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Abstract

A measure of centrality is rank monotone if after adding an arc x → y, all nodes with a score

smaller than (or equal to) y have still a score smaller than (or equal to) y. If, in particular,

all nodes with a score smaller than or equal to y get a score smaller than y (i.e., all ties

with y are broken in favor of y), the measure is called strictly rank monotone. We prove that

harmonic centrality is strictly rank monotone, whereas closeness is just rank monotone on

strongly connected graphs, and that some other measures, including betweenness, are not

rank monotone at all (sometimes not even on strongly connected graphs). Among spectral

measures, damped scores such as Katz’s index and PageRank are strictly rank monotone

on all graphs, whereas the dominant eigenvector is strictly monotone on strongly connected

graphs only.
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1 Introduction

The study of centrality in networks goes back to the late 40s. Since then, several

measures of centrality with different properties have been published. This paper

follows the line of Boldi & Vigna (2014), which proposed axioms that characterize

abstractly the behavior of centrality measures. The purpose of the study is to end

up with detailed tables clarifying for each centrality measure whether it satisfies or

not a certain axiom. This kind of knowledge makes it possible to understand the

global behavior of the measure, reducing the need of dealing with anecdotal results.

The assessment of centrality measures in Boldi & Vigna (2014) is based on simple

guiding principles; a centrality measure should be robust (i.e., applicable to arbitrary

directed graphs, possibly non-connected, without modifications) and understandable

(it should have a clear combinatorial interpretation). In this paper, we follow the

same guidelines, but to allow for a more fine-grained granularity, we observe also the

behavior of centrality measures on strongly connected networks, for which sometimes

results are quite different.

The main body of results of this paper concerns rank monotonicity. In Boldi &

Vigna (2014), the authors discuss score monotonicity—the property that when an arc

x → y is added to the graph, the score of y strictly increases. As already remarked

by Chien et al. (2004) in the case of PageRank, score monotonicity alone is not

sufficient, as it just defines the change on y: in principle, other nodes might change

their score as well, in a preposterous way. They propose a rank monotonicity axiom,

which we adopt in this paper, which states that after adding an arc x → y, all nodes

with a score smaller than (or equal to) y have still a score smaller than (or equal
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to) y. In intuitive terms, the rank of y remains the same, or improves. In this paper,

we also study a strict variant, where we require that all nodes with a score smaller

than or equal to y get a score strictly smaller than y (i.e., all ties with y are broken

in favor of y).

There are two main reasons to study a strict version: the first one is that the

constant score is rank monotone, which shows that the non-strict axiom is quite

weak; the second reason is that the strict version is very natural: if you have two

persons P and Q on Twitter with the same centrality, adding a follower just to P

should make it more important than Q. Indeed, we will see that we can improve the

result of rank monotonicity of PageRank proved in Chien et al. (2004) to strict rank

monotonicity, and under much milder hypotheses.

In any case, score and rank monotonicity complement themselves. Score mono-

tonicity tells us that “something good happens.” Rank monotonicity that “nothing

bad happens.” Strict rank monotonicity is a glorified combination of these two

properties.

Our results suggest once again that simple measures based on distances, and

in particular harmonic centrality, behave more predictably than some of the most

sophisticated indices proposed in the literature.

2 Related work

Centrality is a central notion in the study of social networks: the first attempts

to define centrality indices date back to the late 1940s and were attempted by

the Group Networks Laboratory at MIT directed by Alex Bavelas (1948), in

the framework of communication patterns and group collaboration (Leavitt, 1951;

Bavelas et al., 1951). In the following decades, various measures of centrality were

employed in many different contexts; see, for instance, Cohn & Marriott (1958),

Pitts (1965), Beauchamp (1965), and Mackenzie (1966).

The most classical notions of centrality are closeness centrality (Bavelas, 1948), and

its variant proposed by Lin (1976), betweenness, introduced by Anthonisse (1971)

under the name of rush and rediscovered later by Freeman (1977), Katz’s in-

dex (Katz, 1953), and harmonic centrality, a variation of closeness based on the

harmonic mean.1 While these notions of centrality are combinatorial in nature

and based on the discrete structure of the network, another line of research studies

spectral techniques (in the sense of linear algebra) to define centrality. The most well-

known among the spectral centrality indices is the dominant eigenvector, introduced

by Wei (1952) to rank sport teams and later generalized by Berge (1958) to arbitrary

graphs, Seeley’s index (Seeley, 1949), the stationary state of the natural Markov chain

on the graph, the dominant singular vectors, introduced by Bonacich (1991) to rank

simultaneously persons and groups, and rediscovered later by Kleinberg (1999) as

part of HITS, PageRank (Page et al., 1998), and SALSA (Lempel & Moran, 2001).

Although centrality is certainly an important structural property of social net-

works, there is no consensus on what centrality is exactly or on its conceptual

foundation. As Freeman observed, “several measures are often only vaguely related

1 Harmonic centrality appeared in a number of different context independently; some of its history is
tracked in Boldi & Vigna (2014).
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to the intuitive ideas they purport to index, and many are so complex that it is difficult

or impossible to discover what, if anything, they are measuring” (Freeman, 1979).

The idea of formalizing the behavior of centrality indices through axioms was first

attempted by Sabidussi, in his much-quoted paper on centrality (Sabidussi, 1966),

where he discussed a set of axioms that should be satisfied by a sensible centrality

measure on an undirected graph. A few years later, Nieminen (1973) attempted a

similar formalization for directed graphs. More recently, Boldi & Vigna (2014) tried

to propose a set of axioms capturing various interesting properties of centrality

measures, and put a large spectrum of indices under test to see which ones satisfied

them.

