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We derive a stage-structured model for an insect population in which a larva matures
on reaching a certain size, and in which there is intra-specific competition among
larvae that hinders their development, thereby prolonging the larval phase. The
model, a system of delay differential equations for the total numbers of adults and
larvae, assumes two forms. One of these is a system with a variable state-dependent
time delay determined by a threshold condition, the other has constant and
distributed delays, a size-like independent variable replacing time t, and no threshold
condition. We prove theorems on boundedness and on the linear stability of equilibria.
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1. Introduction

In insects, and other species that undergo metamorphosis, individuals often undergo
a larval stage of development before becoming sexually mature adults. Mathemati-
cal models of such populations often take the form of delay differential equations for
the total numbers of larval and adult individuals, in which the delay is the devel-
opmental time from egg to adult, which is often assumed to be constant. These are
stage-structured models, derived from well-known modelling frameworks for age
structured populations such as the McKendrick–von Foerster equation [3]. It is a
well-known and straightforward way to model a population if the maturation delay
is constant. However, in reality, larval developmental times for mosquitoes depend
on a number of factors such as the weather (particularly temperature), diet and
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intra- or inter-specific competition [5,6,8,11,14]. Intra-specific larval competition is
known to occur in some mosquito populations [12]. In insects generally, the meta-
morphic molt is actually triggered by the size of the larva and not by chronological
age [2, 4, 13]. In Drosophila, pupariation seems to be triggered by a large pulse
of a steroid hormone known as 20-hydroxyecdysone (ecdysone), and this happens
when enough larval growth has been achieved to produce an adult of the correct
size [10,13].

Adopting the view that maturation is triggered by size, not age, this paper con-
siders the role of intra-specific competition in determining the developmental time
of insect larvae. The immediate effect of competition among larvae is to slow down
their growth, with the consequence that maturation is delayed. In this paper mat-
uration is triggered when a larva reaches a prescribed length l, and the maturation
time for the cohort that matures at time t is τ(t), which is determined from the
threshold condition (2.12) and involves the number of larvae I present at all times
during the maturation, since those other larvae were exerting competitive pressure.
Larval development rate decreases as larval density increases, and we model this
using (2.2) with P decreasing in its second variable. These assumptions lead to a
system of delay differential equations for the numbers of adults A(t) and larvae
I(t). These equations have a variable (state-dependent) delay determined from the
threshold condition and, unlike in many similar models with a constant delay, are
fully coupled. The model can be transformed into one that has terms with constant
delay, and other terms with distributed delay. In the second model a size-like vari-
able x is used as the independent variable, and for larvae it corresponds to actual
physical length.

We prove theorems that provide conditions sufficient for the population to be
bounded or to go extinct. Delay equation models for stage-structured populations
commonly involve a function B(·) that is the birth rate (egg-laying rate) and it
seems to be common practice to assume that this function is bounded, because
such an assumption usually makes it possible to prove that solution variables remain
bounded. The birth function is usually a function B(A) of the number of adults A.
It is usually argued that the assumption of boundedness of the birth function is rea-
sonable on the basis that the per-capita egg-laying rate B(A)/A tends to decrease
at higher densities due to competition among adults. While this does not, by itself,
imply that B(A) is bounded, one often has in mind the choice B(A) = rA exp(−qA),
the Nicholson’s blowflies birthrate [7], which is a bounded function. However, in
this paper we prefer to establish boundedness results without the requirement of
boundedness of our birth function B(A). This is because of the expectation that
intra-specific competition among insect larvae should prolong maturation, thereby
exposing larvae to mortality risks for longer, lowering the maturation rate and
stabilizing the population that way. We have therefore aimed to prove bounded-
ness results that admit unbounded birth functions (within certain restrictions) and
results that elucidate the role of a decreasing function P0 that specifies how the
growth rate of an individual larva depends, due to the intra-specific competition,
on the total number of larvae.

We also establish a result on the linear stability of any equilibrium. The char-
acteristic equation is of a format that does not lend itself well to commonly used
tricks, but in some situations (particularly if the competition is sufficiently weak, in
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a sense that can be quantified) a technique involving the use of Rouché’s theorem
can be applied to yield verifiable conditions sufficient for the local stability of an
equilibrium.

2. Model derivation

We have in mind an insect population with larval and adult life stages. Maturation
is triggered by size or weight, but the growth of an individual larva is at each
instant affected by the total number of larvae present, since all larvae compete for
resources, thereby slowing the growth of each individual. For larvae, we work with
a variable x that could denote the size or weight (we choose size, to be definite) of
a larva. Rather than specifying that a larva matures on reaching a certain age, we
specify that it matures when its size x reaches a fixed threshold l. We derive a delay
differential equation for the total number of adults, following an approach similar
to that used by Smith in [15]. (Smith [15] non-dimensionalizes and takes l = 1, but
we do not do that here.)

