psi-calculi: Mobile processes, nominal

data, and logic. In: Proceedings of LICS 2009, IEEE Computer Society 39–48. (Full version

available at http://user.it.uu.se/∼joachim/psi-long.pdf.)

Bengtson, J., Johansson, M., Parrow, J. and Victor, B. (2010) Weak equivalences in psi-calculi. In:

Proceedings of LICS 2010, IEEE Computer Society 322–331.

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

Higher-order psi-calculi 37

Bengtson, J., Johansson, M., Parrow, J. and Victor, B. (2011) Psi-calculi: a framework for mobile

processes with nominal data and logic. Logical Methods in Computer Science 7 (1) 2011.

Bengtson, J. and Parrow, J. (2009) Psi-calculi in Isabelle. In: Berghofer, S., Nipkow, T., Urban, C.

and Wenzel, M. (eds.) Proceedings of TPHOLs 2009. Springer-Verlag Lecture Notes in Computer

Science 5674 99–114.

Demangeon, R., Hirschkoff, D. and Sangiorgi, D. (2009) Termination in higher-order concurrent

calculi. In: Arbab, F. and Sirjani, M. (eds.) Proceedings FSEN. Springer-Verlag Lecture Notes in

Computer Science 5961 81–96.

Gabbay, M. and Pitts, A. (2001) A new approach to abstract syntax with variable binding. Formal

Aspects of Computing 13 341–363.

Johansson, M. (2010) Psi-calculi: a framework for mobile process calculi, Ph.D. thesis, Uppsala

University.

Jeffrey, A. and Rathke, J. (2005) Contextual equivalence for higher-order pi-calculus revisited.

Logical Methods in Computer Science 1 (1).

Johansson, M., Victor, B. and Parrow, J. (2010) A fully abstract symbolic semantics for psi-calculi.

In: Proceedings of SOS 2009. Electronic Proceedings in Theoretical Computer Science 18 17–31.

Lanese, I., Pérez, J. A., Sangiorgi, D. and Schmitt, A. (2008) On the expressiveness and decidability

of higher-order process calculi. In: Proceedings LICS, IEEE Computer Society 145–155.

Lanese, I., Pérez, J. A., Sangiorgi, D. and Schmitt, A. (2010) On the expressiveness of polyadic

and synchronous communication in higher-order process calculi. In: Abramsky, S., Gavoille, C.,

Kirchner, C., Meyer auf der Heide, F. and Spirakis, P.G. (eds.) Proceedings ICALP (2). Springer-

Verlag Lecture Notes in Computer Science 6199 442–453.

Pitts, A.M. (2003) Nominal logic, a first order theory of names and binding. Information and

Computation 186 165–193.

Sangiorgi, D. (1993) From pi-calculus to higher-order pi-calculus – and back. In: Gaudel, M.-C.

and Jouannaud, J.-P. (eds.) Proceedings TAPSOFT. Springer-Verlag Lecture Notes in Computer

Science 668 151–166.

Sangiorgi, D. (1996) Bisimulation for higher-order process calculi. Information and Computation 131

(2) 141–178.

Sangiorgi, D. (1998) On the bisimulation proof method. Mathematical Structures in Computer Science

8 (5) 447–479. (An extended abstract also appeared in the Proceedings of MFCS ’95, Springer-

Verlag Lecture Notes in Computer Science 969 479–488.)

Sangiorgi, D. (2001) Asynchronous process calculi: the first- and higher-order paradigms. Theoretical

Computer Science 253 (2) 311–350.

Thomsen, B. (1989) A calculus of higher order communicating systems. In: Proceedings POPL,

ACM Press 143–154.

Thomsen, B. (1993) Plain CHOCS: A second generation calculus for higher order processes. Acta

Informatica 30 (1) 1–59.

Urban, C. (2008) Nominal techniques in Isabelle/HOL. Journal of Automated Reasoning 40 (4)

327–356.

https://doi.org/10.1017/S0960129513000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000170