Some axiomatization in the literature are hard, in the sense that they lead to

the definition of a unique measure satisfying the axioms. This is case with Seeley’s

index (Altman & Tennenholtz, 2008),2 the dominant eigenvector and singular vec-

tor (Kitti, 2016), harmonic centrality (Garg, 2009), Katz’s index and the dominant

eigenvector (Dequiedt & Zenou, 2014), and Pinski and Narin’s (1976) bibliometric

ranking (Palacios-Huerta & Volij, 2004). The disadvantage of hard axiomatizations

is that they usually require very specifically tailored axioms, which have little meaning

(or cannot even be formulated) for a generic notion of centrality.

In this work, we ideally continue along the line started by Boldi & Vigna (2014),

and take rank monotonicity into account. In their paper, Boldi and Vigna already

proposed a notion of score monotonicity: a centrality measure is score monotone, if3

adding a new arc x → y increases the centrality score of y. Score monotonicity,

unfortunately, does not say much about the relative ranks of nodes after the addition

of the arc: this is why we are interested in introducing a form of monotonicity of

ranks. In the work of Chien et al. (2004), albeit targeted exclusively at PageRank,

the authors provide a definition of rank monotonicity that we think captures the

essence of the problem: when we add a new arc x → y, nodes with a score smaller

than y must continue to have a score smaller than that of y, while nodes with a score

equal to y must get a score that is smaller than or equal to that of y.4 This notion

can be seen as a generalization of the well-known rank-monotonicity principle used

in the theory of social choice, as in Fishburn (1982).

Very recently, Brandes et al. (2012) proposed to call radial a centrality in which

the addition of an arc x → y does not decrease the rank of y, in the sense that when

we add an arc toward y, nodes with a score smaller than or equal to y continue to

have this property. This is actually a weaker condition than the one used in Chien

et al. (2004) to state rank monotonicity, as it makes a form of non-monotonicity

of ranks possible: nodes with a score smaller than y might end up having a score

equal to y when we add an arc toward y.

2 Note that the authors claim to axiomatize PageRank, but actually the definition they give lacks the
“teleportation factor” α.

3 This definition resembles an axiom proposed by Sabidussi (1966), but he additionally requires that
all the other nodes do not decrease their score (a very stringent requirement indeed, that cannot be
satisfied by several measures; most notably, by most indices that are normalized).

4 Sabidussi’s paper tried to capture rank monotonicity, too, but with much weaker requirements: he only
required that if y has maximum score in the network, then it should have maximum score also after
the addition of an arc toward y.
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3 Definitions and conventions

In this paper, we consider directed graphs defined by a set N of n nodes and a set

A ⊆ N × N of arcs; we write x → y when 〈x, y〉 ∈ A and call x and y the source

and target of the arc, respectively. An arc with the same source and target is called

a loop.

The transpose of a graph is obtained by reversing all arc directions (i.e., it has an

arc y → x for every arc x → y of the original graph). A symmetric graph is a graph

such that x → y whenever y → x; such a graph is fixed by transposition, and can

be identified with an undirected graph, that is, a graph whose arcs (usually called

edges) are subsets of one or two nodes. A successor of x is a node y such that

x → y, and a predecessor of x is a node y such that y → x. The outdegree d+(x) of

a node x is the number of its successors, and the indegree d−(x) is the number of

its predecessors.

A path (of length k) is a sequence x0, x1, . . . , xk , where xj → xj+1, 0 � j < k.

A walk (of length k) is a sequence x0, x1, . . . , xk , where xj → xj+1 or xj+1 → xj ,

0 � j < k. A connected (strongly connected, respectively) component of a graph

is a maximal subset in which every pair of nodes is connected by a walk (path,

respectively). Components form a partition of the nodes of a graph. A graph is

(strongly) connected if there is a single (strongly) connected component, that is, for

every choice of x and y there is a walk (path) from x to y. A strongly connected

component is terminal if its nodes have no arc toward other components.

The distance d(x, y) from x to y is the length of a shortest path from x to y, or

∞ if no such path exists. The nodes reachable from x are the nodes y such that

d(x, y) < ∞. The nodes coreachable from x are the nodes y such that d(y, x) < ∞. A

node has trivial (co)reachable set if the latter contains only the node itself.

Let A be a non-negative matrix. We will denote with ρ(A) the spectral radius

of A, that is, the modulo of the largest eigenvalue. By Perron–Frobenius the-

ory (Berman & Plemmons, 1994), ρ(A) is an eigenvalue of A. It is called the dominant

eigenvalue, and the associated eigenvectors are called dominant eigenvectors. The

notation Ā will be used throughout the paper to denote the matrix obtained by

�1-normalizing the rows of A, that is, dividing each element of a row by the sum of

the row (null rows are left unchanged). If there are no null rows, Ā is (row-)stochastic,

that is, it is non-negative and all rows sum to 1; in this case, its spectral radius is 1.

Unless otherwise specified, all vectors in this paper are row vectors.

3.1 Centrality measures

In this section, we quickly sketch the mathematical definitions of the centrality

measures studied in this paper. The reader can find an accurate historical account

in Boldi & Vigna (2014), along with motivations. When several alternative definitions

are possible, we report the one that is better suited to our proofs.

