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Abstract

Recent years have witnessed an increasing interest in enhancing answer set solvers by allowing

function symbols. Since the introduction of function symbols makes common inference tasks

undecidable, research has focused on identifying classes of programs allowing only a restricted

use of function symbols while ensuring decidability of common inference tasks. Finitely-ground

programs, introduced in Calimeri et al. (2008), are guaranteed to admit a finite number of stable

models with each of them of finite size. Stable models of such programs can be computed

and thus common inference tasks become decidable. Unfortunately, checking whether a

program is finitely-ground is semi-decidable. This has led to several decidable criteria, called

termination criteria, providing sufficient conditions for a program to be finitely-ground. This

paper presents a new technique that, used in conjunction with current termination criteria,

allows us to detect more programs as finitely-ground. Specifically, the proposed technique

takes a logic program P and transforms it into an adorned program Pμ with the aim of

applying termination criteria to Pμ rather than P. The transformation is sound in that if

the adorned program satisfies a certain termination criterion, then the original program is

finitely-ground. Importantly, applying termination criteria to adorned programs rather than

the original ones strictly enlarges the class of programs recognized as finitely-ground.

KEYWORDS: logic programming with function symbols, bottom-up evaluation, program

evaluation termination, stable models

1 Introduction

Recent developments of answer set solvers have seen significant progresses towards

providing support for function symbols. As common inference tasks become un-

decidable in the presence of function symbols, research has focused on identifying

classes of programs, allowing a restricted use of function symbols, for which stable

models can be computed.

Finitely-ground programs, defined in Calimeri et al. (2008), are guaranteed to

admit a finite number of stable models, each of finite size. Stable models of such

programs can be computed and thus common inference tasks become decidable.
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As the problem of deciding whether a program is finitely-ground is semi-decidable,

decidable subclasses have been proposed (we discuss them in the following section).

However, they are not able to identify as terminating even simple programs whose

bottom-up evaluation always terminates. Below is an example.

Example 1

Consider the following program P1

p(X, X)← base(X).

q(X, Y)← p(X, Y).

p(f(X), g(X))← q(X, X).

where base is a base predicate symbol. The bottom-up evaluation of P1 terminates

whatever set of facts for base is added to the program. Nevertheless, none of

the termination criteria introduced so far is able to recognize this program as

terminating.

For instance, the argument-restricted criterion (Lierler and Lifschitz 2009) con-

sists of checking if there exists a function φ that assigns a natural number to

each of p[1], p[2], q[1], q[2], so that the following two conditions are both

satisfied.

1. As in the second rule X and Y are propagated from p[1] to q[1] and from p[2] to

q[2], respectively, then φ must be s.t. φ(q[1]) � φ(p[1]) and φ(q[2]) � φ(p[2]).

2. Because in the third rule X is propagated from q[1] and q[2] to p[1] and p[2]

by adding a function symbol, then φ must be s.t. (i) φ(p[1]) > φ(q[1]) or

φ(p[1]) > φ(q[2]), and (ii) φ(p[2]) > φ(q[1]) or φ(p[2]) > φ(q[2]).

Clearly, the conditions above cannot be satisfied and thus P1 is not argument-

restricted.

The Γ-acyclicity criterion (Greco et al. 2012b) builds a labelled directed graph

which keeps track of how values are propagated from rule bodies to rule heads.

In this case, the vertices of the graph are p[1], p[2], q[1], q[2]. The set of edges

contains, among others, the edge (p[1], q[1]) labeled with ε because X is propagated

from p[1] to q[1] in the second rule, and the edge (q[1], p[1]) labeled with f because

X is propagated from q[1] to p[1] with the addition of function symbol f in the

third rule. Because of this cycle expressing a possible non-terminating generation of

terms, P1 is not Γ-acyclic.

This paper presents a new technique that, used in conjunction with current

termination criteria, allows us to detect more programs as finitely-ground. The

proposed technique takes a logic program P and transforms it into an adorned

program Pμ with the aim of applying termination criteria to Pμ rather than P. The

transformation is sound in that if Pμ satisfies a certain termination criterion, then

P is finitely-ground.
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Example 2

Consider again program P1 of Example 1. The technique proposed in this paper

transforms P1 into the following adorned program

pεε(X, X)← baseε(X).

qεε(X, Y)← pεε(X, Y).

pf1g1 (f(X), g(X))← qεε(X, X).

qf1g1 (X, Y)← pf1g1 (X, Y).

