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Abstract.—In recent years the plethora of ‘weird wonders,’ the vernacular for the apparently extinct major body plans
documented in many of the Cambrian Lagerstätten, has been dramatically trimmed. This is because various taxa have
been either assigned to known phyla or accommodated in larger monophyletic assemblages. Nevertheless, a number
of Cambrian taxa retain their enigmatic status. To this intriguing roster we add Dakorhachis thambus n. gen. n. sp.
from the Miaolingian (Guzhangian) Weeks Formation Konservat-Lagerstätte of Utah. Specimens consist of an elongate
body that lacks appendages but is apparently segmented. A prominent feeding apparatus consists of a circlet of triangular
teeth, while posteriorly there are three distinct skeletal components.D. thambus is interpreted as an ambush predator and
may have been partially infaunal. The wider affinities of this new taxon remain conjectural, but it is suggested that it may
represent a stem-group member of the Gnathifera, today represented by the gnathostomulids, micrognathozoans, and roti-
fers and possibly with links to the chaetognaths.

UUID: http://zoobank.org/22113e6b-f79e-4d06-9483-144618a61327

Introduction

Cambrian Konservat-Lagerstätten (‘Lagerstätten’ hereafter) pro-
vide exceptional insights into early metazoan evolution, not
least because of an abundance of lightly sclerotized and soft-
bodied taxa (Hagadorn, 2002). Laurentian examples include
the iconic Burgess Shale in British Columbia (Canada) as well
as a series of important deposits in Utah (Spence Shale, Wheeler
Formation, Marjum Formation; e.g., Muscente et al., 2017;
Fig. 1). By contrast, the Weeks Formation (Miaolingian),
exposed near Notch Peak, Utah, only more recently has yielded
an important Burgess Shale–type fauna (Hesselbo, 1989;
Lerosey-Aubril et al., 2013, 2014, 2018; Lerosey-Aubril,
2015; Ortega-Hernández et al., 2015; Robison et al., 2015).
Not only is this latter assemblage important in extending our
knowledge of Cambrian life, but also its chronological position
close to the Miaolingian–Furongian boundary fills a significant
gap in the fossil record of non-biomineralizing animals and
apparently corresponds to the onset of major biotic changes
(Lerosey-Aubril et al., 2018).

To the first approximation, Burgess Shale–type faunas
(e.g., Briggs et al., 1994; Hou et al., 2004) have a well-
established identity with a predominance of arthropods (both tri-
lobites, including agnostoids, and lightly skeletonized taxa),
priapulids (and related scalidophorans), and sponges. Somewhat
more occasional there occur such groups as the annelids,

vetulicolians, wiwaxiids, and other sclerite-bearing taxa. Such
faunas remain a focus of attention not only on account of their
sheer diversity but also because a number of hitherto problem-
atic taxa appear to belong to stem groups that in principle are
instrumental in our understanding of the origin of phyla.

Not all such taxa, however, can be accommodated in this
fashion, and in one way or another, a number of them retain
their enigmatic status. Broadly, these can be divided into three
categories, although the boundaries that separate them are by
no means absolute. Some, such as the vetulicolians, form a rela-
tively diverse clade but their wider relationships within the deu-
terostomes continue to be controversial (e.g., Ou et al., 2012;
García-Bellido et al., 2014). Others, such as Nectocaris, have
deeply polarized opinion, in this case as to whether this animal
is an early cephalopod (e.g., Smith and Caron, 2010; Kroger
et al., 2011; Smith, 2013). Finally, there are singletons that for
all intents and purposes remain in taxonomic limbo, and it is
to this last category we add a remarkable new taxon, Dakorha-
chis thambus n. gen. n. sp. (Fig. 1). These three categories also
have the heuristic value of providing a crude metric of relative
phylogenetic ignorance, although in each case new fossil finds
ultimately will ensure more secure placement within the meta-
zoan tree. Moreover, properly interpreted, these enigmatic taxa
may help to throw crucial light on key transitions between
major groups. At this juncture, we are unable to assign
D. thambus with confidence to any known group, but it is
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evidently a member of the Bilateria. In our opinion, this taxon
is more likely to fall within the Spiralia (rather than the
deuterostomes or ecdysozoans). In the following, we tenta-
tively suggest that D. thambus might represent a stem-group
gnathiferan.

