
J. Fluid Mech. (2016), vol. 809, pp. 290–315. c© Cambridge University Press 2016
doi:10.1017/jfm.2016.661

290

A statistical state dynamics-based study of the
structure and mechanism of large-scale motions

in plane Poiseuille flow

Brian F. Farrell1, Petros J. Ioannou2,†, Javier Jiménez3,
Navid C. Constantinou4, Adrián Lozano-Durán3,‡ and

Marios-Andreas Nikolaidis2

1Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
2Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis,

Zografos, Athens, 157 84, Greece
3School of Aeronautics, Universidad Politécnica de Madrid, 28040, Madrid, Spain

4Scripps Institution of Oceanography, University of California San Diego,
La Jolla, CA 90293-0213, USA

(Received 18 December 2015; revised 29 September 2016; accepted 9 October 2016;
first published online 9 November 2016)

The perspective of statistical state dynamics (SSD) has recently been applied to the
study of mechanisms underlying turbulence in a variety of physical systems. An
SSD is a dynamical system that evolves a representation of the statistical state of
the system. An example of an SSD is the second-order cumulant closure referred
to as stochastic structural stability theory (S3T), which has provided insight into
the dynamics of wall turbulence, and specifically the emergence and maintenance
of the roll/streak structure. S3T comprises a coupled set of equations for the
streamwise mean and perturbation covariance, in which nonlinear interactions among
the perturbations has been removed, restricting nonlinearity in the dynamics to
that of the mean equation and the interaction between the mean and perturbation
covariance. In this work, this quasi-linear restriction of the dynamics is used to
study the structure and dynamics of turbulence in plane Poiseuille flow at moderately
high Reynolds numbers in a closely related dynamical system, referred to as the
restricted nonlinear (RNL) system. Simulations using this RNL system reveal that the
essential features of wall-turbulence dynamics are retained. Consistent with previous
analyses based on the S3T version of SSD, the RNL system spontaneously limits the
support of its turbulence to a small set of streamwise Fourier components, giving rise
to a naturally minimal representation of its turbulence dynamics. Although greatly
simplified, this RNL turbulence exhibits natural-looking structures and statistics,
albeit with quantitative differences from those in direct numerical simulations (DNS)
of the full equations. Surprisingly, even when further truncation of the perturbation
support to a single streamwise component is imposed, the RNL system continues to
self-sustain turbulence with qualitatively realistic structure and dynamic properties.
RNL turbulence at the Reynolds numbers studied is dominated by the roll/streak
structure in the buffer layer and similar very large-scale structure (VLSM) in the
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outer layer. In this work, diagnostics of the structure, spectrum and energetics of
RNL and DNS turbulence are used to demonstrate that the roll/streak dynamics
supporting the turbulence in the buffer and logarithmic layer is essentially similar in
RNL and DNS.

Key words: boundary layer structure, parametric instability, turbulence theory

1. Introduction
The fundamental importance of the roll/streak structure in the dynamics of wall

turbulence was recognized soon after it was observed in the near-wall region in
boundary layer flows (Hama, Long & Hegarty 1957; Kline et al. 1967) and seen
in early direct numerical simulations (DNS) of channel flows (cf. Kim, Moin &
Moser 1987). Recently, in both experiments and numerical simulations of turbulent
flows at high Reynolds numbers, roll/streak structures have been identified in the
logarithmic layer with self-similar scale increasing with the distance from the wall
(del Álamo et al. 2006; Hellström, Sinha & Smits 2011; Lozano-Durán, Flores &
Jiménez 2012; Lozano-Durán & Jiménez 2014b; Hellström, Marusic & Smits 2016).
Further from the wall, similar very large streak structures are seen that scale with
the channel half-height or pipe radius, h, or with the boundary layer thickness, δ
(Bullock, Cooper & Abernathy 1978; Jiménez 1998; Kim & Adrian 1999). These
coherent motions are variously referred to as superstructures or very large-scale
motions (VLSM) (del Álamo et al. 2004; Toh & Itano 2005; Hutchins & Marusic
2007; Marusic et al. 2010).

In this paper the mechanism maintaining these large and very large-scale structures
in the upper layers of turbulent plane Poiseuille flow is studied by making use of the
methods of statistical state dynamics (SSD) with averaging operator the streamwise
average. Conveniently, the fundamental dynamics of wall turbulence is contained in
the simplest non-trivial SSD: a second-order closure of the equations governing the
cumulants of the full SSD, referred to as the stochastic structural stability theory (S3T)
system (Farrell & Ioannou 2003, 2012). Restriction of the dynamics to the first two
cumulants involves either parameterizing the third cumulant by stochastic excitation or,
as we will adopt in this work, setting it to zero. With the chosen streamwise averaging
operator, the first cumulant or mean flow is the streamwise-averaged flow, i.e. the
flow component with streamwise wavenumber kx= 0, and the second cumulant is the
covariance of the perturbations, which are defined as the deviations from the mean,
i.e. the flow components with wavenumber kx 6= 0. Either stochastic parameterization
or setting the third cumulant to zero results in a quasi-linear dynamics in which
perturbation–perturbation interactions are not explicitly calculated (cf. figure 1). We
refer to this quasi-linear approximation to the Navier–Stokes equations (NS) used in
S3T as the RNL (restricted nonlinear) approximation. The RNL equations are derived
from the NS by making the same dynamical restriction as that of S3T. A significant
consequence of the S3T and RNL restriction to the NS dynamics is the elimination
of the classical perturbation–perturbation turbulent cascade.

This second-order closure has been justified by Bouchet, Nardini & Tangarife (2013)
in the limit λτ � 1, where τ is the shear time scale of the large-scale flow and 1/λ
the relaxation time associated with damping of the large-scale flow. However, S3T
theory is predictive even when λτ � 1. For example, it predicts the bifurcation from
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the statistically homogeneous to the inhomogeneous state that has been confirmed
using DNS both in barotropic turbulence (Constantinou, Farrell & Ioannou 2014a) and
three-dimensional Couette flow turbulence (Farrell, Ioannou & Nikolaidis 2016).

The S3T closure had been used to study large-scale coherent structure dynamics in
planetary turbulence (Farrell & Ioannou 2003, 2007, 2008, 2009a,c; Marston, Conover
& Schneider 2008; Srinivasan & Young 2012; Bakas & Ioannou 2013; Constantinou
et al. 2014a; Parker & Krommes 2014; Constantinou, Farrell & Ioannou 2016) and
drift-wave turbulence in plasmas (Farrell & Ioannou 2009b; Parker & Krommes
2013). At low Reynolds numbers the S3T closure of wall-bounded turbulence
has been shown to provide a theoretical framework predicting the emergence and
maintenance of the roll/streak structure in transitional flows as well as the mechanism
sustaining the turbulent flow subsequent to transition. In particular, S3T predicts a
new mechanism for the emergence of the roll/streak structure in pre-transitional flow
through a free-stream-turbulence-induced modal instability and its equilibration at
finite amplitude. In addition, S3T provides a theory for maintenance of turbulence
through a time-dependent parametric instability process after transition (Farrell &
Ioannou 2012). (Parametric instability traditionally refers to the instability of a
linear non-autonomous system, a parameter of which varies periodically in time (cf.
Drazin & Reid 1981, § 48). We generalize the concept of parametric instability to
include any linear instability that is inherently caused by the time dependence of
the system. The reason we have adopted the same term to refer to the instability
induced by time dependence in both periodic and non-periodic systems is that the
same mechanism underlies the instability in these systems, which is the inherent
non-normality of non-commuting time-dependent systems coupled with the convexity
of the exponential function (cf. Farrell & Ioannou 1996b, 1999).)