Geometric measures assume that importance is a function of distances. In partic-

ular, we have the following:

Indegree. The number of incoming arcs d−(x), that is, the nodes whose distance to

x is one.
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Closeness. Bavelas (1948) introduced closeness in the late forties; the closeness of x

is defined by

1∑
y d(y, x)

(1)

For this definition to make sense, the graph must be strongly connected. Lacking

that condition, some of the summands will be ∞, resulting in a null score for

all nodes that cannot coreach the whole graph. Often closeness is patched by

eliminating infinite summands at the denominator, and this is the definition we

shall use in the rest of the paper.

Lin’s index. Nan Lin (1976) tried to repair the definition of closeness for graphs

with infinite distances by weighting closeness using the square of the number of

coreachable nodes; his definition for the centrality of a node x with a non-empty

coreachable set is

|{y | d(y, x) < ∞}|2∑
d(y,x)<∞ d(y, x)

Harmonic centrality. Closeness is essentially the reciprocal of a denormalized arith-

metic mean. If we instead take the reciprocal of a denormalized harmonic mean,

we obtain harmonic centrality:

∑
y 	=x

1

d(y, x)
(2)

Spectral measures compute the dominant left eigenvector of some matrix derived

from the adjacency matrix A of the graph, and depending on how the matrix is

modified before the computation we can obtain a number of different measures. In

general, such vectors are defined up to a positive multiplicative constant, and are

unique if the matrix is irreducible (Berman & Plemmons, 1994), which is true of the

adjacency matrix A iff the graph is strongly connected.

The dominant left eigenvector. The dominant left eigenvector of the adjacency ma-

trix A (Wei, 1952; Berge, 1958).

Seeley’s index. The dominant left eigenvector of Ā, the adjacency matrix with �1-

normalized rows (Seeley, 1949). It is the stationary state of the natural Markov

chain on the graph, in which the next state is chosen uniformly among

successors.

Katz’s index. A recursive summation of paths, that can be seen as a linear

operator:

1

∞∑
i=0

βiAi = 1(1 − βA)−1

where β is a parameter satisfying the condition 0 � β < 1/ρ(A) (Katz, 1953). The

constant vector 1 can be replaced by a positive preference vector (Hubbell, 1965).

PageRank. A recursive sum of weighted paths (Page et al., 1998), that again can be

seen as a linear operator:

p = (1 − α)v

∞∑
i=0

αiĀi = (1 − α)v
(
1 − αĀ

)−1
(3)

Here, v is a preference vector (a probability distribution) and 0 � α < 1.
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HITS. The dominant right singular vector of A, which is just the dominant left

eigenvector of ATA (Bonacich, 1991; Kleinberg, 1999).

SALSA. The dominant left eigenvector of AT Ā (Lempel & Moran, 2001).

Note that in the last two cases, one can also consider the alternative score given

by the left dominant vector of AAT (indeed, usually the two scores are used at the

same time). The two eigenvectors are exchanged when the graph is transposed, so

we need to discuss just one.

Finally, betweenness centrality was introduced by Anthonisse (1971) under the

name of rush and rediscovered later (Freeman, 1977). The idea is to measure the

probability that a random shortest path passes through a given node: if σyz is the

number of shortest paths going from y to z, and σyz(x) is the number of such paths

that pass through x, we define the betweenness of x as

∑
y,z 	=x,σyz 	=0

σyz(x)

σyz

4 Rank monotonicity

We assume from the beginning that the centrality measures under examination are

invariant by isomorphism, that is, that they depend just on the structure of the

graph, and not on particular labeling chosen for each node: all measures defined

above are such (this condition is sometimes called anonymity).

Boldi & Vigna (2014) proposed to study the following property:

Definition 1 (Score-monotonicity axiom) A centrality measure satisfies the score-

monotonicity axiom if for every graph G and every pair of nodes x, y such that

x 	→ y, when we add x → y to G the centrality of y increases.

Score monotonicity is just half of what one really wants: it is indeed possible to

define pathological scores that are score monotone, but modify the relative score

of nodes in counterintuitive ways. For example, you may find scenarios where the

score of a node z, originally smaller than that of y, is made larger than that of y

by the addition of the arc x → y. To avoid these problems, we suggest to study the

following natural axiom, which appears in the work of Chien et al. (2004):

Definition 2 (Rank-monotonicity axiom) A centrality measure satisfies the rank-

monotonicity axiom if for every graph G and every pair of nodes x, y such that

x 	→ y, when we add x → y to G, the following happens:

• If the score of z was strictly smaller than the score of y, this fact remains true

after adding x → y.

• If the score of z was smaller than or equal to the score of y, this fact remains

true after adding x → y.

Note that another formulation of the above definition is as follows:

• If the score of z was strictly smaller than the score of y, this fact remains true

after adding x → y.
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• if the score of z was equal to the score of y, it remains equal o becomes

smaller after adding x → y.

We also define the strict version.

Definition 3 (Strict rank-monotonicity axiom) A centrality measure satisfies the strict

rank-monotonicity axiom if for every graph G and every pair of nodes x, y such that

x 	→ y, when we add x → y to G the following happens:

• If the score of z 	= y was smaller than or equal to the score of y, after adding

x → y, the score of z becomes smaller than the score of y.

Note that the only difference between the last two definitions is the behavior on ties

(nodes with the same score as y): if a measure is strictly rank monotone, adding an

arc x → y will break all ties with other nodes in favor of y.

