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Dynamics of a sphere in inertial shear flow
between parallel walls
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The motion of a rigid sphere in ambient simple shear flow of a Newtonian fluid between
infinite parallel walls is calculated via the lattice Boltzmann method for various particle
Reynolds numbers, Rep = Ga2/ν, where G is the velocity gradient of the shear; a is
the particle radius; and ν is the kinematic viscosity of the fluid. For a neutrally buoyant
sphere, there exists a critical Rep below which the hydrodynamic lift force has a single zero
crossing, driving the particle to an equilibrium position at the centre of the channel. Above
the critical Rep, the equilibrium position of the sphere undergoes a supercritical pitchfork
bifurcation; inertial lift creates three equilibrium positions: an unstable equilibrium
position at the centre and two stable equilibria equidistant from the centre. The critical
Rep occurs below the transition to unsteady flow, and increases with increasing particle
confinement ratio, κ = a/H, where H is the channel height. The equilibrium position of a
non-neutrally buoyant sphere shifts toward a confining wall of the channel, in a manner that
is dependent on the orientation, i.e. horizontal or vertical, of the channel. In both channel
alignments, the gravitational force breaks the symmetry of the particle dynamics about
the centreline of the channel, resulting in an imperfect bifurcation above a critical Rep.
However, a sufficiently strong gravitational force will break the bifurcation and produce
a single off-centre equilibrium position. We finally consider a neutrally buoyant sphere
under the cessation or reversal of shear flow.

Key words: microfluidics, bifurcation

1. Introduction

Hydrodynamic forces arising from fluid inertia in particle-laden flows can induce a
dynamics not observed in purely viscous (zero Reynolds number) flows. Specifically, the
phenomenon, known as ‘inertial lift’, can induce particle migration across streamlines in
ambient, confined unidirectional flow, resulting in a focusing of the particles at a given
equilibrium position. In confined pressure-driven flow, inertial lift primarily arises from
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two sources: wall-induced lift, and shear-gradient lift, which act to force the particle away
from and toward the confining boundary, respectively (Gou et al. 2018). Other sources of
inertial lift include the ‘Saffman lift’ (Saffman 1965) and the ‘Magnus effect’ (Rubinow
& Keller 1961). The former refers to the lift force on a particle due to its ‘slip’ velocity
relative to the ambient flow streamline passing through its centre, as would occur for a
non-neutrally buoyant particle in shear flow, for example. The latter refers to the lift force
due to the combined translation and rotation of a particle. These two sources of lift are
generally weak compared to wall-induced and shear-gradient lift in microfluidic devices,
for example (Martel & Toner 2014). It should be noted, however, that partitioning the
lift force into the aforementioned sources is somewhat artificial, as all contributions arise
from the integral of the hydrodynamic traction over the particle surface. Interest in inertial
lift has increased recently due to applications in microfluidic devices, to affect particle
separations without external forces (e.g. magnetic or electric) that could be harmful to
the entity to be separated. Inertial lift has been harnessed to perform rapid separations
on blood cells (Nivedita & Papautsky 2013), cancer cells (Hur, Mach & Di Carlo 2011),
Escherichia coli (Mach & Di Carlo 2010) and biodiesel-producing algae (Li et al. 2017),
for instance.

The study of inertial lift was motivated by the experimental observations of Segre &
Silberberg (1961, 1962). In this seminal work, they observed the migration of neutrally
buoyant spheres in a circular tube of diameter H in pressure-driven flow of a Newtonian
fluid with characteristic speed Um and kinematic viscosity ν. They observed a migration
of the particles transverse to the direction of flow at channel Reynolds numbers Rec =
UmH/ν between 2 and 60 and showed that, due to fluid inertia, the particles focused at
an transverse equilibrium position around 0.3H from the channel centre, moving further
toward the wall as Rec increased. Their observations sparked an array of studies of inertial
lift using asymptotic analysis at small particle Reynolds numbers. Rubinow & Keller
(1961) studied a sphere of radius a translating and rotating at velocities of Up and Ωp,
respectively, through an unbounded, quiescent fluid of density ρ and viscosity μ using
matched asymptotic expansions. They calculated a (Magnus-type) lift force transverse
to the particle motion as F L ∼ πa3ρΩp × Up at small translational particle Reynolds
numbers, Ret = Upa/ν, where Up = |Up|. Saffman (1965) performed matched asymptotic
expansions to calculate the lift force on a sphere in unbounded shear flow of velocity
gradient G, translating at a ‘slip velocity’ Us relative to the undisturbed streamline at
its centre. He calculated a lift force of |F L| ∼ 6.46aμ|Us|Re1/2

p , directed to force the
particle toward streamlines moving opposite to its translation, at small shear particle
Reynolds numbers, Rep = Ga2/ν, under the restriction that Res � Re1/2

p � 1, where
Res = Usa/ν is the particle slip Reynolds number. Cox & Brenner (1968) used a regular
perturbation analysis to study the lift force on an arbitrarily shaped neutrally buoyant
particle of characteristic size a in planar, confined Poiseuille flow, at a distance d from
the channel wall, at small particle Reynolds number Rep, and small relative particle size
a/d. They derived an integral formula for the inertial lift on the particle and an equation
for its transverse migration, but did not explicitly predict the equilibrium position of the
particle. Ho & Leal (1974) used the reciprocal theorem to examine a neutrally buoyant
sphere in planar confined shear and Poiseuille flow at small Rep and small confinement
ratio κ = a/H, where H in this case is the channel height. Their analysis showed that
a sphere in shear flow has an equilibrium position at the centre of the channel, and
a sphere in Poiseuille flow has an equilibrium position 0.3H from the centre of the
channel. Schonberg & Hinch (1989) used a singular perturbation analysis to investigate
a neutrally buoyant sphere in confined Poiseuille flow at small Rep and κ , but Rec = O(1).
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A singular perturbation analysis is required here as the inertia-dominated outer region
occurs within the channel at Rec = O(1), whereas Cox & Brenner (1968) and Ho &
Leal (1974) used regular perturbations due to the flow being entirely viscous dominated
at Rec � 1. Schonberg & Hinch (1989) showed that the equilibrium position of the
sphere was at around 0.3H and moved toward the wall of the channel as Rec increased,
qualitatively matching the observations of Segre & Silberberg, although those experiments
were in a circular tube.

While inertial lift has been extensively studied in confined Poiseuille flow, there have
been relatively few investigations in confined simple shear flow. This is surprising to
us, since simple shear flow can readily be realized in rheometers, for example. Drew
(1988) performed a perturbation analysis for a sphere translating relative to a shear flow
in the presence of a distant wall at small Rep, thereby extending Saffman’s analysis. The
calculated wall-induced lift force was shown to always be smaller than the unbounded lift
force and thus to not alter the direction of migration. McLaughlin (1991) used matched
asymptotic expansions to extend Saffman’s analysis to larger Res = Usa/ν, such that
Res � Re1/2

p , with both Res and Rep remaining small compared to unity. His analysis
revealed that the lift force decreases rapidly as Res/Rep becomes large, as the particle
motion reduces to that of translation in an essentially quiescent fluid. Later, McLaughlin
(1993) connected these previous analyses by using matched expansions to analyse lift
for a particle due to both a distant wall and at Res � Re1/2