The adorned program above is “equivalent” to P1 in that the minimal model of P1

can be obtained from the minimal model of the transformed program by dropping

adornments. Each adorned rule is obtained from a rule in the original program

by adding adornments which keep track of the structure of the terms that can

be propagated during the bottom-up evaluation. As adorning predicate symbols

possibly breaks “cyclic” dependencies among arguments and/or rules, this often

allows us to recognize more programs as finitely-ground than if termination criteria

are applied to the original programs. For instance, as opposed to the original

program P1, the transformed program above is not recursive and thus is easily

recognized as terminating by all current termination criteria. This allows us to say

that P1 is terminating because of the aforementioned equivalence.

Example 3

The following program P3 checks if a given list can be partitioned into two identical

sublists:

r0 : part([2, 2, 7, 7], [ ], [ ]).

r1 : part(L1, [X|L2], L3)← part([X|L1], L2, L3),¬part(L1, L2, [X|L3]).
r2 : part(L1, L2, [X|L3])← part([X|L1], L2, L3),¬part(L1, [X|L2], L3).
r3 : sol← part([ ], L, L).

r4 : p← ¬sol,¬p.

The last rule enforces sol to be true in every stable model. This program has a

standard structure that can be used to express several well-known NP problems,

such as binary partition, subset sum, and others. For instance, by replacing rule r3
with

sol← sum([ ], 1, X), sum([ ], 2, X).

where predicate symbol sum is defined as follows

sum(L1, 1, 0)← part([ ], L1, L2).

sum(L2, 2, 0)← part([ ], L1, L2).

sum(L, I, X + C)← sum([X|L], I, C).

we express binary partition, a classical NP-complete problem. As another example, we

can express the subset sum problem by replacing r3 with the rule sol← sum([ ], 1, 0).

The evaluation of the programs discussed above always terminates, but current

termination criteria are not able to realize it. However, if termination criteria are

applied to adorned programs, then they are able to detect termination of the original

programs.

Related Work. A significant body of work has been done on termination of logic

programs under top-down evaluation (De Schreye and Decorte 1994; Marchiori

https://doi.org/10.1017/S147106841300046X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841300046X


740 S. Greco et al.

1996; Ohlebusch 2001; Bonatti 2004; Codish et al. 2005; Serebrenik and De Schreye

2005; Bruynooghe et al. 2007; Nguyen et al. 2007; Baselice et al. 2009; Schneider-

Kamp et al. 2009a; Schneider-Kamp et al. 2009b; Nishida and Vidal 2010; Schneider-

Kamp et al. 2010; Voets and De Schreye 2011). Our work is also akin to work done

in the area of term rewriting (Zantema 1994; Zantema 1995; Ferreira and Zantema

1996; Arts and Giesl 2000; Endrullis et al. 2008; Sternagel and Middeldorp 2008). In

this paper, we consider logic programs with function symbols under the stable model

semantics (Gelfond and Lifschitz 1988; Gelfond and Lifschitz 1991), and thus, as

already noticed and discussed in Calimeri et al. (2010), Alviano et al. (2010), all the

excellent works above cannot straightforwardly be applied to our setting. As for the

context considered in this paper, recent years have witnessed an increasing interest

in the problem of identifying logic programs with function symbols for which a finite

set of finite stable models exists and can be computed. The class of finitely-ground

programs, guaranteeing the aforementioned desirable property, has been proposed

in Calimeri et al. (2008). Since membership in the class is not decidable, recent

research has concentrated on the identification of sufficient conditions, that we call

termination criteria, for a program to be finitely-ground. Efforts in this direction

are ω-restricted programs (Syrjänen 2001), λ-restricted programs (Gebser et al. 2007),

and finite domain programs (Calimeri et al. 2008). More general classes are argument-

restricted programs (Lierler and Lifschitz 2009), safe and Γ-acyclic programs (Greco

et al. 2012b). This paper presents a technique that can be used in conjunction with the

aforementioned termination criteria to recognize more programs as finitely-ground.

Our work is also related to research done in the database community on

termination of the chase procedure (Fagin et al. 2005; Deutsch et al. 2008; Marnette

2009; Meier et al. 2009; Greco and Spezzano 2010; Greco et al. 2011; Krötzsch and

Rudolph 2011; Grau et al. 2012). A survey on this topic can be found in Greco et al.