Geological setting

The general setting of this Lagerstätte has been reviewed by
Lerosey-Aubril et al. (2018). In brief, the Weeks Formation
(Miaolingian, Guzhangian) is a relatively deepwater deposit,
apart from the upper section (70 m) that records a substantial
shallowing of the depositional environment associated with
the end of basinal accumulation in the so-called House Range
Embayment. Below this transitional interval, lithologies are
alternating micrites and calcareous claystones. These are indica-
tive of a low-energy, distal ramp environment, which was peri-
odically disturbed by storm-induced gravity flows and episodes
of oxygen depletion. Unlike the Burgess Shale, where much of
the biota was introduced into a toxic environment by small tur-
bidity flows (e.g., Conway Morris, 1986), transport in this
Lagerstätte was evidently minimal. The exceptional preserva-
tion in the Weeks Formation is restricted to a 25 m interval
about 205 m below the top of the unit. This interval has yielded
a diverse fauna (∼73 species), which according to agnostoids
(Proagnostus gibbus Zone) and trilobites (Cedaria Zone) is of
mid-Guzhangian age.

Preservation

The fossils described here show the same style of preservation
as most of the non-biomineralizing taxa of the fauna
(Lerosey-Aubril et al., 2018, fig. 3b, c). This is the result of a ser-
ies of chemical and physical alterations that occurred mostly at a

late stage of diagenesis. Such is very much a hallmark of the
Weeks Formation fauna where evidence of diagenetic phospha-
tization is associated with strong taxonomic and histological
controls. Indeed, all known instances of secondary phosphatiza-
tion concern organs rich in phosphorus (e.g., arthropod guts) or
tissues underneath primary phosphatic structures, such as aglas-
pidid cuticle or palaeoscolecid plates (Lerosey-Aubril, 2015;
Lerosey-Aubril et al., 2012, 2018).

In the case of D. thambus n. gen. n. sp., these postmortem
changes include the initial flattening of the carcasses and, much
later, the replacement of the presumably carbonaceous material
with pyrite and subsequent coating of this pyritic layer (now as
oxidized pseudomorphs) by chlorite (in a fan-like arrangement)
(Fig. 2). This strong diagenetic imprint is related to major igne-
ous intrusions as well as more recent intense weathering. Scan-
ning electron micrographs of specimens of D. thambus suggest
that the trunk is composed chiefly of iron oxides and chlorite
(Fig. 2), and this is consistent with compositional (energy-
dispersive X-ray spectroscopy [EDS]) analyses (Supplemental
Fig. 1).

The translucent teeth differ in composition from the trunk
and appear to have a predominantly calcitic composition
(Fig. 2.3–2.5). As discussed in the following, while an original
composition cannot be excluded, it seems as likely that the
calcite is also diagenetic. Micro-CT shows moderate
three-dimensional (3D) preservation of the teeth at the specimen
surface. However, due to the mode of fossil preservation
(low-density contrast composition and compression), no further
(e.g., internal or subsurface) 3D information was recovered.

Materials and methods

The material consists of nineteen specimens preserved flattened
parallel to bedding. One slab bears two specimens
(UU.15101.05, 15101.06), two slabs have three specimens
each (UU15101.02, 15101.03, 15101.04 and 15101.12,
15101.13, 15104.14), while another slab has five superimposed
specimens (UU15101.07, 15101.08, 15101.09, 15101.10,
15101.11); other specimens are isolated. This material was
examined under a binocular microscope with a drawing tube
employed to prepare camera-lucida interpretative drawings. Spe-
cimens UU17122.03, 18056.27, and 18056.28 were photo-
graphed immersed in dilute ethanol using a Leica IC80 HD
camera mounted on a Leica M80 microscope. Specimen
UU17122.03 was studied uncoated (low vacuum mode) using
a scanning electron microscope (SEM) JEOL JSM-6010LV
equipped with an EDS module JEOL EX-94410T1L11 at the
University of New England. Similar SEM and EDS investiga-
tions were performed on both entire specimens (UU15101.01,
UU15101.07) and polished sections using a QEMSCAN 650F
SEM at the University of Cambridge. Last, computed tomog-
raphy (CT) scans of specimen UU15101.01 (holotype) were
obtained using a Nikon XTH225 ST CT scanner at the Cam-
bridge Biotomography Centre.