p . The combination results in
a particle migrating either toward or away from the wall. Asmolov (1999) studied the
lift force on a neutrally buoyant sphere in shear flow bounded by a single wall using
matched expansions. He showed that the lift force always points away from the wall
and as such a particle would not reach an equilibrium position. Ekanayake et al. (2020)
investigated the lift and drag forces acting on a sphere in shear flow bounded by a single
wall using numerical computations at low Res. They revealed that both the forces are
strongly dependent on shear rate and propose wall-shear-based lift and drag correlations.
Feng, Hu & Joseph (1994) performed finite element simulations to calculate the trajectory
of a neutrally buoyant infinite circular cylinder in confined shear flow at non-zero particle
Reynolds numbers, Rep = Ga2/ν, where a, in this two-dimensional problem, is the radius
of the cylinder cross-section. This study revealed that, up to Rep = 0.625, the equilibrium
position for a particle in bounded shear flow remained at the centre of the channel
for a cylinder of κ = 0.125. In our previous work, lattice Boltzmann simulations were
performed to extend the study of a neutrally buoyant circular cylinder in confined shear
flow to higher Rep (Fox, Schneider & Khair 2020). Our analysis revealed a supercritical
pitchfork bifurcation of the equilibrium position above a critical Rep dependent on κ ,
switching from a single stable equilibrium position at the centre of the channel to three
equilibrium positions: two stable equilibria equidistant from the centre and an unstable
equilibrium position at the centre. This phenomenon was unobserved by Feng et al. (1994),
as at κ = 0.125, the equilibrium position bifurcation occurs at 2 < Rep < 3, above the
scope of their study, while remaining below the transition to unsteady flow.

Here, we will investigate the dynamics of a sphere in confined inertial shear flow. The
results of Ho & Leal (1974) show that a neutrally buoyant sphere in confined shear flow at
small Rep will migrate to the centre of the channel, as one might expect from the symmetry
of the flow geometry. However, we will demonstrate that this behaviour does not always
persist. We will use the lattice Boltzmann method to calculate the hydrodynamic force
acting on the sphere and its resulting migration through the channel. First, we will examine
the behaviour of a neutrally buoyant sphere. Through independent calculations of the
hydrodynamic lift force acting on a sphere with fixed transverse position and calculations
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Figure 1. A sphere in two-dimensional shear flow between parallel walls. The behaviour of the sphere is
determined by the initial transverse position ỹ0 = y0/H, the confinement ratio κ = a/H and the particle
Reynolds number Rep = Ga2/ν, where G = 2Um/H. Here, θg is the angle of the imposed gravitational force Fg
in the shear plane relative to the direction of the shear gradient. The walls are infinite in the x- and z-directions.

of the trajectory of an unconfined sphere, we will demonstrate an inertial bifurcation of
the transverse equilibrium position of the sphere above a critical Rep. This bifurcation is
surprising given the symmetry of the flow configuration. We will show that the bifurcation
occurs before the transition to unsteady flow and is dependent on the confinement ratio κ .
Next, we will analyse the impact of gravity on the equilibrium position of a non-neutrally
buoyant particle in horizontally and vertically aligned channels. Finally, we will show
the effect of time-dependent flows on the equilibrium position of a neutrally buoyant
sphere, focusing on flow cessation and reversal. The remainder of this paper is organized
as follows. In § 2, we outline the flow problem and calculations to be performed; in § 3,
we describe the lattice Boltzmann method and verify the validity of our computational
technique; in §§ 4–6, we present results and discuss the implications thereof; and in § 7,
we deliver concluding remarks.

2. Problem formulation

Consider an incompressible, Newtonian fluid of kinematic viscosity ν and density ρ

bounded by parallel walls at y = −H/2 and y = H/2, moving with speed −Um(t) and
Um(t) in the x-direction, respectively. The resulting flow creates a two-dimensional shear
with velocity gradient G = 2Um(t)/H in the fluid. Now, a sphere of radius a is located in
the channel at an initial transverse position y0 and allowed to translate and rotate through
the fluid. A uniform gravitational body force F g is applied to the sphere at angle θg relative
to the ambient shear gradient; thus θg = 0 and θg = π/2 correspond to a horizontally and
vertically aligned channel, respectively. Figure 1 depicts the flow problem.

We non-dimensionalize the problem by normalizing the position and time by the
channel height and the inverse velocity gradient, respectively, such that ỹ = y/H and
t̃ = Gt. The inertial lift force and gravitational force are normalized by ρU2

ma4/H2,
which is the inertial force scaling at small Rep found by Ho & Leal (1974). Thus, the
dynamics of the sphere is dictated by the particle shear Reynolds number Rep = Ga2/ν,
the confinement ratio κ = a/H, the initial position ỹ0 and the gravitational force F̃g applied
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at angle θg relative to the ambient shear gradient. Here, the tilde denotes the dimensionless
counterpart of the appropriate dimensional variable, e.g. F̃g = Fg/(ρU2

ma4/H2).
The dynamics of the sphere will be quantified through two types of calculations. First,

the position of the sphere will be fixed in the y-direction and allowed to freely rotate and
translate in the x- and z-directions. The force acting on the sphere is then calculated to
determine the lift force F̃L at a given transverse position, which, by symmetry, is directed
along the y-axis. In the second type of calculation, the sphere is force and torque free
and thus allowed to rotate and translate in all directions. The position of the particle is
calculated to generate particle trajectories in time and position (axial and transverse).

The effect of inertia on a neutrally buoyant sphere in confined shear flow is quantified
by examining the impact of Rep and κ on its equilibrium position. The lift force on the
sphere at a given Rep and κ is determined at various transverse positions, spanning the
channel. Zero crossings of the lift force reveal transverse equilibrium positions, with
positive-to-negative crossings (i.e. a switch from a positive lift force to negative as the
transverse position increase) corresponding to stable equilibria and negative-to-positive
corresponding to unstable equilibria. By repeating this process over a variety of Rep,
an inertial bifurcation of the equilibrium position shall be revealed above a critical Rep
dependent on κ . Trajectory calculations at the same Rep will show the long-time stable
equilibrium position of the sphere, thereby confirming the inertial bifurcations previously
observed. Our lift force calculations will be performed at various κ to reveal the impact of
particle size on the critical Rep. Mikulencak & Morris (2004) observed that velocity field
about a force- and torque-free sphere in confined shear flow at the centre of the channel
becomes unsteady flow above Rep = 100 for κ = 0.125; all flows in this study were below
Rep = 100 and no unsteady flow was observed about the sphere. Inertial migration in such
unsteady flows is certainly interesting but outside the scope of the present work.

The behaviour of a non-neutrally buoyant sphere in confined shear flow will be studied
in horizontally and vertically aligned channels. For horizontally aligned channels, the
gravitational force F̃g is applied on the sphere at an angle of θg = 0, and the trajectory
of the sphere calculated in time. The resulting equilibrium positions of the sphere will be
compared to predictions developed from the lift force calculations for a neutrally buoyant
sphere, by subtracting the applied gravitational force from the positional lift forces to
generate a new zero crossing. For a vertically aligned channel, F̃g is applied at an angle
θg = π/2, generating a ‘slip’ velocity for the particle relative to the streamline passing
through its centre. This produces a Saffman-like lift, which will shift the equilibrium
position of the sphere toward the bounding wall translating in the opposite direction to
F̃g, as demonstrated by calculations of the particle trajectory.

Finally, the dynamics of a neutrally buoyant sphere in time-dependent shear will be
investigated by allowing the sphere to reach an equilibrium position, after which the flow
conditions change. The impact of flow cessation will be studied by reducing the channel
wall velocity from Um to zero over a finite period and calculating the resulting trajectory
of the sphere. Similarly, the effect of flow reversal is to be investigated by reversing the
wall velocity from Um to −Um over a period and calculating the resulting trajectory of
the sphere. The effect of duration of the change in flow on the particle dynamics will be
elucidated.

