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Abstract

The paper discusses a new method for the propagation of risk levels. This discretization takes place by considering the phase
space of the state and its subdivision into boxes. In each time step, the method computes the probability of the state being in
one box. We start with a variety of technical and physical problems by showing how discrete modeling under uncertainties
is technically meaningful and often even problem inherent. Then we select the technical problem of contaminant spread in
water grids, to which we apply the method of risk-level propagation in depth. Extensions of the method such as modeling of
contaminant mixing at junctions in the discretized phase space and the applicability of conservation laws arise naturally
along these lines and are discussed in the context of the general theory.
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1. INTRODUCTION

The prediction of physical quantities governed by a dynamical
process is of ongoing interest. Often, the dynamical process is
known and the propagation of quantities can be well described
by a system of differential equations. However, it is almost al-
ways impossible to precisely determine the initial state and the
kinetic parameters. In addition, intrinsic stochastic perturba-
tions may spoil precise predictions. The degree of knowledge
of the process and the initial state can be expressed by explic-
itly introducing uncertainties to the system. Many methods
for solving differential systems under uncertainties are already
introduced. Monte Carlo sampling (Gilks et al., 1995) is able
to consider white noise but leads to large computational effort.
Polynomial chaos expansion (Ghanem & Spanos, 1991) is an
efficient method for a moderate number of random numbers,
but the method is not able to consider white noise.

In Kohler et al. (2014, 2015), we have developed a new
method for uncertainty quantification, which is based on the
propagation of discrete risk levels. In this paper, we point out
the practical relevance of this kind of approach. In Section 2
we summarize some physical and technical applications, where
the threshold behavior is important. Section 3 describes the
basic method, derived in Kohler et al. (2014). The main part of
the paper is concerned with water grids. The transport of risk

levels for contaminants in water grids is presented in detail.
In this paper, we describe not only the pure application but
also some extensions of our method. In particular, the treat-
ment of junctions in water grids is considered. Of even higher
importance is the discussion of conservation properties for the
algorithm. Here, a detailed analysis is shifted into Appendix A.

2. THRESHOLD VALUES AND RISK LEVELS
IN PRACTICE

Many physical and technical systems change their physical be-
havior when passing a certain threshold value. The observer of
the system might be interested only in the information with which
the probability the system is under the threshold value, in the crit-
ical region around the value, orabove the threshold. In the follow-
ing, we want to list several technical systems where the threshold
behavior is important or even dominant for the observer:

† Waste water systems are characterized by having large
overflow chambers. Valves are controlled to minimize
the overflow that is piped into a river. The uncertainty
in the system is caused by the unknown consumption
behavior and by the uncertainty in rain prognosis. The
observer is mainly interested in whether the water level
in the overflow chambers is uncritical, critical, or
whether the water overflows.

† The next application concerns contamination of drink-
ing water systems. This application is presented in detail
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in Section 4. Here, we discuss the propagation of ar-
senate in water pipes and also consider those part of
the arsenate attached at the wall of the pipes. Contamina-
tion takes place also in the air, especially in large cities.
For example, EU Guideline 2008/50/EG (http://www.
umweltbundesamt.de/themen/luft/regelungenstrategien/
luftreinhaltung-in-der-eu) fixes the limits for NO, NO2,
SO2, CO, lead, and fine dust; the limit for fine dust has
been 25 mg/m3 since 2010 and will be reduced to 20 mg/
m3 in 2020. This contamination is mainly caused by au-
tomotives driven by diesel engines. The amount of con-
tamination is observed by several sensors in a city. The
contaminant disperses by diffusion and airflow. Often
one is only interested in whether the contamination is ac-
ceptable, critical, or the limits are exceeded.

† A metal oxide semiconductor field-effect transistor
(MOSFET) is often used as an electronic switching de-
vice. If the voltage at the gate terminal exceeds a given
threshold, then the current line between the drain and the
source terminal is conducting (see Bakshi & Godse,
2007).

In addition, in physics itself thresholds play an important
rule. For instance, materials change their state of aggregation
if the temperature crosses some threshold value. In the follow-
ing, we mention some of these effects.

† There is an upper critical bound for the temperature
above which the components of a mixture are miscible
(UCST). One example is hexane and nitrobenzene.
Here, the UCST is 198C. Above this temperature, the
two substances are miscible in all proportions (see
Atkins & de Paula, 2006). The UCST of metals is be-
yond their melting temperature.

† One of the most important threshold values in physics is
the melting point of a material, which is the temperature
at which a solid material changes to the liquid phase
(Atkins & Jones, 2008). This temperature is defined at
a given pressure (often atmospheric pressure). The freez-
ing point is defined for the inverse direction. For most
substances, the two threshold temperatures are equal.
The well-known melting of ice to water is 08C at one
atmosphere pressure.

