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Abstract Let C be a family of curves over a non-singular variety S. We study algebraic cycles on
the relative symmetric powers C[n] and on the relative Jacobian J . We consider the Chow homology
CH∗(C[•]/S) :=

⊕
n CH∗(C[n]/S) as a ring using the Pontryagin product. We prove that CH∗(C[•]/S)

is isomorphic to CH∗(J/S)[t]〈u〉, the PD-polynomial algebra (variable: u) over the usual polynomial
ring (variable: t) over CH∗(J/S). We give two such isomorphisms that over a general base are different.
Further we give precise results on how CH∗(J/S) sits embedded in CH∗(C[•]/S) and we give an explicit
geometric description of how the operators ∂

[m]
t and ∂u act. This builds upon the study of certain

geometrically defined operators Pi,j(a) that was undertaken by one of us.
Our results give rise to a new grading on CH∗(J/S). The associated descending filtration is stable

under all operators [N ]∗, and [N ]∗ acts on grm
Fil as multiplication by Nm. Hence, after − ⊗ Q this

filtration coincides with the one coming from Beauville’s decomposition. The grading we obtain is in
general different from Beauville’s.

Finally, we give a version of our main result for tautological classes, and we show how our methods
give a simple geometric proof of some relations obtained by Herbaut and van der Geer–Kouvidakis, as
later refined by one of us.
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0. Introduction

Let S be a quasi-projective variety that is smooth of dimension d over a field. Let C/S

be a smooth curve over S that has a section p0 : S → C. Let C [n] denote the nth relative
symmetric power of C over S, and let J denote the relative Jacobian of C/S. Further let
ψ := p∗

0K ∈ Pic(S), where K ∈ Pic(C) is the relative canonical class.

0.1. The central result

In this paper we study algebraic cycles on the symmetric powers C [n] and on the Jaco-
bian J , and in particular we study the relations between the corresponding Chow groups.
It is of course classical that C [n] ∼= P(En) over J , where En is the Fourier transform of
OC(n · p0) which for n � 2g − 1 is a vector bundle on J . This gives one type of relation
between CH(J) and the groups CH(C [n]).

What we do in this paper is something entirely different. The starting point is the
remark that the disjoint union of all C [n] is a monoid in the category of (graded) schemes
such that the product maps are proper. Correspondingly we have a Pontryagin prod-
uct on the Chow homology CH∗(C [•]/S) :=

⊕
n�0 CH∗(C [n]/S) making it into a com-

mutative bigraded ring. The first grading is the one by (relative) dimension of cycles,
putting CHi(C [n]/S) := CHd+i(C [n]). The second grading is the one obtained by placing
CH∗(C [n]/S) in degree n.

One of the main results of the paper is the following. (Theorems 3.3 and 3.4 in the
text.)

Theorem 1. The ring CH∗(C [•]/S) is isomorphic to CH∗(J/S)[t]〈u〉.

Here we consider CH∗(C [•]/S) and CH∗(J/S) as rings with the Pontryagin product,
and CH∗(J/S)[t]〈u〉 is the PD-polynomial algebra in the variable u over the polynomial
algebra in the variable t over CH∗(J/S).

Note that this result holds with integral coefficients (not just modulo torsion or after
− ⊗ Q, in which case it would be pointless to consider PD-rings anyway) and works
over any smooth and quasi-projective base. If we work over a field then by the results
in [13, § 1] we have natural PD-structures on the ideal CH>0(C [•]/S) ⊂ CH∗(C [•]/S) and
on the ideal in CH∗(J/S)[t]〈u〉 generated by CH>0(J/S) together with all classes u[m]
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for m � 1. In Theorem 5.3 we prove that the isomorphism in Theorem 1 is compatible
with these PD-structures.

Working over a general base we in fact find two natural isomorphisms

β̃, γ̃ : CH∗(J/S)[t]〈u〉 ∼−→ CH∗(C [•]/S). (0.0.1)

These isomorphisms are equal modulo ψ but in general they are different. Under both
isomorphisms t maps to the class [p0] ∈ CH0(C/S) and u[m] maps to [C [m]]; the differ-
ence (and the most non-trivial point) lies in the way that CH∗(J/S) is embedded into
CH∗(C [•]/S) as a subring.

Using a slight generalization of the ‘Manin Principle’, the main result can also be inter-
preted motivically. Here we work in the ind-category Ind -M(S) of the category M(S) of
Chow motives over S (with integral coefficients) with respect to graded correspondences.
We write 1 for the identity motive and 1(1) for the Tate motive. The ring structures on
Chow groups are encoded in the motives as multiplicative structures.

Theorem 2. We have isomorphisms

R∗(J/S)[1]〈1(1)〉 ∼−→ R∗(C [•]/S)

in Ind -M(S), compatible with the Pontryagin multiplicative structures.

See Theorem 4.2 in the text.
Let us briefly explain how Theorem 1 is proven. We consider an ind-scheme C [∞],

called the ‘infinite symmetric power’ of C. It is defined as the inductive limit of the system
S = C [0] → C → C [2] → · · ·, where the maps in : C [n−1] → C [n] are given by D �→ p0+D.
The natural map σ̃ : C [•] → J factors as C [•] q−→ C [∞] σ−→ J . Over a field, and working with
Q-coefficients, C [∞] and its Chow homology

CH∗(C [∞]/S) :=
⊕

i

CHi(C [∞]/S) with CHi(C [∞]/S) := lim−→
n

CHi+d(C [n])

(d = dim(S)) have been studied by Kimura and Vistoli in [8]. We generalize and refine
their results, working with integral coefficients and over more general base schemes. For
a certain natural class Γ ∈ CHg(C [∞]/S) the map r : CH∗(J/S) → CH∗(C [∞]/S) given
by x �→ σ∗(x) ∩ Γ is a (homomorphic) section of σ∗. Then we have the following result;
see Theorem 1.11 and Corollary 1.14 in the text.

Theorem 3. We have an isomorphism β : CH∗(J/S)〈u〉 ∼−→ CH∗(C [∞]/S), given by r

on CH∗(J/S) and with u[m] �→ [C [m]].

As a second main ingredient for Theorem 1 we use that on C [•]/S we have a large
collection of geometrically defined operators. Given a class α ∈ CH(C) and integers i, j,
we have an operator Pi,j(α) : CH∗(C [N ]/S) → CH(C [N+i−j]/S) given by

Pi,j(α)(x) = (si,N+i−j)∗(pr∗
1(α) · s∗

j,N (x)),

where sa,b : C ×S C [b−a] → C [b] is the map given by (p, D) �→ a · p0 + D. Also for some
of these operators there are naturally defined divided powers Pi,j(α)[m]. In Part I of this
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work [16], one of us has undertaken a systematic study of these operators. In particu-
lar, it was proved there that CH∗(C [•]/S) has the structure of a module over the ring
Z[t, u[•], ∂

[•]
t , ∂u] = Z[t, ∂u]〈∂t, u〉, via

t �→ P1,0([p0]), u[m] �→ P1,0(C)[m],

∂
[m]
t �→ P0,1(C)[m], ∂u �→ P0,1([p0] + ψ).

From this it readily follows [16, Proposition 3.9] that if we define K ⊂ CH∗(C [•]/S) by

K := Ker(P0,1([p0])) ∩
⋂
n�1

Ker(P0,1(C)[n]),

then we have an isomorphism

K[t]〈u〉 ∼−→ CH∗(C [•]/S). (0.0.2)

The first isomorphism β̃ of (0.0.1) is constructed as a lift of the isomorphism β of
Theorem 3. Namely, using (0.0.2) we define a section r : CH∗(C [∞]/S) → CH∗(C [•]/S)
of q∗; then β̃ is given by s̃ := r ◦ s on CH∗(J/S), with t �→ [p0] and u[m] �→ [C [m]]. Next
we prove that the restriction of σ̃∗ to K gives an isomorphism K

∼−→ CH∗(J/S). The
second isomorphism, γ̃, is then obtained using the inverse map s̃′ : CH∗(J/S) → K ⊂
CH∗(C [•]/S) on the coefficients.