Let A(t) denote the number of mature adult insects at time t and let i(x, t) denote
the larvae population density at time t of length x. The total number I(t) of larvae
is given by

I(t) =
∫ l

0
i(x, t) dx. (2.1)

Differently from Smith [15], we suppose that the rate of change of the length of a
larva at time t is given by

dx

dt
= P (t, I(t)), (2.2)

i.e. the rate of change depends explicitly on t and also on the total number of
larvae I(t) (in reality it may also depend on other factors). If P (t, I) is decreasing
in I, then (2.2) models competition among the larvae because an increase in their
numbers will slow down the rate at which larvae grow. Smith [15] took dx/dt to be
a function of his variable for the total number of adults, not larvae. This would be
realistic in some situations. However, for many species that undergo metamorphosis
the larvae and adults live in different habitats and are in competition for different
things (larvae for food, adults for mates, is typical). In such cases competition that
hinders the growth of an individual larva is likely to come mainly from other larvae,
and therefore we believe that (2.2) is the appropriate assumption. It is, however, a
complication in the sense that it prevents us from deriving a single delay differential
equation for the number of adults A(t), as was done in [15]. Instead, we obtain a
fully coupled system of equations for the numbers of larvae I(t) and adults A(t),
as we shall see.

After a small time δt a larva will have grown an amount δx and therefore

i(x + δx, t + δt) = i(x, t) − µii(x, t)δt,

where µi is the per-capita mortality rate for larvae. From a Taylor expansion, and
using (2.2),

∂i(x, t)
∂t

+ P (t, I(t))
∂i(x, t)

∂x
= −µii(x, t). (2.3)
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Note that since larvae metamorphose into adults, it makes no sense to write down an
equation for i(x, t) for lengths x exceeding l. Equation (2.3) is strictly for x ∈ (0, l)
only. We may still derive an equation for the number of adults A(t).

Differentiating (2.1) and using (2.3),

I ′(t) = −µiI(t) + P (t, I(t))(i(0, t) − i(l, t)).

The term P (t, I(t))i(0, t) is the only inflow term and is therefore the birth rate,
while P (t, I(t))i(l, t) is the only outflow term other than the mortality term, and is
therefore the maturation rate. For the birth rate, we assume that

P (t, I(t))i(0, t) = B(A(t)), (2.4)

where B(·) is a non-negative function such that B(0) = 0. The maturation rate
P (t, I(t))i(l, t) needs to be calculated in terms of the birth rate at a previous time
t − τ(t). The time-varying delay τ(t) turns out to be the solution of the integral
condition (2.12) that appears later. We proceed by solving (2.3) by the method of
integration along characteristics.

The (x, t) plane can be partitioned into two subsets, with some characteristics
lying above the characteristic x = X(t) and others below it, where

X(t) =
∫ t

0
P (ξ, I(ξ)) dξ.

The curve x = X(t) is a special characteristic that passes through the origin (like
the line t = a in age-structured models). The expression for i(x, t) depends on
whether (x, t) is above or below this special characteristic x = X(t).

In general, characteristics satisfy (2.2). Let s be a parameter describing position
along a particular characteristic such that s = 0 corresponds to a boundary (which
could be either the x- or the t-axis), and such that dt/ds = 1. Then dx/ds =
P (t, I(t)).

Recall that we are only concerned with x ∈ (0, l). First let us consider the sit-
uation when x � X(t). This will only in practice be the case for small t, since
x ∈ (0, l) and X(t) is increasing. A characteristic (x(s), t(s)) in the region x � X(t)
of the (x, t) plane meets the x-axis and has t = 0 when s = 0. Since t(0) = 0 these
characteristics are given by t = s and x − x(0) = X(t). Now, from (2.3),

d
ds

i(x(s), t(s)) = −µii(x(s), t(s)) (2.5)

so that
i(x(s), t(s)) = i(x(0), t(0))e−µis. (2.6)

At a particular given point (x, t), with x � X(t), we have s = t and thus

i(x, t) = i(x − X(t), 0)e−µit, x � X(t). (2.7)

Expression (2.7) is the solution of (2.3) during an initial transient of times t such
that x � X(t), and involves the initial size distribution i(x, 0).

Next we consider the region x � X(t) in the (x, t) plane (equivalent to t � T (x, t),
where T (x, t) is defined in (2.8)), typically holding for larger t and ultimately giving
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rise to a delay equation that describes the adult population dynamics after the
initial transient. A characteristic (x(s), t(s)) in this region meets the t-axis and has
x(0) = 0 and t = s + t(0).

We need to find the s-value for a particular point (x, t). From (2.2), using that
x = 0 when t = t(0),

x =
∫ t

t(0)
P (ξ, I(ξ)) dξ =

∫ t

t−s

P (ξ, I(ξ)) dξ,

which determines the required s. The root s of the above equation is denoted T (x, t),
so that the function T (x, t) is defined by∫ t

t−T (x,t)
P (ξ, I(ξ)) dξ = x. (2.8)

Equation (2.6) still holds but now x(0) = 0, t(0) = t − s and s is the quantity
T (x, t) defined in (2.8). Therefore,

i(x, t) = i(0, t − T (x, t))e−µiT (x,t), x � X(t). (2.9)

The birth law is (2.4) and is used to compute i(0, t − T (x, t)), giving

i(0, t − T (x, t)) =
B(A(t − T (x, t)))

P (t − T (x, t), I(t − T (x, t)))
. (2.10)

We require the maturation rate P (t, I(t))i(l, t) and we can now find i(l, t) from (2.9)
and (2.10), giving

i(l, t) = i(0, t − T (l, t))e−µiT (l,t) =
B(A(t − T (l, t)))

P (t − T (l, t), I(t − T (l, t)))
e−µiT (l,t).