† The Neel temperature is the temperature above which a
ferromagnetic material becomes paramagnetic. At this
temperature, the macroscopic magnetic ordering is de-
stroyed by the thermal energy (see Kittel, 2005).

In the preceding text, we have mentioned some technical
and physical applications where the threshold values are de-
cisive in terms of limiting norms or physical values. Often,
the observer is not interested in the state itself (which is of
cause uncertain in a real system), but only in the probability
to be lower or beyond this value. In the following, we present
a method where exactly these probabilities are determined.

As an application, we present the propagation of contami-
nants in water pipes.

3. CELLULAR PROBABILISTIC AUTOMATA
(CPA)

We (Kohlet et al., 2014) developed a CPA, which is time,
space, and state discrete. Given an initial risk-level distribu-
tion, these levels are propagated by the CPA according to
the system dynamics (see Fig. 1). Within this paper, we
only summarize the main ideas of the algorithm.

The method is used for a density-based uncertainty propa-
gation of the dynamics of partial differential equations (PDE).
The algorithm is designed as following: as described in Koh-
ler et al. (2014), the algorithm works in phase space. The dis-
cretization of the state leads to discrete boxes. The probability
of the dynamical system to move from one box to the other is
called the transition probability (see Fig. 2).

Phase state discretizations are known from ordinary differ-
ential equations, where they are used to describe limit cycles
(see Dellnitz & Junge, 1999, 2002). In the context of the pa-
per, we consider PDE. The additional complexity of space
discretization is covered by assuming some locality condi-
tions: only the nearest spatial neighbors are assumed to inter-
act (see Fig. 3). We take into account that the interaction is
identical at every node away from the boundaries. We can
hence approximate the global transition distribution by a
product of the same local transition distribution at every

Fig. 2. Discretized phase space of a two-dimensional dynamical system. The
arrows indicate the transition probability, to propagate from one box to the
other.

Fig. 1. Propagation of discrete system states under uncertainties. In practical
applications, the model input is often uncertain and therefore represented as a
probability density function. As output we are only interested in risk levels,
modeled as medium to high probabilities (yellow to red) for discrete state
space domains.
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node. Such locality concepts belong to the core of cellular au-
tomata theory (Horlacher & Lüdecke, 2012; Ceccherini-Sil-
berstein & Coornaert, 2010). The local transition probabil-
ities can be specified as a conditional probability distribution.

The overall method is designed as a two-stage algorithm:

† In the first stage, all the transition probabilities of the
discretized state are computed by using, for example,
Monte Carlo computations. This first state, which can
be regarded as a preprocessing step, is expensive in
terms of computation time.

† In the second stage, the CPA can be evaluated for differ-
ent initial conditions. This evaluation can be performed
efficiently.

The consistency of the algorithm is proven by applying the
Frobenius–Perron theory (Lasota & Macket, 1993). The over-
all complexity of the algorithm is characterized by the num-
ber of boxes in the discretization of the phase space and the
degree of locality for the space discretization (“pattern
size”). The advantages of the algorithm may be summarized
as follows:

1. As described in the Introduction, for many applications
it is sufficient to propagate threshold behavior. Environ-
mental threshold seems to be an especially important
application. Our algorithm directly addresses this be-
havior.

2. The algorithm can be split into an expensive prepro-
cessing part, which is the computation of transition
probabilities, and an efficient evaluation part.

3. The results of the preprocessing part may also be used
for solving inverse problems (see Kohler et al., 2015).
No additional effort has to be invested for, for example,
identifying parameters from measurements.

Sometimes the underlying PDE describes a conservation law.
By adapting the local transition rule slightly, the CPA can be

forced to preserve the expected value of the conserved quan-
tity (see Fuks, 2013). The conservation properties of the algo-
rithm, which are not covered by Kohler et al. (2014, 2015),
are discussed in Appendix A.

4. APPLICATION: WATER GRID

4.1. Risk assessment in water grids

Reliable drinking water supply in regulated quality is one of
the most important privileges of a human population. A
drinking water supply system is a controlled closed system,
from water sources over pipelines, storage tanks, and meshed
grids to end user. Nevertheless, there might be unmeant dis-
turbances in quality, safety, and reliability that might cause
threats for consumers, which have to be avoided by early de-
tection and fast reaction.