(2012a). The fundamental difference is that the setting considered in this paper is

much more general than the chase setting. In fact, while our approach can be applied

to the chase setting by considering logic programs obtained via skolemization of

the existential rules used with the chase, the vice versa is not true. The logic rules

obtained via skolemization of existential rules are of a very restricted form: function

symbols appear only in rule heads, each function symbol occurs at most once, there

is no nesting of function symbols. In contrast, we consider logic programs allowing

an arbitrary use of function symbols: they can appear in both the head and the

body of rules, may be nested, and the same function symbol can appear multiple

times. While in the chase setting determining the adornment symbol of a variable

occurrence in the body of a rule can be straightforwardly done by looking at

predicate symbol adornments (because there are no function symbols in the body),

this problem is more complex in our setting because of the presence of possibly

nested functions that can occur multiple times. Thus, a more complex (recursive)

analysis is performed (cf. Definition 1) which uses adornment definitions (introduced

in this paper and not used in the chase techniques) to memorize the “history”

of complex term adornments. Furthermore, while determining head adornments is

trivial in the chase setting, it gets more involved in our case because of nested

complex terms (cf. Definition 3).
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Organization. The paper is organized as follows. First, preliminaries on logic

programs with function symbols are reported. Then, we present our transformation

technique. Finally, we show different properties of our approach and conclude.

2 Logic programs with function symbols

Syntax. We assume to have infinite sets of constants, variables, predicate symbols, and

function symbols. Each predicate and function symbol is associated with an arity,

which is a non-negative integer for predicate symbols and a positive integer for

function symbols.

A term is either a constant, a variable, or an expression of the form f(t1, . . . , tm),

where f is a function symbol of arity m and the ti’s are terms (in the first two cases

we say the term is simple while in the last case we say it is complex ).

An atom is of the form p(t1, . . . , tn), where p is a predicate symbol of arity n

and the ti’s are terms—we also use the notation p(t) to refer to an atom, where t

is understood to be a sequence of n terms. A literal is either an atom A (positive

literal) or its negation ¬A (negative literal). A (disjunctive) rule r is of the form

A1 ∨ · · · ∨ Am ← L1, · · · , Lk where m > 0, k � 0, the Ai’s are atoms, the Lj ’s are

literals. The disjunction A1 ∨ · · · ∨ Am is called the head of r and is denoted by

head(r); the conjunction L1, · · · , Lk is called the body of r and is denoted by body(r).

With a slight abuse of notation we use head(r) (resp. body(r)) to also denote the set

of atoms (resp. literals) appearing in the head (resp. body) of r. If m = 1, then r is

normal; if all the Lj ’s are positive literals, r is positive.

A program is a finite set of rules. A program is normal (resp. positive) if every rule

in it is normal (resp. positive). A term (resp. atom, literal, rule, program) is ground if

no variables occur in it. A ground normal rule with empty body is also called a fact.

We assume that programs are range restricted, i.e., for each rule, variables appearing

in the head or in negative body literals also appear in some positive body literal.

The definition of a predicate symbol p appearing in a program P consists of all rules

in P having p in the head. Predicate symbols are partitioned into two classes: base

predicate symbols, whose definition can contain only facts, and derived predicate

symbols, whose definition can contain any rule. A base (resp. derived ) atom is an

atom whose predicate symbol is base (resp. derived). Facts defining base predicate

symbols are called database facts.

Semantics. Consider a program P. The Herbrand universe HP of P is the possibly

infinite set of ground terms which can be built using constants and function symbols

appearing in P. The Herbrand base BP of P is the set of ground atoms which

can be built using predicate symbols appearing in P and ground terms of HP.

A rule r′ is a ground instance of a rule r in P if r′ can be obtained from r by

substituting every variable in r with some ground term in HP; ground(P) denotes

the set of all ground instances of the rules in P. An interpretation of P is any

subset I of BP. The truth value of a ground atom A w.r.t. I , denoted valueI (A), is

true if A ∈ I , false otherwise. The truth value of ¬A w.r.t. I , denoted valueI (¬A), is

true if A �∈ I , false otherwise. A ground rule r is satisfied by I if there is a ground

literal L in body(r) s.t. valueI (L)= false or there is a ground atom A in head(r) s.t.
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valueI (A) = true. Thus, if the body of r is empty, r is satisfied by I if there is an

atom A in head(r) s.t. valueI (A) = true. An interpretation M of P is a model of P
if M satisfies every ground rule in ground(P). A model M of P is minimal if no

proper subset of M is a model of P. The set of minimal models of P is denoted

by MM(P).

Given an interpretation I of P, let PI denote the ground positive program derived

from ground(P) by (i) removing every rule containing a negative literal ¬A in the

body with A ∈ I , and (ii) removing all negative literals from the remaining rules. An

interpretation I is a stable model of P if and only if I ∈ MM(PI ). The set of stable

models of P is denoted bySM(P). Stable models are minimal models. Furthermore,

SM(P) = MM(P) if P is a positive program. Positive normal programs have a

unique minimal model.

