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In a recent paper (J. Fluid Mech. vol. 506, 2004, p. 207), B. R. Fabijonas and D. D.
Holm claim that they have found a general method to construct new solutions of the
Navier–Stokes equations from any known base flow solution. In this note, we argue
that Fabijonas & Holm’s solutions are very special in character. Although they can
be defined in all space, they satisfy the Navier–Stokes equations on a single fixed
trajectory of the chosen base flow. We show that this limits the usefulness of the
solution and the applicability of the method. In particular, it is demonstrated that, in
general, the iterative ‘WKB-bootstrapping’ algorithm designed by the authors cannot
be applied after the first iteration. We also show that a second iteration is possible
only if the base flow satisfies strong constraints. The consequence of these constraints
is that no extension of the Craik–Criminale solutions to multiple frequencies is found
to be possible. By applying Fabijonas & Holm’s construction to a simple model
equation, we demonstrate that their solution can also predict (unphysical) behaviours
which cannot be reproduced by any global solution.

1. Introduction
In 1986, Bayly and Craik & Criminale independently constructed new solutions

of Euler and Navier–Stokes equations by considering the superimposition of plane
wave disturbances on a base flow with spatially uniform velocity gradient. They
demonstrated that if the phase of the disturbance is advected by the base flow, the
nonlinear interactions vanish and an exact nonlinear solution is formed. In 1991,
Friedlander & Vishik and Lifschitz & Hameiri independently developed a short-
wavelength instability theory to study the evolution of localized inviscid disturbances
to any base flow. They showed that if the disturbance is sufficiently localized, it is
advected along the flow trajectory, and governed by a set of linearized equations
formally similar to those obtained for flows with uniform velocity gradient. A review
of both approaches may be found in Friedlander & Lipton-Lifschitz (2003).

In a recent paper, Fabijonas & Holm (2004, hereafter referred to as FH) attempted
to construct new Navier–Stokes solutions from any exact solution by applying
iteratively the procedure used in Craik & Criminale. In this note, the limitations
associated with the method are discussed. We show that no new solutions can be
obtained.

The framework of the analysis is the following. Consider a base flow, a solution
of the Navier–Stokes equations, given by its velocity and pressure fields U(x, t)
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and P (x, t). Finite-amplitude disturbances U ′(x, t) and P ′(x, t) to the base flow are
governed by

Dt U ′ + L U ′ + (U ′ · ∇)U ′ + ∇P ′ = ν�U ′, ∇ · U ′ = 0, (1.1)

where Dt = ∂t + U · ∇ and L(x, t) = ∇U is the base flow velocity gradient.
Consider now a given trajectory Qx0

of the base flow U defined by x = χ(t, x0)
where dχ/dt = U(χ (t, x0), t) with χ(0, x0) = x0. FH considered expressions for U ′

and P ′ of the form

U ′(x, t) =
∑

m

′
µ|m|am(t)eimβΦ(x,t), P ′(x, t) =

∑
m

′
iµ|m|pm(t)eimβΦ(x,t), (1.2)

where µ|m| and β are real constants and the summation runs from −∞ to +∞ with
m �= 0. They furthermore assumed that the phase Φ(x, t) is passively advected:

DtΦ = 0 (1.3)

and satisfies

Φ(x, t) = k(t) · x + δ(t). (1.4)

FH showed that under these assumptions, expressions (1.2) with (1.4) satisfy equ-
ations (1.1) at x = χ(t, x0) when

k̇ = −LT(χ (t, x0), t)k, (1.5a)

ȧm + L(χ (t, x0), t)am = mβpmk − νm2β2|k|2am, (1.5b)

k · am = 0, (1.5c)

where ḟ (t) = df/dt . In their analysis, each velocity amplitude am(t) evolves indepen-
dently. Therefore in the rest of this note, we omit the subscripts m.

2. Main limitations of the construction
In this section, we shall show that FH’s construction has two main limitations:
(a) the construction requires knowledge of an exact global solution U;
(b) the new velocity field U + U ′ satisfies the Navier–Stokes equations on a single

fixed trajectory of U , that is at each instant in a single point of space only. In
particular, it is not a global solution.

Let us first consider (b). To prove this statement, it is useful to point out the main
hypothesis which permits the reduction, in a general framework, of the perturbation
equation (1.1) to (1.5): the functions a(t), p(t) and k(t) appearing in expressions
(1.2) and (1.4) must be independent of spatial variables. This hypothesis is clearly
mentioned in FH, but the authors also remark that a(t), p(t) and k(t) depend
parametrically on the fixed streamline parameter x0, as it can be seen in (1.5). The
authors argue that because this parameter can be arbitrarily chosen, expression (1.2)
provides a solution in the entire Lagrangian space, that is, it provides a global solution.
We claim that this is not correct because the parameter x0 appearing in (1.5) cannot
be considered as a Lagrangian variable.