Since the size variable x only applies to larvae, for the adults A(t) we simply write

dA(t)
dt

= −µaA(t) + maturation rate (2.11)

on the assumption that there is no competition between adults, with µa the per-
capita natural death rate for adults. We also write τ(t) = T (l, t). From (2.8), the
delay τ(t) in (2.13) satisfies the threshold condition∫ t

t−τ(t)
P (ξ, I(ξ)) dξ = l. (2.12)

Differentiating (2.12) yields that τ ′(t) < 1, and this has an important interpretation,
namely, that if the maturation time τ(t) is increasing, there is a limit to how fast it
may do so. Otherwise, it is possible for a matured individual to become immature
again. Barbarossa et al . [1] explain the same point in relation to a government that
suddenly raises the age at which individuals may vote. It is easy to see that it creates
a situation where some individuals who could vote suddenly become ineligible to do
so. The problem arises because if voting age at time t is τ(t), a sudden instantaneous
increase of the voting age cannot satisfy τ ′(t) < 1. The problem would disappear if
the voting age were continuously raised in a manner satisfying such a constraint.
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The constraint τ ′(t) < 1 is equivalent to the assertion that if t1 < t2, then
t1 − τ(t1) < t2 − τ(t2). Indeed, if this were false, then t1 − τ(t1) � t2 − τ(t2) and

l =
∫ t1

t1−τ(t1)
P (ξ, I(ξ)) dξ <

∫ t2

t2−τ(t2)
P (ξ, I(ξ)) dξ = l,

a contradiction. Thus, if two individuals are born at different times, the individual
born first matures first.

From (2.11), the equation for the number of adults A(t) is

dA(t)
dt

= −µaA(t) + P (t, I(t))
B(A(t − τ(t)))

P (t − τ(t), I(t − τ(t)))
e−µiτ(t) (2.13)

and the equation for the number of larvae I(t) is

dI(t)
dt

= −µiI(t) + B(A(t)) − P (t, I(t))
B(A(t − τ(t)))

P (t − τ(t), I(t − τ(t)))
e−µiτ(t). (2.14)

Here, τ(t), which depends on the function I, is determined by the threshold con-
dition (2.12). Equations (2.13) and (2.14) have to be treated as a fully coupled
system. This is different from the situation in [15], in which the number of adults
is determined from a single differential equation with a threshold condition. The
simpler situation in [15] is consequent upon Smith’s assumption that dx/dt is a
function of the number of adults, rather than the number of larvae as in (2.2). In
general, model (2.13)–(2.14) has a state-dependent delay because the growth of an
individual larva, as described by (2.2), depends directly on t due to factors such
as seasonality, and also more indirectly on t via the total number I(t) of larvae,
since an increase in the latter is likely to slow down growth due to competition.
As expected, τ(t), which is found from (2.12), depends on the state variable I(·)
over the development time [t − τ(t), t] for the cohort that matures at time t. State-
dependent delays are automatically time dependent but the converse would not be
true if, in (2.2), we took P to depend only on its first variable t and not on I.
The maturation time τ(t) would then be time dependent but not state dependent.
However, we actually focus mainly on the opposite situation when P depends only
on I, which does give rise to state-dependent delay equations.

Equation (2.14) can be replaced by the integral equation

I(t) =
∫ t

t−τ(t)
B(A(ξ))e−µi(t−ξ) dξ (2.15)

with τ(t) again given by (2.12). Equation (2.15) can be directly derived from the
fact that

I(t) =
∫ l

0
i(x, t) dx =

∫ l

0
i(0, t − T (x, t))e−µiT (x,t) dx

=
∫ l

0

B(A(t − T (x, t)))
P (t − T (x, t), I(t − T (x, t)))

e−µiT (x,t) dx,

which becomes (2.15) on changing variables from x to ξ, where t−T (x, t) = ξ with
T (x, t) defined by (2.8), noting that T (0, t) = 0, T (l, t) = τ(t) and, using (2.8),
∂ξ/∂x = −∂T/∂x = −1/P (ξ, I(ξ)).
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3. Model analysis

We focus on the autonomous case when P (t, I) = P0(I). In this case it is possible
to convert the model (2.13)–(2.14) into one without a threshold condition of the
form (2.12). To do so, we introduce the new size-like independent variable

x =
∫ t

0
P0(I(ξ)) dξ.

This amounts to adopting the physiological time-scale of larvae. Indeed, for lar-
vae the variable x corresponds to physical size, with a fixed threshold value l for
maturation. We write

A(t) = A
( ∫ t

0
P0(I(ξ)) dξ

)
= A(x), I(t) = I

( ∫ t

0
P0(I(ξ)) dξ

)
= I(x).