Repositories and institutional abbreviations.—Types, figures,
and other specimens (including petrographic sections)
examined in this study are deposited in the Department of

Figure 1. Stratigraphic occurrences ofDakorhachis thambus (in color version,
red) and the oldest chaetognaths (in color version, green) and protoconodonts
(in color version, blue). Cambrian chaetognaths Eognathacantha, Protosagitta
and USNM 199540.
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Geology and Geophysics (Research Collections), University of
Utah, USA (UU,) and Back to the Past Museum, Cancún,
Mexico (BPM).

Systematic paleontology

?Superphylum Spiralia
?Gnathifera-Chaetognatha

Family Dakorhachiidae new family

Type genus (by monotypy).—Dakorhachis n. gen. from the
Miaolingian (Guzhangian) Weeks Formation of the House
Range, Utah, USA.

Diagnosis.—Vermiform, segmented body anteriorly bearing
prominent ?calcitic teeth.

Remarks.—Chaetognatha is currently treated as a distinct
phylum, and recent molecular evidence (Fröbius and Funch,
2017; Marlétaz et al., 2019) links them to the Gnathifera,

Figure 2. Dakorhachis thambus n.gen. n.sp. from the Weeks Formation (Miaolingian, Guzhangian), Utah, USA. Scanning electron micrographs in backscatter
mode of polished sections. (1, 2) UU15101.07: (1) fossil body composed of radiating fans of a chloritic mineral with pseudomorphs of pyrite across upper surface;
(2) detail of fossil body and pseudomorphs. (3–6) UU15101.08: (3) tooth, composed of calcite; (4) tooth and surrounding fossil body; (5) two teeth and surrounding
fossil body, including pyrite pseudomorphs; (6) fossil body with stacked chloritic mineral. Scale bar = 50 μm.
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whose component phyla are Gnathostomulida, Micrognathozoa,
and Rotifera (with parasitic Acanthocephala). Phylum status
denotes their morphological distinctiveness, but all these phyla
are united by the possession of an anterior basket of chitinous
teeth. As discussed in the following, D. thambus n. gen. n. sp.
is tentatively interpreted as a stem-group representative of a
Gnathifera-Chaetognatha clade (we suggest the colloquial
moniker chaetognathiferans).

Genus Dakorhachis new genus

Type species.—Dakorhachis thambus n. gen. n. sp. (by
monotypy).

Diagnosis.—As for type species by monotypy.

Etymology.—A combination of dakos (Greek), a biter, and
rachis (Greek), ridge.

Remarks.—A new genus that appears to have no known
equivalents elsewhere.

Dakorhachis thambus new species
Figures 3–7, Supplemental Figure 2

2018 ‘Enigmatic organism’ Lerosey-Aubril et al., fig. 3a–c.

Holotype.—Complete specimen (UU15101.01), Department of
Geology and Geophysics (Research Collections), University of
Utah, Salt Lake City, Utah.

Diagnosis.—Elongate and robust body. Feeding apparatus
comprising at least six hollow teeth, characterized by gently
convex outer side with prominent central ridge and concave
inner side with narrow ridge-like margins, and in posterior
direction associated skeletal elements in form of hook-like
elements, inverse V-shaped sclerites, and elongate rods. Trunk
composed of 30 segments, gently tapering posteriorly,
terminating in blunt tip.

Occurrence.—Exposures in North Canyon, adjacent to Notch
Peak, House Range, Utah. Weeks Formation (Cambrian Series
3, Guzhangian).

Description.—Apart from minor preservational variants, the
material is united in showing a body consisting of a relatively
elongate trunk (Figs. 3, 5, Supplemental Fig. 3) that, at its
anterior, bears a prominent feeding apparatus (Figs. 4, 5.3).
Total length can reach 28 mm, and maximum width of trunk
is 7 mm (Supplemental Fig. 3). The feeding apparatus bears at
least six prominent teeth, of which about half are exposed in
outer aspect and the remainder in inner aspect, suggesting that,
originally, they formed a circum-oral circlet (Fig. 4.1, 4.3).
Each tooth (∼3 mm long) has a narrow triangular form and in
outer aspect is gently convex and bears a prominent and
relatively narrow longitudinal ridge. In inner aspect, the tooth
is concave, but the margins are defined by very narrow ridges.
The teeth have a fibrous texture, while the broken margin of

one tooth shows what may be a hollow interior (Fig. 6).
Elemental analyses indicate that the teeth have a
predominantly calcitic composition (see the preceding and
Dryad file). Posterior to the teeth are three other skeletal
components, evidently with a composition similar to the teeth
(Fig. 4.2, 4.4). Immediately to the posterior of the teeth are
small hook-like structures, and behind them is a series of
inverse V-shaped units. Most likely these units also formed
circlets. Finally, adjacent to, or superimposed on, the
anteriormost trunk are rod-like structures, usually straight but
occasionally with a sinuous shape.