5 Proofs and counterexamples

We have now defined a number of centrality measures and two axioms. We are

thus going to provide a proof or a counterexample for each combination. We will

also pose each question in two different environments: general graphs and strongly

connected graphs. To make the treatment complete, we will try to provide answers

for the score-monotonicity axiom on strongly connected graphs when necessary (i.e.,

when the axiom is not satisfied in general graphs).

5.1 Harmonic centrality

It is easy to see that harmonic centrality satisfies score monotonicity on all graphs:

as we will see, it is also strictly rank monotone. We start by proving a lemma

which bounds the variation of additive contributions in the definition of harmonic

centrality.

Lemma 1 Let G be a graph with distance function d, and let d′ be the distance function

of G with an additional new arc x → y, x 	= y. Then, for every node w 	= y and z 	= w,

we have

1

d′(w, z)
− 1

d(w, z)
�

1

d′(w, y)
− 1

d(w, y)

Moreover, if d′(w, z) < d(w, z),

1

d′(w, z)
− 1

d(w, z)
<

1

d′(w, y)
− 1

d(w, y)

In particular, for all nodes z 	= x, y,

1

d′(x, z)
− 1

d(x, z)
<

1

d′(x, y)
− 1

d(x, y)
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x y z

w

r

p t

s

q

Fig. 1. Typical node configuration for geometric measures. The path labels represent

the length of a shortest path.

Proof

The first part of the thesis is obvious if d′(w, z) = d(w, z). Otherwise, with the

notation of Figure 1, the hypothesis d′(w, z) < d(w, z) yields s > p + 1 + r (which

implies p, r < ∞). Note that in this case, t > p+1, as otherwise s > p+1+ r � t+ r,

contradicting the triangular inequality s � t + r. We conclude that

1

d′(w, z)
− 1

d(w, z)
=

1

p + 1 + r
− 1

s
<

1

p + 1
− 1

t
=

1

d′(w, y)
− 1

d(w, y)

since when s, t < ∞
1

p + 1 + r
− 1

s
−

(
1

p + 1
− 1

t

)
=

p + 1 − p − 1 − r

(p + 1 + r)(p + 1)
+

s − t

st
< − r

st
+

r

st
= 0

and the remaining cases (where s or t are infinite) are trivial. �

Theorem 1 Harmonic centrality satisfies strict rank monotonicity on all graphs.

Proof

With the notation of Lemma 1, we assume that for a node z 	= y

∑
w 	=z

1

d(w, z)
�

∑
w 	=y

1

d(w, y)

Adding the latter inequality to that of Lemma 1, for every w 	= y, z, we obtain

∑
w 	=z,y

1

d′(w, z)
+

1

d(y, z)
�

∑
w 	=z,y

1

d′(w, y)
+

1

d(z, y)

Now, obviously d′(y, z) = d(y, z) and d′(z, y) � d(z, y). But then either z 	= x, in

which case at least for w = x we are adding a strict inequality (the last inequality in

the statement of Lemma 1), or z = x, in which case d′(z, y) < d(z, y). This concludes

the proof. �

5.2 Closeness

Closeness does not satisfy score monotonicity in general (Boldi & Vigna, 2014), but

it is trivial to show that it does on strongly connected graphs. It is also easy to show

that it does not satisfy rank monotonicity in general graphs: a simple counterexample

is shown in Figure 2.5 Both node y and node z have closeness equal to 1, as the

5 We remark that it is easy to show that score and rank monotonicity are not satisfied on general graphs
even if infinite distances are not eliminated from the summation.
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x y

z

Fig. 2. A counterexample showing that closeness does not satisfy rank monotonicity

on general graphs.

summation in Equation (1) reduces to a single summand of value 1. When we add

an arc from x to y, the score of z does not change, but the score of y becomes 1/2,

as now we are adding two summands of value 1.

Nonetheless, things improve on strongly connected graphs, where we can prove a

result analogous to (but weaker than) Lemma 1.

Lemma 2 Let G be a graph with distance function d, and let d′ be the distance function

of G with an additional new arc x → y. Then, for every nodes w and z

d(w, z) − d′(w, z) � d(w, y) − d′(w, y)

Proof

If d(w, z) = d′(w, z), the thesis is obvious. Otherwise, looking at Figure 1, we have

s � t + r by the triangular inequality. Thus,

d(w, z) − d′(w, z) � s − p − 1 − r � t − p − 1 � d(w, y) − d′(w, y)
�

At this point, a proof analogous to that of Theorem 1 shows that

Theorem 2 Closeness satisfies rank monotonicity on strongly connected graphs.

Proof

With the notation of Lemma 2, we assume that for a node z

1∑
w d(w, z)

�
1∑

w d(w, y)

Equivalently, ∑
w

d(w, y) �
∑
w

d(w, z)

and adding for all w the inequalities of Lemma 2∑
w

d′(w, y) �
∑
w

d′(w, z)

The same chain of deductions is true if we start from a strict inequality. A final

inversion completes the proof. �

The previous theorem cannot be improved to strict rank monotonicity, as the

example in Figure 3 shows. The rank of y and z in the graph is the same (by

symmetry) before adding the arc x → y, but it remains the same after the addition.

Indeed, for what concerns y the only effect on the summation in Equation (1) of the

new arc is that of changing the distance from x to y from 2 to 1, thus reducing the
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x y z

Fig. 3. A counterexample showing that closeness does not satisfy strict rank

monotonicity on strongly connected graphs.