Drinking water contamination can arise from different
sources, for example, by operational incidents like equipment
failure, operator mistakes, organizational faults, communica-
tions failure, road works, or fire suppression. However, cross-
contamination by fatigue or corrosion as well as environ-
mental events, such as heavy rain, biological growth, or raw
water quality, could cause drinking water contamination. In
addition, contamination can be caused intentionally by van-
dalism, sabotage, crime, and terrorism. There are strong am-
bitions in standardization and regulation of drinking water
quality monitoring and control systems internationally in re-
gard to not only drinking water sources and feedings but also
drinking water supply to consumers inside of underground
water distribution pipeline networks, especially since 9/11.
Primary targets of a water safety plan (World Health Organi-
zation, 2008) are, among others,

† the understanding of the specific system regarding ha-
zard assessment and risk characterization (critical sec-
tions to be observed),

† the identification of hazards and potential contamina-
tion with harmful outcome (injection localization and
spread), and

† monitoring and verification of counter measures.

The Deutscher Verein des Gas- und Wasserfaches (DVGW)
proposes a method for risk-based and process-oriented man-
agement for water operation in W1001 (Safety and security in
drinking water supply; Niehues, 2010). Based on the descrip-
tion of the supply system, including infrastructure, flow dia-
gram, and consumer profile, a hazard analysis and risk assess-
ment can be done systematically and customized to support
high safety, security, and reliability in the system and in mea-
sured derivation and verification for risk control.

Beside offline risk assessment for water grids, novel online
early warning systems should support the event detection and
hazard classification to distinguish between potential contam-
ination incidents and normal operation. Usually monitoring
of operational systems is done by installed sensors delivering

Fig. 3. The complexity of space discretization is reduced by considering only
the interaction of the nearest neighbors.
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online field data to be analyzed. However, actually it is too ex-
pensive to invest, install, and maintain enough chemical or bi-
ological sensors for water quality control applications inside
the widespread undergrounded pipeline distribution network
for drinking water. Model-based simulated information com-
pletion is necessary to get the area-wide and continuous pic-
ture of the system state and to forecast spread of potential con-
tamination and hazard outcome as well as handling of
countermeasures. In addition, US and European research
shows that there are too many different possible contaminants
in water for direct detection to be economically feasible. Only
indirect indicators for contamination out of water quality pa-
rameters, such as conductivity, turbidity, or pH, can be mon-
itored at selected points. The US Environmental Protection
Agency (EPA) “Distribution System Water Quality Monitor-
ing: Sensor Technology Evaluation Methodology and Re-
sults” (2009) provides a sensor guideline. Within the Threat
Ensemble Vulnerability Assessment project under the man-
agement of EPA, the Sensor Placement Optimization Tool
supports the optimal placing of water quality sensors in using
EPANET-MSX for modeling complex reactions during trans-
portation in water distribution systems and the contamination
event detection software, CANARY, has been developed
(EPA, 2007). The EU project SecurEau carried out within
the EU seventh Framework Program research on “State of
Art on Chemical Sensors for Early Warning Systems” (Mon-
sorez, 2009). It is expected that an early warning system will
employ standard online water quality sensors to detect devia-
tions, or anomalous events, from baselines.

The present paper introduces a model-based decision sup-
port system using the CPA method in case of contamination,
for hazard and risk analysis as well as for countermeasure
validation in water distribution networks. Combining the hy-
draulic model with the load transport inside of distribution
networks, this method includes the uncertainty of concentra-
tion of contaminant pipe and of source localization.

4.2. Modeling approach

The simulation of contaminant fate in water grids is a multi-
physics problem, where hydraulics and chemical kinetics
have to be combined (Shang et al., 2011; Horlacher & Lü-
decke, 2012). We decouple both phenomena and focus
only on the chemical kinetics on the basis of a simplified wa-
ter model. The simplified model is the result of a sophisticated
hydraulic simulation with SIWA, a commercial software
package from Siemens (Siemens AG, 2012). We use SIWA
to model, illustrate, and simulate the hydraulics of a water
grid defined by reservoirs, pumps, junctions, valves, pipes,
consumers, and a given topology. We assume tubular pipes
throughout the whole network. Only the water velocity in
each pipe is extracted, which constitutes, together with
length, radius, and topology of the pipes, the simplified
model. The chemical kinetics can then be described by advec-
tion–reaction equations for pipe dynamics and algebraic cou-
plings for conservation at junctions. In practice, this simplifi-

cation might be enough, when we only consider risk levels
anyway.

Concentrations of dissolved species are usually given in
units of mass per water volume, while species at the pipe
walls are described in units of mass per wall area. The inter-
action of both types can be described with the help of the quo-
tient of the cross-sectional pipe area and the wetted perimeter
of the cross section, the hydraulic radius rh. For tubular pipes,
the hydraulic radius is just half of the usual radius r, rh ¼

(r/2). The chemical kinetics thus differs with the radius of
the pipe in which it takes place. When describing the chem-
ical kinetics with CPA, in principle, the preprocessing has
to be conducted for every pipe radius in the grid. However,
as pipes are usually standardized, only a few preprocessing
runs are necessary in practice.