Once we have the isomorphisms β̃ and γ̃, we prove (Theorem 3.6) that they are equal
modulo ψ. (In particular, they are equal if S = Spec(k) with k a field.) For both isomor-
phisms we have an explicit description of ∂

[m]
t and ∂u in terms of operators Pi,j(α). Also,

the isomorphism γ̃ descends to an isomorphism γ : CH∗(J/S)〈u〉 ∼−→ CH∗(C [∞]/S) that
is different, in general, from the isomorphism β of Theorem 3.

0.2. A new grading on CH∗(J/S), and its relation with Beauville’s
decomposition

As already mentioned, one of the most intriguing aspects of Theorem 1 is to understand
how CH∗(J/S) sits embedded into CH∗(C [•]/S). In particular, we can bring into play
the natural grading on CH∗(C [•]/S) obtained by placing CH∗(C [n]/S) in degree n. We
prove that K, which is the image of CH∗(J/S) under γ̃, is homogeneous for this grading.
The result we obtain is as follows; see Theorem 7.4 and Corollary 7.6.

Theorem 4. We have a decomposition

CH∗(J/S) =
2g+d⊕
m=0

CH[m]
∗ (J/S), (0.0.3)

where x ∈ CH[m]
∗ (J/S) if and only if γ̃(x) ∈ CH∗(C [m]/S) ⊂ CH∗(C [•]/S). The associated

descending filtration Fil• on CH∗(J/S) is stable under the operators [N ]∗, and [N ]∗ acts
on grm

Fil as multiplication by Nm. The subspace
⊕

m>2g CH[m]
∗ (J/S) is torsion.
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The grading in (0.0.3) is compatible with the grading by (relative) dimension, so we
effectively obtain a bigrading CH∗(J/S) = ⊕ CH[m]

i (J/S). We show that CH[m]
i (J/S)

can be non-zero only if m � min{g + 2d + i, 2g + d}, and CH[m]
i (J/S) is torsion if

m > min{g + d + i, 2g}.
Working with Q-coefficients we have Beauville’s decomposition

CH∗(J/S)Q =
⊕
i,j

CHi,(j)(J/S)Q,

such that [N ]∗ acts on CHi,(j) ⊂ CHi(J/S)Q as multiplication by N2i+j . We say that
CHi,(j) has coweight 2i + j. Our result says that Fil• ⊗ Q coincides with the descending
filtration on CH∗(J/S)Q by coweight. (This is in agreement with the general conjectures
on filtrations on Chow groups; see [7,14].) However, the grading given by (0.0.3) is not,
in general, the one given by Beauville’s decomposition, not even over a field. A further
difference is that our grading (0.0.3) is defined integrally.

0.3. Tautological classes

In the last two sections of the paper, we prove some results about the most manageable
classes, the so-called tautological classes. On all three levels, C [•]/S, C [∞]/S and J/S, we
define a subalgebra T CH∗ of tautological classes in the Chow homology. (Here we work
with Q-coefficients.) We prove (Theorem 8.5 and Corollary 8.6) that T CH∗(C [•]/S)Q

∼=
T CH∗(J/S)Q[t, u] and T CH∗(C [∞]/S)Q

∼= T CH∗(J/S)Q[u]. As an easy application of
our theory we obtain, and lift, some relations of Herbaut [6] and van der Geer–Kouvidakis
[20], as later refined by one of us in [12]. Here we work over a field and we assume that the
curve C admits a gr

d. This assumption means that a certain class [D] ∗ L[r] in CH∗(C [∞])
can be realized in C [d]. This implies that the image of this class under the section r has
no components in CH∗(C [m]) for m > d. Writing out what this means gives us concrete
relations between classes on C [•], and pushing down to the Jacobian we recover the
relations of [6,20], in their refined form, working modulo rational equivalence.

0.4. Notation

Let S be a non-singular quasi-projective variety of dimension d over a field. Let π : C →
S be a smooth curve of genus g over S, and let p0 : S → C be a section of π. Let
C [n] be the nth symmetric power of C relative to S. We write Dn ⊂ C ×S C [n] for the
universal divisor. Further we define Rn ⊂ C [n] as the image of the closed embedding
in : C [n−1] → C [n] given by addition of the point p0, with the convention that R0 is the
zero divisor. Note that Rn can also be described as the pullback of Dn under p0 × id.

Let ρ : J → S be the Jacobian of C over S, and let 0 : S → J be the zero section. We
write σn : C [n] → J for the morphism that sends the class of a relative effective Cartier
divisor D of degree n to the class of OC(D − n · p0). We usually write ι : C → J for the
map σ1.

Let PJ be the Poincaré bundle on J ×S J . Let LC be the Poincaré bundle on C ×S J ,
normalized such that its pullbacks via p0 × id and id × e are trivial. Note that LC is the
inverse of (ι × id)∗PJ .
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We denote ψ := p∗
0K ∈ Pic(S), where K ∈ Pic(C) is the relative canonical class. If

h : X → S is a scheme over S (such as X = C [n] or X = J) then we also write ψ for the
class h∗(ψ) in Pic(X) or CH1(X).

If R is a commutative ring, and R[t] is the polynomial ring in one variable over R then
we write ∂

[m]
t for the differential operator with

tr �→
(

r

m

)
tr−m.

These operators are divided powers of ∂t = ∂
[1]
t , in the sense that

∂
[m]
t ∂

[n]
t =

(
m + n

m

)
∂

[m+n]
t ;

in particular, m! · ∂
[m]
t = ∂m

t .

1. Chow homology and Chow cohomology of infinite symmetric powers

In [8], Kimura and Vistoli consider Chow homology and Chow cohomology of the infinite
symmetric power of a curve over a field. The main purpose of this section is to generalize
and to refine their results. We consider the relative situation of a smooth curve C over a
quasi-projective base variety S, as in § 0.4, and we obtain results with integral coefficients.

The infinite symmetric power C [∞] of C is defined as the direct limit of the sym-
metric powers C [n] := Symn(C/S) via the inclusion maps in : C [n−1] → C [n] associated
with the point p0. We define the Chow homology CH∗(C [∞]/S) and Chow cohomology
CH∗(C [∞]/S) of C [∞]. The main result of this section, see Theorem 1.11 and Corol-
lary 1.14, is that CH∗(C [∞]/S) ∼= CH∗(J/S)〈u〉, the PD-polynomial algebra in one vari-
able over the Chow ring (with Pontryagin product) of the Jacobian. This isomorphism
is made very explicit.

We first define the main objects that we want to study. We consider the situation as
in § 0.4. We define

C [•] :=
∐
n�0

C [n],

the disjoint union of all symmetric powers of C. Next we define C [∞], which is an ind-
scheme, to be the inductive limit

lim(S = C [0] → C → C [2] → C [3] → · · · ),

where the transition maps are the morphisms in : C [n−1] → C [n] associated with the point
p0 ∈ C(S). Write π[•] : C [•] → S and π[∞] : C [∞] → S for the structural morphisms, and
let q : C [•] → C [∞] be the natural map. The collection of morphisms σn : C [n] → J gives
rise to morphisms σ : C [∞] → J and σ̃ : C [•] → J over S, with σ̃ = σ ◦ q.

The addition maps αm,n : C [m] ×S C [n] → C [m+n] give rise to morphisms α : C [•] ×S

C [•] → C [•] and α : C [∞] ×S C [∞] → C [∞], making C [•] and C [∞] into monoid (ind-
)schemes over S. Further, the diagonal maps ∆n : C [m] → C [mn] given by D �→ n · D
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give rise to morphisms [n] : C [•] → C [•] and [n] : C [∞] → C [∞] over S that lift the
‘multiplication by n’ maps on the Jacobian.