Note that

x =
∫ t−τ(t)

0
P0(I(ξ)) dξ +

∫ t

t−τ(t)
P0(I(ξ)) dξ =

∫ t−τ(t)

0
P0(I(ξ)) dξ + l

by (2.12). Thus, if x corresponds to t, then x − l corresponds to t − τ(t). Also,

A(t − τ(t)) = A
( ∫ t−τ(t)

0
P0(I(ξ)) dξ

)
= A(x − l) and I(t − τ(t)) = I(x − l)

so the effect of the transformation is to transform (2.13)–(2.14) into a model with
a constant delay l, and without a threshold condition. We calculate τ(t) in terms
of x as

τ(t) = t − (t − τ(t)) =
∫ x

x−l

dt

dx̄
dx̄ =

∫ x

x−l

1
P0(I(x̄))

dx̄

=
∫ 0

−l

1
P0(I(x + x̄))

dx̄

=
∫ 0

−l

1
P0(Ix(x̄))

dx̄

= τ0(Ix),

where the subscript notation has its standard meaning in delay differential equa-
tions, i.e. Ix(x̄) = I(x + x̄) for x̄ ∈ [−l, 0] and the functional τ0(·) is defined
by

τ0(φ) =
∫ 0

−l

1
P0(φ(x̄))

dx̄. (3.1)

The model equations (2.13)–(2.14) become

dA(x)
dx

= −µa
A(x)

P0(I(x))
+ e−µiτ0(Ix) B(A(x − l))

P0(I(x − l))
(3.2)

and
dI(x)

dx
= −µi

I(x)
P0(I(x))

+
B(A(x))
P0(I(x))

− e−µiτ0(Ix) B(A(x − l))
P0(I(x − l))

. (3.3)
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In the autonomous case P (t, I) = P0(I) that is now under consideration, either of
the systems (2.13)–(2.14) or (3.2)–(3.3) can be used to study the linear stability
of an equilibrium. In § 3.2 we present an approach that uses (2.13)–(2.14) for this
purpose. Next, we establish bounds for A(t) and I(t) from a study that uses both
systems. The second equation, (3.3), can be replaced by the integral equation

I(x) =
∫ x

x−l

B(A(z))
P0(I(z))

exp
(

−µi

∫ x

z

dx̄

P0(I(x̄))

)
dz. (3.4)

3.1. Boundedness

Good bounds on the variables A(t) and I(t) can be obtained from a study that
uses both system (2.13)–(2.14) and the reformulated system (3.2)–(3.3), in which x
is the independent variable. Theorem 3.1 admits some unbounded birth functions
B(·) and establishes bounds that depend on the function P0(·), which describes the
intra-specific competitive effect among larvae and its tendency to prolong the larval
stage by slowing down the rate at which a larva grows.

Theorem 3.1. Suppose the function B(·) is non-negative and satisfies B(A) �
B̄(A) for all A � 0, where B̄(A) is some non-decreasing function with the property
that there exists K > 0 such that B̄(A) < min(µa, µi)A whenever A > K. Then
solutions (A(t), I(t)) of (2.13)–(2.14) subject to non-negative initial data satisfy

lim sup
t→∞

(A(t) + I(t)) � K. (3.5)

Suppose further that P (t, I) = P0(I) in (2.2), with P0(·) being a strictly positive
decreasing function. Then, if (A(x), I(x)) satisfies system (3.2)–(3.3):

(i) if the inequality
e−µil/P0(0)

P0(K)
B̄(A) <

µa

P0(0)
A (3.6)

holds for all A > 0, then (A(x), I(x)) → (0, 0) as x → ∞;

(ii) if (3.6) does not hold for all A > 0 but there exists K1 > 0 such that (3.6)
holds for all A > K1, then

lim sup
x→∞

A(x) � K1 (3.7)

and

lim sup
x→∞

I(x) � B̄(K1)
P0(K)

P0(0)
µi

(1 − e−µil/P0(0)). (3.8)

Proof. It is straightforward to see that A(t) � 0 and I(t) � 0 for all t � 0. For A(t)
this follows immediately from the structure of (2.13) and an argument similar to
that described in the proof of theorem 5.2.1 in [16]. For I(t), non-negativity follows
from the integral equation (2.15). Adding (2.13) and (2.14) gives

d
dt

(A(t) + I(t)) = B(A(t)) − µaA(t) − µiI(t)

� B̄(A(t)) − min(µa, µi)(A(t) + I(t))

� B̄(A(t) + I(t)) − min(µa, µi)(A(t) + I(t)).
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From a standard comparison argument, and basic properties of one-dimensional
ordinary differential equations, we immediately deduce (3.5).

Obviously, lim supt→∞ A(t) and lim supt→∞ I(t) are independently bounded by
K, and the same asymptotic bound also applies to the functions A(x) and I(x)
satisfying (3.2)–(3.3). In what follows, we treat the bound K as if it applies to
A(t) and I(t) for all t, and A(x) and I(x) for all x. This can be justified by
standard arguments involving the addition of a small quantity ε to K. For example,
A(t) � K+ε for t sufficiently large, so K+ε can be used as a true bound on A(t) if all
analysis is understood to be for large enough t. But, eventually, ε is shrunk to zero.
For brevity we omit these routine details of justification and use the asymptotic
bound K on each variable as if it were valid for all times.

Since P0(·) is decreasing, P0(I(x)) � P0(0) and therefore, from (3.2) and the
definition of τ0(Ix),

dA(x)
dx

� − µa

P0(0)
A(x) + B̄(A(x − l))

[
1

P0(I(x − l))
exp

(
−µi

∫ x

x−l

1
P0(I(x̄))

dx̄

)]
.