Besides the radius, there is one more parameter that may
vary from pipe to pipe in the simplified advection–reaction
model: water velocity. However, different water velocities
do not require several CPA preprocessings. We use a global
time step for all pipes and calculate an individual space step
according to a pipe’s velocity. By adjusting the number of
sites per pipe to the length and space step of the pipe, we
can therefore approximately use the same CPA for all differ-
ent velocities.

4.3. Arsenate in water pipe

The advection and adsorption of arsenate in drinking water
pipes is already considered in Kohler et al. (2015). The phys-
ics is described by the Langmuir adsorption model (Koopal
& Avena, 2001). Here, we only briefly present the basic phys-
ical equations:

@tDþ v@xD ¼ � 1
rh

f (D, A),

@tA ¼ f (D, A), (1)

with

f (D, A) ¼ 1

1
k1
þ 1

kf
(Smax � A)

(D(Smax � A)� KeqA),

where D is the concentration of dissolved arsenate and A the
concentration of arsenate adsorbed at the pipe wall. The pa-
rameter values are taken from Klostermann et al. (2010)
and Pierce and Moore (1982).

v ¼ 10
m

min
, rh ¼ 50

l
m2

,

k1 ¼ 0:2
l

mg min
, Smax¼ 100

mg
m2

,

Keq¼ 0:0537
mg
l

, kf ¼ 2:4
l

m2 min
: (2)

For discretization, the advection and the reaction step are de-
coupled (see Thirring, 1981). For the advection, the method
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of characteristics (LeVeque, 1999) is used with U¼ f21, 0g
as the backward difference, Dx¼ 100 m and Dt¼Dx/v¼ 10
min:

Dnþ1
i ¼ Dn

i�1 � Dt
1
rh

f (Dn
i�1, An

i ),

Anþ1
i ¼ An

i þ Dtf (Dn
i�1, An

i ): (3)

The total arsenate concentration D þ [(1/rh)A] is a conserved
quantity. Therefore, the transition probabilities undergo a
slight adaptation proposed in Appendix A in order to preserve
the expected value of the total arsenate concentration. A de-
tailed analysis of conservation properties is given in Appen-
dix A.

4.4. State-discrete modeling of junctions

To simulate whole water grids we extend the CPA algorithm
to junctions. In this section, we introduce an algorithm for ad-
vection–reaction problems for an example with three pipes.
For notational simplicity, we derive our idea just for a single
dissolved species, but generalizations are straightforward.
More complex applications are presented as part of the grid
simulation in the next section.

We note that due to the way we introduced time and space
discretization, mixing is a local phenomenon. We only have
to define a new local update rule for the first site of each out-
put pipe. In principle we have to distinguish between two dy-
namically different types of junctions (see Fig. 4). If the flow
direction is such that there is just one input pipe (Fig. 4a), con-
centrations can be handled easily. We do not have to think of
any mixing for concentrations, as both water volume and spe-
cies’ mass are split. Therefore, we can just apply the regular
CPA rule on the neighborhoods consisting of the last site of
the input pipe and the first site of each output pipe, respec-
tively.

We focus on the second case (Fig. 4b), where there are two
input pipes a and b and one output pipe c. Here, the volume of
water Vi, water velocity ui, cross-sectional area Ai, mass of
dissolved species Mi, and concentration of dissolved species
Di denote the respective variables at the last site in pipe i [
fa, bg and at the first site of pipe i¼ c. The conservation of

the species’ mass and the conservation of volume of the in-
compressible water read

Mc ¼ Ma þMb,

Vc ¼ Va þ Vb,

and can be used to derive an equation for the concentration of
the dissolved species in pipe c. We consider only the one-di-
mensional phase space ~V of the dissolved species with parti-
tion {~Ve}e[~E. Although ~V and ~E are the same at every site,
we will attach indices a, b, c to them to clarify to which site
we refer. Then m : ~Va �~Vb �~Vc is given by

Dc ¼ m(Da, Db) ¼ Mc

Vc
¼ Ma þMb

Va þ Vb
¼ VaDa þ VbDb

Va þ Vb
,

¼ Aaua

Aaua þ Abub|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
a

Da þ
Abub

Aaua þ Abub|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
b

Db,

and has to be translated into discrete phase space. All we can

get is again a probability distribution m0 : ~Ea �~Eb ! D(~Ec)
given by

m0 ea, ebð Þ ecð Þ ¼
l Vea �Veb > m�1 Vecð Þð Þ

l Vea �Vebð Þ :