We define the Chow homology of C [•] over S as CH∗(C [•]/S) :=
⊕

i�0 CHi(C [•]/S),
with

CHi(C [•]/S) :=
⊕
n�0

CHi+d(C [n]).

On it we have a convolution product (or Pontryagin product), given by x∗y := α∗(pr∗
1(x)·

pr∗
2(y)), and this gives CH∗(C [•]/S) the structure of a graded CH(S)-algebra. Here we

take CH(S) to be the usual intersection ring of S but with grading given by putting
CHi(S) in degree −i. (Formally we should use some notation like CH∗(S/S), but as this
will play no important role in what follows, we simply write CH(S).) The structural map
CH(S) → CH∗(C [•]/S) is given by pushforward via the inclusion S → C [•].

The Chow homology of C [∞] over S is defined by CH∗(C [∞]/S) :=
⊕

i CHi(C [∞]/S),
with

CHi(C [∞]/S) := lim(CHi+d(C) → CHi+d(C [2]) → CHi+d(C [3]) → · · · ),

where the transition maps are the maps in,∗. Again the convolution product defines the
structure of a graded CH(S)-algebra on CH∗(C [∞]/S) :=

⊕
i CHi(C [∞]/S).

Lemma 1.1.

(i) The maps in,∗ : CH∗(C [n−1]/S) → CH∗(C [n]/S) are injective.

(ii) If y is an element of CH∗(C [n]/S) ⊂ CH∗(C [•]/S) then [p0] ∗ y = in+1,∗(y). The
quotient map q∗ : CH∗(C [•]/S) → CH∗(C [∞]/S) induces an isomorphism

CH∗(C [•]/S)/([p0] − 1) ∼−→ CH∗(C [∞]/S), (1.1.1)

where [p0] − 1 ∈ CH∗(C [•]/S) is not a zero divisor.

Proof. Part (i) is proved in [16, Proposition 3.10]. Alternatively, this follows from the
existence of correspondences Ψn : C [n+1]  C [n] with in ◦ Ψn−1 = id, as in [8, § 1]. In (ii)
the fact that [p0] − 1 is not a zero divisor in CH∗(C [•]/S) follows from (i). The rest is
straightforward. �

The Chow cohomology of C [∞] over S is defined by

CHi(C [∞]/S) := proj lim(CHi(C) ← CHi(C [2]) ← CHi(C [3]) ← · · · ),

where the transition maps are the maps i∗n. The intersection product induces a
natural ring structure on CH∗(C [∞]/S) :=

⊕
i CHi(C [∞]/S), and the structure of a

CH∗(C [∞]/S)-module on CH∗(C [∞]/S). We view CH∗(C [∞]/S) as a graded algebra over
CH∗(S) via π[∞],∗.

Note that we shall not consider Chow cohomology of C [•].
The multiplication by n morphisms on C [•] and C [∞] (for n � 0) give rise

to ring endomorphisms [n]∗ : CH∗(C [∞]/S) → CH∗(C [∞]/S) in cohomology and
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[n]∗ : CH∗(C [•]/S) → CH∗(C [•]/S) and [n]∗ : CH∗(C [∞]/S) → CH∗(C [∞]/S) in homol-
ogy.

We shall also consider the Chow homology and cohomology of the Jacobian J . Though
they coincide as ungraded objects, even here it is useful to keep the distinction between
homology and cohomology. We write CH∗(J/S) for the usual Chow ring of J , which
is a graded CH∗(S)-algebra by intersection product. The structural homomorphism
CH∗(S) → CH∗(J/S) is the map ρ∗. The Chow homology CH∗(J/S) := CH∗+d(J)
is a graded CH(S)-algebra by Pontryagin product, where the structural homomorphism
CH(S) → CH∗(J/S) is the map 0∗. With our notation we have CHi(J/S) = CHg−i(J/S).
Further, CH∗(J/S) is a module over CH∗(J/S) by cap-product.

For n ∈ Z we again have endomorphisms [n]∗ of CH∗(J/S) and [n]∗ of CH∗(J/S). The
map σ : C [∞] → J gives rise to homomorphisms of CH(S)-algebras

σ∗ : CH∗(J/S) → CH∗(C [∞]/S) and σ∗ : CH∗(C [∞]/S) → CH∗(J/S).

Similarly we have σ̃∗ : CH∗(C [•]/S) → CH∗(J/S).

Remark 1.2. It easily follows from the definitions that for classes α ∈ CH(S) and
x ∈ CH∗(J/S) we have 0∗(α) ∗ x = ρ∗(α) ∩ x. Similarly, for y ∈ CH∗(C [∞]/S) and
z ∈ CH∗(C [•]/S) we have p0,∗(α) ∗ y = σ̃∗(α) ∩ y and p0,∗(α) ∗ z = σ∗(α) ∩ z.

In particular, with our convention (see § 0.4) to simply write ψ for the pullback of ψ

to the scheme on which we work, we have that ψ ∗ x (meaning: 0∗(ψ) ∗ x, or p0,∗(ψ) ∗ x)
equals ψ · x (meaning: ρ∗(ψ) ∩ x, or σ∗(ψ) ∩ x, or σ̃∗(ψ) ∩ x). In practice we simply write
ψx or ψ · x.

The first main goal of this section is to give a description of the Chow cohom-
ology of C [∞]. We begin by introducing a class ξ ∈ CH1(C [∞]). Define OC[n](1) :=
OC[n](Rn + n · ψ), and let ξn := c1(OC[n](1)). Then i∗nOC[n](1) ∼= OC[n−1](1). Hence
ξ := (ξ1, ξ2, ξ3, . . . ) is a well-defined element of CH1(C [∞]).

For a different description of the classes ξn, consider the Poincaré bundle LC on C×SJ .
For n � 0 define En := pr2,∗(pr∗

1OC(n · p0) ⊗ LC), the Fourier transform of OC(n · p0).
Then En is a vector bundle on J if n > 2g−2, and we have an isomorphism C [n] ∼= P(En)
over J . Under this isomorphism OC[n](1) corresponds to the standard line bundle O(1)
on P(En). Note that we have the formula

(id × σn)∗c1(LC) = [Dn] − n · pr∗
1[p0] − pr∗

2[Rn] − n · ψ

for the pullback of the Poincaré line bundle under the morphism id×σn : C×C [n] → C×J .
This formula shows that

σ∗
nEn

∼= pr2,∗(OC×C[n](Dn)) ⊗ OC[n](−Rn − n · ψ);

hence, we get an embedding as a subbundle OC[n](−Rn − n · ψ) → σ∗
nEn, which is the

standard embedding OC[n](−1) → σ∗
nEn.
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Lemma 1.3.

(i) We have α∗ξ = pr∗
1ξ + pr∗

2ξ.

(ii) For all N � 0 we have [N ]∗ξ = N · ξ.

Proof. For (i) we use that under the addition maps αm,n we have α∗
m,nRm+n = pr∗

1Rm+
pr∗

2Rn; this follows for example from Formula (1.1) in the proof of Lemma 1.1 of [16].
Now pass to the limit.

For (ii) we argue by induction. The case N = 1 is trivial. For the induction step, note
that [N + 1] : C [∞] → C [∞] equals the composition

C [∞] ∆−→ C [∞] ×S C [∞] id×[N ]−−−−→ C [∞] ×S C [∞] α−→ C [∞];

now use (i). �

With the lemma at our disposal the theory of [8, § 2] goes through with the same
arguments. The result we obtain is the following. Here we view CH∗(C [∞]/S) as an
algebra over CH∗(J/S) via σ∗.

Theorem 1.4. The Chow cohomology CH∗(C [∞]/S) is isomorphic to the polynomial
algebra CH∗(J/S)[ξ].