3. Lattice Boltzmann calculations

The dynamics of a sphere in confined shear flow is quantified using the lattice Boltzmann
(LB) method, a computational technique for solving the Navier–Stokes equations
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(Ladd 1994a,b; Aidun, Lu & Ding 1998). The method works by discretizing the fluid into a
series of Eulerian nodes, where, at position x and time t, there exists a distribution of fluid
particles fσ i(x, t) with velocity eσ i in the σ i direction. The macroscopic fluid properties of
mass density ρ(x, t) and velocity u(x, t) are obtained from

ρ (x, t) =
∑
σ i

fσ i (x, t) and ρ (x, t) u (x, t) =
∑
σ i

fσ i (x, t) eσ i. (3.1a,b)

The fluid particles obey by the dimensionless LB equation (Wu & Aidun 2010),

fσ i (x + eσ i, t + 1) − fσ i (x, t) = −1
τ

[
fσ i (x, t) − f (eq)

σ i (x, t)
]

+ gσ i (x, t) , (3.2)

dictating the time evolution of the fluid in the channel. The LB method models the
fluid particle motion through alternating steps of collision and translation. Fluid particle
collision, denoted by the first term on the right-hand side of (3.2), describes the interaction
of the fluid particles at a given node by comparing the current distribution of particles,
fσ i(x, t), to the equilibrium distribution of the same macroscopic velocity, f (eq)

σ i (x, t), over
a relaxation time τ = (6ν + 1)/2. Fluid particle translation, denoted by the first term
on left side of (3.2), describes the movement of fluid particles between adjacent nodes.
The final term in (3.2), gσ i(x, t), represents forcing due to the fluid–solid interaction
force (Wu & Aidun 2010), describing the force acting on the fluid due to the solid
particle and a corresponding force acting on the nodes at the surface of the solid particle
by the surrounding fluid particles. The LB equation has been shown to reduce to the
Navier–Stokes equations at small Mach and Knudsen numbers (McNamara & Zanetti
1988; Chen, Chen & Mathhaeus 1992; Huo et al. 1995), and has been shown to accurately
model the transient particle dynamics (Rosen et al. 2015a).

An in-house LB code has been constructed to study the present problem, building
from our previous work on migration of a circular cylinder. The fluid field is discretized
into a computational domain of nx × ny × nz, where ni is the number of nodes in
the i-direction, with a channel aspect ratio of AR = nx/ny = nx/nz = 2. A standard
bounce-back boundary condition is used to simulate the translating bounding walls (Aidun
et al. 1998), and a periodic boundary condition is used on the open ends in the y- and
z-directions. The particle is modelled by arranging a series of Lagrangian nodes over its
surface using a geodesic placement algorithm (Miura & Kimoto 2005), detailed further in
figure 2. The net force F and torque T acting on the particle is calculated using an external
boundary force (EBF) method (Wu & Aidun 2010), which calculates the aforementioned
fluid–solid interaction force. The particle translational velocity, Up, and particle angular
velocity, Ωp, are calculated from Newton’s equations of rigid body motion, which for a
sphere are simply

M
dUp(t)

dt
= F (t), and I

dΩp(t)
dt

= T (t), (3.3a,b)

where M is the mass of the sphere and I is its moment of inertia.
The LB method is an iterative process, starting from a quiescent fluid and initiating

with the bounding walls translating at a given velocity. The EBF method determines the
force acting on the fluid and particle boundary nodes about the solid particle, from which
a net force and torque acting on the particle can be determined through integration over
the particle surface. The particle is then translated and rotated by the resulting particle
velocity and angular velocities. The fluid particles then undergo collision and propagation,
as previously described, and the process iterates. This cycle continues until the force acting
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(b)(a) (c)

Figure 2. A depiction of the geodesic placement algorithm. The algorithm begins by inscribing an icosahedron
(a) with the boundaries of the particle, such that the nodes of the polyhedron rest on the particle’s surface. The
edges of the polyhedron are bisected (b), producing a series of vertices. The new vertices are then projected
onto the surface of the particle (c), creating additional nodes. The process is repeated until sufficient nodes
exist.

on the particle remains constant in the fixed transverse position studies, or the particle
reaches a constant ỹ in the unconstrained studies.

The accuracy of our computational technique is assessed by performing three validation
studies. The first considered the sedimentation of a sphere along the centreline of a
bounded square channel under gravity, and the sedimentation velocity of the sphere is
calculated as a function of κ at 0.1 � Rep � 0.8, relative to the sedimentation velocity
of an unbounded sphere at Rep = 0, Ug = Fg/6πμa, where Rep = Uga/ν, κ = a/H and
H is width of the channel cross-section (figure 3a). The relative sedimentation velocity
matches well to results from Wu & Aidun (2010), who also used the LB method. The
second validation study investigated the rotation of a neutrally buoyant sphere at the
centre of a channel in confined shear flow at κ = 0.2 as a function of Rep (figure 3b).
Our results are compared to experiments by Poe & Acrivos (1975) and simulation results
by Nirschl, Dwyer & Denk (1995) and Mikulencak & Morris (2004). Our calculations
were found to compare favourably with these previous studies. The final validation study
examined the migration of a neutrally buoyant sphere in confined shear flow at small Rep
and κ (figure 3c,d); here, our results are compared to the perturbation theory of Ho &
Leal (1974). Here, it is important to note that their theory is asymptotically valid when
Rep � κ2 � 1. It is computationally prohibitive for us to run our code at such small
values of κ and Rep to recover quantitative agreement with their theory. Nonetheless, in
combination, figures 3(c) and 3(d) show that our computations approach to Ho and Leal’s
theory as Rep and κ are separately decreased, as required. In summary, the validations
detailed in figure 3 give confidence on the performance of the LB code used to generate
new results that are discussed next. Further verification of our code with respect to domain
size, channel periodicity, and time resolution can be found in the Appendix.

4. Neutrally buoyant sphere in confined shear flow

4.1. Lift force on a transversely fixed sphere
The hydrodynamic lift force on a neutrally buoyant sphere of κ = 0.2 is calculated here.
The sphere is at fixed transverse position, ỹ0, and allowed to freely rotate and translate
in the direction of flow. This process is used to calculate the lift force acting on the
sphere throughout the channel at various Rep, and the results are shown in figure 4. At
Rep = 1 the force varies monotonically across the channel, with a single zero crossing at
the centre of the channel, ỹ = 0, corresponding to a single stable equilibrium position

915 A119-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

16
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.161


A.J. Fox, J.W. Schneider and A.S. Khair

0 0.05 0.15 0.25 0.35 0.45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9(a) (b)

(c) (d )

1510

Time (t̃ )

T
ra

n
sv

er
se

 p
o
si

ti
o
n
 (

ỹ)
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Figure 3. Validation of the in-house LB code. (a) Sedimentation velocity Uw of a confined sphere in a square
channel as a function of confinement ratio κ , relative to the sedimentation velocity of an unbounded sphere
Ug. (b) Rotation rate Ω/G of a sphere in confined shear flow (κ = 0.2 and ỹ0 = 0) as a function of particle
Reynolds number Rep. (c) Transverse trajectory of a sphere of κ = 0.2 and ỹ0 = −0.25 in confined shear flow
as a function of time at various particle Reynolds numbers Rep. (d) Transverse trajectory of a sphere of Rep = 1
and ỹ0 = −0.4 in confined shear flow as a function of time at various confinement ratios κ . Relevant results
were digitized for replotting here.

for the sphere. This behaviour is in qualitative agreement with Ho & Leal (1974). At
Rep = 3, the force at every fixed position (ỹ0) has decreased in magnitude, with again
a monotonic variation across the channel and a single zero crossing, and therefore stable
equilibrium position, at the centre of the channel. In contrast, at Rep = 10, the lift force
no longer varies monotonically across the channel. The lift force now possesses three
zero crossings, with one at the centre of the channel and two equidistant from the
centre at y � −0.15 and y � 0.15. Now, the centreline zero crossing corresponds to an
unstable equilibrium position, while the off-centre zero crossings represent new stable
equilibria; the positive-to-negative zero crossing implies a stable equilibrium position,
while the opposite implies an unstable one. A supercritical pitchfork bifurcation of the
equilibrium position has therefore occurred between 3 < Rep < 10. By increasing the
Reynolds number to Rep = 30, the stable equilibria move closer to the walls at ỹ � −0.21
and 0.21. At Rep = 50, the stable equilibrium shifts closer to the confining walls at
ỹ � −0.24 and � 0.24.

