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Abstract. The electron temperature gradient driven electromagnetic-drift waves
and associated instabilities and electron thermal diffusion in a magnetized plasma
have been investigated by employing kinetic ion and fluid electron responses. A new
dispersion relation has been derived analytically and studied numerically. Two
broad classes of unstable fluctuations, namely ‘low’ and ‘high’ frequency unstable
modes, have been identified and studied in detail. The instabilities of these modes
and associated electron thermal diffusion coefficients are also estimated. The results
of our theoretical model can be considered as a plausible explanation for experi-
mentally observed fluctuations in Burke et al. (2000a Phys. Plasmas 7, 1397).

1. Introduction
It is well known (Mikhailovskii 1992, 1998) that magnetized laboratory and space
plasmas contain free energy sources in the form of equilibrium pressure and mag-
netic field gradients. The latter can cause different classes of micro-instabilities
involving electrostatic drift and electromagnetic drift–Alfvén waves (Mikhailovskii
1992). Non-thermal fluctuations can produce anomalous cross-field charged particle
and heat transport (Kadomtsev 1965, Horton et al. 1965), which degrade the
plasma confinement. Accordingly, a complete knowledge of waves and instabilities
in a non-uniform magnetoplasma is very essential for understanding the instability
and transport processes in laboratory and space plasmas.
Recently, Burke et al. (2000a, b) and Maggs and Morales (2003) have performed

several laboratory experiments to demonstrate the spatio-temporal properties of
spontaneous fluctuations that are triggered by gradients in the ambient plasma
parameters, namely density, temperature, magnetic field, etc. They observed two
kinds of broadband fluctuations. One is identified (Burke et al. 2000a) as a low-
frequency (ω ∼ 0.02 ωci) temperature fluctuation mode and the other as a relative
high-frequency (ω ∼ 0.1 ωci) drift–Alfvén mode, where ω (ωci) is the mode fre-
quency (ion gyrofrequency). In this paper, we present a theoretical explanation for
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those experimental observations. Specifically, we theoretically investigate the elec-
tron temperature gradient driven electromagnetic-drift waves and associated non-
thermal transport coefficients (namely the electron thermal diffusion coefficient)
in a magnetized plasma by employing a kinetic description for ions and a fluid
description for electrons. We identify two broad classes of unstable fluctuations,
namely low- and high-frequency unstable modes, and study their existence regimes
in detail. The results of our theoretical model can be considered as a plausible
explanation for experimentally observed fluctuations in Burke et al. (2000a).
The manuscript is organized as follows. The electron and ion number density

perturbations are obtained by using a kinetic (fluid) description for ions (electrons)
in Sec. 2. The general dispersion relation for the electron temperature gradient
driven electromagnetic-drift waves is derived and investigated both analytically
and numerically in Sec. 3. The electron thermal diffusion coefficient associated
with unstable low- and high-frequency waves are estimated in Sec. 4. Finally, a
brief discussion is given in Sec. 5.

2. Electron and ion responses
We consider a fully ionized, two-component (electron–ion), collisionless plasma
with an equilibrium electron temperature gradient. We assume that the plasma
is embedded in a homogeneous magnetic field ẑB0, where ẑ is the unit vector along
the z-direction, and that the equilibrium electron temperature gradient is in a
direction perpendicular to the direction of the external magnetic field (namely
along the x-direction). We are interested in examining the obliquely propagating
low-frequency electromagnetic waves with the frequency satisfying ω � ωce (where
ωce = eB0/mec is the electron gyrofrequency, e is the magnitude of the electron
charge, me is the electron mass, and c is the speed of light in vacuum) in such
a magnetoplasma. Thus, in the presence of low-frequency electromagnetic fields,
E= −∇φ − ẑc−1∂tAz and B= ∇Az × ẑ, where φ is the scalar potential, Az is the z-
component of the vector potential and ∂t = ∂/∂t, we can express the perpendicular
and parallel components of the electron fluid velocities (ue⊥ and uez) as

ue⊥ � c

B0

[
ẑ × ∇φ − 1

ene
ẑ × ∇(neTe)

]
, (2.1)

uez � c

4πene
∇2

⊥Az (2.2)

where ne is the electron number density and Te is the electron temperature in units
of the Boltzmann constant. To derive (2.2), we have used Ampere’s law along with
an assumption that the current parallel to ẑ is mainly carried by the electrons.
Now, using (2.1) and (2.2) we can express the electron continuity equation, the

z-component of the electron equation of motion and the electron energy equation
in linearized form as