(3.9)
Since 0 � I(x) � K,

dA(x)
dx

� − µa

P0(0)
A(x) +

e−µil/P0(0)

P0(K)
B̄(A(x − l)). (3.10)

The proof of statement (i), that A(x) → 0 as x → ∞ under the assumption
that (3.6) holds for all A > 0, follows from a comparison argument using that
B̄(·) is non-decreasing. Smith [16, theorem 5.1.1] assures us that A(x) is bounded
above by the solution of the differential equation corresponding to (3.10), i.e. the
differential equation obtained if ‘�’ in (3.10) is replaced by ‘=’. Zero is the only
equilibrium of that equation under the assumptions of statement (i). By the results
on generic convergence to equilibria in [16, ch. 5], A(x) → 0 as x → ∞. It then
follows from the integral equation (3.4) that I(x) → 0. Note that P0(I(z)), in the
denominator of the integrand of (3.4), is bounded away from zero because of the
boundedness of I.

Next we prove statement (ii) of the theorem. Let A∞ = lim supx→∞ A(x), and let
ε > 0 be an arbitrary small number. There exists X > 0 such that A(x) � A∞ + ε
whenever x � X. Also, by the fluctuation lemma (see [17, proposition A.22]),
there is a sequence xj → ∞ such that A(xj) → A∞ and A′(xj) → 0 as j → ∞.
From (3.10), for j sufficiently large,

A′(xj) � − µa

P0(0)
A(xj) +

e−µil/P0(0)

P0(K)
B̄(A(xj − l))

� − µa

P0(0)
A(xj) +

e−µil/P0(0)

P0(K)
B̄(A∞ + ε)

since B̄ is non-decreasing. Letting j → ∞ and then ε → 0,

µa

P0(0)
A∞ � e−µil/P0(0)

P0(K)
B̄(A∞).

But we are now assuming that (3.6) holds when A > K1, so it follows that A∞ �
K1. Finally, to deduce (3.8) we use (3.4) and the bounds A∞ � K1, I∞ � K. Let
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ε be an arbitrary small positive number; then A(z) � K1 + ε and I(z) � K + ε
for all z sufficiently large. Therefore, for x sufficiently large, and using that B � B̄
with B̄ increasing,

I(x) =
∫ x

x−l

B(A(z))
P0(I(z))

exp
(

−µi

∫ x

z

dx̄

P0(I(x̄))

)
dz

� B̄(K1 + ε)
P0(K + ε)

∫ x

x−l

exp
(

− µi

P0(0)
(x − z)

)
dz

=
B̄(K1 + ε)
P0(K + ε)

P0(0)
µi

(1 − e−µil/P0(0)).

Taking the lim sup as x → ∞ and then letting ε → 0, we obtain (3.8).

Our next boundedness result has the advantage of holding under much weaker
assumptions on the birth function B(·). Theorem 3.2 holds for any increasing birth
function that grows no faster than linearly. There is no restriction on the linear
growth rate κ in theorem 3.2, and in this respect the theorem admits a wider class
of birth functions than theorem 3.1. However, theorem 3.2 is restrictive to the extent
that it only ensures the nonexistence of monotone solutions that increase without
bound.

Theorem 3.2. Suppose that B(·) is continuous, non-negative, monotone non-de-
creasing, and satisfies B(A) � κA for some κ > 0. Suppose further that P (t, I) =
P0(I) in (2.2), with P0(·) a strictly positive decreasing function such that P0(∞) =
0. Then, it is impossible for a monotone solution (A, I) of system (3.2)–(3.3) to
increase without bound.

Proof. From (3.4), for a solution of (3.2)–(3.3) with A and I increasing, we have

I(x) �
∫ x

x−l

B(A(z))
P0(I(z))

exp
(

−µi

∫ x

x−l

dx̄

P0(I(x̄))

)
dz

= e−µiτ0(Ix)
∫ x

x−l

B(A(z))
P0(I(z))

dz � le−µiτ0(Ix) B(A(x − l))
P0(I(x − l))

. (3.11)

From (3.4) again,

I(x) � max
z∈[x−l,x]

B(A(z))
∫ x

x−l

1
P0(I(z))

exp
(

−µi

∫ x

z

dx̄

P0(I(x̄))

)
dz

=
1
µi

max
z∈[x−l,x]

B(A(z))
∫ x

x−l

d
dz

exp
(

−µi

∫ x

z

dx̄

P0(I(x̄))

)
dz

=
1
µi

max
z∈[x−l,x]

B(A(z))
[
1 − exp

(
−µi

∫ x

x−l

dx̄

P0(I(x̄))

)]

so that
I(x) � 1

µi
max

z∈[x−l,x]
B(A(z)). (3.12)

It follows from (3.2), and the bound for I(x) in (3.11), that

dA(x)
dx

� −µa
A(x)

P0(I(x))
+

I(x)
l

.
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By (3.12), for increasing functions A(x) we have I(x) � B(A(x))/µi and therefore

dA(x)
dx

� −µa
A(x)

P0(I(x))
+

B(A(x))
µil

� −µa
A(x)

P0(I(x))
+

κA(x)
µil

.

Now, suppose I(x) increases monotonically without bound. Then, since P0(∞) = 0,
it follows that, for x sufficiently large, dA(x)/dx < 0 and therefore A(x) is bounded.
From (3.12), I(x) is also bounded, a contradiction.