If x0 were a Lagrangian variable, the functions a, p and k obtained from (1.5)
would have to be considered as Lagrangian expressions. This would have important
consequences. We know that, in an incompressible flow, the transformation x0 →
x = χ(t, x0) is a one-to-one mapping between the space of the initial configuration
(the Lagrangian space) and the physical space at time t (the Eulerian space). Each
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field therefore possesses both an Eulerian representation f E(x, t) and a Lagrangian
representation f L(t, x0) which are connected to each other by

f L(t, x0) = f E(χ(t, x0), t), f E(x, t) = f L(t, χ−1(x, t)). (2.1)

Accordingly, Eulerian and Lagrangian gradients are also linked by

∇x0
= JT ∇, ∇ = (J−1)T ∇x0

, (2.2)

where J(t, x0) = ∇x0
χ(t, x0) is the Jacobian matrix of the mapping x0 → χ (t, x0).

These relations can be used to compute the action of an Eulerian gradient on a
Lagrangian expression. In particular, (2.1) and (2.2) show that a Lagrangian expression
is independent of spatial variables if and only if its Eulerian representation is also
independent of spatial variables. In short, f L(t) ≡ f E(t) ≡ f (t) if the field f is spatially
uniform. This means that a, p and k cannot depend on a Lagrangian variable if they
are independent of spatial variables, as was assumed. Consequently, the streamline
parameter x0 is not a Lagrangian variable.

To emphasize the difference between this parameter and the Lagrangian variable,
that we continue to call x0, we assume that the streamwise parameter is fixed at
a value x(0)

0 . Expression (1.2) can therefore be considered as an Eulerian expression
which depends on a parameter x(0)

0 . But, by construction, this expression satisfies the
perturbation equation (1.1), at each instant t , in a single point of space only: the
moving point given by x = χ(t, x(0)

0 ). By using (2.1), a Lagrangian representation of
(1.2) can also be obtained by changing x to χ (t, x0). In that case, the Lagrangian
version of (1.1) obtained by using (2.2) is satisfied by this Lagrangian expression
at a single Lagrangian point: the point which corresponds to the fixed streamline
parameter x0 = x(0)

0 . Whatever the chosen representation, the solution obtained by
FH’s construction is therefore not a global solution in general, as it satisfies the
perturbation equation along a single trajectory, that is at each instant in a single
point of space only.

In § 6, we shall see for a simpler equation that this point-wise solution may not
be related to any global solution. In particular, we shall demonstrate that it can
predict unphysical behaviour of exponential growth whereas all the global solutions
are damped. For the Navier–Stokes equations, other arguments are provided in the
conclusion.

Let us now consider (a). This condition is explicitly mentioned in FH as U is as-
sumed to be a base flow. This is necessary in order to reduce the Navier–Stokes
equations to the system (1.1). It is also needed to be able to compute the flow
trajectories and therefore to define the different expressions.

3. Consequences of the ‘WKB-bootstrapping’ algorithm
In this section, we argue that the two limitations described in the previous section

make the iterative ‘WKB-bootstrapping’ inapplicable. The principle of the ‘WKB-
bootstrapping’ algorithm is the following. We start from a solution U (0), then apply the
construction described above to obtain a new solution U (1) = U (0)+µ(1)a(1) sin(β (1)Φ (1))
on a trajectory of U (0). Then, we apply the construction again to U (1) to obtain a
new solution U (2) = U (1) + µ(2)a(2) sin(β (2)Φ (2)) on a trajectory of U (1) and so on. With
this algorithm, FH argued that they could a priori form new solutions at each step
provided that the phases are incommensurate. The problem is that after the first
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iteration, U (1) is a solution on a single fixed trajectory of U (0), that is at each instant
in a single point of space only. In particular, this does not satisfy condition (a) which
permits the reduction of the Navier–Stokes equations to equation (1.1) and the flow
trajectory of U (1) to be obtained. Therefore, we cannot perform the second iteration
which gives U (2) and the algorithm stops. To perform the second iteration, U (1) must
satisfy condition (a). We shall show in the next section that this considerably limits
the possibilities for U (1).

4. Necessary conditions to form a global solution
In this section, we provide a few necessary conditions for (1.2) to be a global solution.