For any fixed position ỹ, the magnitude of the lift force decreases with increasing Rep,
resulting in flatter curves at higher Rep. The decrease in force is caused by ‘inertial
screening’ of the velocity disturbance caused by the particle. That is, as Rep increases,
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Figure 4. Dimensionless lift force F̃L on a sphere of κ = 0.2 as a function of transverse position, with
magnification of the lift force just below the centre of the channel in the inset. The finite particle radius
precludes the centre of the particle from entering the size excluded region.

the velocity disturbance is confined closer to the surface of the particle, screening out
hydrodynamic interactions between the sphere and the wall, and thus decreasing the overall
lift force. The novel aspect of these curves is the off-centre zero crossings beyond a critical
Rep, changing the centre equilibrium position from stable to unstable and introducing two
new stable equilibria. As demonstrated by Asmolov (1999), a neutrally buoyant sphere in
shear flow bounded by a single wall experiences no equilibrium position, as the lift force
is always directed away from the wall. We previously showed that the equilibrium position
of a circular cylinder in confined shear flow experienced a similar inertial bifurcation as
a result of the second confining wall (Fox et al. 2020). Our present findings indicate that
this phenomenon persists in three-dimensional confined shear flows. As such, an inertial
bifurcation of equilibrium positions can potentially be verified experimentally and thus
may have practical relevance for particle separations.

To further examine the stable equilibria, the streamlines about spheres at their stable
equilibrium positions for Rep = 1 and 10 are shown in figure 5; the flows are shown in
the shear plane. Additionally, the disturbance flows about the sphere, found by subtracting
the ambient flow from the total flow, are presented in this figure. At Rep = 1, the sphere
rests at an equilibrium position at the centre of the channel and the flow about the
particle is roughly top–down symmetric with respect to the centre of the sphere. At
Rep = 10, the equilibrium position of the sphere is off centre, and the flow about the
sphere is no longer top–down symmetric. This asymmetry, while expected due to the
position of the particle, surprisingly produces no net hydrodynamic lift on the sphere at
this off-centre equilibrium position. The disturbance flow about the sphere at Rep = 1
resembles that computed by Mikulencak & Morris (2004), as in both studies the sphere is
at the centre of the channel, with slightly askew recirculating flows adjacent to the sphere
in the x̃-direction. Specifically, the disturbance flow takes on a quadrupolar character,
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Figure 5. Streamlines for flow around spheres of κ = 0.2 at stable equilibrium positions in confined
simple shear at (a) Rep = 1 and (b) Rep = 10, as well as velocity vectors for disturbance flow around the
aforementioned spheres at (c) Rep = 1 and (d) Rep = 10, with flow in the positive y-direction in red and flow
in the negative y-direction in blue.

as indicated by the colour shading in figures 5(c) and 5(d), which highlights that the
freely suspended sphere acts as a quadrupolar source of vorticity by virtue of the no-slip
condition at its surface. The disturbance flow at Rep = 10, while containing recirculating
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ỹ)

Channel Reynolds number (Rec)

102

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

101 102 103

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

κ = 0.1
κ = 0.15
κ = 0.2

Figure 6. Equilibrium position of a sphere in confined shear flow as a function of (a) particle Reynolds
number Rep and (b) channel Reynolds number Rec, for three confinement ratios.

flows seen by Mikulencak & Morris (2004), differs qualitatively due to the sphere in our
study lying on the off-centre equilibrium position. In particular, the top–down symmetry
of the quadrupolar disturbance seen at Rep = 1 is absent.

Lift force calculations are repeated for confinement ratios κ = 0.1 and 0.15, and
the equilibrium positions at increasing Rep are shown in figure 6. In this figure, the
computations for κ = 0.2 correspond to the equilibrium positions previously discussed,
where the bifurcation occurs in the range 3 < Rep < 10. When the confinement ratio is
decreased to κ = 0.15 and 0.1, the critical Rep required to induce the bifurcation decreases
as well, occurring at 1 < Rep < 3 and 0.3 < Rep < 1, respectively. It is important to
note that for κ = 0.1, although the critical Rep is smaller than unity, the critical channel
Reynolds number Rec = Rep/κ

2 is not small (in the range 30 < Rep < 100), and so the
bifurcation occurs due to significant inertial forces on the scale of the channel flow. The
theoretical results of Ho & Leal (1974), as well as experimental results of Halow &
Willis (1970b,a), examining neutrally buoyant spheres in shear flow, do not demonstrate
an inertial bifurcation of the equilibrium position as they pertain to Rec � 1, where the
entire flow is viscous dominated.

4.2. Migration of a freely suspended sphere
The trajectory of a neutrally buoyant sphere of κ = 0.2 is computed in confined shear flow.
The sphere is located at initial positions ỹ0 = −0.25 and −0.1 and allowed to freely rotate
and translate until it reached an equilibrium position in the y-direction. The process was
repeated for various Rep, and the results are shown in figure 7. At Rep = 1, the particle
translates to an equilibrium position at the centre of the channel, ỹ = 0. The equilibrium
is independent of initial position, confirming the previous observation of a single zero
crossing at ỹ = 0 in figure 4. At Rep = 3, the equilibrium position remains at the centre
of the channel, independent of the initial position. At Rep = 10, the particle translates to a
stable off-centre position of ỹ � ±0.15; thus, a bifurcation of the equilibrium position has
occurred for 3 < Rep < 10. The initial position of the particle now dictates the equilibrium
position of the particle; spheres with initial positions of ỹ0 < 0 and ỹ0 > 0 will translate
to equilibrium positions of ỹ � −0.15 and ỹ � 0.15, respectively, while a particle with an
initial position of ỹ0 = 0 will remain at the centre in an unstable equilibrium position. At
Rep=30, the equilibrium position shifts further from the channel centreline to ỹ � ±0.21.
These findings are entirely consistent with those presented in § 4.1.
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Figure 7. Trajectory of a freely suspended sphere of κ = 0.2 at various particle Reynolds numbers Rep,
showing the change in transverse position ỹ as a function of time. A sphere with initial position ỹ > 0 would
follow the trajectory of those shown here, mirrored about the centreline.

5. Non-neutrally buoyant sphere in confined shear flow

5.1. Migration in a horizontally aligned channel
The trajectory of a sphere of κ = 0.2 and density ρp = 2ρ in confined shear flow with
Rep = 1 and Rep = 10 in a horizontally aligned channel under gravitational force F̃g
is computed. The sphere is located at an initial position of ỹ0 = −0.25, −0.1 or 0.1
and allowed to freely rotate and translate until it reaches an equilibrium position. The
resulting equilibrium position is compared to a prediction generated from our study of a
neutrally buoyant particle in the previous section. To do so, the applied gravitational force
is first linearly combined with the calculated hydrodynamic lift on a neutrally buoyant
particle. This generates a new force–position curve with a new zero crossing; this zero
crossing provides an approximation of the stable equilibrium position for a non-neutrally
buoyant particle. The results of this exercise are shown in figure 8. The equilibrium
position is found to change at all applied gravitational forces studied. Note, for F̃g = 0, the
equilibrium positions would be ỹ = 0 and ỹ � ±0.15, respectively, as Rep = 1 is below
the critical Rep for the pitchfork bifurcation and Rep = 10 is above.