In S3T the perturbation covariance is obtained directly from a Lyapunov equation
which is equivalent to obtaining the covariance as an ensemble mean of the
perturbation covariances obtained from an infinite ensemble of RNL perturbation
equations sharing the same mean flow. In the RNL system used in this work, the
Reynolds stresses are obtained from the covariance formed using a single member
perturbation ensemble. Using a single member of the perturbation ensemble to
directly calculate the Reynolds stresses bypasses explicit formation of the perturbation
covariance and, in this way, it has the advantage over S3T that it can be easily
implemented at high resolution in a DNS (cf. Constantinou et al. 2014b; Thomas
et al. 2014).

S3T has allowed formulation of new theoretical constructs for understanding the
dynamics of turbulence, but is restricted in application to moderate Reynolds numbers
by the necessity to solve explicitly for the perturbation covariance. RNL, by inheriting
the structure of S3T, allows extension of S3T methods of analysis to much higher
Reynolds numbers. While the perturbation variables that appear in the RNL equations
are the velocities, for the purposes of making contact with the theoretical results of
S3T analysis it is important to take the additional conceptual step of regarding the
perturbation variable of RNL to be the covariance associated with these perturbation
variables which is an approximation to the exact perturbation covariance of S3T.
Taking this perspective underscores and makes explicit the parallelism between the
S3T exact statistical state dynamics and the RNL approximation to it.

In order to maintain turbulence in wall-bounded shear flow, a mechanism is
required to transfer kinetic energy from the external forcing to the perturbations.
Obtaining understanding of this mechanism is a fundamental challenge in developing
a comprehensive theory of turbulence in these flows. If the mean flow were stationary
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and inflectional then fast hydrodynamic linear instabilities might plausibly be invoked
as responsible for producing this transfer. However, most wall-bounded shear flows
are both rapidly varying and not inflectional, and the mechanism of energy transfer
to the perturbations involves nonlinear processes that exploit linear transient growth
arising from the non-normality of the flow dynamics. The problem with sustaining
turbulence using transiently growing perturbations is that these perturbations ultimately
decay and must be renewed or else the turbulence is not sustained, as is familiar
from the study of rapid distortion theory (Kim & Lim 2000). A mechanism that
exploits nonlinearity to maintain the transiently growing perturbations we refer to as
a self-sustaining process (SSP) (Hamilton, Kim & Waleffe 1995; Jiménez & Pinelli
1999; Jiménez 2013). The various SSP mechanisms that have been proposed have
in common this sustaining of transient growth associated with the non-normality of
the mean flow by exploiting nonlinearity to renew the transiently growing set of
perturbations. Consistent with the roll/streak structure being the structure of optimal
linear growth, proposed SSP mechanisms may be regarded as alternative nonlinear
processes for renewing this structure (Hamilton et al. 1995; Hall & Sherwin 2010;
Jiménez 2013). In the case of the S3T, and also in the dynamically similar RNL
studied in this work, the mechanism effecting this transfer is known: it is systematic
correlation by the streak of perturbation Reynolds stresses that force the roll, which
in turn maintains the streak through the lift-up process. These Reynolds stresses
are produced by the Lyapunov vectors arising from parametric instability of the
time-dependent streak. This mechanism, which has analytical expression in S3T and
in the noise-free RNL, comprises a cooperative interaction between the coherent
streamwise mean flow and the incoherent turbulent perturbations. It was analysed first
using S3T, and implications of this analysis, including the predicted parametric streak
instability and its associated Lyapunov spectrum of modes, have been studied in
subsequent work (Farrell & Ioannou 2012; Constantinou et al. 2014b; Thomas et al.
2014, 2015; Farrell & Ioannou 2016; Nikolaidis et al. 2016). This analysis of the SSP
using S3T, including the parametric instability of the streak and the structure of the
perturbation field arising as the leading Lyapunov vector of this parametric growth,
will be frequently invoked in this work. Detailed explanation of these concepts can
be found in the above references.

In this paper, we compare DNS and RNL simulations made without any explicit
stochastic parameterization at relatively high Reynolds numbers in pressure-driven
channel flow. Included in this comparison are flow statistics, structures, and dynamical
diagnostics. This comparison allows the effects of the dynamical restriction in RNL
to be studied. We find that RNL with the stochastic parameterization set to zero
spontaneously limits the support of its turbulence to a small set of streamwise
Fourier components, giving rise naturally to a minimal representation of its turbulence
dynamics. Furthermore, the highly simplified RNL dynamics supports a self-sustaining
roll/streak SSP in the buffer layer consistent with that predicted by S3T at lower
Reynolds number and similar to that of DNS. Finally, we find that roll/streak
structures in the log-layer are also supported by an essentially similar SSP.

2. RNL dynamics

Consider a plane Poiseuille flow in which a constant mass flux is maintained
by application of a time-dependent pressure, −G(t)x, where x is the streamwise
coordinate. The wall-normal direction is y and the spanwise direction is z. The
lengths of the channel in the streamwise, wall-normal and spanwise direction are
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(a) (b) (c) (d)

FIGURE 1. (Colour online) Nonlinear interactions that are included or excluded in the
S3T and RNL approximations of the NS. Mean flow Fourier components Û(k) with
wavenumber k = (0, ky, kz) are indicated with solid arrows, the perturbation Fourier
components û′(k) with kx 6= 0 with dashed arrows. The possible nonlinear interactions are:
(a) a perturbation with streamwise wavenumber kx1 interacts with another perturbation with
kx2 =−kx1 to produce a mean flow component with kx= 0, (b) two mean flow components
interact to make another mean flow component, (c) a mean flow component interacts with
a perturbation to make a perturbation component and (d) two perturbation components
with streamwise wavenumbers kx1 6=−kx2 interact to make another perturbation component.
All interactions are included in the NS equations. Interactions (a) and (b) are included
in the S3T and RNL mean equations, while in the S3T and RNL perturbation equations
interactions (c) are included and interactions (d) are either neglected or stochastically
parameterized.

respectively Lx, 2h and Lz. The channel walls are at y/h = 0 and 2. Averages are
denoted by square brackets with a subscript denoting the variable which is averaged,
e.g. spanwise averages by [·]z=L−1

z

∫ Lz

0 · dz, time averages by [·]t=T−1
∫ T

0 · dt, with T
sufficiently long. Multiple subscripts denote an average over the subscripted variables
in the order they appear, e.g. [·]x,y def= [ [·]x ]y. The velocity, u, is decomposed into its

streamwise mean value, denoted by U(y, z, t)
def= [u(x, y, z, t)]x, and the deviation from

the mean (the perturbation), u′(x, y, z, t), so that u=U+ u′. The pressure is similarly
written as p=−G(t)x+P(y, z, t)+ p′(x, y, z, t). The NS decomposed into an equation
for the mean and an equation for the perturbation are:

∂tU+U · ∇U−G(t)x̂+∇P− ν1U=−[u′ · ∇u′]x, (2.1a)
∂tu′ +U · ∇u′ + u′ · ∇U+∇p′ − ν1u′ =−(u′ · ∇u′ − [u′ · ∇u′]x), (2.1b)

∇ ·U= 0, ∇ · u′ = 0, (2.1c,d)
where ν is the coefficient of kinematic viscosity. No-slip boundary conditions
are applied in the wall-normal direction and periodic boundary conditions in the
streamwise and spanwise directions. All nonlinear interactions among the mean flow
components (flow components with streamwise wavenumber kx= 0) and perturbations
(flow components with streamwise wavenumber kx 6= 0) in (2.1) are summarized in
figure 1.