3 Program adornment

In this section, we present a technique for checking termination of the bottom-up

evaluation of logic programs with function symbols. For ease of presentation, we

initially restrict ourselves to positive normal programs; the extension to arbitrary

programs with disjunction (in the head) and negation (in the body) will be discussed

at the end of the section. Checking finiteness of the minimal model of a positive

normal program is equivalent to checking termination of the program bottom-up

evaluation. For the sake of simplicity and without loss of generality, we assume

that database facts do not contain complex terms (hence, we can assume that base

atoms in rule bodies do not contain complex terms). For instance, the set of facts

{base(a), base(f(b))} can be replaced with the set of facts {base(a), base(b)} and

the rules {based(a) ← base(a), based(f(b)) ← base(b)}, where based is a derived

predicate symbol. Additionally, atoms appearing in rule bodies and having base

as predicate symbol are replaced with the same atoms where based replaces base.

Finally, since database facts are not relevant for the proposed technique, they are

not shown in our examples. In fact, as discussed in the following section, our

technique allows us to conclude that a program terminates for any set of database

facts.

We start by introducing notations and terminology used hereafter. Given a pro-

gram P, we define the adornment alphabet Λ = {ε} ∪ {fi | f is a function symbol in

P and i ∈ �}; elements of Λ are called adornment symbols. An adornment α for

a predicate symbol p of arity n is a string of length n over the alphabet Λ; the

expression pα is an adorned predicate symbol and pα(t1, . . . , tn) is an adorned atom,

where the ti’s are terms. An adorned conjunction is a conjunction of adorned atoms.

An adorned rule is a rule containing only adorned atoms. Given an adornment

symbol fi in Λ − {ε}, an adornment definition for fi is an expression of the form

fi = f(α1, . . . , αm), where m is the arity of function symbol f and the αi’s are

adornment symbols. As an example, if our technique derives an adorned predicate

symbol pf1g1 with adornment definitions f1 = f(ε) and g1 = g(f1), this means that

the bottom-up evaluation of the considered program might yield atoms of the form
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p(f(c1), g(f(c2))) with c1 and c2 being constants.1 Intuitively, adornment definitions

are used to keep track of what kind of complex terms can be propagated.

Roughly speaking, our transformation technique works as follows. It maintains

a set of adorned predicate symbols, a set of adornment definitions, and a set of

adorned rules. Whenever we find a rule whose body can be adorned in a “coherent”

way (we will make clear what this means in Definition 2), we derive an adorned

predicate symbol from the rule head (using the body adornments), and generate an

adorned rule. In this step, new adornment definitions might be generated as well.

New adorned predicate symbols are used to generate further adorned rules. Below

is an example to illustrate the basic idea.

Example 4

Consider the following program P4 where base is a base predicate symbol.

r0 : p(X, f(X))← base(X).

r1 : p(X, f(X))← p(Y, X), base(Y).

r2 : p(X, Y)← p(f(X), f(Y)).

First, base predicate symbols are adorned with strings of ε’s; thus, we get the

adorned predicate symbol baseε. This is used to adorn the body of r0 so as to get

ρ0 : pεf1 (X, f(X))← baseε(X).

from which we derive the new adorned predicate symbol pεf1 , and the adornment

definition f1 = f(ε). Next, pεf1 and baseε are used to adorn the body of r1 so as to

get

ρ1 : pf1f2 (X, f(X))← pεf1 (Y, X), baseε(Y)

from which we derive the new adorned predicate symbol pf1f2 , and the adornment

definition f2 = f(f1). Intuitively, the body of ρ1 is coherently adorned because Y

is always associated with the same adornment symbol ε. Using the new adorned

predicate symbol pf1f2 , we can adorn rule r2 and get

ρ2 : pεf1 (X, Y)← pf1f2 (f(X), f(Y)).

At this point, we are not able to generate new adorned rules (using the adorned

predicate symbols generated so far) with coherently adorned bodies and the trans-

formation terminates. In fact, pf1f2 (Y, X), baseε(Y) is not coherently adorned because

the same variable Y is associated with both f1 and ε; moreover, pεf1 (f(X), f(Y)) is not

coherently adorned because f(X) does not comply with the (simple) term structure

described by ε.

To determine termination of the bottom-up evaluation of P4, we can apply current

termination criteria to Pμ
4 = {ρ0, ρ1, ρ2} rather than P4. In fact, our technique

ensures that if Pμ
4 is recognized as terminating, so is P4. Notice that both P4 and

Pμ
4 are recursive, but while some termination criteria (e.g., the argument-restricted

and Γ-acyclicity criteria) detect Pμ
4 as terminating, none of the current termination

criteria is able to realize that P4 terminates.

1 Here predicate symbol p is assumed of arity 2, and function symbols f and g are assumed of arity 1.
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In the following, we formally present our technique. First, we define how to

determine the adornment symbols associated with the variables in an adorned

conjunction, and how to check if the conjunction is coherently adorned. Then, we

define how to determine the adornment of a rule head when its body is coherently

adorned. Finally, we present the complete technique.