At Rep = 1, the equilibrium position moves toward the lower confining wall, in the
direction of the applied gravitational force, with only a single equilibrium position
observed. The initial position was not found to impact the final equilibrium position;
however, the rate at which the sphere approached the equilibrium position was affected.
The sphere with an initial position of ỹ = 0.1 translates the most rapidly, as both the
inertial lift force and applied gravitational force are affecting the particle in the same
direction. Spheres with an initial position ỹ0 = −0.25 translate across streamlines more
rapidly than those that begin at ỹ0 = −0.1. Particles closer to the bounding wall experience
a greater lift force due to the positional dependence of the lift force, as shown in § 4.1.
Thus, the resulting translational velocity of spheres closer to the wall will be higher.
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Figure 8. Trajectory of a sphere of κ = 0.2 at (a) Rep = 1 and (b) Rep = 10 under gravity in a horizontally
aligned channel as a function of time. The angle of the imposed gravitational force is θg = 0. The dashed line
corresponds to the approximated equilibrium position calculated from the lift force plot in figure 3, by linearly
combining F̃g with the lift force F̃L for a neutrally buoyant particle.

At Rep = 10, the equilibrium position always shifts toward the low confining wall in
the direction of gravity, but the trajectory of the particle depends on the magnitude of
the force applied. For a gravitational force of F̃g = 0.25, there is an imperfect bifurcation
of the equilibrium position, as the applied force is insufficient to oppose the inertial lift
force directing the particle upwards. Here, by ‘imperfect’ bifurcation we mean that two
stable equilibrium positions are no longer equidistant from the centre of the channel, and
the equilibrium position of the sphere depends on the initial position. At F̃g = 0.5, the
applied force is greater in magnitude than the local inertial force maximum, overcoming
the inertial force and allowing the particle to cross the channel centre. Thus, the pitchfork
equilibrium position bifurcation is broken by a sufficiently strong gravitational force, and
only a single off-centre equilibrium position remains.

The results indicate that the gravitational force shifts the equilibrium position of
the sphere towards the bottom bounding wall in all cases, as would be expected in a
horizontally aligned channel under a uniform body force. As mentioned above, predictions
of the equilibrium position of a non-neutrally buoyant sphere were created by linearly
combining the calculated lift force on a neutrally buoyant particle with the applied
gravitational force, thereby shifting the zero crossing and equilibrium position. This simple
approximation is shown to be in reasonable agreement with the calculations in figure 8.

5.2. Migration in a vertically aligned channel
The trajectory of a sphere of κ = 0.2 and density ρp = 2ρ in confined shear flow with
Rep = 1 and Rep = 10 in a vertically aligned channel under gravitational force F̃g is
computed. The sphere is located at an initial position of ỹ0 = −0.25, −0.1 or 0.1 and
allowed to freely rotate and translate until it reached an equilibrium position. The results
are shown in figure 9. Note, for F̃g = 0, the equilibrium positions would be ỹ = 0 and
ỹ � ±0.15, respectively, as Rep = 1 is below the critical Rep for the pitchfork bifurcation
and Rep = 10 is above.

The results show that the applied force, in the direction of flow, causes the transverse
equilibrium position of the sphere to shift toward the oppositely moving confining wall.
The applied force induces a difference between the particle velocity and the fluid velocity

915 A119-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

16
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.161


A.J. Fox, J.W. Schneider and A.S. Khair

–0.5

0

0.5(c)

0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7
–0.5

0

0.5

–0.30

–0.25

–0.20

–0.15

–0.10

–0.05

0

0.05

0.10

0.15

0.20

0 50 100 150 200 250 300 0 50 100 150 200 250 300
–0.30

–0.25

–0.20

–0.15

–0.10

–0.05

0

0.05

0.10

0.15

0.20

Axial position (x̃) Axial position (x̃)

Time (t̃ ) Time (t̃ )

T
ra

n
sv

er
se

p
o
si

ti
o
n
 (

ỹ)
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Figure 9. Trajectory of a sphere of κ = 0.2 under gravity in a vertically aligned channel as a function of time
for (a) Rep = 1 and (b) Rep = 10, as well as velocity vectors for disturbance flow around the aforementioned
spheres at (c) Rep = 1 with F̃g = 100 and (d) Rep = 10 with F̃g = 2, with flow in the positive y-direction in
red and flow in the negative y-direction in blue. The angle of the imposed gravitational force is θg = π/2.

of the streamline passing through its centre, referred to as a ‘slip velocity’. This induces
a Saffman-like lift due to the relative velocity gradient across the particle, and forces
the particle toward the bounding wall translating in the opposite direction of gravity. As
we have noted in previous sections, while Rep = 1 and 10 are relatively small, Rec =
Rep/κ

2 = 100 and 1000 are not, and as such an inertia-dominated ‘outer’ region is within
the channel; as such, a Saffman-type lift is produced.

At Rep = 1, the equilibrium position moves toward the confining wall translating in the
opposite direction to the applied gravitational force, with only a single equilibrium position
observed. A greater gravitational force is required to produce an equilibrium position
shift on the scale observed in § 5.1, with F̃g = 100 shifting the equilibrium position in a
vertically aligned channel to a similar distance as F̃g = 8 in a horizontally aligned channel.

At Rep = 10, the equilibrium position again shifts toward the confining wall translating
in the opposite direction to the gravitational force, but the behaviour of the sphere depends
on the magnitude of the applied force. At F̃g = 1, there are still two equilibrium positions,
although they are no longer equidistant from the centre; again, an imperfect bifurcation
arises from the broken symmetry due to the applied force. Under this gravitational
force, the induced Saffman-type lift is less than the wall-induced inertial lift force,
and as such can only shift the equilibrium position. An imperfect bifurcation of the
equilibrium positions occurs, with the equilibrium position of the sphere depends on its
initial position. At F̃g = 2, the induced Saffman-type lift is greater in magnitude than the
local wall-induced inertial lift maximum, forcing the particle across the channel centre.

915 A119-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

16
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.161


Sphere in confined inertial shear flow

As such, under this gravitational force, only a single equilibrium position exists and the
pitchfork equilibrium position bifurcation for a neutrally buoyant particle is broken.

The disturbance flow about the spheres allows for the visualization of the impact of
the gravitational force. As seen in figure 9(c), the disturbance flow at Rep = 1 retains
the quadrupolar characteristic seen in figure 5(c), although the symmetry of the flow has
been broken due to the off-centre equilibrium position of the sphere. In figure 9(d), the
disturbance flow at Rep = 10 remains qualitatively similar to that seen in figure 5(d), as
the equilibrium position was already off centre. Neither case shows a dipolar disturbance
flow, as would be expected for a sphere settling in quiescent fluid under gravity, as the
particle velocity under the gravitational force is less than the characteristic velocity of the
ambient shear flow.