The x, y, z components of U are (U,V,W) and the corresponding components of u′
are (u′, v′,w′). Streamwise mean perturbation Reynolds stress components are denoted
as e.g. [u′u′]x, [u′v′]x. The streak component of the streamwise mean flow is denoted
by Us and defined as

Us
def= U − [U]z. (2.2)

The V and W are the streamwise mean velocities of the roll vortices. We also define
the streak energy density, Es = h−1

∫ h
0 dy(1/2)[U2

s ]z, and the roll energy density, Er =
h−1

∫ h
0 dy(1/2)[V2 +W2]z.
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The RNL approximation is obtained by neglecting or parameterizing stochastically
the perturbation–perturbation interaction terms in (2.1b) (cf. figure 1). In this paper
we set the stochastic parameterization to zero and the RNL system becomes:

∂tU+U · ∇U−G(t)x̂+∇P− ν1U=−[u′ · ∇u′]x, (2.3a)
∂tu′ +U · ∇u′ + u′ · ∇U+∇p′ − ν1u′ = 0, (2.3b)

∇ ·U= 0, ∇ · u′ = 0. (2.3c,d)

Equation (2.3a) describes the dynamics of the streamwise mean flow, U, which
is driven by the divergence of the streamwise mean perturbation Reynolds stresses.
These Reynolds stresses are obtained from (2.3b), in which the streamwise-varying
perturbations, u′, evolve under the influence of the time-dependent streamwise mean
flow U(y, z, t) with no explicitly retained interaction among these streamwise-varying
perturbations (the retained interactions are shown in the diagram of figure 1).
Remarkably, RNL self-sustains turbulence solely due to the perturbation Reynolds
stress forcing of the streamwise mean flow (2.3a), in the absence of which a
self-sustained turbulent state cannot be established (Gayme 2010; Gayme et al.
2010).

Because the RNL equations do not include interactions among the perturbations, and
because U is streamwise constant, each component û′kx

eikxx of perturbation velocity u′
in the Fourier expansion:

u′(x, y, z, t)=
∑
kx∈Kx

Re[û′kx
(y, z, t)eikxx], (2.4)

where Kx
def= 2π/Lx[1, 2, 3, . . . , Nx/2] is all the positive kx wavenumbers included in

the simulation, evolves independently in (2.3b) and therefore (2.3b) can be split into
independent equations for each kx. By taking the Fourier transform of (2.3b) in x and
eliminating the perturbation pressure, (2.3b) can be symbolically written as:

∂tû
′
kx
= Akx(U)û

′
kx
, (2.5)

with
Akx(U)û

′
kx
= PL(−U · ∇kx û

′
kx
− û′kx

· ∇kx U+ ν1kx û
′
kx
), (2.6)

and PL is the Leray projection enforcing non-divergence of the kx Fourier components
of the perturbation velocity field with ∇kx

def= (ikx, ∂y, ∂z) and 1kx

def= ∂2
y + ∂2

z − k2
x (Foias

et al. 2001). The RNL system can then be written in the form:

∂tU+U · ∇U−G(t)x̂+∇P− ν1U=−1
2

∑
kx∈Kx

Re[∂y(v̂
′
kx

û′∗kx
)+ ∂z(ŵ′kx

û′∗kx
)], (2.7a)

∂tû
′
kx
= Akx(U)û

′
kx
, kx ∈Kx, (2.7b)

∇ ·U= 0, ∇kx · û
′
kx
= 0, (2.7c,d)

with ∗ in (2.7a) denoting complex conjugation.

3. DNS and RNL simulations
The data were obtained from a DNS of (2.1) and from an RNL simulation,

of (2.3), that is directly associated with the DNS through eliminating the perturbation–
perturbation interaction in the perturbation equation. The dynamics were expressed
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Abbreviation [Lx, Lz]/h Nx ×Nz ×Ny Reτ [L+x , L+z ]
NS940 [π,π/2] 256× 255× 385 939.9 [2953, 1476]
RNL940 [π,π/2] 256× 255× 385 882.4 [2772, 1386]
RNL940kx12 [π,π/2] 3× 255× 385 970.2 [3048, 1524]

TABLE 1. Simulation parameters. [Lx, Lz]/h is the domain size in the streamwise and
spanwise direction. Nx, Nz are the number of Fourier components after dealiasing and Ny
is the number of Chebyshev components. Reτ is the Reynolds number of the simulation
based on the friction velocity and [L+x ,L+z ] is the channel size in wall units. The Reynolds
number based on the bulk velocity is Re=Ubh/ν = 18511 in all cases.

in the form of evolution equations for the wall-normal vorticity and the Laplacian
of the wall-normal velocity, with spatial discretization and Fourier dealiasing in the
two wall-parallel directions and Chebyshev polynomials in the wall-normal direction
(Kim et al. 1987). Time stepping was implemented using the third-order semi-implicit
Runge–Kutta method.

The geometry and resolution of the DNS and RNL simulations is given in table 1.
Quantities reported in outer units have lengths scaled by the channel half-width,

h, and time by h/uτ and the corresponding Reynolds number is Reτ = uτh/ν where
uτ =√ν dU/dy|w (with dU/dy|w being the shear at the wall) is the friction velocity.
Quantities reported in inner units have lengths scaled by hτ = Re−1

τ h and time by
Re−1

τ h/uτ . Velocities scaled by the friction velocity uτ will be denoted with the
superscript +, which indicates inner unit scaling.

We report results from three simulations: a DNS simulation, denoted NS940, with
Reτ ≈ 940, the corresponding RNL simulation, denoted RNL940, and a constrained
RNL simulation, denoted RNL940kx12. Both RNL simulations were initialized with
an NS940 state and run until a steady state was established. In RNL940kx12, only
the single streamwise Fourier component with wavenumber kxh= 12 was retained in
(2.7b) by limiting the spectral components of the perturbation equation to only this
streamwise wavenumber; this simulation self-sustained a turbulent state with Reτ =
970.2. In RNL940, the number of streamwise Fourier components was not constrained;
this simulation self-sustained a turbulent state at Reτ = 882.2.

We show in figure 2 the transition from NS940 to RNL940 turbulence. The
NS940 is switched at time tuτ/h = 100 to an RNL simulation by suppressing the
perturbation–perturbation interactions, represented by the right-hand side in (2.1b).
The transition from DNS to RNL is evident in the time series of the energy density
of the streamwise Fourier components of the perturbation field, given by:

Ekx =
1

4h

∫ h

0
dy[|û′kx

|2]z. (3.1)

The time evolution of the energy density of the first 15 streamwise Fourier
components, with wavenumbers hkx = 2, 4, . . . , 30, in NS940 and in RNL940 is
shown in figure 2(a). In NS940, all kx components maintain non-zero energy density.
After the transition, the RNL940 turbulence is maintained by interaction between
the set of six surviving wavenumbers, hkx = 2, 4, . . . , 12 and the kx = 0 Fourier
component of the flow (cf. figure 2a). The result of restriction of NS dynamics
to RNL is a spontaneous reduction in the support of the turbulence in streamwise
Fourier components, with all Fourier components having wavelength smaller than
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(b)

FIGURE 2. (Colour online) An NS940 simulation up to t/(hu−1
τ )= 100 (indicated with the

vertical line) is continued subsequently under RNL dynamics. (a) The energy density, Ekx ,
of the first 15 streamwise-varying Fourier components (hkx = 2, 4, . . . , 30). The energy
density of the Fourier components decreases monotonically with increasing wavenumber.
Decaying Fourier components are indicated with dashed lines. After the transition to RNL
dynamics, all components with hkx >14 decay (hkx=14 decays, although it is not apparent
until later times than shown in this figure). Asymptotically the dynamics of the RNL940
turbulence is maintained by interaction between the set of surviving hkx = 2, 4, . . . , 12
Fourier components and the mean flow (kx = 0). (b) Detailed view showing the energy
density of the mean and surviving perturbation components during the transition from NS
to RNL dynamics, in which the total energy increased by 10 %. For the kx = 0 shown
are: the streak energy density, Es, and roll energy density, Er. The energy density of
the hkx = 2, 4, 6, 8 components increases rapidly during the adjustment after transition to
RNL dynamics. Note that the total energy density in the perturbation kx 6= 0 components
decreases from 0.91u2

τ in the NS940 (0.56u2
τ being in the components that survive in the

RNL) to 0.78u2
τ in RNL940. Also the roll/streak energy density decreases from 1.1u2

τ

in NS940 to 0.8u2
τ in RNL940, while the energy density of the kx = kz = 0 component

increases from 397u2
τ to 448u2

τ .