If the partition f~Vege[E is uniform with resolution D~V, then
m(~Vea , ~Veb ) is also an interval of length D~V for all ea, eb [ E:
Let ~Vei ¼ [vi, wi] for i [ fa, bg, and denote m([va, wa], [vb,
wb]) ¼ [vc, wc]. Note that by definition a, b � 0 and a þ
b ¼ 1. Therefore, vc ¼ ava þ bvb and wc ¼ awa þ bwb,
and so

wc � vc ¼ a wa � vað Þ þ b wb � vbð Þ ¼ aþ bð ÞD~V ¼ D~V:

Similar to the extension discussed in Appendix A, m0 might
also be adapted to include conservation considerations. Fur-
thermore, m0 has to be embedded in the n-dimensional phase
space V of dissolved and adsorbed species to get the whole
mixing rule.

4.5. An exemplary municipal grid

We apply our ideas to a part of a municipal drinking water
grid given in Figure 5. It consists of many elements, of which
we extract for CPA simulation nine long pipes, three consum-
ers, and two sources, the reservoirs. The rest of the elements is
just needed for the hydraulic simulation: Reservoir 2 is at-
tached to Pipes 1 and 2 by very short connection Pipes a, b,
and c. However, they are so short that their influence on
chemical kinetics can be neglected. Pumps and elevation pa-
rameters for all objects establish a pressure profile that leads
to water flow to the consumers. Some valves can be used to
control the hydraulics.

For simplicity, all setup parameters such as demand and
pump profiles are assumed to be constant in time such that

Fig. 4. Two types of junctions have to be distinguished for cellular probabil-
istic automata simulation of an advection–reaction problem. In type (a) the
hydraulics is such that we have only one inflow pipe that splits up, and in
type (b) we have several mixing inflows.
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Fig. 5. The topology of a part of an exemplary municipal grid. The grid mainly consists of nine long and three short pipes, two reservoirs,
and three consumers. For the hydraulic simulation with SIWA the pumps and valves are also necessary, which can in principle be controlled
online with the red boxes. The steady state after 4 days is shown for the dissolved arsenate and both junction types, in (a) for Reservoir 2 and
Pipes 1 and 3, and in (b) for Pipes 3, 4 and 5. In each diagram the vertical axis depicts the probability of being in the domain 0 to 4 at the
respective site.
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the system is in a hydraulic steady state. A SIWA simulation
in a realistic exemplary setting leads to the following param-
eters for a simplified advection–reaction model as shown in
Table 1.

We describe advection and adsorption of arsenate in the
grid like in Section 4.3 with the model of Eq. (1). The chem-
ical parameters are given in Eq. (2), but the hydraulic and the
pipe parameters are, of course, different. We consider the sys-
tem on the approximately positively invariant state space do-
main given by D [ [0, 1]mg/l and A [ [0, 100]mg/m2. The
translation to CPA with the postprocessing covered in Appen-
dix A is conducted three times according to the three different
pipe radii (see Table 1 and the discussion in Section 4.2). To
discretize time and space, we decouple again the advection
and the reaction step with the Trotter formula. For the advec-
tion, the method of characteristics is used with U¼ f21, 0g as
the backward difference and the global time step Dt¼ 2.5 min.
We map 75�37 randomly distributed test points by using in-
termediate steps with the less coarse discretization Dt0 ¼ 0.1
min. The pattern length is minimal, V ¼ ~V ¼ {0}, and the
phase space partition equidistant with 5 domains in the D-
and 15 in the A-direction.

In the CPA simulation, we choose the threshold probability
.005. To describe the mixing in the formalism of Section 4.4,
we model Reservoir 2 as a pipe with one site, the boundary
condition, with the characteristics of Pipe c. The number of
sites in each pipe is calculated by dividing the length by the
global time step and the velocity. The inflow boundary con-
ditions of Pipes 3, 8 and 9 are just the last sites of the previous
Pipes 2, 7 and 8, respectively. At the inflow of Pipes 4, 5, 6
and 7, the trivial mixing rule is applied, and at the inflow
of Pipe 2, the nontrivial.

We want to simulate the spread of arsenate in Reservoir 2
through the network over time, while the rest of the grid, in
particular Reservoir 1, is not contaminated in the beginning.
As initial conditions, we thus choose the lowest state with
probability 1 for dissolved and adsorbed arsenate throughout

the whole network, except for Reservoir 2. In Reservoir 1 the
boundary condition for the dissolved arsenate is the lowest
state with probability 1, and in Reservoir 2, a distribution
over higher states (see Fig. 5a). Because of the Trotter discre-
tization, we do not have to specify a boundary condition for
the adsorbed arsenate.