3.2. Linear stability of equilibria

When P (t, I) = P0(I), any equilibrium (A∗, I∗) of system (2.13)–(2.14) must
satisfy

µaA∗ = e−µiτ0(I∗)B(A∗), µiI
∗ = B(A∗)(1 − e−µiτ0(I∗)) (3.13)

with

τ0(I∗) =
l

P0(I∗)
.

To investigate the linear stability of an equilibrium we set A(t) = A∗ + Ã(t) and
I(t) = I∗ + Ĩ(t) with Ã and Ĩ small. System (2.13)–(2.14) is a system with state-
dependent delay, since τ(t) is given by (2.12) (with P (t, I) = P0(I) now) and
involves the variable I and its history. In the linearization of an autonomous system
with state-dependent delay about an equilibrium solution, it is usually understood
that the state-dependent delays end up evaluated at the equilibrium under consid-
eration. This turns out to be the case for (2.13)–(2.14) for the delays that appear
in the arguments, but not for the delays in the e−µiτ(t) terms. For those terms,
τ(t), which is really a functional of I, needs to be expanded for small Ĩ keeping
linear terms, and not simply replaced by its value at the equilibrium I∗. Such an
expansion can be calculated as follows. From (2.12),

1 − τ ′(t) =
P0(I∗ + Ĩ(t))

P0(I∗ + Ĩ(t − τ(t)))
.

If we expand the right-hand side for small Ĩ and replace τ(t), where it appears in
the right-hand side, by its equilibrium value τ0(I∗) = l/P0(I∗), we obtain

−τ ′(t) =
P ′

0(I
∗)

P0(I∗)

{
Ĩ(t) − Ĩ

(
t − l

P0(I∗)

)}

and therefore, since we need τ(t) to equal l/P0(I∗) when Ĩ = 0, the linearization of
τ(t) at the equilibrium (A∗, I∗) is

τ(t) ≈ l

P0(I∗)
− P ′

0(I
∗)

P0(I∗)

∫ t

t−l/P0(I∗)
Ĩ(ξ) dξ. (3.14)
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With this information, tedious calculations yield that the linearization of (2.13)–
(2.14) at the equilibrium (A∗, I∗) is

dÃ(t)
dt

= −µaÃ(t)

+ e−µil/P0(I∗)
[
µiB(A∗)P ′

0(I
∗)

P0(I∗)

∫ t

t−l/P0(I∗)
Ĩ(ξ) dξ

+ B′(A∗)Ã(t − l/P0(I∗))

+
B(A∗)P ′

0(I
∗)

P0(I∗)

{
Ĩ(t) − Ĩ

(
t − l

P0(I∗)

)}]
, (3.15)

dĨ(t)
dt

= −µiĨ(t) + B′(A∗)Ã(t)

− e−µil/P0(I∗)
[
µiB(A∗)P ′

0(I
∗)

P0(I∗)

∫ t

t−l/P0(I∗)
Ĩ(ξ) dξ

+ B′(A∗)Ã(t − l/P0(I∗))

+
B(A∗)P ′

0(I
∗)

P0(I∗)

{
Ĩ(t) − Ĩ

(
t − l

P0(I∗)

)}]
. (3.16)

Equation (3.16) can be replaced by the integral equation

Ĩ(t) = −B(A∗)P ′
0(I

∗)
P0(I∗)

e−µil/P0(I∗)
∫ t

t−l/P0(I∗)
Ĩ(ξ) dξ

+ B′(A∗)
∫ t

t−l/P0(I∗)
Ã(ξ)e−µi(t−ξ) dξ, (3.17)

which can also be derived by linearizing (2.15) and using that the linearization of
τ(t) is given by (3.14). The most tractable form of the characteristic equation of
the linearization seems to arise from the combination of (3.15) with the linearized
integral equation (3.17). With

µ̂i =
µil

P0(I∗)
, µ̂a =

µal

P0(I∗)
, ε =

lB(A∗)P ′
0(I

∗)e−µ̂i

P 2
0 (I∗)

, (3.18)

non-trivial solutions of that system of the form (Ã(t), Ĩ(t)) = (c1, c2) exp(λt) exist
whenever Λ := λl/P0(I∗) satisfies the characteristic equation

P0(I∗)
l

(Λ + µ̂a) − B′(A∗)e−(Λ+µ̂i) =
εB′(A∗)(Λ + µ̂i)k(Λ)k(Λ + µ̂i)

1 + εk(Λ)
, (3.19)

where

k(x) =
1 − e−x

x
. (3.20)

If developing larvae grow in size at a constant rate (i.e. the function P in (2.2)
is constant and so is P0), then P ′

0(I
∗) = 0 and the linearized equations decouple

with (3.15) involving Ã only. In this situation ε = 0 and the characteristic equa-
tion (3.19) simplifies considerably. Indeed, if P0(I) ≡ P ∗

0 is a constant function,
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then the time taken for a larva to reach length l and mature is always l/P ∗
0 . In this

case τ(t) = l/P ∗
0 , the P terms in (2.13) cancel, and that equation then assumes a

well-studied form, for which general results can be found in [9]. The effect of com-
petition among larvae is that P in (2.2) is not a constant, the development time
τ(t) for the cohort that matures at time t is dependent on the number of larvae and
how this has been changing over the time when the cohort was developing. The lin-
earized equations become fully coupled with a characteristic equation (3.19) that is
not easy to treat. We may, however, prove theorem 3.3 concerning any equilibrium
(A∗, I∗) of system (2.13)–(2.14). The theorem establishes that if an equilibrium is
locally asymptotically stable in the absence of competition among the larvae (which
is the case if (3.21) holds), then it remains stable in the presence of competition if
the competitive effect as measured by ε is sufficiently small (more precisely, small
enough such that (3.22) and (3.23) both hold). Complete absence of larval competi-
tion arises as a particular case of the model, namely, the case in which the function
P in (2.2), and hence also the function P0, is constant. In this case ε = 0 and larvae
grow at a rate independent of how many larvae are present.