πh/6 (hkx > 12) decaying exponentially, producing a reduced complexity dynamics in
which turbulence self-sustains on this greatly restricted support in streamwise Fourier
components. We view this transition of NS940 turbulence to RNL940 turbulence as
revealing the set of structures that are naturally involved in maintaining the turbulent
state. Given this spontaneous complexity reduction, the question arises: how few
streamwise-varying perturbation components are required in order to self-sustain RNL
turbulence at this Reynolds number? We show in RNL940kx12 that, even if we retain
only the single perturbation component with wavelength πh/6 (hkx = 12), a realistic
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self-sustained turbulent state persists. (For a discussion of the streamwise wavenumber
support of RNL turbulence cf. Thomas et al. 2015.)

4. RNL as a minimal turbulence model
We have seen that as a result of its dynamical restriction, RNL turbulence with the

stochastic parameterization set to zero is supported by a small subset of streamwise
Fourier components. In order to understand this property of RNL dynamics, consider
that the time-dependent streamwise mean state of a turbulent RNL simulation has been
stored, so that the mean flow field U(y, z, t) is known at each instant. Then each kx
component of the perturbation flow field that is retained in the RNL evolves according
to (2.7b):

∂tû
′
kx
= Akx(U)û

′
kx
, (4.1)

with Akx(U) given by (2.6).
With the time-dependent mean flow velocity U obtained from a simulation of a

turbulent state imposed, equations (4.1) are time-dependent linear equations for û′kx
with the property that each kx streamwise component of the perturbation state of the
RNL, û′kx

, can be recovered with exponential accuracy (within an amplitude factor
and a phase) by integrating forward (4.1) regardless of the initial state. This follows
from the fundamental property of time-dependent systems that all initial states, û′kx
(y, z, t= 0), converge eventually with exponential accuracy to the same structure (for a
proof cf. Farrell & Ioannou 1996b). This is completely analogous to the familiar result
that regardless of the initial perturbation (with measure zero exception) an autonomous
linear system converges to a rank-one structure as time increases: the eigenvector
of maximum growth. In fact, each of the û′kx

assumes the unique structure of the
top Lyapunov vector associated with the maximum Lyapunov exponent of (4.1) at
wavenumber kx, which can be obtained by calculating the limit:

λkx = lim sup
t→∞

log ‖û′kx
(y, z, t)‖
t

, (4.2)

where ‖ · ‖ is any norm of the velocity field. Moreover, for each kx, this top Lyapunov
exponent has the further property of being either exactly zero or negative, with those
structures having λkx = 0 supporting the perturbation variance. The vanishing of the
maximum Lyapunov exponents of linear equations (4.1) reflects the property that the
perturbation kx components that are self-sustained in the turbulent state neither decay
to zero nor grow without bound.

This property of RNL turbulence being sustained by the top Lyapunov perturbation
structures implies that the perturbation structure contains only the streamwise-varying
perturbation Fourier components, kx, that are contained in the support of these top
Lyapunov structures with λkx =0. It is remarkable that only six Fourier components, kx,
are contained in the support of RNL940, and even more remarkable that the RNL SSP
persists even when this naturally reduced set is further truncated to a single streamwise
Fourier component, as demonstrated in RNL940kx12. This result was first obtained in
the case of self-sustained Couette turbulence at low Reynolds numbers (cf. Farrell &
Ioannou 2012; Thomas et al. 2014).

This vanishing of the Lyapunov exponent associated with each streamwise
wavenumber is enforced in RNL by the nonlinear feedback process acting between the
streaks and the perturbations, by which the parametric instability of the perturbations
is suppressed at sufficiently high streak amplitude so that the instability in the
asymptotic limit maintains zero Lyapunov exponent (Farrell & Ioannou 2012, 2016).
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FIGURE 3. (Colour online) Streamwise velocity [U+]z,t for the simulations listed in table 1.
The dashed lines indicate the best fit to the law of the wall, [U+(y)]z,t= (1/κ) log (y+)+C,
with coefficients: κ = 0.40, C= 5.1 for NS940, κ = 0.77, C= 14.0 for RNL940 and κ =
0.53, C= 6.6 for RNL940kx12.

5. Comparison between NS and RNL turbulence structure and dynamics

In this section we compare turbulence diagnostics obtained from self-sustaining
turbulence in the RNL system (2.3), to diagnostics obtained from a parallel associated
DNS of (2.1) (cf. table 1 for the parameters). The corresponding turbulent mean
profiles for the NS940, RNL940 and RNL940kx12 simulations are shown in figure 3.

Previous simulations in Couette turbulence at lower Reynolds numbers (Reτ = 65)
showed very small difference between the mean turbulent profile in NS and RNL
simulations (Thomas et al. 2014). These simulations at larger Reynolds numbers
show significant differences in the mean turbulent profiles sustained by NS940 and
RNL940 simulations. This is especially pronounced in the outer regions, where
RNL940 sustains a mean turbulent profile with substantially smaller shear.

All these examples exhibit a logarithmic layer. However, the shear in these
logarithmic regions is different: the von Kármán constant of NS at Reτ = 940
is κ = 0.4, while for the RNL940 it is κ = 0.77 and for the RNL940kx12 it is
κ = 0.53. Formation of a logarithmic layer indicates that the underlying dynamics
of the logarithmic layer are retained in RNL. Because in the logarithmic layer RNL
dynamics maintains in local balance with dissipation essentially the same stress and
variance as NS, but with a smaller shear, RNL dynamics is in this sense more efficient
than NS in that it produces the same local Reynolds stress while requiring less local
energy input to the turbulence. To see this, consider that local energy balance in the
log-layer requires that the energy production, U′u2

τ (with U′
def= d [U]z,t/dy), equals

the energy dissipation ε, and, because in the log-layer U′ = uτ/(κy), local balance
requires that u3

τ/(κy) = ε, as discussed by Townsend (1976) and Dallas, Vassilicos
& Hewitt (2009). This indicates that the higher κ in RNL simulations with the
same uτ is associated with smaller dissipation than in the corresponding DNS. In
RNL dynamics this local equilibrium determining the shear, and by implication κ ,
results from establishment of a statistical equilibrium by the feedback between the
perturbation equation and the mean flow equation, with this feedback producing a
κ determined to maintain energy balance locally in y. These considerations imply
that the κ observed produces a local shear for which, given the turbulence structure
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FIGURE 4. (Colour online) Comparison of velocity fluctuations for the simulations listed
in table 1. Shown are (a) [u′2+]x,z,t, (b) [U2+

s ]z,t, (c) [v′2+]x,z,t, (d) [w′2+]x,z,t for NS940
(solid), RNL940 (dashed) and RNL940kx12 (dash-dot).

produced by the restricted set of retained Fourier components in RNL, the Reynolds
stress and dissipation are in local balance. Examination of the transition from NS940
to RNL940, shown by the simulation diagnostics in figure 2(b), reveals the action
of this feedback control associated with the reduction in shear of the mean flow.
When in (2.1b) the interaction among the perturbations is switched off, so that the
simulation is governed by RNL dynamics, an adjustment occurs in which the energy
of the surviving kx 6= 0 components obtain new statistical equilibrium values. An
initial increase of the energy of these components is expected because the dissipative
effect of the perturbation–perturbation nonlinearity that acts on these components is
removed in RNL. As these modes grow, the SSP cycle adjusts to establish a new
turbulent equilibrium state which is characterized by increase in energy of the largest
streamwise scales and on average a reduction in streak amplitude. In the outer layer
this new equilibrium is characterized in the case of RNL940 by reduction of the
shear of the mean flow and reduction in the streak amplitude (cf. figure 3).