We have seen in the previous section that this is necessary to apply the bootstrapping
algorithm. Thus, we assume that expression (1.2) with (1.3), (1.4) and (1.5) is not
only a solution to (1.1) at the point x = χ(t, x(0)

0 ) but also in its neighbourhood. This
implies that the spatially independent functions k, a and p satisfy the system

k̇ = −LT(x, t)k, (4.1a)

ȧ + L(x, t)a = βpk − νβ2|k|2a, (4.1b)

k · a = 0, (4.1c)

not only at x = χ(t, x(0)
0 ) but in its neighbourhood. We now analyse the constraints

that these hypotheses imply on the base flow.
Assume that the base flow has a non-uniform velocity gradient (otherwise we

recover the Craik & Criminale analysis), then at least one of the matrices ∂xL, ∂yL
or ∂zL is non-zero, say ∂xL(x, t) = Lx(x, t). Differentiating (4.1a) and (4.1b) with
respect to x leads to

LT
x k = 0, Lx a = 0. (4.2)

Similar equations are obtained by differentiating with respect to any other spatial
variable. The existence of non-zero solutions to these equations implies constraints
on the base flow. Indeed, these equations mean that k and a are respectively the
left and right eigenvectors associated with the null eigenvalue of Lx . But the null
eigenvalue must be at least of multiplicity two since k and a are orthogonal due to
(4.1c). Moreover, since incompressibility implies trLx = 0, the matrix Lx(x, t) can
only have null eigenvalues. The same conclusion is also obtained for any other spatial
derivative of L. We suggest that this provides an important constraint which strongly
limits the applicability of the method.

An illustration is easily provided using two-dimensional axisymmetrical flows.
Consider the base flow of velocity field U(x, y) = (−yΩ(r), xΩ(r), 0)T , where
r = (x2 + y2)1/2 is the radial coordinate and Ω(r) the angular velocity. The base flow
velocity gradient and its partial derivatives Lx and Ly may be easily computed, and
it may be shown that their eigenvalues vanish identically around the trajectory r = r0,
if and only if Ω ′(r0) = 0. It follows that the only two-dimensional axisymmetrical flow
from which we can construct a global solution by FH’s construction is solid body
rotation, that is the flow which was initially considered by Kelvin (1880).

In § 6, we prove for a simplified model equation that the only ‘base flow’ from
which we can construct non-trivial global solutions correspond to the case studied by
Craik & Criminale. We suspect this conclusion to be also true for the Navier–Stokes
equations but we have not been able to prove it.
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5. Craik–Criminale solution
In their paper, FH also attempted to extend Craik–Criminale solution by applying

the WKB-bootstrapping algorithm. We now show that no extension has here been
made. The Craik–Criminale solution is the superimposition of a uniform flow
u(0)(x, t) = L(t)x and a Kelvin mode of the form

u(1)(x, t) = µ(1)a(1)(t) sin
(
β (1)k(1)(t) · x

)
. (5.1)

As demonstrated by Craik & Criminale, u(0) + u(1) is indeed an exact global solution
of the Navier–Stokes equations provided that L̇ + L2 is symmetric (with trL = 0),
and that (k(1), a(1)) solve (4.1a–c). The first iteration of the algorithm provides a
perturbation U ′ = u(2) to this base flow of the form

u(2)(x, t) = µ(2)a(2)(t) sin
(
β (2)k(2)(t) · x

)
, (5.2)

which satisfies equation (1.1) on a single trajectory of u(0) + u(1). This expression has
already been obtained by Lifschitz & Fabijonas (1996) who also demonstrated that
it can grow exponentially. Note, however, that Lifschitz & Fabijonas were able to
demonstrate that (5.2) is the leading-order expression, in the limit of large k(2), of an
exact linear perturbation to u(0) + u(1).

FH went one step further by applying the algorithm to the new solution u(0) +
u(1) + u(2) for a case where u(2) is bounded. However, we argue here that this is not
allowable; the new solution u(0) +u(1) +u(2) does not satisfy the Navier–Stokes outside
the trajectory fixed at the previous step. As mentioned above, in order to apply the
algorithm, u(0) + u(1) + u(2) must be a base flow, that is an exact global solution. We
shall now show that this implies that the constraint that u(2) must be an harmonic of
u(1). The necessary conditions (4.2), obtained in the previous section, can be applied
to the present case by taking U = u(0) + u(1). As

Lx = µ(1)
(
β (1)