The trunk is relatively featureless and lacks appendages or
other extensions. In some specimens, the configuration is some-
what sinuous (Fig. 3.3; see also Lerosey-Aubril et al., 2018,
fig. 3a), suggesting an original degree of flexibility (also
Fig. 3.7). The width is more or less uniform, and although
most specimens have a rounded termination, it occasionally
appears to be acute. Broad transverse folds (∼0.8 mm) may be
surficial annulations but here are interpreted as segments
(Figs. 3.1, 3.2, 5.1, 5.2, 7). In life these would have totaled
about 30. That these structures are original rather than post-
mortem (or tectonic) is supported by three lines of evidence.
First, these transverse bands are evidently three dimensional
(Supplemental Fig. 2) and sometimes match a corrugated
body margin. In addition, associated specimens with different
orientations have folds transverse to their respective bodies
rather than parallel to any rock fabric (Supplemental Fig. 3).

Etymology.—From thambos (Greek), an astonishment.

Materials.—Specimens UU15101.02–15101.15, 17122.03,
18056.27, 18056.28; BPM-1090.

Remarks.—A new species that has no close counterpart among
other Cambrian taxa.

Discussion

Paleoecology and mode of life.—D. thambus n. gen. n. sp. lacks
fins or other anatomical features consistent with a pelagic mode
of life and therefore is interpreted as benthic. Co-association of
specimens indicates a gregarious habit, although the case of
parallel stacking (UU15101.07–15101.11) is most likely
postmortem. Locomotory organs are not evident, but
presumably this animal could have moved across or within the
seafloor by peristaltic contractions. Given, however, that the
arrangement of the teeth is in the form of a sort of basket, it
may have captured its prey as an ambusher, and as such the
animal may have been semi-sessile and partially concealed in
the seafloor. The attitude of the teeth varies from parallel to an
anterior convergence, but in life they presumably opened
wider to tackle larger prey. The function of the skeletal
elements posterior to the teeth is more conjectural. One
suggestion is that they served for insertion of muscles
associated with protrusion and subsequent closure of the teeth.

Phylogenetic affinities.—The wider relationships of D. thambus
are necessarily problematic given its lack of close identity to any
known group. Such evidence as there is must look to the feeding
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apparatus. A potentially important clue might be the calcitic
composition of the teeth, although as noted this may well be
diagenetic. Certainly among metazoans, calcitic teeth are
unusual, with the most notable instances being in the
echinoids (e.g., Wang et al., 1997; Stock et al., 2014) and
extinct ophiocistioids (e.g., Reich et al., 2018). Moreover, in
the former group, the teeth can on occasion show a fibrous
microstructure (Reich and Smith, 2009, text-fig. 9C, D). There
is, however, no other feature of Dakorhachis that would
indicate an affinity to either the echinoids or any other
echinoderm, especially if the principal teeth totaled six, an
obvious departure from the characteristic pentaradial
symmetry of this phylum.

In passing, it is worth noting that D. thambus shows some
broad similarities in overall shape to the unusual sponge Takak-
kawia lineataWalcott, 1920 from the Burgess Shale, which has
marginal ‘fins’ extending from a conical body (Botting, 2012).
However, numerous detailed differences in morphology indicate
that the resemblance between these taxa is superficial. Specific-
ally, there are differences in the size, shape, and annulation of the
body in D. thambus (which averages 2.1 cm long, is vermiform,
and has transverse annulations) versus T. lineata (which is
longer [Botting, 2012, fig. 1], more vasiform, and displays diag-
nostic lengthwise lineations). Furthermore, there are major
differences in the shape and organization of the teeth of Dakor-
hachis (which are elongate, sharply pointed, and restricted to the
anterior body margin) versus the ‘fins’ of T. lineata (which are
wider, flat topped, and accompanied by broad spicules extend-
ing down the length of the body). While there is no other reason
to interpretD. thambus as any sort of sponge, the potential com-
plexities of assigning Cambrian taxa to particular groups and the
consequent phylogenetic implications are apparent from Botting
and Muir’s (2018) proposed linkage of Takakkawia to the puta-
tive ctenophore Thaumactena. That said, there is no evidence for
comparing D. thambus with any of the Cambrian ctenophores
(e.g., Ou et al., 2015).