A comparison of the perturbation statistics of RNL940 with NS940 is shown in
figure 4. The u′ component of the perturbation velocity fluctuations is significantly
more pronounced in RNL940 (cf. figure 4a) and the magnitude of the streak in
RNL940 exceeds significantly the streak magnitude in NS940 in the inner-wall region
(cf. figure 4b). In contrast, the wall-normal and spanwise fluctuations in RNL940 are
less pronounced than in NS940 (cf. figure 4c,d) and the streak fluctuations in the
outer region are also less pronounced in RNL940 (cf. figure 4b).

Despite these differences in the r.m.s. values of the velocity fluctuations, both
RNL940 and NS940 produce very similar Reynolds stress −[uv]x,z,t which is the sum
of −[UsV]z,t and −[u′v′]x,z,t. Comparison of the wall-normal distribution of these two
components of the Reynolds stress is shown in figure 5(a). Because the turbulence in
NS940 and RNL940 is sustained with essentially the same pressure gradient, the sum
of these Reynolds stresses is the same linear function of y outside the viscous layer.
The Reynolds stress is dominated by the perturbation Reynolds stress −[u′v′]x,z,t in all
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FIGURE 5. (Colour online) (a) The Reynolds stress component, −[uv]x,z,t in NS940
(solid) and in RNL940 (dashed). Also shown are each of the terms, −[UsV]z,t and
−[u′v′]x,z,t that sum to −[uv]x,z,t. Although the NS and RNL values of the total
−[uv]x,z,t are almost identical, the contribution of −[UsV]z,t and −[u′v′]x,z,t differ in
NS and RNL. (b) Structure coefficient, F, in NS940 (solid) and in RNL940 (dashed).
Shown are FB = −[UV]z,t/

√[U2]z,t[V2]z,t, Fe = −[u′v′]x,z,t/
√[u′2]x,z,t[v′2]x,z,t and F =

−[uv]x,z,t/
√[u2]x,z,t[v2]x,z,t.
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FIGURE 6. (Colour online) Perturbation structure, u′+ in (y, z)-plane cross-section for (a)
RNL940 and (b) NS940 in the inner-wall region, 06 y/h6 0.2. Both panels show a colour
mapping of the u′+ field, superimposed with (v′+,w′+) velocity vectors.

simulations, with the RNL stress penetrating farther from the wall. This is consistent
with the fact that the perturbation structure in RNL has larger scale. This can be
seen in a comparison of the NS and RNL perturbation structure shown in figure 6.
Note that the Reynolds stress −[UsV]z,t associated with the streak and roll in the
outer region of the NS940 simulation is larger than that in RNL940. Further, the
average correlation between the perturbation u′ and v′ fields are almost the same in
both simulations, while the correlation between the Us and V in RNL940 is much
smaller than that in NS940 in the outer layer. This is seen in a plot of the structure
coefficient (cf. Flores & Jiménez 2006) shown in figure 5(b).
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FIGURE 7. (Colour online) Instantaneous streak component of the flow, U+s , shown
as a (y, z)-plane cross-section for (a,c) RNL940 and (b,d) NS940. All panels show a
colour mapping of the streak velocity, U+s , superimposed with (V+,W+) velocity vectors.
Panels (a) and (b) show the whole channel while panels (c) and (d) show the inner-wall
region, 0 6 y/h 6 0.2.

Turning now to the flow structures in the NS940 and RNL940 simulations, a
(y, z)-plane snapshot of the streamwise mean flow component (corresponding to
kx = 0 streamwise wavenumber) is shown in figure 7. A colour mapping of the
streamwise streak component, Us, is shown together with vectors of the streamwise
mean (V, W) field, which indicates the velocity components of the large-scale roll
structure. The presence of organized streaks and associated rolls is evident both in
the inner-wall and in the outer-wall region. Note that, in comparison with the streak
in NS940, the streak in RNL940 has a finer (y, z) structure, which is consistent
with the energy of the streak being more strongly dissipated by diffusion in RNL (cf.
figure 7). A three-dimensional perspective of the flow in NS940 and RNL940 is shown
in figure 8. Note that in RNL940 there is no visual evidence of the kx = 0 roll/streak
structure which is required by the restriction of RNL dynamics to be the primary
structure responsible for organizing and maintaining the self-sustained turbulent
state. Rather, the most energetic structure among the perturbations maintaining the
pivotal streamwise mean roll/streak is the structure that dominates the observed
turbulent state. We interpret this as indicating that the kx = 0 roll/streak structure,
which is the dynamically central organizing structure in RNL turbulence and which
organizes the turbulence on scale unbounded in the streamwise direction, cannot be
reliably identified by visual inspection of the flow fields, which would lead one to
conclude that the organizing scale was not just finite but the rather short scale of
the separation between perturbations to the streak. Essentially this same argument is
cast in terms of the inability of Fourier analysis to identify the organization scale
of the roll/streak structure by Hutchins & Marusic (2007). This dynamically central
structure, which appears necessarily at kx = 0 in RNL dynamics, is reflected in the
highly streamwise elongated structures seen in simulations and observations of DNS
wall turbulence. While in a long channel averaging would be expected to suppress
the kx = 0 component in DNS, in the short channel used here, the kx = 0 component
is prominent in both the RNL940 and NS940 (cf. figure 7).

An alternative view of turbulence structure is provided by comparison of the
spectral energy densities of velocity fields as a function of streamwise and spanwise
wavenumber, (kx, kz). The pre-multiplied spectral energy densities of each of the
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FIGURE 8. (Colour online) Three-dimensional perspective plots of the flow at a single
time for (a) NS940 and (b) RNL940, for the lower half of the channel, 0 6 y/h 6 1.
Both images show a colour mapping of the streak component plus streamwise perturbation,
U+s + u′+. The central x–z panel shows the flow at channel height, y/h = 0.65. The
superimposed vectors represent the (U+s + u′+, w+) velocities for the (x, z)-plane,(U+s +
u′+, v+) velocities for the (x, y)-plane and (v+, w+) velocities for the (y, z)-plane. The
parameters of the simulations are given in table 1.