)2
k(1)

x a(1) ⊗ k(1) sin
(
β (1)k(1) · x

)
, (5.3)

equations (4.2) lead to the conditions

k(2) · a(1) = k(1) · a(2) = 0, (5.4)

which are in addition to those given by (4.1c):

k(1) · a(1) = k(2) · a(2) = 0. (5.5)

It is now easy to prove that k(2) = Ck(1) where C is a constant independent of time.
For this purpose, assume that there is a time interval in which k(1) and k(2) are not
colinear. Then, since both a(1) and a(2) are perpendicular to both vectors, they must
be colinear, that is a(2) = D(t)a(1). By manipulating equation (4.1b) written for a(1)

and a(2) respectively, we obtain(
Ḋ + νD

((
β (2)

)2∣∣k(2)
∣∣2 −

(
β (1)

)2∣∣k(1)
∣∣2))a(1) = β (2)p(2)k(2) − Dβ (1)p(1)k(1). (5.6)

Owing to conditions (5.4) and (5.5), both sides must cancel separately, which in
particular implies that k(1) and k(2) are colinear, in contradiction with our initial
assumption. Thus, we always have k(2)(t) = C(t)k(1)(t). Finally, from (4.1a) written for
k(1) and k(2) we obtain Ċ = 0, and therefore the results for the wavevectors we were
looking for. In terms of solutions, this means that the secondary disturbance u(2) is
just an harmonic of u(1).

The consequence of this result is that no tertiary instability is obtained by this
method. More generally, we have proved that no new multi-frequency Craik–
Criminale solutions can be formed by applying the WKB-bootstrapping algorithm.
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6. A model problem
In this section, we consider a simple scalar problem which mimics some

characteristics of the Navier–Stokes equations. We are interested in the real bounded
field C(x, t) which satisfies for (x, t) ∈ (IR × IR+) the equation

(∂t + U∂x)C + RC = κ∂xxC, (6.1)

where U (x, t) and R(x, t) are prescribed real functions, and κ > 0. This equation,
inspired by dynamo theory (Bayly 1993), may be thought of as the advection–diffusion
equation for a passive contaminant in which a stretching term has been included.
Except for nonlinearity, (6.1) includes all the ingredients of the fluid flow equations
(1.1).† Our main goal is here to prove that the point-wise solution obtained by FH’s
construction may not correspond to the local behaviour of any global solution.

FH’s construction can be performed on equation (6.1) exactly as on the Navier–
Stokes equations. For brevity, let us consider a single term in (1.2) such that we seek
solutions to (6.1) in the form

C(x, t) = c(t)eiΦ(x,t) + complex conjugate. (6.2)

The phase field Φ is subject to the following constraints:

(∂t + U∂x)Φ = 0, (6.3a)

Φ(x, t) = k(t)x + δ(t), (6.3b)

and the functions c(t) and k(t) are assumed to be spatially uniform. Expression (6.2)
is then a solution to (6.1) in x = χ(t, x0) if k(t) and c(t) satisfy

dk/dt = −[∂xU ](χ(t, x0), t)k, (6.4a)

dc/dt + R(χ(t, x0), t)c = −κ |k|2c. (6.4b)

Note that the necessary conditions (4.2) for having a global solution reduce here to
c(t)∂xR = 0 and k(t)∂xxU = 0. So, we immediately obtain that U and R must be of the
form U (x, t) = L(t)x + V (t) and R(x, t) =R(t) to obtain a non-trivial global solution.
This case is an exact analogue of the configuration studied by Craik & Criminale.

In the following, we assume that

U (x, t) = 2Sx, R(x, t) = R0 + R2x
2, (6.5)

where S, R0 and R2 > 0 are real constant parameters. For these parameters, we thus
know that (6.2) is not a global solution. We shall prove that it may not be related to
any global solution.

The trajectories defined by dχ/dt =U (χ(t, x0), t) with χ(0, x0) = x0 are given by
χ(t, x0) = x0e

2St . The stagnation point x = 0 is a particular trajectory to which FH’s
construction can be applied. It gives k(t) = k0e

−2St and

c(t) = c0 exp

(
− R0t +

κk2
0

4S

(
e−4St − 1

))
, (6.6)

with c0 = c(0) and k0 = k(0). If S > 0, the large-time behaviour of c(t) is given by

c(t) ∼ c0 exp

(
− R0t − κk2

0

4S

)
, (6.7)

and therefore, c(t) grows exponentially for all negative R0.