1

2

k

y x

z

Fig. 4. A counterexamples showing that Lin’s index does not satisfy rank

monotonicity on general graphs.

summation by 1. On the other hand, for what concerns z the only effect of the new

arc is that of changing the distance from x to z from 3 to 2, once again reducing

the summation by 1.

5.3 Lin’s index

Lin’s index does not satisfy score monotonicity in general (Boldi & Vigna, 2014),

but on strongly connected graph it is equivalent to closeness, so it satisfies score and

rank monotonicity (but not strict rank monotonicity). It is again easy to show that

it does not satisfy rank monotonicity in general graphs: a counterexample is shown

in Figure 4. The Lin centrality of y and z is (k + 1)2/k. After adding an arc x → y,

the centrality of y becomes (k + 5)2/(k + 9), which is smaller than the previous

value when k > 3, and thus smaller than the centrality score of z, which does not

change.

5.4 Betweenness

Betweenness centrality fails to satisfy all axioms of Boldi & Vigna (2014). It also

fails to satisfy rank monotonicity, even on strongly connected graphs. In Figure 5,

we show a graph G (for simplicity, we represent by an edge a pair of symmetric

arcs) to which an arc x → y is added, getting the graph G′.
In G, the score of x and y is zero, since there is no shortest path passing through

them. But when we add the arc x → y, a new shortest path arises through x, raising

its score to 1/3, but not through y, so its score remains zero. As a result, rank

monotonicity and score monotonicity are both violated on a strongly connected

graph.
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x

y

Fig. 5. A counterexample showing that betweenness satisfies neither score nor rank

monotonicity on strongly connected graphs.

5.5 PageRank and Katz’s index

Rank monotonicity of PageRank was proved by Chien et al. (2004). Their proof

works for a generic regular Markov chain: in the case of PageRank, this condition

is true, for instance, if the preference vector is strictly positive or if the graph is

strongly connected.

5.5.1 Properties of damped spectral rankings

In this work, we aim at lifting almost all hypothesis on the underlying graph and

preference vector, and at showing a stronger result: strict rank monotonicity. In

fact, we prove (strict) rank monotonicity for certain updates of a generic damped

spectral ranking (Vigna, 2016) given by

r = v
∑
n�0

(αM)n = v
(
1 − αM

)−1
(4)

where M is a non-negative matrix, 0 � α < 1/ρ(M) is a damping factor, and v

is a non-negative preference vector. Both PageRank and Katz’s index are special

instances of damped spectral ranking.

In order to prove our result, we first need the following:

Lemma 3 Let M be a non-negative matrix, 0 � α < 1/ρ(M) a damping factor and v

a non-negative preference vector. Let

r = v
∑
n�0

(αM)n

be the associated damped spectral ranking and let C =
(
1 − αM

)−1
. Then, given y

and z such that cyz > 0 and letting q = cyy/cyz , we have cwy � q · cwz for all w. In

particular, if ry 	= 0,

• if rz � ry , then cyz � cyy;

• if rz < ry , then cyz < cyy .
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Proof

The first claim is a restatement of the known property (Willoughby, 1977) that for

all y, z and w

cwz �
cwycyz

cyy
so

qcwz � cwy

Note now that if cyy < cyz , then q < 1, and

ry =
∑
w

vwcwy <
∑
w

vwcwz = rz

which proves the first item (the strict inequality is due to the assumption ry 	= 0). If

cyy � cyz , then q � 1, and the second item follows similarly. �

Note that the hypothesis on ry is necessary: consider the adjacency matrix

M =

⎛
⎝ 1 1 0

1 0 0

0 0 1

⎞
⎠ (5)

whose spectral radius is the golden ratio
(
1 +

√
5
)
/2; for α = 3/5, we have

∑
n�0

(αM)n =

⎛
⎝25 15 0

15 10 0

0 0 5
2

⎞
⎠

If we consider the preference vector 〈0, 0, 1〉, the associated spectral ranking will

be 〈0, 0, 5/2〉. If we let z and y be the first and second node, respectively, we have

cyz = 15 > 0, 0 = ry � rz = 0 but cyz = 15 > 10 = cyy , showing that Lemma 3

would not be true if the requirement ry 	= 0 was dropped. Indeed, adding an arc

from the third node to y would yield the spectral ranking 〈45/2, 15, 5/2〉, violating

rank monotonicity.

We can finally prove our main theorem.

Theorem 3 Let M and M ′ be two non-negative matrices, such that M ′−M = χTx δ (i.e.,

the matrices differ only on the xth row, and δ is the corresponding row difference). Let

also v be a non-negative preference vector and 0 � α < min
(
1/ρ(M), 1/ρ(M ′)

)
; let r

and r′ be the damped spectral rankings (4) associated with M and M ′, respectively.

Assume further that

1. there is exactly one y such that δy > 0;

2. ry 	= 0;

3. ry � r′
y .

Then, if rz � ry , we have r′
z − rz � r′

y − ry . As a consequence, rz � ry implies r′
z � r′

y ,

whereas rz < ry implies r′
z < r′

y .