three components of velocity, Euu, Evv and Eww, are shown at heights y+ = 20,
representative of the inner-wall region; and at y/h = 0.65, representative of the
outer-wall region, in figure 9. While RNL940 produces spanwise streak spacing and
rolls similar to those in NS940, the tendency of RNL to produce longer structures
in this diagnostic is also evident. The spectra for the outer region indicate similar
large-scale structure and good agreement in the spanwise spacing between RNL940
and NS940. This figure establishes the presence of large-scale structure in the outer
region in both RNL940 and NS940. It has been noted that in NS940, while the
scale of the structures increases linearly with distance from the wall in the inner-wall
region, in the outer regions the structures having the largest possible streamwise scale
dominate the flow variance at high Reynolds number (Jiménez 1998; Jiménez &
Hoyas 2008). This linear scaling near the wall can also be seen in figure 10, where
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FIGURE 9. (Colour online) Contours of pre-multiplied power spectra kxkzEff (kx, kz) with
f = u, v, w, as a function of λ+x and λ+z for NS940 (solid) and RNL940 (dashed). (a–c)
Show the spectral energy densities at wall distance y/h= 0.65 for u, v and w, respectively,
while (d–f ) show the corresponding spectral energy densities at y+= 20. Contours are (0.2,
0.4, 0.6, 0.8) times the maximum value of the corresponding spectrum. The maximum λ+x
and λ+y are the lengths L+x and L+z of the periodic channel.

contour plots of normalized pre-multiplied one-dimensional spectral energy densities
as a function of spanwise wavelength, kz, and wall-normal distance, as in Jiménez
(1998) and Jiménez & Hoyas (2008), are shown for NS940 and RNL940. In both
simulations, the spanwise wavelength associated with the spectral density maxima
increases linearly with wall distance, with this linear dependence being interrupted at
y/h≈ 0.5 (or y+≈ 450). Beyond y/h≈ 0.5, structures assume the largest λz allowed in
the channel, suggesting simulations be performed in larger boxes in future work (cf.
discussion by Jiménez & Hoyas (2008) and Flores & Jiménez (2010)). Corresponding
contour plots of spectral energy density as a function of streamwise wavelength and
wall-normal distance are shown in figure 11. These plots show that the perturbation
variance in the inner-wall and outer-wall region is concentrated in a limited set
of streamwise components. In the case of RNL940 the spontaneous restriction on
streamwise perturbation wavenumber support that occurs in RNL dynamics produces
a corresponding sharp shortwave cutoff in the kx components of the spectra, as seen
in figure 11(d–f ). Note that the maximum wavelength in these graphs is equal to the
streamwise length of the box, and not to the infinite wavelength associated with the
energy of the roll/streak structure in RNL dynamics.

6. Streak structure dynamics in NS and RNL dynamics
That RNL dynamics maintains a turbulent state similar to that of NS with nearly

the same Reτ (Reτ =882 with the six Fourier components of RNL940 and Reτ =970.2
for the single Fourier component with kxh= 12 of RNL940kx12 versus the Reτ = 940
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FIGURE 10. (Colour online) Normalized pre-multiplied spectral densities kzEf (kz) =
kz
∑

kx
Eff (kx, kz), with f = u, v, w, as a function of spanwise wavelength, λz/h, and y/h.

Spectral densities are normalized so that at each y the total energy,
∑

kz
Ef (kz), is the

same. (a) kzEu(kz), (b) kzEv(kz), (c) kzEw(kz) for NS940. (d) kzEu(kz), (e) kzEv(kz), ( f )
kzEw(kz) for RNL940. The isocontours are 0.2, 0.4, . . . , 1.4 and the thick line marks the
1.0 isocontour.

10010–1 10010–1 10010–1

10010–1 10010–1 10010–1

100

10–1

10–2

100

10–1

10–2

100

10–1

10–2

100

10–1

10–2

100

10–1

10–2

100

10–1

10–2

(a) (b) (c)

(d ) (e) ( f )

0

0.05

0.10

0.15

0.20

 0.25

0
0.05
0.10
0.15
0.20
 0.25
0.30
 0.35

FIGURE 11. (Colour online) Normalized pre-multiplied spectral densities kxEf (kx) =
kx
∑

kz
Eff (kx, kz), with f = u, v,w, as a function of streamwise wavelength, λx/h, and y/h.

Spectral densities are normalized so that at each y the total energy,
∑

kx
Ef (kx), is the same.

(a) kxEu(kx), (b) kxEv(kx), (c) kxEw(kx) for NS940. (d) kxEu(kx), (e) kxEv(kx), ( f ) kxEw(kx)
for RNL940. The isocontours are 0.1, 0.125, . . . , 0.35 and the thick line marks the 0.2
isocontour.

of the NS940; cf. table 1) implies that these systems have approximately the same
energy production and dissipation, and that the reduced set of Fourier components
retained in RNL dynamics assume the burden of accounting for this energy production
and dissipation. Specifically, the components in NS940 that are not retained in RNL
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dynamics are responsible for approximately one-third of the total energy dissipation,
which implies that the components that are retained in RNL940 dynamics must
increase their dissipation, and consistently their amplitude, by that much.

Large-scale roll/streak structures are prominent in the inner layer as well as in
the outer layer both in NS940 and in RNL940. In the inner layer, the interaction of
roll/streak structures with the kx 6= 0 perturbation field maintains turbulence through
an SSP (Hamilton et al. 1995; Jiménez & Pinelli 1999; Farrell & Ioannou 2012).
The RNL system provides an especially simple manifestation of this SSP, as its
dynamics comprise only interaction between the mean (kx = 0) and perturbation
(kx 6= 0) components. The fact that RNL self-sustains a close counterpart of the NS
turbulent state in the inner-wall region provides strong evidence that the RNL SSP
captures the essential dynamics of turbulence in this region.

The structure of the RNL system compels the interpretation that the time
dependence of the SSP cycle in this system seen in figure 2(b) is an intricate
interaction of dynamics among streaks, rolls and perturbations that produces the
time-dependent streamwise mean flow U(y, z, t), which, when introduced in (2.7b),
results in generation of a particular evolving perturbation Lyapunov structure with
exactly zero Lyapunov exponent that simultaneously produces Reynolds stresses
contrived to maintain the associated time-dependent mean flow. S3T identifies this
exquisitely contrived SSP cycle comprising the generation of the streak through lift-up
by the rolls, the maintenance of the rolls by torques induced by the perturbations,
which themselves are maintained by time-dependent parametric non-normal interaction
with the streak (Farrell & Ioannou 2012).

In RNL this SSP is more efficient than its DNS counterpart in producing
downgradient perturbation momentum flux as, with smaller mean shear over most
of the channel, a self-sustained turbulence with approximately the same Reτ as that
in NS940 is maintained, as discussed above (cf. § 5). A comparison of the shear,
the r.m.s. V velocity, and the r.m.s. streak velocity, Us, in the outer layer is shown
as a function of y in figure 12, from which it can be seen that the ratio of the
product of the mean shear and r.m.s. wall-normal velocity to the r.m.s. streak velocity
is approximately equal in DNS and in RNL. It is important to note that in the
RNL system these dependencies arise due to the feedback control exerted by the
perturbation dynamics on the mean flow dynamics by which its statistical steady state
is determined. The structure of RNL isolates this feedback control process so that
it can be studied, and elucidating its mechanism and properties are the subject of
ongoing work.

In the discussion above we have assumed that the presence of roll and streak
structure in the log-layer in RNL indicates the existence of an SSP cycle there, and
by implication also in NS. In order to examine this SSP, consider the momentum
equation for the streamwise streak:

∂tUs = −(V∂yU − [V∂yU]z)− (W∂zU − [W∂zU]z)︸ ︷︷ ︸
A

−([v′∂yu′ − [v′∂yu′]z]x)− ([w′∂zu′ − [w′∂zu′]z]x)︸ ︷︷ ︸
B

+ ν1Us︸ ︷︷ ︸
C

. (6.1)

Term A in (6.1) is the contribution to the streak acceleration by the ‘lift-up’
mechanism and the ‘push-over’ mechanism, which represent transfer to streak
momentum by the mean wall-normal and spanwise velocities, respectively; term B in
(6.1) is the contribution to the streak momentum by the perturbation Reynolds stress
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FIGURE 12. (Colour online) Comparison of the (a) turbulent mean shear, [d[U+]z/dy]th,
(b) the r.m.s. of [V+]z, (c) the r.m.s. of the streak velocity, U+s and (d) the ratio of the
product of the mean shear and r.m.s. wall-normal velocity over the r.m.s. streak velocity,
for NS940 (solid) and RNL940 (dashed) in the outer layer, 0.2 6 y/h 6 1.

divergence (structures with kx 6= 0); term C is the diffusion of the streak momentum
due to viscosity.