6. Neutrally buoyant sphere in time-dependent shear flow

6.1. Migration after flow cessation
The trajectory and rotation rate of a sphere of κ = 0.2 in confined shear flow following
a cessation of the flow is computed. The sphere is located at an initial position of ỹ0 =
−0.1 and allowed to freely rotate and translate until it reached a centreline equilibrium
position at Rep = 1 or off-centre equilibrium position at Rep = 10. Here, the values of
Rep pertain to the flow before cessation. Prior to flow cessation, the simulation runs for
an equilibration time of t̃EQ = 200 under steady flow, allowing the sphere to reach an
equilibrium position within the channel. After equilibrating, the velocity of the confining
wall is decreased from Um to zero, with Um dictated by the Reynolds number of the specific
computation, over a period of 	t̃. The sphere is allowed to freely translate and rotate in
the slowing fluid until it reaches a final equilibrium position. The results of this study are
shown in figure 10. At Rep = 1, the particle remains at the centre of the channel and does
not move laterally during flow cessation. At Rep = 10, the cessation of the flow induces
particle motion away from its initial off-centre equilibrium position. For 	t̃ � 10, the
effect of flow cessation is similar, with the sphere shifting toward the centreline, reaching a
final equilibrium position of ỹ � −0.12. The parametric plot indicates that particle motion
ultimately ceases in the x- and y-directions, with only slight drift of the particle in the
x-direction following flow cessation. For 	t̃ � 30, the equilibrium position shifted closer
to the centre of the channel, reaching final equilibrium positions of ỹ � −0.11 and −0.07
at 	t̃ of 30 and 100, respectively. At 	t̃ = 1000, the particle translates to the centre of the
channel, reaching a final equilibrium position at ỹ = 0. These behaviours were confirmed
to be independent of relaxation time, τ .

At all transition times probed, the rotation rate of the sphere at Rep = 1 slowed faster
than a sphere at Rep = 10, due to the greater inertia in the latter case, shown in figure 10(c).
The slowing of rotation of the sphere is dictated by two time scales: a time scale of the
dissipation of momentum across the channel, H2/ν, and a time scale for the ceasing of
the channel walls, 	t̃. As shown in figure 10(d), at 	t̃ = 3, the particle continues rotating
after the relative shear gradient goes to zero, as the momentum dissipates on a slower time
scale than the channel walls come to a halt, or cease. As the transition time increases,
the rotation of the particle when the walls cease lowers, as more momentum is able to
dissipate. By 	t̃ = 300, the momentum dissipation time scale is much less than the flow
ceasing time scale, and as such, the rotation of the particle ceases when the channel walls
cease translating.

The shift of the particle toward the centre of the channel during cessation is the result
of the particle experiencing instantaneously smaller Rep as the flow ceases. During the
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Figure 10. Trajectory of a sphere of κ = 0.2 under cessation of shear flow (a) as a function of time and (b) as
a function of distance in the flow direction. At t̃ = 200, denoted in (a) by a dashed line vertical and in (b) by a
black circle, the velocity of the bounding walls of the channel decreases from Um to 0 over a period of 	t̃. The
relative rotation rate of a sphere Ω̃/Ω̃max following the cessation of the channel walls as a function of (c) time
and (d) relative shear gradient.

period of cessation, the particle experiences non-zero, Rep flows, as the instantaneous Rep
in the channel drops from 10 to 0. These flows produce equilibrium positions closer to and
eventually at the centre of the channel, driving the particle inward. The greater shift toward
the centre with increasing 	t̃ is caused by the particle sampling lower Rep flows for longer
times. Above 	t̃ � 30, this effect becomes more pronounced, leading to greater changes in
equilibrium position, as well as extended drift in the direction of flow. At 	t̃ = 1000, the
sphere reaches the centre of the channel, as the sphere experiences flows below the critical
Rep for enough time to allow the inertial lift to drive the particle to a central equilibrium
position. This result is noteworthy, as a finite stopping time can be explored further through
experimentation. Using a rheometer, Couette flow can be generated in a laboratory setting
and, by varying the rate at which the shearing ceases, the behaviour of particles as detailed
in this section could be confirmed.

6.2. Migration after flow reversal
The trajectory of a sphere of κ = 0.2 in confined shear flow following a reversal of the
flow is computed. The sphere is located at an initial position of ỹ0 = −0.1 and allowed
to freely rotate and translate until it reached a centreline equilibrium position at Rep = 1
or and off-centre equilibrium position at Rep = 10 of ỹ � −0.15. Prior to flow reversal,
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Figure 11. Trajectory of a sphere of κ = 0.2 in reversing shear flow (a) as a function of time and (b) as a
function of distance in the flow direction. At t̃ = 200, denoted in (a) by a dashed line and in (b) by a black
circle, the velocity of the bounding walls of channel reverses from Um to −Um over a period of 	t̃. The relative
rotation rate of a sphere Ω̃ − Ω̃min/Ω̃max − Ω̃min following the cessation of the channel walls as a function of
(c) time and (d) relative shear gradient.

the simulation runs for an equilibration time of t̃EQ = 200 under steady flow, allowing
the sphere to reach an equilibrium position within the channel. After equilibrating, the
velocities of the confining walls are reversed from Um to −Um and from −Um to Um, with
Um dictated by the Reynolds number of the specific computation, over a period of 	t̃. The
results of this study are shown in figure 11. At Rep = 1, the particle remains at the centre of
the channel and does not move during flow reversal. At Rep = 10, the reversal of the flow
induces particle motion away from its equilibrium position before the flow reverses. That
is, the sphere translates towards the centre of the channel, before reversing direction and
returning to its original equilibrium position at ỹ � −0.15. The period of reversal does not
affect the long time behaviour of the sphere, although longer reversal times above 	t̃ � 30
cause the sphere to translate closer to the centre of the channel and require a longer time
to return to the equilibrium position. These behaviours were confirmed to be independent
of relaxation time, τ .

The rotation rate of the sphere at Rep = 1 decelerated faster than a sphere at Rep = 10 for
all transition times tested, shown in figure 11(c), as the latter flow contained more inertia
than the former. Similar to § 6.1, the reversing of rotation of the sphere is dictated by two
time scales: a momentum dissipation time scale and channel wall translation reversing
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time scale. As shown in figure 11(d), at 	t̃ = 3, the particle rotation continues reversing
after the shear gradient reversed, as the momentum dissipates on a slower time scale than
the channel walls reverse. As the transition time increases, the rotation of the particle
is closer to reversed when the channel walls reverse translation, as more momentum is
able to dissipate. At 	t̃ = 300, the momentum dissipation time scale is much less than
the flow reversing time scale, and as such, the rotation of the particle is fully reversed
when the channel walls reverse translation direction. That is, here the rotation responds
quasi-steadily with the changing wall velocity.

As in the case of flow cessation in § 6.1, the translation of the particle toward the
channel centre is caused by the sphere experiencing instantaneously smaller Rep as the
flow reverses. During flow reversal, the instantaneous Rep in the channel drops from 10 to
0, before increasing again to 10. The equilibrium positions created by these flows are closer
to or at the centre of the channel, resulting in the particle moving toward the centre before
Rep returns to 10. Above 	t̃ � 30, the cross-streamline translation occurs for a greater
time, as the sphere samples lower Rep for greater times and shifts the position closer toward
the centre. At 	t̃ = 1000, the sphere nearly reaches the centre of the channel, as the flow
remains subcritical (i.e. the instantaneous Rep is below the critical Rep for equilibrium
position bifurcation) for enough time to allow the inertial lift to drive the sphere toward
very near the centre. Similarly to the previous section, the examination of finite reversal
times is of particular interest for examination through physical experimentation. Likewise,
such a system could be analysed using a Couette flow rheometer in oscillatory shear,
allowing for experimental confirmation of particle trajectories after flow reversal, although
the curved streamlines in Couette flow could alter the trajectories from what is computed
here.

7. Conclusions

In this study, the dynamics of a rigid sphere in confined shear flow was quantified via the
LB method. The equilibrium position of a neutrally buoyant sphere in confined shear is
predicted to undergo a supercritical pitchfork bifurcation above a critical Rep, which is
below the transition to unsteady flow. Below the critical Rep, the sphere has a single stable
equilibrium position located at the centre of the channel, while above the critical Rep,
the sphere has three possible equilibria. The aforementioned centre equilibrium position
remains, but becomes unstable, and two new stable equilibrium positions exist equidistant
from the centre of the channel. The critical Rep was shown to increase with κ and,
therefore, particle size.