Proof

In this proof, as in the Lemma, we let C =
(
1 − αM

)−1
. First of all, we note

that given the hypotheses both 1 − αM and 1 − αM ′ are M-matrices, so they both
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have positive determinants. Since M ′ is obtained from M by a rank-one correction

(M ′ = M + χTx δ), applying the matrix determinant lemma, we have

det
(
1 − αM ′) = det

(
1 − αM − αχTx δ

)
=

(
1 − αδ(1 − αM)−1χTx

)
det(1 − αM)

We conclude that necessarily

1 − αδ(1 − αM)−1χTx > 0 (6)

We now use the Sherman–Morrison formula to write down the inverse of 1 −αM ′
as a function of 1 − αM. More precisely,

(
1 − αM ′)−1

=
(
1 − α

(
M + χTx δ

))−1

=
(
1 − αM − αχTx δ

)−1

=
(
1 − αM

)−1
+

(
1 − αM

)−1
αχTx δ

(
1 − αM

)−1

1 − αδ
(
1 − αM

)−1
χTx

We now multiply by the preference vector v, obtaining the explicit spectral-rank

correction:

r′ = v
(
1 − αM ′)−1

= v
(
1 − αM

)−1
+ v

(
1 − αM

)−1
αχTx δ

(
1 − αM

)−1

1 − αδ
(
1 − αM

)−1
χTx

= r +
αrχTx δ

(
1 − αM

)−1

1 − αδ
(
1 − αM

)−1
χTx

= r +
αrx

1 − αδ
(
1 − αM

)−1
χTx

δ
(
1 − αM

)−1

The case rx = 0 is obvious. Thus, let us assume that rx > 0. By Equation (6), we can

gather all the scalar values appearing in the second summand into a single positive

constant κ and just write

r′ − r = κδ
(
1 − αM

)−1

Note that if [
δ
(
1 − αM

)−1
]
z

� 0

the thesis is trivial by the hypothesis ry � r′
y . This holds true, in particular, if cyz = 0,

as in that case [
δ
(
1 − αM

)−1
]
z
= − ∑

w 	=y

|δw|cwz � 0

If cyz > 0, since ry 	= 0, we know from Lemma 3 that q = cyy/cyz � 1, and for all

w we have cwy � qcwz . It follows that[
δ
(
1 − αM

)−1
]
y

= δycyy − ∑
w 	=y

|δw|cwy � δyqcyz − ∑
w 	=y

q|δw|cwz

= q
(
δycyz − ∑

w 	=y

|δw|cwz
)

= q
[
δ
(
1 − αM

)−1
]
z

�
[
δ
(
1 − αM

)−1
]
z

This completes the proof. �

We remark that no hypothesis in the statement of the last theorem can be

weakened. The update vector must increase a single coordinate to model an increase

of importance of y alone.

The condition ry 	= 0 cannot be weakened, as the counterexample shown in

Figure 6 proves. The spectral ranking r induced by the adjacency matrix with
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x y z

Fig. 6. A counterexample for the last hypotheses of Theorem 3.

preference vector 〈1, 0, 0〉, without the dotted arrow, has ry = rz = 0. If we add

the dotted arrow, though, the score vector becomes r′ = 〈1, α, α2/(1 − α)〉, and

r′
z − rz = r′

z = α2/(1 − α) is larger than r′
y − ry = r′

y = α for α > 1/2.

Finally, the condition ry � r′
y cannot be eliminated. Consider once again the

matrix M of Equation (5), and its spectral rank with α = 3/5 and preference vector

〈1, 1, 4〉, which is 〈40, 25, 10〉. If we update the second row using the vector 〈−1, 1, 0〉,
the new scores will be 〈5/2, 25/4, 10〉 contradict the thesis.

Note, however, that we can actually prove the condition under mild assumptions

on M and δ:

Theorem 4 Condition (3) of Theorem 3 can be substituted by the following two

hypotheses (that imply it):

1. 1 − αM is (strictly) diagonally dominant.

2.
∑

z δz � 0.

Moreover, in the strict case, ry < r′
y , provided that rx > 0.

Proof

The proof follows the lines of the proof of Theorem 3, noting again that for rx = 0,

the statement trivializes. However, once we get the update vector δ, we now note that

being 1 − αM diagonally dominant, the (non-negative) inverse C = (1 − αM)−1 has

the property that the entries cii on the diagonal are (strictly) larger than off-diagonal

entries Cki on the same column, as shown in Remark 3.3 of McDonald et al. (1995).

Thus, [
δ(1 − αM)−1

]
y

= δycyy − ∑
z 	=y

|δz |czy � δycyy − ∑
z 	=y

|δz |cyy � 0

In the strict case, if there is at least one index z 	= y such that |δz |czy 	= 0, then the

first inequality is strict; otherwise, the second inequality is strict (because δy > 0 and

cyy > 0). �

Finally, we can prove strict rank monotonicity under the additional hypothesis of

score monotonicity.

Theorem 5 Let M and M ′ be two non-negative matrices as in Theorem 3 and let r

and r′ be the damped spectral rankings associated to M and M ′, respectively. Assume

further that

1. there is exactly one y such that δy > 0;

2. rx, ry 	= 0;

3. ry < r′
y .

Then, if rz � ry , we have r′
z − rz < r′

y − ry , and in particular, r′
z < r′

y .

The proof is the same as that of Theorem 3: the additional hypotheses makes it

possible to make the relevant inequalities strict.
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5.5.2 Applications to PageRank and Katz’s index

These results on damped spectral rankings show, in particular, that all known

variants of PageRank (strongly preferential, weakly preferential, pseudoranks, etc.)

and Katz’s index cannot be proved to satisfy rank monotonicity for an arbitrary

preference vector without additional hypotheses (e.g., that all scores are positive).