Next we want to study the Chow homology of C [∞]. Recall that CH∗(C [∞]/S) has the
structure of a module over CH∗(C [∞]/S) by cap-product. Part (i) of Lemma 1.3 implies
(cf. [8, Lemma 3.4]) that the map y �→ ξ∩y is a derivation of CH∗(C [∞]/S), of degree −1.

The following fact follows from the standard results on Chow groups of projective
bundles.

Lemma 1.5. A class y ∈ CH∗(C [∞]/S) is uniquely determined by the collection of
classes σ∗(ξi · y) for i � 0.

The next proposition generalizes [8, Lemma 3.6, Proposition 3.8].

Proposition 1.6.

(i) There is a unique element Γ ∈ CHg(C [∞]/S) such that σ∗(Γ ) = [J ] and ξ ∩ Γ = 0.
The map

s : CH∗(J/S) → CH∗(C [∞]/S) given by s(y) = σ∗(y) ∩ Γ (1.6.1)

is a section of σ∗ and is a ring homomorphism.

(ii) For any m � 0 there is a unique element L[m] ∈ CHm(C [∞]/S) such that

σ∗(ξj ∩ L[m]) =

{
0 if j �= m,

[0] if j = m,

where [0] ∈ CH0(J/S) is the class of the zero section 0: S → J . Furthermore, one
has L[0] = [S] and if m > 0 then ξ ∩ L[m] = L[m−1].
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Remarks 1.7.

(i) In the last assertion, [S] ∈ CH0(C [∞]/S) denotes the image of [S] ∈ CH(S) under
the structural homomorphism CH(S) → CH∗(C [∞]/S). It is the unit element for
the Pontryagin product.

(ii) We shall write L := L[1] ∈ CH1(C [∞]/S). The classes L[m] are divided powers of L,
i.e. m! · L[m] = L∗m and

L[m] ∗ L[n] =
(

m + n

m

)
L[m+n].

This readily follows from Lemma 1.5, the fact that σ∗ is compatible with ∗-products,
plus the fact that ξ ∩ − is a derivation.

Proof. (i) Choose an integer n with n > 2g + d − 1. (Recall that d = dim(S).) Let Q

be the universal quotient bundle of σ∗
nEn on C [n] = P(En); so Q is a vector bundle of

rank n − g and we have an exact sequence

0 → OC[n](−1) → σ∗
nEn → Q → 0. (1.7.1)

Define Γ ∈ CHg(C [∞]/S) as the class represented by cn−g(Q) ∩ [C [n]]. By [4, Exam-
ple 3.3.3] we have σ∗(Γ ) = [J ]. The class ξ∩Γ is represented by the element ξn ·cn−g(Q),
which is the top Chern class of σ∗

nEn. But En is a bundle on J of rank n+1−g, so given
our choice of n, the top Chern class of En vanishes for dimension reasons. In particular
we find that for all y ∈ CH∗(J/S) = CH∗(J/S) we have

σ∗(ξk ∩ (σ∗(y) ∩ Γ )) =

{
y if k = 0,

0 otherwise.

This shows that s is a section of σ∗. Because ξ ∩ Γ = 0, the image of s is contained in
Ker(ξ ∩ −) ⊂ CH∗(C [∞]/S), which is a subalgebra because ξ∩− is a derivation. Further-
more, by Lemma 1.5, the restriction of σ∗ to this subalgebra is injective. This immediately
implies that s is a ring homomorphism. Finally, the uniqueness of Γ follows also from
Lemma 1.5; in particular, the element Γ that we have defined is independent of the choice
of n.

(ii) Fix m � 0 and take n > 2g+d+m−1. Let Q again be the universal quotient bundle of
σ∗

nEn. Define L[m] ∈ CH1(C [∞]/S) as the class represented by (σ∗
n[0]·cn−g−m(Q))∩[C [n]].

Using the projection formula we find that σ∗(ξj ∩ L[m]) = 0 if j < m, for dimension
reasons. Next, ξm ∩ L[m] is the class represented by (σ∗

n[0] · ξm · cn−g−m(Q)) ∩ [C [n]]. But
by our choice of n we have cn−g−i(En) = 0 for all i ∈ {0, 1, . . . , m − 1}, for dimension
reasons, which gives the relation ξ · cn−g−i−1(Q) = cn−g−i(Q). Hence ξm · cn−g−m(Q) =
cn−g(Q). So we find that ξm ∩ L[m] = σ∗[0] ∩ Γ , and it follows that

σ∗(ξk ∩ L[m]) =

{
[0] if k = m,

0 if k > m.

The uniqueness again follows from Lemma 1.5.
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To see that L[0] = [S] it suffices, again by Lemma 1.5, to show that σ∗[S] = [0] and
σ∗(ξk∩[S]) = 0 if k > 0. The first is clear. For the second identity, note that σ∗(ξk∩[S]) =
0∗(p∗

0(ξ)
k) and remark that p∗

0(ξ) = 0. Finally, the relation ξ ∩ L[m] = L[m−1] for m > 1
readily follows from the defining property of L[m], once again using the lemma. �

Remark 1.8. Suppose the base variety S is a point. Taking n sufficiently big, as in
the proof of (ii), write F for the fibre of σn : C [n] → J over the origin 0 ∈ J , and let
j : F ↪→ C [n] be the inclusion. Then F is a projective space of dimension n − g and we
have L[m] = j∗[Vm], where [Vm] = (j∗ξ)n−g−m ∈ CH(F ) is the class of an m-plane.

Remarks 1.9.

(i) Modulo ψ we can realize the class Γ in CHg(C [2g]/S). Indeed, if we write Qn for the
universal quotient bundle of σ∗

n(En) then we claim that Γ ≡ ctop(Q2g) = cg(Q2g)
modulo ψ. The argument is the same as in (i) of the proposition; all we need is
that the top Chern class of E2g vanishes modulo ψ. This follows from the exact
sequence

0 → E2g−1 → E2g → OJ(−2g · ψ) → 0,

which we get from the sequence

0 → OC((2g − 1) · p0) → OC(2g · p0) → p0,∗p
∗
0OC(2g · p0) → 0,

taking into account that p∗
0OC(−p0) ∼= p∗

0Ω
1
C/S = OS(ψ) by adjunction.

(ii) With notation as in the proof, writing L := L[1], we have

Γ =
∑
k�0

ξk ∩ (σ∗
n(cn−g−k(En)) ∩ [C [n]]) for n � 2g + d, (1.9.1)

L =
∑
k�0

ξk ∩ (σ∗
n([0] · cn−g−1−k(En)) ∩ [C [n]]) for n > 2g + d.

Indeed, the exact sequence (1.7.1) gives the relation

cj(Q) =
∑
k�0

ξk · cj−k(σ∗
n(En)).

Lemma 1.10. For all N � 0 we have s ◦ [N ]∗ = [N ]∗ ◦ s.

Proof. For n > 2g + d − 1, let Γ (n) ∈ CH∗(C [n]/S) be the class representing Γ , as
constructed in the proof of Proposition 1.6. Consider the diagram

C [n]
f �� F

h ��

g

��

C [Nn]

σNn

��
J

[N ] �� J
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in which the square is Cartesian, and where f is the morphism such that h ◦ f = ∆N

and g ◦ f = σn. It suffices to show that f∗Γ (n) = h∗Γ (Nn), as this gives

[N ]∗s(y) = h∗f∗(f∗g∗(y) ∩ Γ (n))

= h∗(g∗(y) ∩ f∗Γ (n))

= h∗(g∗(y) ∩ h∗Γ (Nn))

= (h∗g
∗(y)) ∩ Γ (Nn)

= s([N ]∗y).