Notwithstanding such comparisons, D. thambus is evi-
dently a bilaterian rather than a representative of the diploblasts
(let alone a sponge). There appears to be no particular similarity
to either the deuterostomes or ecdysozoans. Although, in the lat-
ter case, it is true that the priapulids and related scalidophorans
typically have an introvert equipped with circlets of teeth, these
and associated structures show a complex zonation and diversity
of forms (e.g., Smith et al., 2015) that find no counterpart in the
array of teeth seen inD. thambus or in its ancillary skeletal struc-
tures. Most likely, D. thambus is a member of the Spiralia.

Among the spiralians, the most fruitful comparisons may
possibly lie with the Gnathifera. This monophyletic group
(e.g., Laumer et al., 2015) comprises the gnathostomulids
(e.g., Herlyn and Ehlers, 1997; Sørensen et al., 2006), its sister
group the micrognathozoans (e.g., Bekkouche et al., 2014; Bek-
kouche and Worsaae, 2016), and the syndermatans (the group
encompassing the rotifers and endoparasitic acanthocephalans;
e.g., Rieger and Tyler, 1995; Sørensen, 2002a; Wulfken and

Ahlrichs, 2012). Gnathiferans are millimetric and typically
meiofaunal, but despite this, all possess intricate jaw apparatuses
that reach an apogee in the complex array found in the micro-
gnathozoans (e.g., Kristensen and Funch, 2000; De Smet,
2002; Sørensen, 2003). Current phylogenetic schemes place
the gnathiferans as sister to all other spiralians (e.g., Laumer
et al., 2015; Bekkouche and Worsaae, 2016), which in turn
are broadly divided into the ‘platyozoans’ and the more securely
identified lophotrochozoans.

The disparity of extant gnathiferans, combined with an
almost nonexistent fossil record (e.g., Poinar and Ricci, 1992;
Waggoner and Poinar, 1993; Jha et al., 2011), and their still
poorly resolved systematic position within the bilaterians pose
a series of evolutionary questions. Among the most problematic
is the visualization of a stem-group form and its corresponding
recognition in the fossil record. This question may be further
exacerbated if the millimetric size of the extant gnathiferans is
the result of secondary miniaturization from macroscopic prede-
cessors rather than a primitive state.

Intriguingly, there is also phylogenomic evidence for a link
between the gnathiferans and chaetognaths (Fröbius and Funch,
2017; Marlétaz et al., 2019). The latter are equipped with a for-
midable feeding apparatus consisting of prominent grasping
spines and associated teeth (e.g., Bone et al., 1991), although
at first sight there is no obvious macroscopic connection to
any of the considerably more complex gnathiferan jaws. The
phylogenetic position of the chaetognaths has long been
regarded as basal among the bilaterians (Perez et al., 2013) but
with conflicting views suggesting either a place among the
most primitive protostomes (e.g., Marlétaz et al., 2006; Marlétaz
and Le Parco, 2008; Shen et al., 2016) as opposed to a position
among the basal lophotrochozoans (e.g., Matus et al., 2007;
Dunn et al., 2008; Bernt et al., 2013).

The contribution of the Cambrian fossil record to the early
evolution of the chaetognaths and gnathiferans to date has focused
almost entirely on the former group. Here the protoconodonts,
which apart from occasional fused clusters are effectively dis-
persed as small shelly fossils (Szaniawski, 1982, 2002), are com-
plemented by several soft-bodied taxa similar to extant
chaetognaths (Chen and Huang, 2002; Hu et al., 2007; Vannier
et al., 2007; Shu et al., 2017) and what appear to be two more
primitive representatives (Ankalodus sericus Shu et al., 2017 and
Capinatator praetermissus Briggs and Caron, 2017) characterized
by supernumerary teeth (Briggs and Caron, 2017) or amulti-jawed
morphology (Shu et al., 2017) (Supplemental Fig. 1). It is now
clear, however, that the hitherto enigmatic Amiskwia (Conway
Morris, 1977) possesses a jaw apparatus that supports some sort
of connection to the gnathiferans and/or chaetognaths (Caron
and Cheung, 2019; Vinther and Parry, 2019).