Corollary 1 PageRank satisfies the strict rank-monotonicity axiom, for any graph,

damping factor and preference vector, provided all scores are non-zero. The latter

condition is always true if the preference vector is everywhere non-zero or if the graph

is strongly connected.

Proof

Consider two nodes x and y of a graph G such that there is no arc from x to y, and

let d be the outdegree of x. Given the normalized matrix Ā of G, and the normalized

matrix Ā′ of the graph G′ obtained by adding to G the arc x → y, we have

Ā′ − Ā = χTx δ

where δ is the difference between the rows corresponding to x in Ā and Ā′, which

contains −1/d(d+1) in the positions corresponding to the successors of x in G, and

1/(d + 1) in the position corresponding to y (note that if d = 0, we have just the

latter entry), so we can apply Theorem 5. The hypothesis ry < r′
y is always verified

by Theorem 4. �

Corollary 2 Katz’s index satisfies the strict rank-monotonicity axiom, for any graph,

attenuation factor and preference vector, provided all scores are non-zero. The latter

condition is always true if the preference vector is everywhere non-zero or if the graph

is strongly connected.

Proof

Consider two nodes x and y of a graph G such that there is no arc from x to y.

Given the matrix A of G, and the matrix A′ of the graph G′ obtained by adding to

G the arc x → y, we have

A′ − A = χTx χy

and we can apply Theorem 3. The hypothesis ry < r′
y is trivially verified, as the only

non-zero entry of δ = χy is the positive one. �

It is interesting to note there is a kind of duality between the hardness in proving

score monotonicity in Boldi & Vigna (2014) and strict rank monotonicity here.

When proving score monotonicity, the problem is that rx must be non-zero, or the

score of y will not increase. When proving rank monotonicity, instead, rx = 0 is not

an issue: but if ry = 0, we have no way to control the growth in score of other nodes

with respect to y, as Equation (5) shows.

6 Other dominant eigenvectors

The definition of Katz’s index and PageRank is free of multiplicative constants. This

is no longer true of the other spectral measures based on dominant eigenvectors
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y z x

Fig. 7. A counterexample for rank monotonicity of Seeley’s index on general graphs.

introduced in Section 3. Thus, proving or disproving statements about these measures

requires some care.

There is a common theme to all counterexamples: a component is built into the

example in such a way that it absorbs all the rank of the dominant left eigenvector

(i.e., all other nodes have a zero score). This can be crafted by making the component

sufficiently dense (i.e., a small clique) and usually terminal in the graph of strongly

connected components. Another node y is placed in such a way that connecting

the component to the node makes the graph strongly connected. However, we make

the graph somewhat dense around another node z, which causes the score of z to

become larger than that of y when this happens.

6.1 Seeley’s index and SALSA

For Seeley’s index and SALSA, we can avoid multiplicative constants. In the first

case, we will restrict our considerations to graphs in which all nodes have at least

an outgoing link, and there is exactly one terminal strongly connected component.

The associated matrices are stochastic and the resulting Markov chains have a

unique stationary state, which makes it possible to define a unique, �1-normalized

dominant eigenvector (i.e., make it into a probability distribution). The restrictions

are sufficient to prove or disprove all our results.

In the case of SALSA (Lempel & Moran, 2001), there is a closed form expression

for the score: one computes the connected components of the symmetric graph

induced by the matrix ATA; the SALSA score of a node is the ratio between its

indegree and the sum of the indegrees of nodes in the same component of the

symmetric graph, multiplied by the ratio between the component size and the graph

size. Also in this case, the resulting vector is �1-normalized.

In both cases, the vector we define is equivalent to the limit obtained starting

from the uniform distribution and iterating multiplication by the matrix defining

the score (in the case of SALSA, assuming that every node has at least an incoming

and an outgoing link), which makes the choice natural.

Using the definition above, we can show that Seeley’s index is not rank monotone

on general graphs. Consider the counterexample in Figure 7: before adding the arc

x → y, there is a unique dominant left eigenvector that is zero on y and z. After

adding the arc, the dominant left eigenvector is 〈1/5, 2/5, 2/5〉. Incidentally, the

counterexample shows also that Seeley’s index is not score monotone, as adding an

arc from z to y will leave the dominant left eigenvector unchanged.

On the other hand, on strongly connected graphs, Seeley’s index is the stationary

state of a regular Markov chain, and we can apply the results of Chien et al. (2004),

which prove score and rank monotonicity. Nonetheless, Seeley’s index does not

satisfy strict rank monotonicity: in Figure 8, we show a graph in which the score

of y and z is equal. By the dominant left eigenvector equation (i.e., the stationary
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x

y

z

Fig. 8. A counterexample for strict rank monotonicity of Seeley’s index on strongly

connected graphs.

x

y

z

Fig. 9. A counterexample for score and rank monotonicity of SALSA on strongly

connected graphs.

state equation), this happens whenever a node of outdegree one has an arc toward

a node of indegree one. So when we add an arc x → y, the score of y increases, but

the score of z remains equal to the score of y.

For what matters SALSA, Figure 9 shows a counterexample that violates both

score and rank monotonicity on a strongly connected graph: before adding the arc

x → y, all scores are equal to 1/8; after adding x → y, the score of y decreases to

3/28 and the score of z increases to 3/14.

6.2 The dominant left eigenvector and HITS

In the first part of this section, we will describe a number of negative results. We will

define graphs such that the associated scores will be always unique, which will relieve

us from the problem of multiple dominant eigenvectors. We will also circumvent the

problem of multiplicative constants by using zero vs. non-zero arguments.