Checking adornment coherency. The aim of adornment coherency is to check if the

adorned conjunction in the body of an adorned rule satisfies two conditions that are

necessary for the rule to “trigger”. First, for each adorned atom pα1 ...αn (t1, . . . , tn) in the

conjunction, we check if ti complies with the term structure corresponding to αi. As an

example, in the adorned atom pf1 (g(X)) with adornment definition f1 = f(ε), we have

that g(X) does not comply with the term structure f(c) corresponding to f1, where

c is an arbitrary constant. Second, we determine the adornment symbol associated

with each variable occurrence in the conjunction and check if, for every variable,

all its occurrences are associated with adornment symbols describing compatible

term structures. As an example, if pf1g1(X, X) is an atom in the conjunction with

adornment definitions f1 = f(ε) and g1 = g(ε), then two different term structures

are associated with two occurrences of the same variable and the conjunction is not

coherently adorned.

Function TermAdn below determines the adornment symbols associated with the

variables in a term ti in an adorned atom pα1 ...αn (t1, . . . , tn) on the basis of αi and a

set of adornment definitions S . Function BodyAdn simply collects the adornment

symbols for all variables in an adorned conjunction (using TermAdn) and is used to

check if the conjunction is coherently adorned.

Definition 1

Let bodyσ be an adorned conjunction and S a set of adornment definitions. We

define

BodyAdn(bodyσ, S) =
⋃

pα1 ...αn (t1 ,...,tn) ∈ bodyσ∧
1� i�n

TermAdn(ti,αi,S);

where TermAdn is recursively defined as follows:

1. TermAdn(ti, ε, S) = ∅, if ti is a constant;

2. TermAdn(ti, αi, S) = {ti/αi}, if ti is a variable;

3. TermAdn(f(u1, . . . , um), fi, S)=
m⋃
j=1

TermAdn(uj , αj , S), if fi=f(α1, . . . , αm) is in S;

4. TermAdn(ti, αi, S) = {fail}, otherwise.

Notice that there is a non-deterministic choice to be made in item 3 above when

there are multiple adornment definitions for the same fi in S . Depending on the

choice, BodyAdn(bodyσ, S) can return different sets; we define SBodyAdn(bodyσ, S)

as the set of all possible outcomes; notice that if bodyσ is the empty conjunction,

SBodyAdn(bodyσ, S) contains only the empty set.

Definition 2

Consider an adorned conjunction bodyσ and a set of adornment definitions S , and

let W ∈ SBodyAdn(bodyσ, S). We say that bodyσ is coherently adorned w.r.t. W iff
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fail �∈ W and for every two distinct X/α and X/β in W it is the case that α = fi
and β = fj , where f is a function symbol and i, j ∈ �.

Given a set W ∈ SBodyAdn(bodyσ, S), we define S(W ) as the set of all subsets

TS of W containing exactly one expression of the form X/α for every variable X

in bodyσ .

Example 5
Consider the set of adornment definitions S = {f2 = f(f1), f1 = f(ε), g1 = g(ε)}.
For the adorned conjunction pf2g1 (f(f(X)), g(X)), we have that BodyAdn(pf2g1 (f(f(X)),

g(X)), S) can return only the set W = TermAdn(f(f(X)), f2, S) ∪ TermAdn(g(X), g1, S) =

TermAdn(f(X), f1, S) ∪ TermAdn(X, ε, S) = TermAdn(X, ε, S)∪{X/ε} = {X/ε}∪{X/ε} =

{X/ε} and pf2g1 (f(f(X)), g(X)) is coherently adorned w.r.t. W . Considering qf2 (f(g(X))),

we have that BodyAdn(qf2 (f(g(X))), S) can return only W = TermAdn(f(g(X)), f2, S)

= TermAdn(g(X), f1, S) = {fail} and qf2 (f(g(X))) is not coherently adorned w.r.t. W .

Considering pf2g1 (f(X), g(X)), we have that BodyAdn(pf2g1 (f(X), g(X)), S) returns only

W = TermAdn(f(X), f2, S)∪TermAdn(g(X), g1, S) = TermAdn(X, f1, S)∪TermAdn(X, ε,

S) = {X/f1}∪{X/ε}={X/f1, X/ε} and pf2g1 (f(X), g(X)) is not coherently adorned w.r.t.

W .