Now F is a projective bundle over J with relatively ample class h∗ξ; hence to prove that
f∗Γ (n) = h∗Γ (Nn) it suffices to show that g∗((h∗ξ)i · h∗Γ (Nn)) = g∗((h∗ξ)i · f∗Γ (n))
for all i. We have

g∗((h∗ξ)i · h∗Γ (Nn)) = g∗h
∗(ξi · Γ (Nn))

= [N ]∗σNn,∗(ξi · Γ (Nn))

=

{
[J ] if i = 0,

0 if i > 0,

and

g∗((h∗ξ)i · f∗Γ (n)) = g∗f∗(f∗h∗ξi · Γ (n))

= σn,∗(∆∗
Nξi · Γ (n))

= N iσn,∗(ξi · Γ (n))

=

{
[J ] if i = 0,

0 if i > 0,

as desired. �

We now come to the main result of this section, which is a generalization and refinement
of [8, Theorem 3.9]. Before we can state the theorem we need to introduce some notation.

If A is a ring then by A〈x〉 we denote the PD-polynomial algebra over A in the vari-
able x; so A〈x〉 =

⊕
m�0 A · x[m] with x[0] = 1 and

x[m] · x[n] =
(

m + n

n

)
x[m+n].

We have a unique PD-structure on the ideal A〈x〉+ :=
⊕

m>0 A · x[m] such that γm(x) =
x[m] for all m.

We view CH∗(C [∞]/S) as an algebra over CH∗(J/S) via the homomorphism s

in (1.6.1). Further let us introduce, for 0 � l � n, the notation il,n : C [l] → C [n] for
the composition

C [l] il+1−−→ C [l+1] il+2−−→ · · · in−→ C [n].

In particular, in,n is the identity on C [n] and in−1,n = in. Also, i0,n : S = C [0] → C [n] is
the composition

S
p0−→ C

∆n−−→ C [n].
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Theorem 1.11. The algebra homomorphism h : CH∗(J/S)〈x〉 → CH∗(C [∞]/S) that
extends the section s and sends x[m] to L[m] is an isomorphism. Under this isomorphism
the derivation d/dx corresponds to the operator ξ ∩ −, and σ∗ corresponds to the evalu-
ation map CH∗(J/S)〈x〉 → CH∗(J/S) at x = 0. The inverse isomorphism sends a class
a ∈ CH∗(C [n]/S) to the polynomial fa ∈ CH∗(J/S)〈x〉 given by

fa =
n∑

m=0

σ∗(i∗n−m,n(a)) · exp(ψx)n−m ·
(

exp(ψx) − 1
ψ

)[m]

. (1.11.1)

Note that the class ψ ∈ CH1(S) is nilpotent; hence exp(ψx) is a PD-polynomial in x.
Further note that (exp(ψx) − 1)/ψ lies in the ideal CH∗(J/S)〈x〉+, so its divided powers
are well-defined.

Proof. By Remark 1.7 (ii) the map h is a homomorphism. It follows from Proposition 1.6
that for any f ∈ CH∗(J/S)〈x〉 we have f(0) = σ∗(h(f)) and h(df/dx) = ξ ∩ h(f). This
immediately implies that h is injective. It remains to be shown that for a ∈ CH∗(C [n]/S)
the polynomial fa given in (1.11.1) indeed maps to a under h. For n = 0 this is clear. So
by induction on n we may assume that h(fb) = b for all b ∈ CH∗(C [n−1]/S).

Write α := h(fa). Direct calculation shows that dfa/dx = fi∗
n(a) + n · ψ · fa. Apply-

ing h this gives the relation ξ ∩ α = i∗n(a) + n · ψ · α, where we use the induction
assumption with b = i∗n(a). On the other hand, ξ∩a = i∗n(a)+n ·ψ ·a, as ξn = Rn +n ·ψ.
So we find that ξj ∩ (α−a) = (nψ)j · (α−a) for all j � 0. Because σ∗(α) = fa(0) = σ∗(a)
this implies that σ∗(ξj ∩ (α − a)) = 0 for all j � 0; hence α = a by Lemma 1.5. �

Example 1.12. For a ∈ CH∗(C/S) we have

fa = ι∗(a) · exp(ψx) + p∗
0(a) · exp(ψx) − 1

ψ
.

(Recall that ι = σ1 : C → J .) In particular, the class [C] corresponds to the polynomial

f[C] = [ι(C)] · exp(ψx) +
exp(ψx) − 1

ψ

= [ι(C)] + (1 + ψ · [ι(C)]) · (x + ψx[2] + ψ2x[3] + · · · ). (1.12.1)

To avoid any misunderstanding let us note again that the ring multiplication in
CH∗(C [∞]/S) is the Pontryagin product and that we view CH∗(C [∞]/S) as an alge-
bra over CH∗(J/S) via the homomorphism s. Thus, for instance, the formula for f[C]

just given means that

[C] = s[ι(C)] + (1 + ψ · s[ι(C)]) ∗ (L + ψL[2] + ψ2L[3] + · · · ).

More generally, for n � 1 the class of C [n] corresponds to the polynomial

f[C[n]] =
n∑

m=0

σ∗[C [n−m]] · exp(ψx)n−m ·
(

exp(ψx) − 1
ψ

)[m]

. (1.12.2)
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As a corollary of the preceding results we obtain expression for the classes L and Γ as
linear combinations of explicit geometric classes with coefficients in the ring Z[ψ].

Corollary 1.13. In CH∗(C [∞]/S) ⊗ Q we have the identities

L =
log(1 + ψ · [C]) − log(1 + ψ · s[ι(C)])

ψ

=
∑
n�1

(−ψ)n−1(n − 1)!([C [n]] − s[σn,∗C
[n]])[n], (1.13.1)

Γ =
(

exp(−ψ · L) − 1
ψ

+ [C] ∗ exp(−ψ · L)
)[g]

, (1.13.2)

and, for any n � 2,

Γ =
1

(n − 1)g

(
log(1 + ψ · [n]∗[C]) − n log(1 + ψ · [C])

nψ

)[g]

. (1.13.3)

Over a field the first two identities actually hold in CH∗(C [∞]/S); see Remark 5.4.

Proof. Identity (1.13.1) is just the inverse of formula (1.12.1). For the second identity
we first rewrite (1.12.1) as

s([ι(C)]) =
exp(−ψL) − 1

ψ
+ [C] ∗ exp(−ψL).

But also we have

s([ι(C)])∗g = s([ι(C)]∗g) = g! · s([J ]) = g! · Γ. (1.13.4)

This gives (1.13.2).
To deduce (1.13.3) we start with the relation [n]∗L = n · L. Using (1.13.1) this gives

log(1 + ψ · [n]∗[C])
n · ψ

− log(1 + ψ · [C])
ψ

= s

(
log(1 + ψ · [n]∗[ι(C)])

n · ψ
− log(1 + ψ · [ι(C)])

ψ

)
.

It remains to be shown that the gth power of the right-hand side is equal to g!(n−1)g ·Γ .
But when calculating the gth Pontryagin power of a class in CH1(J/S) we can work
modulo ψ and modulo homological equivalence. Now use that

log(1 + ψ · [n]∗[ι(C)])
n · ψ

− log(1 + ψ · [ι(C)])
ψ

≡ [n]∗[ι(C)]
n

− [ι(C)] mod (ψ)

and that [n]∗[ι(C)] is homologically equivalent to n2 · [ι(C)]. �

Corollary 1.14. The homomorphism of CH(S)-algebras

β : CH∗(J/S)〈u〉 → CH∗(C [∞]/S)

restricting to s on CH∗(J/S) and sending u[m] to [C [m]], is an isomorphism.
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Proof. Write A := CH∗(J/S). We have a nilpotent element ψ ∈ A and, via the iso-
morphism of Theorem 1.11, a homomorphism of A-algebras β : A〈u〉 → A〈x〉. Write
Ā := A/(ψ) and consider the induced map β̄ : Ā〈u〉 → Ā〈x〉. By (1.12.2) we have

β̄(u[m]) ∈ x[m] +
m−1∑
i=0

Ā · x[i]

for all m � 0. From this it follows by an elementary argument that β is an isomorphism.
�

Remark 1.15. The relations we have obtained greatly simplify if we calculate modulo ψ.
(This applies for instance if we work over a field.) Theorem 1.11 gives

a ≡
n∑

m=0

s(σ∗(i∗n−m,n(a))) ∗ L[m] mod (ψ)

for a ∈ CH∗(C [n]/S). Modulo ψ the identities (1.13.2) and (1.13.3) take the form

Γ ≡ ([C] − L)∗g

g!
≡ 1

g!
·
(

[n]∗[C] − n · [C]
n(n − 1)

)∗g

mod (ψ).