The time evolution is simulated over 4 days, and it can be
displayed at every site. We only show as an exemplary result
in Figure 5 the final steady state for dissolved arsenate in
the pipes involved in mixing. In the steady state, the adsorbed
arsenate is everywhere in the grid approximately in State 13
with probability 1. An exception is, of course, Pipe 1 (see
behavior in last Appendix A figure). The simulation time is
with about 6 h on a common laptop, much shorter than the
simulated time. The preprocessing time was approximately
3 times 1.25 h. As the algorithm is rather straight to parallel,
it is possible to speed up the simulation on suited computer
clusters.

The algorithm developed in Kohler et al. (2014) does not
guarantee the conservation of physical quantities. Neverthe-
less, this is an important property for the propagation of
fate contaminants in water grids. Because of the more math-
ematical nature of the derivation, we shift this part to discus-
sion in Appendix A.

We are able to simulate under uncertainties a large grid
faster than real-time by calculating directly on a simplified
state space. The state space allows for a direct practical inter-
pretation in terms of contamination risk levels. Our example
comprises the features introduced in the former sections: the
unexpected accumulation of probability in State 3 for the dis-
solved arsenate due to the nonlinearity of the interaction, the
mass conservation, and the mixing behavior. Already in this
simple setup we gather interesting information for the con-
sumer that would not be available in a deterministic simulation.
In chemically and topologically more involved examples, we
expect the consumer to really benefit from results that cannot
be simulated easily by other means.

Table 1. The parameters for a simplified advection-reaction mode

Pipe

1 2 3 4 5 6 7 8 9

Radius (m) 0.1500 0.300 0.300 0.1625 0.300 0.1500 0.300 0.300 0.300
Length (m) 1500 1345 2305 500 1730 500 2690 4000 100
Velocity (m/s) 2.150 0.690 0.690 0.300 0.605 0.120 0.575 0.575 0.575
No. of sites 5 13 22 12 19 29 31 46 2
CPA 1 2 2 3 2 1 2 2 2

Pipe

a b c

Radius (m) 0.1500 0.300 0.150
Length (m) 10 10 5
Velocity (m/s) 2.150 0.690 0.620
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5. CONCLUSION AND OUTLOOK

In this paper, we have presented a characterization and a de-
tailed application for the algorithms developed in Kohler
et al. (2014). In Appendix A, we present ideas on how to ex-
tend the algorithm for conserving physical quantities. Our
ideas work for hydraulic steady states on which we have fo-
cused in this work. With the concepts of inverse engineering
presented in Kohler et al. (2015), the application can be easily
extended for detecting leaks in the water pipes.

The efficiency of the method strongly depends on the di-
mension of the phase space. Applications such a chemical re-
actions, which are described by a huge number of equations,
are less suitable for the method. However, conservation laws,
such as the Euler equations of the Navier–Stokes equations,
seem to be a promising application. Further work is needed
to extend the method to these equations.
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APPENDIX A

A.1. Conservation laws in CPA

Here, we intend to investigate the CPA with respect to conservation
laws. These considerations are motivated by the arsenate application,
for which we expect conservation of the total arsenate. In the Section
A.1 we show an example in which the CPA method violates the con-
servation law. In Section A.2, we suggest an extension of the regular
CPA method to impose conservation. Finally, in Section A.3, the
method is applied to solve the problem in the arsenate example.

A.2. Violation of conservation in CPA

Reconsider the transport and advection of arsenate of Section 4.3,
which means the system of Eq. (1) with the parameters of Eq. (2).
We apply the Trotter formula and the method of characteristics to
the differential equations (3), and choose the same space and time
steps. The state space is discretized in 5 domains in the D-direction
and in 15 domains in the A-direction. The only difference from Sec-
tion 4.3 is that we simulate a longer pipe with 60 sites now, and we
impose the following stochastic boundary condition:

gl(e) ¼
0:5 if e ¼ (0,9)
0:5 if e ¼ (1,13)
0 else

8<
: ,

where the first symbol is the D-domain and the second the A-
domain. The steady-state result after 4 days has been calculated
with probability threshold 0.0001 and is shown in Figure A.1.

In both the adsorbed and the dissolved arsenate direction, the
probabilitiy accumulates in two neighboring domains throughout
the whole pipe. We observe that for the respective domain with lower
concentration, the probability at the entrance of the pipe is higher
than the corresponding probability at the end of the pipe. In contrast,
for the respective domain with higher concentration, the probability
at the inflow is smaller than that at the outflow. This means that in the
steady state, on average, the total arsenate inflow is higher than the
outflow. However, the PDE model respects the conservation of total
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arsenate concentration. We find the hyperbolic conservation law

@t Dþ 1
rh

A

� �
þ v @xD ¼ 0,

where the conserved quantity is the total concentration

Dþ 1
rh

A,

and where the flow only consists of dissolved arsenate. Therefore,
the conservation law is violated in the pipe. We will investigate
that more formally in the next section.