∂tne1 +
c

4πe
∇2

⊥∂zAz = 0, (2.3)

(∂t + V�∂y)Az + c∂z

(
φ − Te0

e

ne1
n0

− Te1
e

)
= 0, (2.4)

(
∂t − 2

3
ΩT

)
Te1 + eV�∂yφ =

2Te0
3n0

(∂t − Ωn) ne1, (2.5)
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where ∂y = ∂/∂y, V� = kTV
2
Te/ωce, VTe = (Te0/me)1/2, kT = −T −1

e0 ∂xTe0, ΩT = −n−1
0

(∂L/∂Te)Te0 , Ωn =T −1
e0 (∂L/∂ne)n0 , and L is a generalized heat loss function (a

function of ne and Te), and is defined as energy losses minus energy gains, per unit
of volume per unit of time. ne1 (Te1) is the perturbed part of the electron number
density (temperature), n0 (Te0) is the equilibrium part of the electron number
density (temperature). Using (2.3) and (2.5) in (2.4) we obtain a single equation
relating ne1 and φ in the form[(

Ô∂t + V 2
A ρ2

s∇2
⊥∂2

z

)
P̂ +

2
3
V 2
A ρ2

s∇2
⊥∂2

z Q̂

]
ne1 =

c2

4πe
∇2

⊥∂2
z

(
Ô − 2

3
ΩT

)
φ, (2.6)

where Ô = ∂t+V�∂y, P̂ = ∂t−2ΩT/3, Q̂= ∂t−Ωn, VA = (B2
0/4πn0mi)1/2, ρs = cs/ωci,

and cs = (Te0/mi)1/2. We now assume that ne1 and φ are proportional to exp(−iωt +
ikyy + ikzz), where ky (kz) are y (z) components of the wave propagation vector k,
i.e. ky = k sin θ and kz = k cos θ with θ = tan−1(ky/kz) being the angle between the
directions of B0 and k. Hence, (2.6) can be Fourier transformed to obtain

ne1 = −
k2

y

4πe

k2
zc2

(
Ω� − i2

3ΩT
)
φ(

Ω�ω − Ω2
A

)(
ω − i2

3ΩT
)

− 2
3Ω2

A(ω − iΩn)
, (2.7)

where Ω� = ω−kyV� and ΩA = kzVAkyρs. We next present the expression for the ion
number density perturbation ni1 which can be deduced from the Vlasov equation
(Brambilla 1998; Rao and Kaup 1992; Shukla and Stenflo 2000). Thus, we have

ni1 � −n0e

Ti

[
1 − Γ0(bi) − 2Γ1(bi)ω2

ω2 − ω2
ci

]
φ, (2.8)

where Ti is the ion temperature in units of the Boltzmann constant, Γ0,1 = I0,1

exp(−bi), I0 (I1) is the zero (first) order modified Bessel function with argument
bi = k2

yρ2
i , ρi = VTi/ωci is the ion Larmor radius, VTi = (Ti/mi)1/2 is the ion thermal

speed, ωci = eB0/mic is the ion gyrofrequency, and mi is the ion mass. We note
that for bi � 1, (2.8) reduces to ni1 � k2

yn0eφ/[mi(ω2 − ω2
ci)], which for ω � ωci can

be further simplified as ni1 � − (c2k2
yn0mi/eB2

0)φ. On the other hand, for bi � 1,
(2.8) reduces to ni1 � − (n0e/Ti)φ.

3. Dispersion properties
By invoking the quasineutrality condition ne1 =ni1 as well as (2.7) and (2.8), we
obtain the general dispersion relation

1 − Γ0(bi) − 2Γ1(bi)
ω2

ω2 − ω2
ci

=
k2

zV 2
A k2

yρ2
i

(
Ω� − i2

3ΩT
)

(
Ω�ω − Ω2

A

)(
ω − i2

3ΩT
)

− 2
3Ω2

A(ω − iΩn)
. (3.1)

Our new dispersion relation given by (3.1) does not impose any restriction on the
values of ω/ωci and bi. Before going to the numerical analysis of (3.1), let us briefly
discuss the following two limiting cases.