2. Operators on the Chow (co)homology

In this section we study several geometrically defined operators on CH∗(C [•]/S). These
operators, which have been studied in detail in [16], play a key role in the proofs of the
main results of the paper. After recalling the definitions, we give some examples of the
operators that are most important for us, and we prove some identities that are used
later. The main result is Corollary 2.3.

Given integers 0 � m � n, let sm,n : C ×S C [n−m] → C [n] be the morphism given by
(p, D) �→ D + m · p. In [16], one of us has defined and studied a family of operators
Pi,j(a) : CH∗(C [n]/S) → CH∗(C [n+i−j]/S), for i, j � 0 and a ∈ CH(C), given by

Pi,j(a)(x) := (si,n+i−j)∗(pr∗
1(a) · s∗

j,n(x)).

These give rise to operators Pi,j(a) on CH∗(C [•]/S). Also in [16] the commutation rela-
tions between the various operators Pi,j(a) were calculated.

Examples 2.1. We write [p0] for the class of p0(S) in CH0(C/S).

(a) The operator P0,0(a) : CH∗(C [n]/S) → CH∗(C [n]/S) is given by x �→ π∗(a) · x,
where we recall that π : C → S is the structural morphism. (To avoid confusion,
note that in the expression π∗(a) · x we view π∗(a) as an element of CH(C [n]) via
pullback, and the dot denotes intersection product.)

(b) The operator P1,0(a) : CH∗(C [n]/S) → CH∗(C [n+1]/S) is given by x �→ a ∗ x. In
particular, P1,0([p0]) = in+1,∗.
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(c) Let pr1 : C ×S C [n−1] → C and pr2 : C ×S C [n−1] → C [n−1] be the projections and
let α = α1,n−1 : C ×S C [n−1] → C [n]. Then the operator P0,1(a) : CH∗(C [n]/S) →
CH∗(C [n−1]/S) is given by x �→ pr2,∗(pr∗

1(a) · α∗(x)). In particular, P0,1([p0]) = i∗n.
Using this last identity it is not difficult to show that for a ∈ CH(C) and n � 0, we
have the relation P0,1([p0])(∆n,∗(a)) = n · p∗

0(a) ∗ [p0]∗(n−1). We shall use this later.

(d) The operator P1,1(a) : CH∗(C [n]/S) → CH∗(C [n]/S) is given by x �→ α∗(pr∗
1(a)) ·

x = (a∗ [C [n−1]]) ·x. For instance, for x ∈ CH∗(C [n]/S) we have P1,1(C)(x) = n ·x,
and P1,1([p0]+ψ)(x) = ξn ∩x. Also, P1,1([p0]) = P1,0([p0]) ◦P0,1([p0]), which is the
operator in,∗i

∗
n sending x to Rn · x.

As we have seen in the above examples, P1,0([p0]) is the operator x �→ [p0] ∗ x. Recall
from Lemma 1.1 (ii) that CH∗(C [∞]/S) is the quotient of CH∗(C [•]/S) modulo the ideal
([p0] − 1). Hence any operator on CH∗(C [•]/S) that commutes with P1,0([p0]) induces
an operator on CH∗(C [∞]/S). In particular, it follows from the commutation relations in
Theorem 0.1 of [16] that this applies to all Pi,j(a) for a ∈ CH(C) with p∗

0(a) = 0, so for
all such classes a we get induced operators P̄ i,j(a) on CH∗(C [∞]/S).

As an example, the derivation ξ ∩ − considered before is the operator P̄ 1,1([p0] + ψ).
Next we recall that in [16, § 3] also divided powers of the operators P0,n(C) and Pn,0(C)

were introduced. Concretely, we define

Pn,0(C)[m](x) := δ[m]
n ∗ x and P0,n(C)[m](x) := ν

δ
[m]
n

(x),

where δ
[m]
n := [n]∗([C [m]]) ∈ CHm(C [nm]/S), and where for a class a ∈ CH∗(C [k]/S) we

define maps νa : CH∗(C [j]/S) → CH∗(C [j−k]/S) by νa(x) := pr2,∗(pr∗
1(a) · α∗

k,j−k(x)).
These operators are indeed divided powers, in the sense that P0,n(C)[1] = P0,n(C) and

P0,n(C)[l] ◦ P0,n(C)[m] =
(

l + m

l

)
· P0,n(C)[l+m],

and likewise for the Pn,0. In particular, m! · Pn,0(C)[m] = Pn,0(C)m and m! ·P0,n(C)[m] =
P0,n(C)m.

The most relevant for this paper is P0,1(C)[m] : CH∗(C [j]/S) → CH∗(C [j−m]/S), which
is given by

P0,1(C)[m](x) = pr2,∗α
∗
m,j−m(x).

To prove the properties that we shall need, it is useful to work with some of these
operators directly on the level of cycles. Given a scheme X over S, write Zi(X/S) for
the group of cycles on X of dimension d + i. (So i is the relative dimension over S and
may be negative.) Let Z∗(X/S) :=

⊕
i Zi(X/S).

Let tm,N : C × C [N−m] → C × C [N ] be the morphism sending (x, D) to (x, m · x + D).
Write

Z∗(C [•]/S) =
⊕
N

Z∗(C [N ]/S) and Z∗(C × C [•]/S) :=
⊕
N

Z∗(C × C [N ]/S).

Then we can define operators Pm,1 : Z∗(C [•]/S) → Z∗(C × C [•]/S) by

Pm,1(ζ) := (tm,N+m−1)∗s
∗
1,N (ζ) for ζ ∈ Z∗(C [N ]/S). (2.1.1)
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Note that the map s1,N = α1,N−1 : C ×S C [N−1] → C [N ] is flat (see Remark 1.2 in [13]),
so Pm,1 is well-defined on the level of cycles. It respects rational equivalence and therefore
induces an operator Pm,1 : CH∗(C [•]/S) → CH∗(C × C [•]/S).

The Pontryagin product makes Z∗(C [•]/S) a commutative ring, and makes Z∗(C ×
C [•]/S) into a Z∗(C [•]/S)-module. Finally, let us observe that P0,1(C)[m] is also well-
defined on the level of cycles since the maps αm,N−m : C [m] × C [N−m] → C [N ] are flat.

Lemma 2.2.

(i) For every m � 0 the map Pm,1 : Z∗(C [•]/S) → Z∗(C ×S C [•]/S) is a derivation.

(ii) For all n � 0 and all ζ1, ζ2 ∈ Z∗(C [•]/S) we have

P0,1(C)[n](ζ1 ∗ ζ2) =
n∑

ν=0

P0,1(C)[ν](ζ1) ∗ P0,1(C)[n−ν](ζ2). (2.2.1)

Proof. (i) Let Z1 ⊂ C [M ] and Z2 ⊂ C [N ] be closed subvarieties. We need to check the
equality of cycles

Pm,1([Z1] ∗ [Z2]) = Pm,1(Z1) ∗ Z2 + Pm,1(Z2) ∗ Z1 (2.2.2)

on C × C [M+N−1+m]. Consider the diagram with Cartesian squares

Π
τ ��

h

��

C ×S C [M ] ×S C [N ]
pr23 ��

id×αM,N

��

C [M ] ×S C [N ]

αM,N

��
C ×S C [M+N−1]

t1,M+N �� C ×S C [M+N ]
pr2 �� C [M+N ]

Let π := pr23 ◦ τ : Π → C [M ] ×S C [N ], and note that pr2 ◦ t1,M+N = s1,M+N . The left-
hand side of (2.2.2) is equal to the pushforward of the cycle of the subscheme π−1(Z1 ×S

Z2) under the map

tm,M+N−1+m ◦ h : Π → C × C [M+N−1] → C × C [M+N−1+m].