Although the record of relevant soft-bodied taxa (Amiskwia,
Ankalodous, Capinatator) is meager, as potential stem-group
chaetognathiferans they hint at both morphological disparity
and a range of ecologies from swimming to benthic. To this roster
we tentatively propose to add D. thambus. As is the case with a

Figure 3. Dakorhachis thambus n. gen. n. sp. from the Weeks Formation (Miaolingian, Guzhangian), Utah, USA. (1) UU15101.02 (upper) and UU15101.03
(lower); (2) UU15101.04; (3) UU15101.05 (upper) and UU15101.06 (lower); (4) BPM1090; (5) UU15101.01 (holotype); (6) UU18056.27; (7) UU17122.03; (8)
UU18056.28. (1–5) Specimens photographed dry. (6–8) Specimens immersed in dilute ethanol. (1, 5) Scale bars = 5 mm; (2–4, 6–8) scale bars = 2 mm.
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Figure 4. (1, 3) Feeding apparatus of Dakorhachis thambus n. gen. n. sp.: (1) UU15101.01 (holotype; CT images, Fig. 5); (3) UU15101.02. (2, 4) Corresponding
camera lucida drawings. Body (blue/light gray), teeth exterior view (red/very dark gray), interior view (pink/fairly dark gray), V-shaped units (green/dark gray), rods
(yellow/very pale gray), adhesive (grey/darkish gray), oxides (hatched), sediment (white). Scale bars = 1 mm.
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number of other controversial Cambrian groups, a convincing
phylogenetic analysis is frustrated by the paucity of available
character-states and the added possibility that those available
for tabulation in reality are convergent. Our assignment relies
on a tentative interpretation of the feeding apparatus of D.

thambus as a precursor to the much more complex jaws seen
in extant gnathiferans as well as the possible equivalent in the
chaetognaths. Here, therefore, we sketch a possible set of transi-
tions (Fig. 8) that might link the feeding apparatus of Dakorha-
chis n. gen to those of the gnathiferans and chaetognaths.

Figure 5. Holotype (UU15101.01) ofDakorhachis thambus n. gen. n. sp. (1) micro-CT volume rendering; false color represents specimen density. (2) Rotated view
showing 3D transverse banding on the trunk, perpendicular to the long axis. (3) Detail of teeth. (4) Simplified reconstruction. Scale bar = 5 mm.
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There is agreement that some of the elements of gnathiferan
apparatuses are homologous (e.g., Sørensen, 2002b; Sørensen
et al., 2006), but nevertheless collectively the clade shows a
wide diversity of forms. Interestingly, the more basal gnathosto-
mulids possess a somewhat less elaborate jaw (e.g., Riedl and

Rieger, 1972), and within this group there are a number of trends
that can be traced from what appears to be the most primitive
arrangement (e.g., Sterrer, 1972; Sørensen, 2002b). Thus, des-
pite various elaborations, the basic configuration of the jaw is
as a forceps-like unit joined to a proximal base and a basal

Figure 6. Electron micrographs of the feeding apparatus of the holotype (UU15101.01) ofDakorhachis thambus n. gen. n. sp. (1) Overview; (2) detail showing the
hollow tooth interior and fibrous microstructure. Scale bar = 500 μm.

Figure 7. SEM of the body trunk surface ofDakorhachis thambus n. gen. n. sp. specimen UU15101.01 showing iron oxides layer (black arrow) and the imprints of
pseudomorphs of iron oxides after pyrite on the segmented chloritic surface (white arrows). Scale bar = 0.5 mm.
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Figure 8. Hypothetical transitions between the jaw apparatus of Dakorhachis thambus n. gen. n. sp. and (a) those of the chaetognaths (and protoconodonts) via
forms similar to Ankalodous sericus and (b) the gnathiferans (as represented by the gnathostomulids) via forms similar to Amiskwia sagittiformis Walcott, 1911.
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plate. Derivation of this arrangement from something similar to
D. thambus via an amiskwiid (Caron and Cheung, 2019) would,
in principle, involve a shift from an effectively radial symmetry
to a bilateral configuration, reduction from six teeth to three
(along with substantial miniaturization), and possibly incorpor-
ation of the more proximal skeletal elements in D. thambus into
the jaw apparatus.