Head adornment. When the conjunction in the body of a rule can be coherently

adorned, adornments are propagated from the body to the head. The adornment

of the head predicate symbol is determined on the basis of the structure of the

terms in the head, and the adornment symbols associated with the variables in the

body. As an example, consider the rule p(X, f(X, g(X)))← b(X) and the adorned body

conjunction bε(X). The adornment symbol associated with variable X is ε, which

intuitively means that the bottom-up evaluation of the program might yield atoms

of the form b(c), with c being a constant. Thus, the rule above might yield atoms of

form p(c, f(c, g(c))). To keep track of this, the head predicate symbol is adorned as

pεf1 , and the adornment definitions f1 =f(ε, g1) and g1 =g(ε) are derived. We start

by introducing a special (asymmetric) “union operator”, denoted by �, which takes

as input a set of adornment definitions S and a set containing a single adornment

definition fh = f(α1, . . . , αm), and gives as output a set S ′ of adornment definitions

where S ⊆ S ′. Operator � is defined as follows:

S � {fh=f(α1, . . . , αm)}=S , if there exists fk =f(α1, . . . , αm) in S;

S � {fh=f(α1, . . . , αm)}=S ∪ {fh=f(α1, . . . , αm)}, if there is no fk =f(α1, . . . , αm) in S .

We are now ready to define how rule heads are adorned.

Definition 3
Consider a positive normal rule p(t1, . . . , tn) ← body, a set of adornment definitions

S0, and an adorned conjunction bodyσ obtained by adding adornments to all atoms

in body. Let W be an element of SBodyAdn(bodyσ, S0) s.t. bodyσ is coherently

adorned w.r.t. W , and TS ∈ S(W ). The adornment of the head atom p(t1, . . . , tn)

w.r.t. TS and S0 is

SetHeadAdn(p(t1, . . . , tn),TS, S0) = 〈pα1 ...αn(t1, . . . , tn), Sn〉

where 〈α1, S1〉 = Adn(t1,TS, S0), 〈α2, S2〉 = Adn(t2,TS, S1), . . . , 〈αn, Sn〉 = Adn(tn,

TS, Sn−1) and function Adn is defined as follows:
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• Adn(t,TS, S) = 〈ε, S〉, if t is a constant;

• Adn(t,TS, S) = 〈αi, S〉, if t is a variable X and X/αi is in T ;2

• Adn(f(u1, . . . , um),TS, S) = 〈fj , S ′〉 where

— 〈β1, S1〉 = Adn(u1,TS, S);

— 〈β2, S2〉 = Adn(u2,TS, S1);
...

— 〈βm, Sm〉 = Adn(um,TS, Sm−1);

— S ′ = Sm � {fi=f(β1, . . . , βm)}, with i = max{k | fk =f(γ1, . . . , γm) ∈ Sm}+ 1;

— j is s.t. fj = f(β1, . . . , βm) is in S ′.

Example 6

Consider the rule p(f(a, nil), f(X, f(Y, nil))) ← base(X, Y) and the adorned body

baseεε(X, Y). Then, SBodyAdn(baseεε(X, Y), ∅) has one element W = {X/ε, Y/ε} and

TS = {X/ε, Y/ε} is the only element in S(W ). Then, SetHeadAdn(p(f(a, nil), f(X,

f(Y, nil))),TS, ∅) gives 〈pf1f2(f(a, nil), f(X, f(Y, nil))), S2〉, where S2 = {f1 =

f(ε, ε), f2 = f(ε, f1)}. In fact, by Definition 3,

−Adn(f(a, nil), T , ∅) gives 〈f1, S1〉, where S1 = {f1 = f(ε, ε)}, since

−Adn(a, T , ∅) gives 〈ε, ∅〉, and

−Adn(nil, T , ∅) gives 〈ε, ∅〉.
− Then, Adn(f(X, f(Y, nil)), T , S1) gives 〈f2, S2〉 as

−Adn(X, T , S1) gives 〈ε, S1〉, and

−Adn(f(Y, nil), T , S1) gives 〈f1, S1〉 as

−Adn(Y, T , S1) gives 〈ε, S1〉, and

−Adn(nil, T , S1) gives 〈ε, S1〉.

Transformation function. Before presenting the complete transformation technique,

we introduce some further notations and terminology. An adornment substitution θ

is a set of pairs the form fi/fj with i > j that does not contain two pairs fi/fj and

fj/fk—i.e., a symbol fi cannot be replaced by a symbol gh and a symbol fj used to

replace a symbol fi cannot be substituted in θ by a symbol fk—where fi, fj , fk, gh
are in Λ−{ε}. For instance, {f2/f1, g3/g1} is an adornment substitution, but {f1/g1}
and {f3/f2, f2/f1} are not. The result of applying θ to an adorned rule r, denoted

rθ, is the adorned rule obtained from r by substituting each fi appearing in r with

fj , where fi/fj belongs to θ. The result of applying θ to a set of adorned rules Pμ

(resp. adorned predicate symbols AP , adornment definitions S), denoted Pμθ (resp.