In order to identify the mechanism of streak maintenance we determine the
contribution of terms A–C in (6.1) to the streak momentum budget by evaluating
these contributions. The time-averaged results are shown as a function of y over these
cross-stream regions of the flow, indicated by R: the whole channel, the outer region,
0.2 6 y/h 6 1.8, and the inner region, 0 6 y/h< 0.2 and 1.8< y/h 6 2, in figure 13.
The contributions are, respectively, the lift-up:

IA(t)= h−1
∫

R
dyIA(y, t), with IA(y, t)= [sgn(Us)× (Term A)]z, (6.2)

the perturbation Reynolds stress divergence:

IB(t)= h−1
∫

R
dyIB(y, t), with IB(y, t)= [sgn(Us)× (Term B)]z, (6.3)

and diffusion:

IC(t)= h−1
∫

R
dyIC(y, t), with IC(y, t)= [sgn(Us)× (Term C)]z. (6.4)

In the inner-wall and outer-wall regions, in both NS940 and RNL940, the streak
is maintained only by the lift-up mechanism, while streak momentum is lost on
average at all cross-stream levels to both the Reynolds stress divergence and the
momentum diffusion. In RNL940 the magnitude of streak acceleration by lift-up
is greater than that of NS940 in the inner region, whereas in the outer region the
acceleration by lift-up in RNL940 is about half that in NS940, consistent with their
similar roll amplitude (cf. figure 12b) and the smaller mean flow shear maintained
at statistical steady state in RNL940. In the outer region of the NS940 the Reynolds
stress divergence almost completely balances the positive contribution from lift-up,
while in RNL940 the lift-up is balanced equally by the Reynolds stress divergence
and the diffusion. Enhancement of the contribution by diffusion in the outer layer
in RNL940 results from the increase in the spanwise and cross-stream wavenumbers
of the streak (cf. figure 7c) resulting from the nonlinear advection of the streak by
the V and W velocities. This increase in the spanwise and cross-stream wavenumbers
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FIGURE 13. (Colour online) Cross-stream structure of the time-averaged contributions
to streak acceleration for NS940 (solid) and RNL940 (dashed) from: (a,e) the lift-up
mechanism [IA]t(y), (b, f ) the perturbation Reynolds stress divergence [IB]t(y) and (c,g)
the momentum diffusion [IC]t(y). In (d,h) we plot the sum of these terms which, averaged
over a long time interval, should add exactly to zero. (a–d) Show structure in the outer
layer, 0.2 6 y/h 6 1, (e–h) show the structure in the inner layer, 0 6 y+ 6 200.

of the streak in RNL940 due to nonlinear advection by the mean (V, W) roll
circulation also implies that the dissipation of streak energy in RNL940 is similarly
enhanced. This constitutes an alternative route for energy transfer to the dissipation
scale, which continues to be available for establishment of statistical equilibrium in
RNL940 despite the limitation in the streamwise wavenumber support inherent in
RNL turbulence. The lift-up process is a positive contribution to the maintenance of
the streak, and the Reynolds stress divergence is a negative contribution not only in
a time-averaged sense, but also at every time instant. This is shown in plots of the
time series of the lift-up and Reynolds stress divergence contribution to the streak
momentum over the inner region 0 6 y/h < 0.2 and 1.8 < y/h 6 2, over the outer
region 0.2 6 y/h 6 1.8, and over the whole channel in figure 14. We conclude that,
in both NS940 and RNL940, the sole positive contribution to the outer layer streaks
is lift-up, despite the small shear in this region. Consistently, a recent POD analysis
in a similar flow setting has confirmed the phase relationship between the streak and
wall-normal velocity, indicative of this lift-up mechanism (Nikolaidis et al. 2016). We
next consider the dynamics maintaining the lift-up.

7. Roll dynamics: maintenance of mean streamwise vorticity in NS and RNL
We have established that the lift-up mechanism is not only responsible for streak

maintenance in the inner layer, but also in the outer layer. We now examine the
mechanism of the lift-up by relating it to maintenance of the roll structure using as a
diagnostic streamwise-averaged vorticity, Ωx= ∂yW − ∂zV . In order for roll circulation
to be maintained against dissipation there must be a continuous generation of Ωx.
There are two possibilities for the maintenance of Ωx in the outer layer: either Ωx
is generated locally in the outer layer, or it is advected from the near-wall region.

From (2.1a) we have that Ωx satisfies the equation:

∂tΩx =−(V∂y +W∂z)Ωx︸ ︷︷ ︸
D

+ (∂zz − ∂yy)[v′w′]x − ∂yz([w′2]x − [v′2]x)︸ ︷︷ ︸
F

+ν1Ωx. (7.1)
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FIGURE 14. (Colour online) Time series of the total IA(t) (lift-up) for NS940 (solid) and
RNL940 (dashed), (a) over the whole channel, (b) over the outer region, 0.2 6 y/h 6 1.8,
(c) over the inner region, 0 6 y/h 6 0.2 and 1.8 6 y/h 6 2. Similarly for IB(t) (Reynolds
stress divergence), (d) over the whole channel, (e) over the outer region, 0.2 6 y/h 6 1.8,
( f ) over the inner region, 0 6 y/h 6 0.2 and 1.8 6 y/h 6 2.

Term D expresses the streamwise vorticity tendency due to advection of Ωx by the
streamwise mean flow (V, W). Because there is no vortex stretching contribution to
Ωx from the (V, W) velocity field, this term only advects the Ωx field and cannot
sustain it against dissipation. However, this term may be responsible for systematic
advection of Ωx from the inner to the outer layer. Term F is the torque induced by
the perturbation field. This is the only term that can maintain Ωx. The overall budget
for square streamwise vorticity in the region R, y1 6 y6 y2, 06 z6 Lz, is given by:

∂t

∫ y2

y1

dy
1
2
[Ω2

x ]z =−
1
2
[Ω2

x V]z|y2
y=y1︸ ︷︷ ︸

=hID

+
∫ y2

y1

dy[Ωx × Term F]z︸ ︷︷ ︸
=hIF

+ν
∫ y2

y1

dy[Ωx1Ωx]z,

(7.2)
where:

ID(t)= h−1
∫

R
dyID(y, t), with ID(y, t)= [Ωx × (Term D)]z (7.3)

is the advection into cross-stream region, R, and

IF(t)= h−1
∫

R
dyIF(y, t), with IF(y, t)= [Ωx × (Term F)]z (7.4)

is the Reynolds stress torque production in region R.
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FIGURE 15. (Colour online) (a–c) Time series of the contribution to the time rate of
change of streamwise square vorticity

∫
dy[Ω2

x /2]z by perturbation torques, IF, and by
advection of streamwise mean vorticity by the mean flow, ID, for NS940 (solid) and
RNL940 (dashed). (a) IF over the whole channel, 0 6 y/h 6 2 (ID = 0 in this case). The
time mean IF is 2103.6h−3u3

τ for NS940 and 982.8u3
τ for RNL940. (b) IF over the outer

layer, 0.2 6 y/h 6 1.8. The time mean IF for this region is 242.5h−3u3
τ for NS940 and

only 28.7h−3u3
τ for RNL940. (c) ID for the outer layer 0.2 6 y/h 6 1.8. The time mean

ID is 2.9h−3u3
τ for NS940 and 11.2h−3u3

τ for RNL940. These figures show that in NS940
and RNL940 the roll is maintained locally by the perturbation Reynolds stresses. (d,e)
Cross-stream structure of the time-averaged contribution to the streamwise mean vorticity
generation from perturbation Reynolds-stress-induced torques [IF]t(y).