3.1. Ion fluid limit

When we neglect the ion Larmor radius effect, i.e. bi � 1, the dispersion relation for
the low-frequency electromagnetic waves satisfying ω/ωci � 1 can be simplified as

ω3 − ΩT�ω
2 −

(
αk2

zV 2
A − i2

3ΩTω�

)
ω +

(
ω� + i2

3ΩL1
)
k2

zV 2
A = 0, (3.2)
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where α = 1 + 5k2
yρ2
s /3, ω� = kyV�, ΩT� = ω� + i2ΩT/3, ΩL1 = ΩT + ΩLk2

yρ2
s , and

ΩL = ΩT + Ωn. For parallel propagation (ky = 0), (3.2) reduces to (ω − kzVA)(ω −
2iΩT/3)= 0 which represents two uncoupled modes, namely the shear Alfvén waves
ω = kzVA and a purely growing radiative thermal mode ω = i2ΩT/3. On the other
hand, for perpendicular propagation (kz = 0), from (3.2) we have (ω − kyV�)(ω −
2iΩT/3)= 0, which represents two uncoupled modes, namely the electron temper-
ature gradient driven drift waves ω = kyV�, and a purely growing radiative thermal
mode ω = i2ΩT/3.
For oblique propagation (3.2) represents the dispersion relation for the coupled

drift–Alfvén waves modified by the electron inertia, fluctuation of the electron tem-
perature and radiative energy loss. To examine the instability of the coupled drift–
Alfvén waves, we have to numerically solve (3.2). However, for ω ∼ kyV� � kzVA
(3.2) can be approximated as

ω � kyV�

1 + 5
3k2

yρ2
s

+ i
2
(
ΩT + ΩLk2

yρ2
s

)
3
(
1 + 5

3k2
yρ2
s

) . (3.3)

Equation (3.3) represents unstable electron temperature gradient driven drift waves
with the real frequency ωk � kyV�/(1+ 5k2

yρ2
s /3) and the growth rate γk �

2(ΩT + ΩLk2
yρ2
s )/3(1+ 5k2

yρ2
s /3).

3.2. Strong ion Larmor radius effect

When we consider an extremely strong Larmor radius effect, i.e. for bi � 1, the
dispersion relation (3.1) can be simplified as

ω3 − ΩT�ω
2 −

(
σk2

zV 2
A − i2

3ΩTω�

)
ω +

(
ω� + i2

3ΩL2
)
bik

2
zV 2

A = 0, (3.4)

where σ = (1 + 5Te0/3Ti)bi and ΩL2 = ΩT + Te0ΩL/Ti. Since k2
yρ2
i � 1 is assumed,

in (3.4) we cannot consider the parallel propagation. However, for perpendicular
propagation (kz = 0), from (3.4) we obtain the two uncoupled modes (namely the
electron temperature gradient driven drift waves ω = kyV�, and a purely growing
radiative thermal mode ω = i2ΩT/3) that we obtained in the fluid limit (bi � 1).
Now, for oblique propagation and for ω ∼ kyV� � bikzVA, (3.4) can be approximated
as

ω � kyV�

1 + 5Te0/3Ti
+ i

2(ΩT + (Te0/Ti)ΩL)
3(1 + 5Te0/3Ti)

. (3.5)

Equation (3.5) represents the unstable electron temperature gradient driven drift
waves with the real frequency ωk = kyV�/(1 + 5Te0/3Ti) and the growth rate γk �
2(ΩT + Te0ΩL/Ti)/3(1 + 5Te0/3Ti) including the effect of the strong ion Larmor
radius effect.

3.3. Numerical analysis

The waves and associated instabilities that we have discussed are restricted to two
limiting cases, namely bi � 1 and bi � 1. The former is further restricted to ω � ωci.
To have more general results (without imposing any restriction on the values of
ω/ωci and bi), we now numerically solve (3.1) and find its real and imaginary
solutions for typical laboratory plasma parameters (Burke et al. 2000a; Maggs and
Morales 2003): Te0 � 5 eV, B0 � 1 kG, n0 � 1012 cm−3, Ti � 0.2Te0, and Ωn/ωci � 0.1.
The numerical results are displayed in Figs. 1–5. We have found in our numerical
analysis that for the above-mentioned typical laboratory plasma parameters, the
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Figure 1. The dispersion properties of the low-frequency mode for typical plasma param-
eters given in the text. The upper plot represents the dispersion properties for ΩT/ωci =0.2,
kT =2 cm−1 (solid curve), 3 cm−1 (dotted curve), and 4 cm−1 (dashed curve). The lower plot
represents the dispersion properties for kT =2 cm−1, ΩT/ωci =0.2 (solid curve), 0.5 (dotted
curve), and 0.8 (dashed curve). Here the frequency ωk is found to be independent of θ.