We recap that uncertainty propagation with CPA consists of two
steps, the preprocessing and the simulation. It is in the preprocessing,
where the transition probabilities are determined to translate the PDE
into a CPA, whereas the simulation step is completely independent
of the PDE. We conclude that the violation of conservation is a mat-
ter of the preprocessing, and the errors from the preprocessing then
accumulate in the simulation. Our approach is therefore to adapt the
preprocessing to conservation laws.

A.3. Imposing conservation in the preprocessing

In this section, we suggest a method to adapt the CPA transition
probabilities to conservation laws, that is, a postprocessing of the

Fig. A.1. Simulation of arsenate transportation and adsorption in a long pipe with a regular local function: (a) the dissolved arsenate and (b)
the adsorbed arsenate in the steady state. The total arsenate concentration is not conserved due to numerical errors.
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preprocessing before the simulation. There are various possible def-
initions of conservation in a probabilistic setting. We show that the
expectation value of a conserved quantity is preserved during time
evolution of a probability density, if it is preserved by the trajectories
of all realizations. Therefore, we require our extension of the CPA
preprocessing to assure that the expected values of the conserved
quantities are preserved. We expect that the method can be extended
to higher moments.

Formally, we consider the time- and space-discrete dynamical
system with the locality property described in Section 3. We assume
that the dynamical system is derived from a PDE by time and space
discretization, and that a conservation law holds locally. In the fol-
lowing lemma, Vn

iþU denotes the random variable that is the natural
restriction of the random variable Vn : X!Vm to the (iþU )-coor-
dinates of the image, where i [ ~I. E[V ] is the expected value of a
real-valued random variable V (see Section 3).

LEMMA: Let n [ N0, i [ ~I, measurable k : VU!R and k 0 : V!
R such that

k0(vnþ1
i ) ¼ k(vn

iþU)

is fulfilled for every vn, vnþ1 ¼Ft(vn) [ Vm. Consider random vari-
ables Vn, Vnþ1 ¼Ft(Vn) : X!Vm with densities gn, gnþ1 ¼

PFt (gn) [ D(Rmn), respectively. Assume that Ft is injective and
continuously differentiable. Then

E[k0(Vnþ1
i )] ¼ E[k(Vn

iþU)]: B

Proof: It is well known (Lasota & Mackey, 1993) that under the
given assumptions gnþ1(v) ¼ PFt (gn)(v) ¼ gn(F2t(v))jdetD(F2t)j,
where detD(F2t) is the determinant of the Jacobian matrix of F2t.
Therefore,

E[k0(Vnþ1
i )] ¼

ð
k0(vi)g

nþ1(v)dv

¼
ð

k0(vi)ðgn(F�t(v))jdetD(F�t)jdv,

¼
ð

k0(Ft(w)i)g
n(w)dw

¼
ð

k(wiþU)gn(w)dw ¼ E[k(Vn
iþU)],

by substitution w¼F2t(v) and locality of Ft. B

Note that gn and gnþ1 may be replaced by suitable marginal dis-
tributions when calculating the expected values of the local vari-
ables. Since a conservation law holds locally, the locality approxi-
mation in the CPA construction cannot be the cause of its
violation. There remain just two steps in the translation from PDE
to CPA, where things can go wrong: the numerical approximation
of the Frobenius–Perron operator by test point mapping, and the sub-
sequent restriction of image densities to the subspace of piecewise
constant densities.

We suggest an algorithm that corrects the errors originating from
both steps with respect to the expected values of the conserved quan-
tities. The idea is to constrain the set of local functions to those that
give rise to the exact expected values in the image distribution. Note
that we know the exact expected value according to the above
lemma. The transition probabilities are then chosen by an optimiza-

tion such that they are as close as possible to the approximate image
point distribution from the regular preprocessing.

We state the algorithm for notational simplicity only for one con-
served quantity. It is straightforward to extend it to several of them
by adding more constraints. For a given partition E of V and for
all w [ EU , we conduct the following steps:

STEP 1. Determine vector m¼ (me)e[E by me ¼ E[k 0(V )], where
V : X!V has uniform distribution over Ve.

STEP 2. Determine vector of nonzero preliminary transition prob-
abilities p0 from w to e [ E by mapping of test points with stan-
dard preprocessing.

STEP 3. Determine for all image domains Ve with nonzero prob-
ability the mean ~Me of the conserved quantity k 0 with respect to
the image points that it contains.