Theorem 3.3. Let (A∗, I∗) be any equilibrium of system (2.13)–(2.14). With µ̂i,
µ̂a and ε defined in (3.18), and the function k(·) in (3.20), suppose that

P0(I∗)
l

µ̂a > |B′(A∗)|e−µ̂i (3.21)

and that ε ∈ (−1, 1) is sufficiently small that

P0(I∗)
l

min
(

1,
µ̂i

µ̂a

)
>

|ε|
1 − |ε| |B

′(A∗)|k(µ̂i) (3.22)

and
P0(I∗)

l
µ̂a − |ε|

1 − |ε| |B
′(A∗)|k(µ̂i)µ̂i > |B′(A∗)|e−µ̂i . (3.23)

Then the equilibrium (A∗, I∗) of (2.13)–(2.14) is locally asymptotically stable.

Proof. We prove the theorem using Rouché’s theorem, which states that if two
functions f(z) and g(z), z ∈ C, are holomorphic inside and on a contour Γ in the
complex plane, and if |f(z)| > |g(z)| on Γ , then f and f + g have the same number
of zeros inside Γ . We take

f(z) =
P0(I∗)

l
(z + µ̂a) − B′(A∗)e−(z+µ̂i)

and

g(z) = −εB′(A∗)(z + µ̂i)k(z)k(z + µ̂i)
1 + εk(z)

and the contour Γ = ΓR to be the semicircle of radius R in Re z � 0 with curved
part z = Reiθ, θ ∈ [−π/2, π/2], and straight part z = iy, y ∈ [−R, R]. We claim
that, under the hypotheses, |f(z)| > |g(z)| on ΓR for all R sufficiently large. This
establishes that the full characteristic equation (3.19), corresponding to f + g = 0,
has the same number of roots in Re z > 0 as does the equation f = 0; in other
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words, none at all under assumption (3.21), as we shall show. The absence of roots
on the imaginary axis will follow from a particular step in our argument. These facts
establish the local asymptotic stability of the equilibrium (A∗, I∗) under inequalities
(3.21)–(3.23).

Clearly, f(z) is holomorphic. Since k(z) is holomorphic, g(z) can only fail to be
holomorphic in the region of interest if there exists z0, with Re z0 � 0, such that
1 + εk(z0) = 0. But then, using the integral representation of k (expression (3.24)),

1 = |ε| |k(z0)| � |ε|
∫ 1

0
|e−ξz0 | dξ = |ε|

∫ 1

0
e−ξ Re z0 dξ � |ε|,

which contradicts ε ∈ (−1, 1). Thus, g(z) is holomorphic in Re z � 0.
The equation f = 0 is

P0(I∗)
l

(z + µ̂a) = B′(A∗)e−(z+µ̂i).

Suppose for a contradiction that it has a root z with Re z � 0. Then, taking the
modulus,

P0(I∗)
l

|z + µ̂a| = |B′(A∗)|e−(Re z+µ̂i) � |B′(A∗)|e−µ̂i

so that z lies in the circle in C of radius |B′(A∗)|e−µ̂i(l/P0(I∗)) centred at the point
−µ̂a in C. But (3.21) implies that this circle is contained entirely in the open left
half-plane Re z < 0, giving a contradiction. Thus, f = 0 has no roots with Re z � 0,
as claimed.

With the bar denoting complex conjugation, f(z) = f(z̄) and g(z) = g(z̄), and
therefore it is enough to check that |f(z)| > |g(z)| on the upper half Im z � 0 of
the contour ΓR. Thus, for the curved part, z = Reiθ with θ ∈ [0, π/2]. The function
k defined in (3.20) can be expressed in the form

k(x) =
∫ 1

0
e−ξx dξ, (3.24)

and therefore

|k(Reiθ)| �
∫ 1

0
| exp(−ξReiθ)| dξ =

∫ 1

0
exp(−ξR cos θ) dξ � 1

and, similarly,

|k(Reiθ + µ̂i)| �
∫ 1

0
exp(−ξ(R cos θ + µ̂i)) dξ �

∫ 1

0
e−ξµ̂i dξ = k(µ̂i).

These estimates, and standard triangle inequalities for sums and differences of com-
plex numbers, yield

|g(Reiθ)| � |ε| |B′(A∗)|(R + µ̂i)k(µ̂i)
1 − |ε| .
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Similarly,

|f(Reiθ)| �
∣∣∣∣P0(I∗)

l
(Reiθ + µ̂a)

∣∣∣∣ − |B′(A∗)| | exp(−(Reiθ + µ̂i))|

� P0(I∗)
l

(R − µ̂a) − |B′(A∗)| exp(−(R cos θ + µ̂i))

� P0(I∗)
l

(R − µ̂a) − |B′(A∗)| exp(−µ̂i).