Time series of the contributions from ID(t) and IF(t) to the Ωx production for
NS940 and RNL940, shown in figure 15(a–c), demonstrate that Ωx is primarily
generated in situ by Reynolds stress torques. The corresponding wall-normal structure
of the time mean of IF, representing the local contribution to streamwise mean
vorticity generation from perturbation Reynolds-stress-induced torques, is shown
in figure 15(d,e). Note that for NS940 in the outer layer the streamwise mean
vorticity generation by the Reynolds stress is strongly positive at each instant. This
implies a systematic positive correlation between the roll circulation and the torque
from Reynolds stress, with the torque configured so as to maintain the roll. S3T
theory explains this systematic correlation between the roll/streak structure and the
perturbation torques maintaining it as a direct consequence of the straining of the
perturbation field by the streak (Farrell & Ioannou 2012).

Having established that the streamwise vorticity in the outer layer is maintained in
situ by systematic correlation of Reynolds stress torque with the roll circulation, we
conclude that the SSP cycle in both NS and RNL operates in the outer layer in a
manner essentially similar to that in the inner layer.
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8. Discussion and conclusions
We have established that both NS and RNL produce a roll/streak structure in the

outer layer and that an SSP is operating there despite the low shear in this region. It
has been already shown that turbulence self-sustains in the log-layer in the absence
of boundaries (Mizuno & Jiménez 2013) and that an SSP operates independently
in the outer layer (Rawat et al. 2015). These results are consistent with our finding
that an SSP cycle exists in both the inner layer and outer layer. RNL self-sustains
turbulence at moderate Reynolds numbers in pressure-driven channel flow despite its
greatly simplified dynamics when compared to NS. Remarkably, and consistent with
the prediction of S3T that RNL turbulence is maintained by a small set of Lyapunov
structures associated with the Lyapunov spectrum of the time-dependent streak, in the
RNL system the turbulent state is maintained by a small set of structures with low
streamwise wavenumber Fourier components (at Reτ ≈ 940 with the chosen channel
the SSP involves only the kx= 0 streamwise mean and the next six streamwise Fourier
components). In this way RNL produces a turbulent state of reduced complexity. RNL
identifies an exquisitely contrived SSP cycle which has been previously identified to
comprise the generation of the streak through lift-up by the rolls, the maintenance of
the rolls by torques induced by the perturbations which themselves are maintained
by an essentially time-dependent parametric non-normal interaction with the streak
(rather than e.g. inflectional instability of the streak structure) (Farrell & Ioannou
2012). The vanishing of the Lyapunov exponent associated with the SSP is indicative
of feedback regulation acting between the streaks and the perturbations by which
the parametric instability that sustains the perturbations on the time-dependent streak
is reduced to zero Lyapunov exponent, so that the turbulence neither diverges nor
decays.

A remarkable feature of RNL turbulence is that it is supported by a streamwise
constant SSP so that RNL turbulence does not imply a fundamental limitation to
the streamwise extent of the streak. In a natural turbulent flow, fluctuations may be
expected to produce deviations from this ideal streamwise constancy. Observations
based on cross-spectral analysis determine the streamwise length of the VLSMs to
be of the order of 30h in pipe flows and of the order of 10–15δ in boundary layer
flows (Jiménez & Hoyas 2008; Hellström et al. 2011; Lozano-Durán & Jiménez
2014a). However, Hutchins & Marusic (2007) argue that these are underestimates
of their actual length, which can in fact be arbitrarily large. Moreover, when kx 6= 0
perturbations are of large amplitude, observation may suggest that a kx = 0 structure
has non-zero wavenumber (cf. Hutchins & Marusic 2007). Consider for example the
apparent lack of kx = 0 structure in figure 8(b), despite the kx = 0 structure of the
underlying SSP.

The centrality of streamwise constant structure to the fundamental dynamics of
wall turbulence is consistent with predictions of generalized stability theory (Farrell
& Ioannou 1996a,b; Schmid & Henningson 2001) that both the optimal structure for
growth of an initial perturbation (Butler & Farrell 1992; Farrell & Ioannou 1993;
Reddy & Henningson 1993) as well as the optimal structure for producing a response
by continuous forcing (Farrell & Ioannou 1996a; Bamieh & Dahleh 2001; Jovanović
& Bamieh 2005; Cossu, Pujals & Depardon 2009; Sharma & McKeon 2013) are
streamwise constant.

In this work, formation of roll/streak structures in the log-layer is attributed
to the universal mechanism by which turbulence is modified by the presence of
a streak in such way as to induce growth of a roll structure configured to lead to
continued growth of the original streak. This growth process underlies the non-normal
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parametric mechanism of the SSP that maintains turbulence (Farrell & Ioannou 2012).
This universal mechanism neither predicts nor requires that the roll/streak structures
be of finite streamwise extent, and in its simplest form it has been demonstrated that
it supports roll/streak structures with zero streamwise wavenumber. From this point of
view, the observed length of roll/streak structures is neither a primary nor necessary
consequence of the SSP supporting them, but rather a secondary effect of disruption
by the turbulence.

A distinction should be noted between mechanisms fundamentally related to
streamwise constant processes and those which require that the streamwise constant
structure also be time-independent. The mechanism we have advanced intrinsically
requires that the streak be time-dependent for the parametric growth of perturbations
to be supported. Because this fundamental mechanism of turbulence requires time
dependence of the streamwise constant streak, it predicts that turbulence must
be time-dependent and not exclusively spatially chaotic. It further implies that
mechanisms based on critical layers and modal growth processes (Waleffe 1997;
Hall & Sherwin 2010) cannot support turbulence by this mechanism because the
temporal independence of the flow required for existence of critical layers and modal
instability does not obtain in these turbulent flows.

Turbulence maintained in RNL exhibits a log-layer, although with different von
Kármán constants depending on the truncation in streamwise wavenumber imposed
on the RNL. However, it should be noted that judicious choice of the streamwise-
varying components can produce von Kármán constants that are very close to those
obtained in DNS (cf. Bretheim, Meneveau & Gayme 2015). Existence of a log-layer
is a fundamental requirement of asymptotic matching between regions with different
spatial scaling, as was noted by Millikan (1938). However, the exact value of the
von Kármán constant does not have a similar fundamental basis in analysis. RNL
turbulence, which is closely related to NS turbulence but more efficient in producing
Reynolds stresses, maintains as a consequence a smaller shear, and therefore greater
von Kármán constant.

In this work we have provided evidence that NS turbulence is closely related in
its dynamics to RNL turbulence from the wall through the log-layer. Moreover, given
that the dynamics of RNL turbulence can be understood fundamentally from its
direct relation with S3T turbulence, we conclude that the mechanism of turbulence
in wall-bounded shear flow can be insightfully related to the analytically tractable
roll/streak/perturbation SSP that was previously identified to maintain S3T turbulence.
We conclude that the severe restriction of the dynamics, coupled with the restricted
support of the dynamics in streamwise wavenumber that are inherent in the RNL
system, result in the establishment of a statistically steady turbulent state in which,
while the maintained statistics differ in particulars from those of a DNS at the same
Re, these systems share fundamental aspects of both structure and dynamics, and
that this relation provides an attractive pathway to further understanding of wall
turbulence.
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