STEP 4. Determine exact expected value M¼ E[k(V )] of the con-
served quantity, where V : X ! VU has uniform distribution
over Vw.

STEP 5. Determine a diagonal weight matrix W with diagonal ele-
ments (1/de), where de ¼ jme � ~Mej.

STEP 6. Solve quadratic program for new nonro transition prob-
abilities p

ð p� p0ÞT W( p� p0)! min,

M ¼ mT p, kpk1¼ 1, p � 0,

where m just contains only the indices e [ E of the vector that ap-
pear in p0.

Figure A.2 gives some sense of what the algorithm does. We
add five comments on the algorithm. First, we note that Step 1 is
independent of w, so it has to be computed only once. Second,

Fig. A.2. We show one site with an exemplary two-dimensional phase space
partitioned in 16 boxes to illustrate the postprocessing. The preimage state at
this site is the left green box, and the standard preprocessing assigns in this
example probabilities p01, p02 and p03 to thr image domains (boxes with
green boundaries). All domains that have an intersection with the images
of the test points (green shape) are considered as image domains. The
exact conserved expected value M is calculated from the preimage state. In
one of the image boxes, we exemplary sketch M̃e. by a filled green circle
and me by a green circle with white interior. The quadratic program redistri-
butes the probabilities according to the differences in M̃e and me such that the
expected value is conserved exactly.
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the effect of the weight matrix W constructed in Steps 4 and 5 is to
better maintain the approximate p0 when restricting the image den-
sity to be piecewise constant. The better the expected value of the
conserved quantity with respect to the image points in one domain
already matches the domain’s expected value, the more expensive
it is to change the probability in the optimization Step 6. A simple
variant of the algorithm is of course to omit Steps 4 and 5 and
choose W as the identity matrix in Step 6. Then the quadratic pro-
gram turns into a least-squares problem. Third, we note that by
only redistributing the probabilities for the domains with nonzero
probability, we prevent the optimization from allocating nonzero

probabilities to domains that are actually not in the support of
the image density. However, for some w [ EU , there might be no
feasible solution to the quadratic program, because then the con-
straints for normalization and expected value are too strict. This
happens especially for boundary domains. A practical workaround
is to also include the neighboring domains in the optimization pro-
cedure. If we then still do not find any feasible solution, we keep
the probabilities from the regular preprocessing. Fourth, we men-
tion that there are other options to define the optimization problem,
for example, by including the constraint for the expected value with
a big constant in the minimization procedure. This would also help

Fig. A.3. Simulation of arsenate transportation and adsorption in a long pipe with an improved local function: (a) the dissolved arsenate and
(b) the adsorbed arsenate in the steady state. In contrast to Figure A.1, now the expected value of the total arsenate concentration is con-
served.
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to find feasible solutions more frequently. Fifth, we note that the
additional computational effort of the postprocessing is negligible
in practice. We only have to execute one optimization for every
preimage pattern, which is much less expensive than the test point
mapping.

A.4. Application: Adsorption of arsenate

In the arsenate application, the conserved quantity is the total ar-
senate concentration. With the time and space discretization of Eq.
(3), we find that

Dnþ1
i þ 1

rh
Anþ1

i ¼ Dn
i�1 þ

1
rh

An
i :

Therefore, we can identify

k(vn
iþU) ¼ Dn

i�1 þ
1
rh

An
i , k0(vnþ1

i ) ¼ Dnþ1
i þ 1

rh
Anþ1

i :

When we conduct an extended preprocessing with the parameters of
Section A.1, we include also the next neighbors in the optimization.
As a result, we find a feasible solution for all preimage states, and
the new transition probabilities differ slightly from the regular
preprocessing. A remarkable difference is that now whereas without
the postprocessing we had f0(0, 0)(0)¼ 0.9446 and f0(0, 0)(1)¼
0.0554. With the extended preprocessing, it is not any longer
possible by numerical mistakes that arsenate is created in an empty
pipe.

With the new local function, we repeat the same simulation as in
Section A.1. The results for the steady state after 4 days are shown in
Figure A.3. Even in a long pipe, we can now guarantee conservation
of the expected value of the total arsenate concentration. The unphys-
ical numerical phenomenon described in Section A.1 no longer ap-
pears. Furthermore, simulations in the setup of Section 4.3 with the
new local function show very similar results to the old local function.
Especially the accumulation of dissolved arsenate in risk level 3 can
still be observed (see Figure 5 for an example with similar parame-
ters). We note that in practice it is critical to choose the threshold prob-
ability in the simulation for considering a probability to be nonzero
quite low, so that small errors cannot accumulate. Here we used
0.0001.
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