Recall that Dm ⊂ C ×S C [m] denotes the universal divisor over C [m]. Further note
that t1,M+N is a closed immersion whose image is precisely DM+N . Hence, Π, viewed
as a closed subscheme of C ×S C [M ] ×S C [N ], is the effective Cartier divisor (id ×
αM,N )−1DM+N . It follows that π−1(Z1 ×S Z2) is equal to the pullback of this divi-
sor to C ×S Z1 ×S Z2. Now the required formula follows from the equality of Cartier
divisors

(id × αM,N )−1DM+N = pr−1
12 DM + pr−1

13 DN

that holds by definition of the map αM,N .

(ii) We have P0,1(C) = pr2,∗ ◦P0,1, so it follows from (i) that P0,1(C) is a derivation, too.
This implies that (2.2.1) holds after multiplication on both sides by n!. But the group of
cycles has no torsion; hence (2.2.1) holds. �
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Corollary 2.3.

(i) For any a ∈ CH(C) and n � 0 the operator Pn,1(a) on CH∗(C [•]/S) is a derivation.
If p∗

0(a) = 0 then P̄n,1(a) is a derivation on CH∗(C [∞]/S).

(ii) For all n � 0 and all x, y ∈ CH∗(C [•]/S) we have

P0,1(C)[n](x ∗ y) =
n∑

ν=0

P0,1(C)[ν](x) ∗ P0,1(C)[n−ν](y).

Proof. The operator Pm,1(a) is related to the operator Pm,1 by the identity

Pm,1(a)(x) = pr2∗(pr∗
1a · Pm,1(x)), (2.3.1)

where pr1 : C ×S C [•] → C and pr2 : C ×S C [•] → C [•] are the projections. It is easy to
see that the map CH∗(C ×S C [•]/S) → CH∗(C [•]/S) given by y �→ pr2∗(pr∗

1a · y) is a
homomorphism of CH∗(C [•])-modules. Hence (i) follows from (i) of the lemma, and (ii)
is immediate from (ii) of the lemma. �

3. The Chow homology of C[•]

In this section we prove the core result of the paper, namely that the Chow homology of
C [•] over S is isomorphic to CH∗(J/S)[t]〈u〉. Somewhat surprisingly, we find two natural
ways to define such an isomorphism. The isomorphisms CH∗(J/S)[t]〈u〉 ∼−→ CH∗(C [•]/S)
that we obtain are equal modulo ψ but in general they are different. The images of the
variables t and all u[m] in CH∗(C [•]/S) are the same in both cases; the difference lies in
the way that CH∗(J/S) is embedded into CH∗(C [•]/S) as a subring. Taking quotients,
we also obtain a second isomorphism CH∗(J/S)〈u〉 ∼−→ CH∗(C [∞]/S) that in general is
different from the isomorphism β of Corollary 1.14.

We also give a description of the various differential operators ∂
[m]
t and ∂u in terms

of the geometrically defined operators that we studied in § 2. Further we prove some
results about how CH∗(J/S) sits embedded into CH∗(C [•]/S), which is one of the most
intriguing aspects of our result.

Let us give an overview of the most important notation that we use. (The precise
details are given later, in a different order than we introduce notation here.) In addition
to the section s defined in (1.6.1) we shall introduce another section s′ of the map σ∗.
Also we shall define a section r of the map q∗:

CH∗(C [•]/S) q∗
�� CH∗(C [∞]/S)

r
��

σ∗
�� CH∗(J/S) .

��
s,s′

��

Then we shall have isomorphisms β, γ : CH∗(J/S)〈u〉 ∼−→ CH∗(C [∞]/S) given by s and s′,
respectively, on CH∗(J/S), and by u[m] �→ [C [m]]. Next we have s̃ := r ◦s and s̃′ := r ◦s′,
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which are sections of σ̃∗ = σ∗ ◦ q∗:

CH∗(C [•]/S)
σ̃∗

�� CH∗(J/S) .
��

s̃,s̃′

��

We shall consider the subrings K, L ⊂ CH∗(C [•]/S) with K = Im(s̃′) and L = Im(s̃).
Finally, we have isomorphisms β̃, γ̃ : CH∗(J/S)[t]〈u〉 ∼−→ CH∗(C [•]/S) given by s̃ and s̃′,
respectively, on the coefficients, and with t �→ [p0] and u[m] �→ [C [m]].

Now we turn to the actual work. We start with two easy lemmas.

Lemma 3.1. Write [p0] ∈ CH0(C/S) for the class of p0(S) ⊂ C. If r : CH∗(C [∞]/S) →
CH∗(C [•]/S) is a (homomorphic) section of q∗ then the homomorphism

hr : CH∗(C [∞]/S)[t] → CH∗(C [•]/S)

given by r on the coefficients and sending t to [p0], is an isomorphism of CH(S)-algebras.

Proof. It is a priori clear that the kernel of hr is contained in the ideal (t − 1). Now
use that [p0] − 1 is not a zero divisor to conclude that hr is injective. To see that hr is
also surjective, we note that for any y ∈ CH∗(C [•]/S) we can write

y = hr(q∗(y)) + ([p0] − 1) ∗ z

for a unique z ∈ CH∗(C [•]/S), as y − hr(q∗(y)) is in the kernel of q∗. Further, if y ∈⊕
n�N CH∗(C [n]/S) then z ∈

⊕
n�N−1 CH∗(C [n]/S), so by induction we find that y ∈

Im(hr). �

Lemma 3.2. Let R be a commutative ring. Let I ⊂ R be a nilpotent ideal; so In = (0)
for some n > 0. Let M be an R-module, and let N and N ′ be direct summands of M

that have the same image in M/IM . Then any projection p : M → N (with p|N = idN )
restricts to an isomorphism N ′ ∼−→ N .

Proof. Let α : N ′ → N be the restriction of p. The assumption that N is a direct
summand implies that N/IN maps isomorphically to the image of N in M/IM ; likewise
for N ′. Hence α is the identity modulo I, which implies that it is surjective. Similarly, if
we choose a projection p′ : M → N ′ then β := p′|N : N → N ′ is the identity modulo I;
hence β ◦ α : N ′ → N ′ differs from the identity on N ′ by a nilpotent map. This implies
that β ◦ α is invertible; so α is injective. �

Following [16] we consider

K := Ker(P0,1([p0])) ∩
⋂
n�1

Ker(P0,1(C)[n]) ⊂ CH∗(C [•]/S).

Note that by Corollary 2.3, K is a subring of CH∗(C [•]/S). As proven in [16, Corol-
lary 3.11], we have an isomorphism of CH∗(S)-algebras

K[t]〈u〉 ∼−→ CH∗(C [•]/S) (3.2.1)
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sending t to [p0] and u[m] to [C [m]]. Moreover, under this isomorphism the operators ∂
[n]
t

(see § 0.4) and ∂u correspond to P0,1(C)[n] and P0,1([p0]+ψ), respectively. (See the proof
of Proposition 3.10 in [16].) In what follows we shall use (3.2.1) as an identification. From
the given description of the operators ∂

[n]
t we get

K〈u〉 =
⋂
n�1

Ker(∂[n]
t ) =

⋂
n�1

Ker(P0,1(C)[n]).

Further, as CH∗(C [∞]/S) is the quotient of CH∗(C [•]/S) modulo [p0]−1, the composition

K〈u〉 ↪→ CH∗(C [•]/S)
q∗−→ CH∗(C [∞]/S) (3.2.2)

is an isomorphism. We define the section

r : CH∗(C [∞]/S) → CH∗(C [•]/S)

of the map q∗ as the inverse of this isomorphism. (So Im(r) = K〈u〉 ⊂ CH∗(C [•]/S).) We
shall give an alternative description of r in Remark 3.9 below.