dispersion relation (3.1) has two positive real roots and three positive imagin-
ary roots. The two positive real roots represent two eigenmodes: one is a low-
frequency mode and other is a high-frequency mode. The dispersion properties of
low-frequency mode are shown in Fig. 1 and those of the high-frequency mode are
shown in Fig. 2.
Figure 1 shows how the frequency ωk of the low-frequency mode varies with

kyρi for different values of kT (cf. the upper plot of Fig. 1) and ΩT (cf. the lower
plot of Fig. 1). The real solutions corresponding to the low-frequency mode were
found to be independent of θ. Figure 2 shows how the frequency ωk of the high-
frequency mode varies with kyρi. The upper (lower) plot of Fig. 2 shows how the
dispersion properties of this high-frequency mode for a long (short) wavelength
perpendicular to the magnetic field varies with θ (kT). The frequency ωk is found to
be independent of kT and ΩT for a long perpendicular wavelength limit (kyρi ≤ 0.1)
and independent of θ andΩT for a short perpendicular wavelength limit (kyρi > 0.1).
Figure 3 shows how the growth rate γk of the unstable low-frequency mode varies
with kyρi for different values of kT (cf. the upper plot of Fig. 3) and ΩT (cf. the
lower plot of Fig. 3). The imaginary solutions corresponding to the low-frequency
mode are found to be independent of θ. Figure 4 shows how the growth rate γk of a
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Figure 2. The dispersion properties of the high-frequency mode for the typical plasma
parameters given in the text. The upper plot represents the dispersion properties of the
waves corresponding to long-wavelength perpendicular to the magnetic field for θ =60◦ (solid
curve), 70◦ (dotted curve) and 80◦ (dashed curve). The lower plot represents the dispersion
properties of the waves corresponding to short-wavelength perpendicular to the magnetic
field for kT =2 cm−1 (solid curve), 10 cm−1 (dotted curve) and 15 cm−1 (dashed curve). The
frequency ωk corresponding to the long-wavelength limit (cf. the upper plot) was found to
be independent of ΩT and kT. The frequency ωk corresponding to the short-wavelength limit
(cf. the lower plot) was found to be independent of θ and ΩT.

purely growing radiative thermal mode varies with kyρi for different values of kT.
The growth rate γk of this purely growing radiative thermal mode is found to be
independent of kT and θ. Figure 5 shows how the growth rate γk of the unstable
high-frequency mode varies with kyρi for different values of kT (cf. the upper plot of
Fig. 5) and ΩT (cf. the lower plot of Fig. 5). The imaginary solutions corresponding
to the high-frequency mode are found to be independent of θ.

4. Diffusion coefficient
We now estimate the diffusion coefficients D associated with low- and high-freque-
ncy modes which produce a cross-field electron thermal energy flux

Γx = 〈Te1uex〉 + complex conjugate, (4.1)

where the angular brackets denote the ensemble average. For ωk � ωce, kc, we can
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Figure 3. The growth rate γk of the low-frequency mode for the typical plasma parameters
given in the text. The upper plot, where ΩT/ωci =0.2, kT =2 cm−1 (solid curve), 6 cm−1

(dotted curve) and 10 cm−1 (dashed curve), shows how the growth rate γk varies with kT.
The lower plot, where kT =2 cm−1, ΩT/ωci =0.2 (solid curve), 0.3 (dotted curve) and 0.4
(dashed curve) shows how the growth rate γk varies with ΩT. The growth rate γk of the
low-frequency mode in both cases is found to be independent of θ.
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Figure 4. The growth rate γk of the purely growing radiative thermal mode for the typical
plasma parameters given in the text, and for ΩT/ωci =0.2 (solid curve), 0.3 (dotted curve)
and 0.4 (dashed curve). Here γk is found to be independent of kT and θ.
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Figure 5. The growth rate γk of the high-frequency mode for the typical plasma parameters
given in the text. The upper plot, where ΩT/ωci = 0.2, kT =2 cm−1 (solid curve), 10 cm−1