APθ, Sθ), is analogously defined.

The set of the adorned versions of an atom p(t) w.r.t. a set of adorned pred-

icate symbols AP is A(p(t), AP ) = {pα(t) | pα ∈ AP }. The set of the adorned

versions of a conjunction of atoms body = A1, . . . , Ak w.r.t. AP is A(body, AP ) =

{AA1, . . . , AAk |AAi ∈ A(Ai, AP ) for 1 � i � k}. If body is the empty conjunction,

then A(body, AP ) contains only the empty conjunction.

2 Notice that X always appears in bodyσ as we consider range restricted programs.
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Algorithm 1 Adorn

Input: Positive normal program P.

Output: Adorned positive normal program Pμ.

1: S = ∅; Pμ = ∅;
2: AP = {pα1 ...αn | p is a base predicate symbol appearing in P of arity n and every αi = ε};
3: repeat

4: AP ′ = AP ;

5: for each rule p(t)←body in P do

6: for each bodyσ in A(body, AP ) do

7: for each W in SBodyAdn(bodyσ, S ) do

8: if bodyσ is coherently adorned w.r.t. W then

9: for each TS in S(W ) do

10: 〈pα(t),S ′〉 = SetHeadAdn(p(t),TS, S );

11: AP = AP ∪ {pα}; S = S ′;

12: ar = pα(t)←bodyσ;

13: Pμ = Pμ ∪ {ar};
14: if ∃r∈Pμ ∧ ∃substitution θ �= ∅ s.t. arθ=r then

15: Pμ = Pμθ; AP = APθ; S = Sθ;

16: until AP ′ = AP

17: return Pμ;

Function Adorn performs the transformation of a positive normal program. It

maintains a set of adornment definitions S , a set of adorned rules Pμ (eventually,

this will be the output), and a set AP of adorned predicate symbols. Initially, S and

Pμ are empty (line 1), and AP contains all base predicate symbols in P adorned

with strings of ε’s (line 2). Then, for each coherently adorned body bodyσ of a rule

p(t)← body in the original program, we determine the adorned head pα(t) and the

set of adornment definitions S ′ using function SetHeadAdn (line 10). The set AP is

extended with pα, S ′ is assigned to S (line 1), and a new adorned rule ar of the form

pα(t)← bodyσ is added to Pμ (line 1). If there exists an adornment substitution θ

that applied to ar gives a rule r in Pμ, then θ is applied to Pμ, AP , and S (line 15).

This ensures termination of Adorn.

Example 7

Consider the following program P7 computing the reverse of list [a, b, c]:

r0 : reverse(f(a, f(b, f(c, nil))), nil).

r1 : reverse(L1, f(X, L2))← reverse(f(X, L1), L2).

Here function symbol f denotes the list constructor operator “|”and constant nil

denotes the empty list “[ ]”. The bottom-up evaluation of P7 terminates and the

reverse L of [a, b, c] can be retrieved from the atom reverse([ ], L) in the minimal

model of P7.

Our technique works as follows. Initially, S = ∅, Pμ = ∅, and AP = ∅. Using AP ,

the algorithm can determine a coherently adorned body conjunction only for the

first rule (whose body is empty), from which we get the adorned rule

ρ0 : reversef3ε(f(a, f(b, f(c, nil))), nil).

which is added to Pμ. Furthermore, reversef3ε is added to AP , and the adornment

definitions f3 = f(ε, f2), f2 = f(ε, f1), f1 = f(ε, ε) are added to S . Now, the algorithm
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can obtain a coherently adorned body conjunction for r1, and we get

ρ1 : reversef2f1 (L1, f(X, L2))← reversef3ε(f(X, L1), L2).

Rule ρ1 is added to Pμ, reversef2f1 is added to AP , whereas S remains the same.

Similarly, in the next two steps we derive the following rules (which are added to

Pμ)

ρ2 : reversef1f2 (L1, f(X, L2)) ← reversef2f1 (f(X, L1), L2).

ρ3 : reverseεf3 (L1, f(X, L2)) ← reversef1f2 (f(X, L1), L2).

Moreover, reversef1f2 and reverseεf3 are added to AP , while S does not change. At

this point, no new coherently adorned body can be derived and the transformation

terminates. The transformed program Adorn(P7) = {ρ0, ρ1, ρ2, ρ3} is recognized as

terminating by all current termination criteria, while P7 was not by all of them.

The following example shows the role of adornment substitutions.

Example 8

Consider the program P8 below where base is a base predicate symbol.

p(X)← base(X).

p(f(X))← p(X).