A non-neutrally buoyant sphere in confined shear flow was shown to migrate to new
equilibrium positions dependent on the magnitude of the gravitational force acting upon
it. In horizontally aligned channels, the gravitational force on the sphere acts transverse
to the direction of flow and shifts the equilibrium position of the sphere toward the lower
confining wall. In the regime tested, this gravitational force and the inertial force on a
neutrally buoyant particle could be linearly combined to produce a reasonable prediction
of the equilibrium position of a non-neutrally buoyant particle. In a vertically aligned
channel, the gravitational force on the sphere acts in the direction of flow, creating a slip
velocity between the particle and shear flow. This induces a Saffman-like lift force that
was shown to shift the equilibrium of the particle toward the oppositely moving bounding
wall. In both channel alignments, when the flow is above the critical Rep, there exists
a gravitational force range such that the equilibrium position bifurcation persists, but no
longer exhibits the symmetric pitchfork characteristic seen for a neutrally buoyant particle.
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When gravitational force is sufficiently strong enough, this bifurcation breaks and only a
single off-centre equilibrium position remains.

The dynamics of a neutrally buoyant sphere in time-dependent confined shear flow
was shown to depend on the period of variation of the flow. Following a cessation of
the flow, a sphere with an off-centre equilibrium was seen to shift towards the centre of
the channel, while particles at the centre remained stationary in the transverse position.
The amount of translation toward the centre was shown to depend on the period over
which the confining walls of the channel stopped, with longer transition periods resulting
in equilibrium positions closer to the centre. In the case of flow reversal, the equilibrium
position of a sphere was seen to remain at its initial position; however, a sphere with
an equilibrium position off centre will undergo a translational period during which it will
move toward, then away from, the centre of the channel. The distance the particle translates
toward the centre increases with longer transition times, as does the time over which the
translation of the particle occurs.

As the equilibrium bifurcation occurs at non-zero Rep, the particle contributes to the
bulk stress in a suspension (i.e. particles plus fluid) through both the stresslet on its surface
and an acceleration stress (Batchelor 1970). The latter effect resembles a Reynolds stress
and is due to variations in the velocity field around the particle relative to the mean flow in
the suspension. The stresslet on a sphere in confined shear flow at the centre of a channel
has been computed by Mikulencak & Morris (2004) to vary with the Reynolds number, as
the flow about the sphere changes with Rep. In future studies of the bifurcation uncovered
in the present work, the effect of the change in equilibrium position on the stresslet could
be investigated. Specifically, calculating the stresslet as the equilibrium position bifurcates
could reveal a signature change beyond the critical Rep. Additionally, the acceleration
stress could be calculated both below and above the critical Rep.

Our observation of a bifurcation in equilibrium position for spheres suggests future
work should examine the generality of this phenomenon. Specifically, the behaviour of
anisotropic particles, such as oblate and prolate spheroids, in confined inertial flows would
be of particular interest. In unbounded shear flow, neutrally buoyant spheroids undergo a
range of rotational dynamics, such as Jeffery orbits at Rep = 0 (Jeffery 1922) and tumbling
and rolling states at finite Rep for prolate and oblate spheroids, respectively (Mao &
Alexeev 2014; Rosen, Lundell & Aidun 2014; Rosen et al. 2015b). The addition of this
rotational dynamics would create an additional translational dynamics unseen in our study
of spheres, which undergo simple rotation. Notably, the study of the inertial dynamics
of spheres and spheroids could be verified through laboratory experimentation. Using
a parallel band apparatus, a flow cell could be constructed that creates a planar shear
flow about both neutrally and non-neutrally buoyant particles (Taylor 1934; Rust & Manga
2002). Confirmation of the dynamics of particles in inertial flow, as well the equilibrium
position bifurcation observed in this study, would represent the first step toward developing
novel particle separation devices. Such an apparatus could offer separations of high
selectivity, as the dynamics of the particles would change abruptly above a critical Rep,
due to the equilibrium position bifurcation.
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Figure 12. Trajectory of a sphere of κ = 0.2 at Rep = 1 and Rep = 10 at three different domain sizes,
nx × ny × nz, where ny = nz = 0.5nx.

Appendix. Further verification of LB computations

It is important to ensure that the computational parameters, such as the domain size,
the channel periodicity and time resolution, do not impact the conclusions of our work.
The convergence of our computations with respect to the values of these parameters will
be addressed here by examining the translation and equilibrium position of a neutrally
buoyant sphere in confined shear flow of κ = 0.2.

The size of the computational domain directly affects the resolution of the simulations.
To minimize the errors, the computational domain should be made as large as possible;
however, excessively large domains are too computationally expensive. As such, it is
necessary to determine the minimum domain size necessary to produce results that
are invariant with increasing the domain size. To study the domain size dependence,
the trajectory of a neutrally buoyant sphere with κ = 0.2 at Rep = 1 and Rep = 10 is
considered. Three different computational domain sizes of AR = Nx/Ny = 2 are tested,
at (Nx, Ny, Nz) = (64, 32, 32), (96, 48, 48), and (128, 64, 64). The shear rate was held
constant at G = 1/1000, thus removing the influence of time resolution from the study. It
is seen in figure 12 that the trajectory for the sphere in all cases remains independent of
the domain size. As the computation time did not prove prohibitively large and to ensure
maximum veracity, a domain of (128, 64, 64) was used for the results reported in the main
text of this article.

The periodicity of the computational domain can alter the dynamics of simulated
particles. As the simulation uses a periodic boundary condition in the direction of
flow, there is essentially an infinite array of simultaneously translating particles in the
x-direction. If the aspect ratio of the channel AR = Nx/Ny is too small, the flow about
the sphere will be influenced by the flow about the neighbouring virtual particles. It is
necessary to select an AR such that the dynamics of the particle simulated is independent of
the virtual particles, while remaining small enough to not induce excessive computational
times. To study the periodicity, three different channel aspect ratios are tested of AR = 2,
3, and 4. The shear rate was again held constant at G = 1/1000. It is shown in figure 13
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Figure 13. Trajectory of a sphere of κ = 0.2 at Rep = 1 at three different channel aspect ratios, AR = nx/ny.
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Figure 14. Trajectory of a sphere of κ = 0.2 at Rep = 1 at three different shear rates, G.

that the trajectory for the sphere in all cases remains independent of the domain size,
with all spheres migrating to the centre of the channel along the same path. To reduce
computational time, an aspect ratio of AR = 2 is used for the results reported in the main
text.

Last, we turn to the time resolution of the simulations. The time resolution is inversely
dependent on the shear rate G, as high shear rates, and therefore characteristic velocities,
produce high Mach number flows, which the derivation of the LB equation and thus
LB computations require to be small. However, lower shear gradients lead to longer
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computational times, which may be prohibitively expensive. Therefore, the ideal shear
gradient is the largest G such that the reduction of G does not alter the dynamics of
the simulation. To study the time resolution dependence, the trajectory of a neutrally
buoyant sphere in confined shear flow is considered at three different shear gradients
G = 1/1000, 1/2000 and 1/3000. It is shown in figure 14 that the trajectory for the sphere
in all cases remains independent of the domain size, with all spheres migrating to the
centre of the channel along the same path. To reduce computational time, a shear gradient
of G = 1/1000 is used for the results reported in the main text.