(dotted curve) and 15 cm−1 (dashed curve), shows how the growth rate γk varies with kT.
The lower plot, where kT =2 cm−1, ΩT/ωci =0.2 (solid curve), 0.3 (dotted curve) and 0.4
(dashed curve) shows how the growth rate γk varies with ΩT. The growth rate γk of the
low-frequency mode in both cases is found to be independent of θ.

express uex and Te1 as

uex = −i
cky

B0
φk, (4.2)

Te1 =
(

kyV�

ωk
− 2

3
k2

yρ2
s − i

kyV�γk

ω2
k

)
eφk, (4.3)

where ωk and γk are the real and imaginary parts of the wave frequency ω cor-
responding to a fixed k. Now, using (4.1)–(4.3) and Fick’s law Γx = −D∂xTe0, the
diffusion coefficient corresponding to a fixed k can be approximated as

Dk ≈ π2 γk

k2
. (4.4)

We note that in order to derive (4.4) we used 〈φk〉 � πB0ωk/ckky, which is ob-
tained by using the mixing length hypothesis. Taking kyρi � 1, θ = 60◦ and the
corresponding γk/ωci � 0.003 from the dashed curve in the upper plot of Fig. 3,
we estimate the diffusion coefficient (associated with the low-frequency waves)
Dk � π20.003 ωciρ

2
i sin2 θ ≈ 1.5× 103 cm2 s−1. On the other hand, taking kyρi � 1
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and the corresponding γk/ωci � 0.1215 from the dotted curve in the upper plot of
Fig. 5, we can estimate the diffusion coefficient (associated with the high-frequency
waves) Dk � π20.1215 ωciρ

2
i sin2 θ ≈ 6× 104 cm2 s−1. We note that in our numerical

analysis (Figs. 1–5), we used kz = ky cot θ which means that kz and k =
√

k2
y + k2

z

vary with ky for fixed θ.

5. Discussion
We have investigated the electron temperature gradient driven electromagnetic-
drift waves and associated instabilities and transport coefficients (namely the elec-
tron thermal diffusion coefficient) in a magnetized plasma by employing a kinetic
description for ions and a fluid description for electrons. We have derived a new
dispersion relation, which has been investigated first analytically in two limits
(namely kyρi � 1 and kyρi � 1) and then numerically in general. We have found
two broad classes of unstable fluctuations: one is a low-frequency temperature
fluctuation mode with the frequency ωk ∼ 0.02 ωci (cf. Fig. 1) and the other is a
relative high-frequency drift–Alfvén mode with the frequency ωk ∼ 0.1 ωci (cf. the
upper plot of Fig. 2). We have also studied the dispersion properties of these modes
and associated instabilities in detail. The growth rates of these modes are found to
be a fraction of the frequency of the corresponding mode (cf. Figs. 3 and 5).
We have found in our numerical analysis that for the typical laboratory plasma

parameters (Burke et al. 2000a; Maggs and Morales 2003) the dispersion rela-
tion (3.1) has two positive real roots and three positive imaginary roots. The two
positive real roots represent two eigenmodes: one is a low-frequency mode (cf.
Fig. 1) and other is a high-frequency mode (cf. Fig. 2). The three positive ima-
ginary roots represent the growth rates of the low-frequency mode (cf. Fig. 3),
the purely growing radiative thermal mode (cf. Fig. 4) and the high-frequency
mode (cf. Fig. 5), respectively. We have also estimated the electron thermal diffu-
sion coefficient associated with the unstable low- and high-frequency modes for
typical laboratory plasma parameters (Burke et al. 2000a; Maggs and Morales
2003): Te0 � 5 eV,B0 � 1 kG, n0 � 1012 cm−3, Ti � 0.2Te0,Ωn/ωci � 0.1,ΩT/ωci = 0.2,
kT = 10 cm−1 and kyρi � 1. The electron diffusion coefficient Dk turns out to be
∼1.5 × 103 cm2 s−1 and ∼6 × 104 cm2 s−1 for the low- and high-frequency modes,
respectively. The results of our theoretical model can be considered as a plausible
explanation for experimentally observed fluctuations in Burke et al. (2000a).
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