The transformation algorithm adds the following adorned rules to Pμ

ρ0 : pε(X)← baseε(X).

ρ1 : pf1 (f(X))← pε(X).

ρ2 : pf2 (f(X))← pf1 (X).

ρ3 : pf3 (f(X))← pf2 (X).

Furthermore, the adornment definitions f1 = f(ε), f2 = f(f1), f3 = f(f2) are added

to S , and the adorned predicate symbols pε, pf1 , pf2 , pf3 are added to AP . At this

point, the following adorned rule is derived and added to Pμ:

ρ4 : pf4 (f(X))← pf3 (X).

The adornment definition f4 = f(f3) is added to S and pf4 is added to AP . However,

since there is an adornment substitution θ = {f4/f2, f3/f1} such that ρ4θ = ρ2, then

θ is applied to Pμ, AP , and S . Thus, Pμ becomes {ρ0, ρ1, ρ2, ρ3θ}, where ρ3θ is

pf1 (f(X))← pf2 (X).

AP = {pε, pf1 , pf2} and S = {f1 = f(ε), f2 = f(f1), f1 = f(f2)}. At this point, no new

adorned rule can be generated and the algorithm terminates. Notice that both P8

and Adorn(P8) are not recognized as terminating by current termination criteria.

Indeed, for any set of database facts containing at least one fact base(c), the minimal

model is not finite and the bottom-up evaluation of both programs never terminates.

Nevertheless, function Adorn terminates.

Disjunctive programs with negation. The extension of technique to programs with

disjunction in the head and negation in the body can be carried out by checking

termination of a positive normal program derived from a general one as follows.

For any program P, we use st(P) to denote the positive normal program obtained

from P by replacing each rule A1 ∨ · · · ∨ Am ← body with m positive normal rules

https://doi.org/10.1017/S147106841300046X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841300046X


Logic programming with function symbols 749

of the form Ai ← body+ (1 � i � m) where body+ is obtained from body by deleting

all negative literals. As we show in the following section, this allows us to apply our

technique to general programs.

4 Properties of transformed programs

In this section, we show different properties of the proposed transformation

technique.

Theorem 1

Function Adorn terminates for every positive normal program P. �

Let Unadn be a function taking as input a set of adorned atoms and giving as

output the same set where adornments from predicate symbols are dropped. The

following theorem says that we can obtain the minimal model of a positive normal

program P from the minimal model of Adorn(P) by dropping adornments.

Theorem 2

Given a positive normal program P, let M be the minimal model of P and M ′ the

minimal model of Adorn(P). Then, M = Unadn(M ′).

We restrict ourselves to argument-restricted and Γ-acyclic programs (denoted as

AR and AP, respectively) as they include ω-restricted, λ-restricted, finite domain,

and safe programs; however, our approach is an orthogonal technique that can be

used with any of the aforementioned termination criteria. The theorem below states

that our technique is sound for positive normal programs, that is, if Adorn(P) is in

AR or AP (and thus is recognized as finitely-ground), then P is finitely-ground—

indeed, we can state that P∪D is finitely-ground for any finite set of database facts

D (recall that we assume that database facts do not contain complex terms). An

important consequence of P∪D being finitely-ground is that the minimal model of

P∪ D is finite and can be computed.

Theorem 3

Given a positive normal program P, if Adorn(P) ∈ T, then P∪D is finitely-ground

for any finite set of database facts D, for T∈{AR,AP}. �

The theorem below states soundness of our technique for arbitrary programs.

Theorem 4

Given a program P, if Adorn(st(P)) ∈ T, then P∪D is finitely-ground for any finite

set of database facts D, for T∈{AR,AP}. �

We use Adorn-T to denote the class of programs P such that Adorn(P) is in T,

where T is one of AR and AP. The following theorem allows us to say that the

class of programs recognized as finitely-ground by a criterion T is strictly enlarged

using function Adorn.

Theorem 5

T � Adorn-T for T∈{AR,AP}. �
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5 Conclusions

Identifying classes of logic programs with function symbols whose stable models

can be computed has attracted a great deal of interest in recent years, leading to the

development of different termination criteria. In this paper, we have proposed a new

technique which transforms a program into adorned one with the aim of applying

current termination criteria to the adorned program rather than the original one.

Our technique strictly enlarges the class of programs recognized as finitely-ground

by current termination criteria.

A possible direction for future work is to improve the proposed technique so

as to perform a more refined analysis directly over a disjunctive program with

negation, rather than the positive normal program st(P) derived from the original

one. We conjecture that our technique can also be used in conjunction with recently

introduced termination criteria (Greco et al. 2013; Calautti et al. 2013); we plan to

investigate this aspect too.
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