† Nonlinearity is not essential for the present argument since the construction of FH yields
identical results with or without the term (U ′ · ∇)U ′ in (1.1).
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We shall now show that no global solution exhibits such a behaviour at x = 0.
Exact global solutions of (6.1) with (6.5) may be easily constructed for any initial
condition C(x, 0) = C0(x) bounded at infinity. This is done by showing first that (6.1)
with (6.5) possesses an infinite set of solutions of the form Cn(x, t) = eλntFn(x) with

λn = S − R0 − µ(1 + 2n), (6.8a)

Fn(x) = Hn

(√
µ

κ
x

)
exp

(
− (µ − S)x2

2κ

)
, (6.8b)

where n is a non negative integer, µ =
√

S2 + R2κ and the functions Hn(x) are
Hermite polynomials (R̊ade & Westergren 1999). Then, by using the fact that the
eigenfunctions Fn(x) form a complete orthogonal basis in the weighted Hilbert space
with inner product

(Fm, Fn) =

∫ +∞

−∞
Fm(x)Fn(x)e−Sx2/κdx =

n! 2n
√

π√
µ/κ

δmn, (6.9)

we can expand the solution C(x, t) as (Zauderer 1989):

C(x, t) =

+∞∑
n=0

ane
λntFn(x), (6.10)

where the coefficients an are defined by

an =

√
µ/κ

n! 2n
√

π
(C0, Fn) =

√
µ/κ

n! 2n
√

π

∫ +∞

−∞
C0(x)Fn(x)e−Sx2/κ dx. (6.11)

The eigenvalues λn are ordered as

S − R0 − µ = λ0 > λ1 > λ2 > . . . � −∞, (6.12)

such that the large-time behaviour of C(x, t) is driven by the eigenmode corresponding
to the first non-zero coefficient an. In particular, whatever the value of C0(x), it is
always bounded by an expression of the form |C(x, t)| <b0e

λ0t for large t .
As λ0 = S −R0 −

√
S2 + R2κ , it is possible to choose S, R0, R2 and κ such that λ0 < 0,

S > 0 and R0 < 0. For instance, take S = 1, R0 = −1, R2 = 2 and κ =4 which yields
λ0 = −1. For such values of the parameters, all the global solutions are exponentially
damped for large t for all x. By contrast, FH’s solution (6.6) grows exponentially at
x = 0 for these parameters. It is therefore clear that FH’s solution cannot be related
to any global solution in that case.

Note that this result is not in contradiction with the short-wavelength theory of
Friedlander & Vishik and Lifschitz & Hameiri for which the local behaviour at the
stagnation point has been proved to be connected to a global solution. Indeed, this
theory requires large k and weak diffusion such that κ |k|2 = O(1). Therefore λ0 ∼ −R0

when the theory applies, and a global solution can thus exhibit the same temporal
behaviour as the local solution.

7. Conclusion
In this paper, we have discussed the limitations of the method used by Fabijonas

& Holm to construct new solutions from a known base flow U . We have shown
that in general the new solution satisfies the Navier–Stokes equations in a single
point of space only. We have also proved that a global solution can be formed only
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if the base flow satisfies important constraints. These constraints are such that no
new multi-frequency Craik–Criminale solutions can be generated by the method. A
simple model has also been considered for which it has been possible to show that a
global solution is obtained only if the base flow has uniform velocity gradients, that
is in the configuration studied by Craik & Criminale. We have further shown that
when the velocity gradients are not uniform the point-wise solution obtained by the
FH construction can be unphysical: it does not correspond to the local evolution of
any global solution. We suspect that a similar conclusion holds for the Navier–Stokes
equations. We cannot provide a mathematical proof (as it would require knowledge of
all the solutions of the Navier–Stokes equations) but we can put forward the following
physical argument. Consider an elliptical flow in a rotating container such as that
experimentally realized by Malkus (1989) or Eloy, Le Gal & Le Dizès (2003). At
the elliptic stagnation point, FH’s construction reduces to the analysis by Landman
& Saffman (1987) and Waleffe (1990). For small strain rate ε, Waleffe showed that
there exists a solution of the form (1.2) with a constant |k|, which grows exponentially
in time with a growth rate σ =(9/16)ε − ν|k|2. Because FH does not constraint |k|
(unlike the analysis of Lifschitz & Hameiri), this growth rate can be make positive,
whatever the viscosity ν. FH’s solution therefore predicts instability whatever the
Reynolds number. Moreover, FH’s solution grows without saturation and with the
same growth rate for all time. These results are clearly unphysical and in contradiction
to the experimental observations which show both the existence of a Reynolds number
threshold for instability and the possible saturation of the instability mode when it
develops (Malkus 1989; Eloy et al. 2003).
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