Therefore, on the curved part of the contour ΓR, we have |f(z)| > |g(z)| if

P0(I∗)
l

(R − µ̂a) − |B′(A∗)| exp(−µ̂i) >
|ε| |B′(A∗)|(R + µ̂i)k(µ̂i)

1 − |ε| . (3.25)

But assumption (3.22) implies that

P0(I∗)
l

>
|ε|

1 − |ε| |B
′(A∗)|k(µ̂i) (3.26)

holds, and therefore it follows that (3.25) is true for all R sufficiently large.
On the upper half of the straight part of the contour ΓR, z = iy with y ∈ [0, R]. It

is easy to show that |k(iy)| � 1, |k(iy+µ̂i)| � k(µ̂i) and |1+εk(iy)| � 1−|ε| |k(iy)| �
1 − |ε|, and therefore

|g(iy)| =
|ε| |B′(A∗)| |iy + µ̂i| |k(iy)| |k(iy + µ̂i)|

|1 + εk(iy)| � |ε| |B′(A∗)|
√

y2 + µ̂2
i k(µ̂i)

1 − |ε| .

Similarly,

|f(iy)| � P0(I∗)
l

|iy + µ̂a| − |B′(A∗)| |e−(iy+µ̂i)| =
P0(I∗)

l

√
y2 + µ̂2

a − |B′(A∗)|e−µ̂i .

We claim that |f(iy)| > |g(iy)| for all y ∈ [0,∞), and this is the case if

P0(I∗)
l

√
y2 + µ̂2

a − |ε| |B′(A∗)|
√

y2 + µ̂2
i k(µ̂i)

1 − |ε| > |B′(A∗)|e−µ̂i ∀y ∈ [0,∞).

(3.27)
We now prove (3.27). The left-hand side has the structure

A1

√
y2 + α2 − A2

√
y2 + β2,

and routine differentiation shows that it is a monotonic increasing function of y ∈
[0,∞) if √

y2 + β2

y2 + α2 >
A2

A1
∀y ∈ [0,∞),

i.e. if

min
(

1,
β

α

)
>

A2

A1
,

which is the origin of assumption (3.22). With its left-hand side being monotonically
increasing in y, (3.27) holds for all y ∈ [0,∞) if and only if it holds when y = 0,
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and the latter is guaranteed by assumption (3.23). Thus, |f | > |g| on the straight
part of the contour ΓR.

We have now shown that |f(z)| > |g(z)| on all parts of ΓR. By Rouché’s theorem,
the full characteristic equation (3.19) has the same number of roots in Re z > 0 as
does f = 0, i.e. none at all. The absence of roots of (3.19) on the imaginary axis
follows from what has just been shown, since such a root would imply the existence
of a real y such that f(iy) = −g(iy), contradicting |f(iy)| > |g(iy)| for all y ∈ [0,∞).
Thus, all roots of (3.19) satisfy ReΛ < 0, completing the proof.

4. Conclusion

In this paper, a system of state-dependent delay differential equations is formulated
to describe the population growth of a species in which maturation of larvae is
triggered by size rather than chronological age, and in which individual larvae grow
at a rate that decreases as the total number of larvae increases, thereby modelling
intra-specific competition among larvae. By introducing a new size-like independent
variable, which amounts to adopting the physiological time-scale for larvae, the
system is transformed into a system with constant and distributed delays, which is
a simplification in some respects. In a previous study, Smith [15] took the growth
rate of individual larvae to be a function of the total number of adults, not larvae.
Both his study and ours yield differential equations with state-dependent delays
determined from threshold conditions, and similar mathematical challenges. An
important difference between our work in this paper and that of Smith [15] is that
in this paper A(t) and I(t) are determined from a fully coupled system. Smith [15],
based on his different assumption for larval growth rate, was able to decouple his
equations and derive a single delay differential equation for the number of adults.

For our model we established some boundedness results that, very importantly,
hold even for unbounded birth functions within certain restrictions. This is impor-
tant because it is not always reasonable to treat birth functions as bounded. Bound-
edness of the birth function B(A) implies that the per-capita egg-laying rate B(A)/
A decreases to arbitrarily low levels as the adult population increases. This is per-
fectly reasonable in many scenarios since one expects the adults to be in strong com-
petition with each other for food. However, it is not always a reasonable assump-
tion, particularly in the case of a species in which larvae are confined to small
spaces but adults can easily move to new territory. Our argument is that, for such
species, intra-specific competition might affect mainly the larvae, with relatively
little competition among adults so that unbounded birth functions become realis-
tic. In our model, with unbounded birth functions the populations themselves may
still be bounded because large numbers of larvae restrict the development of indi-
vidual larvae, prolonging their maturation, reducing the probability of maturing
into adults and thereby limiting the adult population which, in turn, limits the
egg-laying rate.

We also proved a theorem on the local stability of any equilibrium, showing in
particular that if an equilibrium is locally stable in the absence of competition
among larvae, then it remains stable in the presence of competition if the com-
petitive effect is sufficiently weak in a quantifiable sense. The proof illustrates one
possible approach to tackling the characteristic equation, which is difficult and of
a form that does not yield to standard and frequently applied techniques.
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