REFERENCES

AIDUN, C.K., LU, Y. & DING, E.-J. 1998 Direct analysis of particulate suspensions with inertia using the
discrete Boltzmann equation. J. Fluid Mech. 373, 287–311.

ASMOLOV, E.S. 1999 The inertial lift on a spherical particle in a plane poiseuille flow at large channel
Reynolds number. J. Fluid Mech. 381, 63–87.

BATCHELOR, G.K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545–570.
CHEN, H., CHEN, S. & MATHHAEUS, W.H. 1992 Recovery of the Navier–Stokes equations using a lattice-gas

Boltzmann method. Phys. Rev. A 45, R5339(R).
COX, R.G. & BRENNER, H. 1968 The lateral migration of solid particles in poiseuille flow – I. Theory. Chem.

Engng Sci. 23, 147–173.
DREW, D.A. 1988 The lift force on a small sphere in the presence of a wall. Chem. Engng Sci. 43, 769–773.
EKANAYAKE, N.I.K., BERRY, J.D., STICKLAND, A.D., DUNSTAN, D.E., MUIR, I.L., DOWER, S.K. &

HARVIE, D.J.E. 2020 Lift and drag forces acting on a particle moving with zero slip in a linear shear flow
near a wall. J. Fluid Mech. 904, A6.

FENG, J., HU, H.H. & JOSEPH, D.D. 1994 Direct simulation of initial value problems for the motion of solid
bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows. J. Fluid Mech. 277, 271–301.

FOX, A.J., SCHNEIDER, J.W. & KHAIR, A.S. 2020 Inertial bifurcation of the equilibrium position of a
neutrally-buoyant circular cylinder in shear flow between parallel walls. Phys. Rev. Res. 2, 013009.

GOU, Y., JIA, Y., WANG, P. & SUN, C. 2018 Progress of inertial microfluidics in principle and application.
Sensors 18, 1762.

HALOW, J.S. & WILLIS, G.B. 1970a Experimental observations of sphere migration in Couette systems. Ind.
Engng Chem. Fundam. 9, 603–607.

HALOW, J.S. & WILLIS, G.B. 1970b Radial migration of spherical particles in Couette systems. AIChE J. 16,
281–286.

HO, B.P. & LEAL, L.G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows.
J. Fluid Mech. 65, 365–400.

HUO, S., ZOU, Q., CHEN, S., DOOLEN, G. & COGLEY, A.C. 1995 Simulation of cavity flow by lattice
Boltzmann method. J. Comput. Phys. 118, 329–347.

HUR, S.C., MACH, A.J. & DI CARLO, D. 2011 High-throughput size-based rare cell enrichment using
microscale vortices. Biomicrofluids 5, 022206.

JEFFERY, G.B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A
102, 161–179.

LADD, A.J.C. 1994a Numerical simulations of particulate suspensions via a discretized Boltzmann equation.
Part 1. Theoretical foundation. J. Fluid Mech. 271, 285–309.

LADD, A.J.C. 1994b Numerical simulations of particulate suspensions via a discretized Boltzmann equation.
Part 2. Numerical results. J. Fluid Mech. 271, 311–339.

LI, M., MUNOZ, H.E., GODA, K. & DI CARLO, D. 2017 Shape-based separation of microalga euglena
gracilis using inertial microfluidics. Sci. Rep. 7, 10802.

MACH, A.J. & DI CARLO, D. 2010 Continuous scalable blood filtration device using inertial microfluidics.
Biotechnol. Bioengng 107, 302–311.

MAO, W. & ALEXEEV, A. 2014 Motion of spheroid particles in shear flow with inertia. J. Fluid Mech. 749,
145–166.

MARTEL, J.M. & TONER, M. 2014 Inertial focusing in microfluidics. Annu. Rev. Biomed. Engng 16, 371–96.
MCLAUGHLIN, J.B. 1991 Inertial migration of a small sphere in linear shear flows. J. Fluid Mech. 224,

261–274.
MCLAUGHLIN, J.B. 1993 The lift on a small sphere in wall-bounded linear shear flows. J. Fluid Mech. 246,

249–265.

915 A119-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

16
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.161


Sphere in confined inertial shear flow

MCNAMARA, G.R. & ZANETTI, G. 1988 Use of the Boltzmann equation to simulate lattice-gas automata.
Phys. Rev. Lett. 61, 2332.

MIKULENCAK, D.R. & MORRIS, J.F. 2004 Stationary shear flow around fixed and free bodies at finite
Reynolds number. J. Fluid Mech. 520, 215–242.

MIURA, H. & KIMOTO, M. 2005 A comparison of grid quality of optimized spherical hexagonal–pentagonal
geodesic grids. Mon. Weath. Rev. 133, 2817–2833.

NIRSCHL, H., DWYER, H.A. & DENK, V. 1995 Three-dimensional calculations of the simple shear flow
around a single particle between two moving walls. J. Fluid Mech. 283, 273–285.

NIVEDITA, N. & PAPAUTSKY, I. 2013 Continuous separation of blood cells in spiral microfluidic devices.
Biomicrofluidics 7, 054101.

POE, G.G. & ACRIVOS, A. 1975 Closed streamline flows past rotating single spheres and cylinders: inertia
effects. J. Fluid Mech. 72, 605–623.

ROSEN, T., DO-QUANG, M., AIDUN, C.K. & LUNDELL, F. 2015a The dynamical states of a prolate
spheroidal particle suspended in shear flow as a consequence of particle and fluid inertia. J. Fluid Mech.
771, 115–158.

ROSEN, T., EINARSSON, J., NORDMARK, A., AIDUN, C.K., LUNDELL, F. & MEHLIG, B. 2015b Numerical
analysis of the angular motion of a neutrally buoyant spheroid in shear flow at small Reynolds numbers.
Phys. Rev. E 92, 063022.

ROSEN, T., LUNDELL, F. & AIDUN, C.K. 2014 Effect of fluid inertia on the dynamics and scaling of neutrally
buoyant particles in shear flow. J. Fluid Mech. 738, 563–590.

RUBINOW, S.I. & KELLER, J.B. 1961 The transverse force on a spinning sphere moving in a viscous fluid.
J. Fluid Mech. 11, 447–459.

RUST, A.C. & MANGA, M. 2002 Bubble shapes and orientations in low Re simple shear flow. J. Colloid
Interface Sci. 249, 479–480.

SAFFMAN, P.G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385–400.
SCHONBERG, J.A. & HINCH, E.J. 1989 Inertial migration of a sphere in Poiseuille flow. J. Fluid Mech. 203,

517–524.
SEGRE, G. & SILBERBERG, A. 1961 Radial particle displacements in Poiseuille flow of suspensions. Nature

189, 209–210.
SEGRE, G. & SILBERBERG, A. 1962 Behavior of macroscopic rigid spheres in Poiseuille flow. J. Fluid Mech.

14, 136–157.
TAYLOR, G.I. 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146,

501–523.
WU, J. & AIDUN, C.K. 2010 Simulating 3d deformable particle suspensions using lattice Boltzmann method

with discrete external boundary force. Intl J. Numer. Meth. Fluids 62, 765–783.

915 A119-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

16
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.161

	1 Introduction
	2 Problem formulation
	3 Lattice Boltzmann calculations
	4 Neutrally buoyant sphere in confined shear flow
	4.1 Lift force on a transversely fixed sphere
	4.2 Migration of a freely suspended sphere

	5 Non-neutrally buoyant sphere in confined shear flow
	5.1 Migration in a horizontally aligned channel
	5.2 Migration in a vertically aligned channel

	6 Neutrally buoyant sphere in time-dependent shear flow
	6.1 Migration after flow cessation
	6.2 Migration after flow reversal

	7 Conclusions
	A Appendix. Further verification of LB computations
	References