First of all, the counterexample in Figure 10 shows that the dominant left

eigenvector is not rank monotone on general graphs. Before adding the arc x → y,

there is a unique dominant left eigenvector that is zero on y and z and has the same

value on all other nodes. After adding the arc, the dominant left eigenvector gives

to z a centrality greater than y.

The counterexample in Figure 11 shows that HITS is not rank monotone on

strongly connected graphs. Before adding the arc x → y, there is a unique dominant

left eigenvector that is zero on all nodes except those of the 3-clique. After adding

the arc, HITS gives to z a centrality greater than y.
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y z x

Fig. 10. A counterexample for rank monotonicity of the dominant left eigenvector

on general graphs.

y z

x

Fig. 11. A counterexample for rank monotonicity of HITS on strongly connected

graphs.

Finally, the counterexample in Figure 12 shows that HITS is not score monotone

on strongly connected graphs: before adding the arc x → y, the score of y is zero,

and it remains zero.6

We are left with two open problem: is the dominant left eigenvector rank or score

monotone on strongly connected graphs? We can give a direct positive answer for

the first question, using Theorem 2.1 from Elsner et al. (1982), which implies that

adding an arc x → y to a strongly connected graph with dominant left eigenvector

r strictly increases all ratios ry/rz for all z 	= y. An immediate consequence is strict

rank monotonicity.

However, while the question about rank monotonicity can be posed unambigu-

ously even if the score is defined only up to a multiplicative constant, to prove

score monotonicity, we need to establish a canonical dominant left eigenvector. We

choose �1-normalization, as in the case of Markov chains: under this assumption,

once again the result from Elsner et al. (1982) proves score monotonicity of the

dominant left eigenvector for strongly connected graphs.

6 Note that the counterexamples in Figures 11 and 12 are built on the same principles as that in
Figure 10, and nodes with the same names play the same role. Their rather awkward construction is
due to the fact that an arc in Figure 10 must be replaced with a common predecessor in the other two
examples, as in HITS rank propagates by zig-zag paths, that is, by common predecessors (remember
that HITS is the left dominant eigenvector of ATA). After that, a few additional well-placed arcs are
necessary to get a strongly connected graph.
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Table 1. Overall results from Boldi & Vigna (2014) and this paper. “yes∗” means that

the strict version of rank monotonicity is satisfied. The results about rank monotonicity for

Katz and PageRank hold for all parameters under the hypothesis that all the scores are

non-zero. Score monotonicity of the dominant left eigenvector for strongly connected graphs

assumes �1-normalization of the scores. The centrality indices are listed based on the number

of axioms they meet.

Monotonicity

General Strongly connected Other axioms

Centrality Score Rank Score Rank Size Density

Harmonic yes yes∗ yes yes∗ yes yes

Degree yes yes∗ yes yes∗ only k yes

Katz yes yes∗ yes yes∗ only k yes

PageRank yes yes∗ yes yes∗ no yes

Dominant no no yes yes∗ only k yes

Seeley no no yes yes no yes

Lin no no yes yes only k no

Closeness no no yes yes no no

HITS no no no no only k yes

SALSA no no no no no yes

Betweenness no no no no only p no

x

y

Fig. 12. A counterexample for score monotonicity of HITS on strongly connected

graphs.

7 Conclusions and future work

All our results are summarized in Table 1, where we distilled them into simple yes/no

answers to the question: does a given centrality measure satisfy the axioms? For

sake of completeness, the table also contains results proved in Boldi & Vigna (2014).

Once again, only harmonic centrality satisfies all axioms. Betweenness exhibits

possibly the worst behavior, failing to satisfy all axioms, even on strongly connected

graphs. This is in line with results in Boldi & Vigna (2014) based on information re-

trieval, in which betweenness performed in a way that is essentially indistinguishable

from a random score.

It is interesting to note that indegree satisfies all axioms, except for size. Indeed,

indegree turns out to be a surprisingly strong baseline in a number of contexts.

Our results provide further evidence that harmonic centrality should always

be used instead of closeness. Closeness does not satisfy strict rank monotonic-

ity, for reasons that are related to the fact that it does not satisfy the density

axiom (Boldi & Vigna, 2014). So, even on strongly connected graphs, it is more
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advisable to use harmonic centrality. Our counterexamples show, for instance, that

if you have two persons P and Q on Twitter with the same closeness centrality,

adding a follower just to P might not make it more important than Q—a very

counterintuitive behavior.

An interesting open problem concerns a different normalization for the dominant

left eigenvector obtained using eigenprojectors. Since the eigenspace associated to

the dominant eigenvalue λ0 has dimension one, there is an associated eigenprojection

Eλ0
. One could define the canonical dominant left eigenvector as the vector 1Eλ0

.

This is in analogy with the theory of Markov chains, where the eigenprojector of the

transition matrix maps initial distributions to limit stationary distributions (modulo

convergence problems due to periodicities).

Given a dominant left eigenvector � and a dominant right eigenvector r normalized

so that � · r = 1, the eigenprojector is given by

Eλ0
= rT�

yielding

1Eλ0
= 1rT� =

∑
i

ri� = ‖r‖1�

Note that in the case of stochastic matrices, the resulting canonical eigenvector is

simply the unique stationary distribution multiplied by n. Proving that 1Eλ0
is score

monotone is left as an open problem.
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