The likely phylogenetic relationship between chaetognaths
and gnathiferans (Fröbius and Funch, 2017; Marlétaz et al.,
2019) may also find some support in the morphology exhibited
by D. thambus. While there is little obvious similarity between
the jaw configurations of the gnathiferans and chaetognaths, in
both cases the principal composition is chitinous (e.g., Bone
et al., 1983; Sørensen and Sterrer, 2002). The distinctive rod-like
microstructures of most gnathiferan teeth (e.g., Riemann and
Ahlrichs, 2008) is presumably a synapomorphy of the group,
but inD. thambus the fibrous microstructure and possible hollow
interior find a possible counterpart in the protoconodonts (e.g.,
Szianiawski, 2002). If there is an evolutionary connection
between D. thambus and the chaetognaths, then in parallel to
the gnathiferans this would involve a transition from the appar-
ently radial configuration of the teeth in the former taxon to the
bilateral arrangement on the chaetognaths. Although very differ-
ent to the trajectory of the gnathiferans that led toward a meio-
faunal existence, this proposed evolutionary path would also
be a consequence of a major ecological shift, from a perhaps
semi-sessile benthic lifestyle to a more motile pelagic one.

It is worth pointing out that while the fused clusters of pro-
toconodonts (e.g., Szaniawski, 1982, 2002) are convincingly
compared to the bundles of feeding spines in the chaetognaths,
by contrast most protoconodont taxa are never recovered as
fused clusters. While this disaggregation may be the consequence
of standard processing of samples by acid digestion, it seems
equally possible that in such taxa the arrangement of the feeding
apparatus was more open and/or arranged as multiple series (Shu
et al., 2017). An alternative option might be that some of these
feeding spines actually belonged to animals closer toD. thambus,
where the teeth were not clustered but radially organized around a
terminal mouth. In terms of similarities of the teeth ofD. thambus
and supposed protoconodonts, two possible candidates are some
specimens ofProtohertzina robustaQian, 1977 (Pyle et al., 2006,
fig. 6.8) and an unnamed taxon described by Kouchinsky et al.
(2015, fig. 53M, their ‘undetermined form 4’). Our knowledge
of early chaetognath evolution may also be incomplete. Thus,
the otherwise distinctive coelocerodonts (Szaniawski, 2015)
have a chaetognath-like arrangement of the teeth, while the pos-
sible protoconodont Huayuanodontus has a tooth histology dis-
tinct from other taxa (Dong, 2007).

If we are correct in regardingD. thambus as a sister taxon of
the clade gnathiferans-chaetognaths, this suggests that their
common ancestor was macroscopic, semi-sessile, and segmen-
ted. Thus, the miniaturization and largely meiofaunal existence
would have been secondarily acquired in the evolutionary his-
tory of gnathiferans, in contrast to the general assumption that
it is a plesiomorphic condition for the group (e.g., Laumer
et al., 2015). As to the chaetognaths, our discovery cannot
resolve more precisely their position relative to other early bila-
terians (e.g., Marlétaz and Le Parco, 2008; Shen et al., 2016;
Marlétaz et al., 2019). It supports, however, the idea that,

notwithstanding subsequent loss and redeployment (Blair,
2008), segmentation among the bilaterians is primitive. More-
over, in extant chaetognaths, the progenitor neural cells of the
trunk not only are highly organized but also form 30–35 rows
(Perez et al., 2013), comparable to the segment total in D. tham-
bus. Primitive chaetognaths such as Ankalodous (Shu et al.,
2017) may have also had relatively limited motility, but overall
there was evidently a shift to a much more active mode of life
(e.g., Vannier et al., 2007). Evidence for a migration to a pelagic
mode of life (Hu et al., 2007; Vannier et al., 2007; Casenove
et al., 2011) is supported by both the evolution of chaetognath
musculature (Casanova and Duvert, 2002) and molecular data
(Papillon et al., 2006). Significantly, this shift may have been
via benthoplanktonic intermediates, although the few truly ben-
thic chaetognaths extant are very derived (Casanova and Duvert,
1996) and show no significant similarities to D. thambus. This
transition to the pelagic realm would also have been marked
by the separation of the teeth into two separate grasping bundles
(along with smaller teeth adjacent to the mouth), changes in the
patterns of their replacement (Moreno and Kapp, 2003), and loss
of mineralization to assist buoyancy. This would have been com-
bined with extensive reorganization of the head musculature.
Further changes would have included narrowing of the body,
reduction to an oligomeric (tripartite) segmentation (Balavoine
and Adoutte, 2003), and the development of prominent fins
and complex eyes.

Accessibility of supplemental data
Data available from the Dryad Digital Repository: https://doi.
org/10.5061/dryad.p5hqbzkkz.
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