Theorem 3.3. Let s̃ := r ◦ s : CH∗(J/S) → CH∗(C [•]/S), where s is the homomorphism
given in (1.6.1). Then s̃ is the unique lifting of s with the property that Im(s̃) is contained
in

⋂
n�1 Ker(P0,1(C)[n]). Furthermore, the map

β̃ : CH∗(J/S)[t]〈u〉 ∼−→ CH∗(C [•]/S)

restricting to s̃ on CH(J/S) and with t �→ [p0] and u[m] �→ [C [m]], is an isomorphism of
CH(S)-algebras.

Proof. The first assertion follows directly from the definitions. The assertion that β̃ is
an isomorphism follows from Lemma 3.1 together with Corollary 1.14. �

Now we give the second isomorphism between CH∗(J/S)[t]〈u〉 and CH∗(C [•]/S).

Theorem 3.4. The homomorphism σ̃∗ : CH∗(C [•]/S) → CH∗(J/S) restricts to an iso-
morphism K

∼−→ CH∗(J/S). Denoting by s̃′ : CH∗(J/S) → K its inverse, we obtain an
isomorphism

γ̃ : CH∗(J/S)[t]〈u〉 ∼−→ CH∗(C [•]/S)

restricting to s̃′ on CH∗(J/S) and with t �→ [p0] and u[m] �→ [C [m]]. Under this isomor-
phism the operators ∂

[n]
t and ∂u correspond to P0,1(C)[n] and P0,1([p0]+ψ), respectively.

Proof. All we need to prove is that σ̃∗ : CH∗(C [•]/S) → CH∗(J/S) restricts to an iso-
morphism K

∼−→ CH∗(J/S); the remaining assertions then follow from (3.2.1).
Write A ⊂ CH∗(C [∞]/S) for the image of the section s. Write B ⊂ CH∗(C [∞]/S) for

the image of K under the isomorphism (3.2.2). The map s ◦ σ∗ : CH∗(C [∞]/S) → A is a
projection, and we are done if we can show that it restricts to an isomorphism B

∼−→ A.
For this we use Lemma 3.2. Note that A and B are direct summands of CH∗(C [∞]/S) as a
CH(S)-module. Hence we are done if we can show that A and B are equal modulo ψ. But
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we know that B is the kernel of P̄ 0,1([p0] + ψ), whereas by Theorem 1.11 A is the kernel
of the operator (ξ ∩ −) = P̄ 1,1([p0] + ψ). Now use that P1,1([p0]) = P1,0([p0]) ◦ P0,1([p0])
and note that the operator P1,0([p0]) (given by the maps in,∗: see Examples 2.1) induces
the identity on CH∗(C [∞]/S). �

Remark 3.5. From γ̃ we obtain, passing to quotients modulo the ideals generated by
t − 1, respectively [p0] − 1, an isomorphism

γ : CH∗(J/S)〈u〉 ∼−→ CH∗(C [∞]/S). (3.5.1)

It turns out that γ is not, in general, the same isomorphism as the isomorphism β that
we obtained in Corollary 1.14. (See the next theorem.)

If j : CH∗(J/S)〈u〉 ↪→ CH∗(J/S)[t]〈u〉 is the inclusion map and

ev1 : CH∗(J/S)[t]〈u〉 → CH∗(J/S)〈u〉

is the map given by t �→ 1, then in the diagrams

CH∗(J/S)[t]〈u〉
γ̃

∼ ��

ev1

��

CH∗(C [•]/S)

q∗

��
CH∗(J/S)〈u〉

γ

∼ ��

j

��

CH∗(C [∞]/S)

r

��
CH∗(J/S)[t]〈u〉

β̃

∼ ��

ev1

��

CH∗(C [•]/S)

q∗

��
CH∗(J/S)〈u〉

β

∼ ��

j

��

CH∗(C [∞]/S)

r

��

both the squares with upward vertical arrows and those with downward vertical arrows
are commutative.

The restriction of γ to CH∗(J/S) ⊂ CH∗(J/S)〈u〉 defines a homomorphism

s′ : CH∗(J/S) → CH∗(C [∞]/S)

that is a section of σ∗. We have s̃′ = r ◦ s′. If we apply Lemma 3.1 to the section r

then we obtain an isomorphism hr : CH∗(C [∞]/S)[t] ∼−→ CH∗(C [•]/S). By construction,
if we identify CH∗(C [∞]/S) with CH∗(J/S)〈u〉 via the isomorphism γ then hr gives
the isomorphism γ̃. Likewise, if we identify CH∗(C [∞]/S) with CH∗(J/S)〈u〉 via the
isomorphism β then hr gives the isomorphism β̃.

Theorem 3.6.

(i) The isomorphisms β̃, γ̃ : CH∗(J/S)[t]〈u〉 ∼−→ CH∗(C [•]/S) are equal modulo ψ.

(ii) Write ∂
[m]
t and ∂u for the operators on CH∗(C [•]/S) that correspond, under the

isomorphism γ̃, to the differential operators ∂
[m]
t and ∂u on CH∗(J/S)[t]〈u〉. Sim-

ilarly, write D
[m]
t and Du for the operators that correspond to ∂

[m]
t and ∂u under

the isomorphism β̃. Then we have the relations

D
[m]
t = ∂

[m]
t = P0,1(C)[m],

∂u = P0,1([p0] + ψ),

Du = (1 + ψu)−1 · (∂u − ψt∂t + ψP1,1(C))
= (1 + ψu)−1 · (P0,1([p0] + ψ) − ψtP0,1(C) + ψP1,1(C)).
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(iii) Let K[n] := K ∩ CH∗(C [n]/S). Then

Im(s̃′) = K =
⊕
n�0

K[n] and Im(s̃) =
⊕
n�0

(1 + ψu)−n · K[n].

Proof. It will be convenient to set L := Im(s̃), so that L[t]〈u〉 = CH∗(C [•]/S). Note
that

K〈u〉 = Im(r) = L〈u〉 (3.6.1)

as subrings of CH∗(C [•]/S). Under q∗ we have Im(r) ∼−→ CH∗(C [∞]/S), and as we have
seen in the proof of Theorem 3.4 the images of K and L in CH∗(C [∞]/S) are equal
modulo ψ. Hence K and L have the same image in CH∗(C [•]/S)/(ψ), and this implies (i).

Next we prove (ii). It is immediate from (3.6.1) that D
[m]
t = ∂

[m]
t for all m. Consider the

operator D̃u := ∂u −ψ · t∂t +ψ ·P1,1(C). Our goal is to show that D̃u = (1+ψu) ·Du. We
know that D̃u is a derivation, and it is easy to check that D̃u(t) = 0 and D̃u(u) = 1+ψu.
Hence we are done if we can show that L ⊂ Ker(D̃u). Using [16], Theorems 0.1 and 3.2,
it is easy to see that [D̃u, ∂

[m]
t ] = 0 for all m. In particular, L〈u〉 =

⋂
m�1 Ker(∂[m]

t ) is
stable under D̃u. Also the ideal generated by (t − 1) is stable under D̃u, so D̃u induces
a derivation D̄u on CH∗(C [∞]/S). Under the isomorphism L〈u〉 ∼−→ CH∗(C [∞]/S) the
restriction of D̃u to L〈u〉 corresponds to the operator D̄u on CH∗(C [∞]/S). Now we use
the identities

∂u = P0,1([p0] + ψ), ∂t = P0,1(C) and t · P0,1([p0]) = P1,1([p0]).

These allow us to rewrite D̃u as D̃u = P1,1([p0] + ψ) − (t − 1) · ∂u. It follows that D̄u is
the operator P̄1,1([p0] + ψ) = (ξ ∩ −), and we know that this operator is zero on Im(s),
which is the image of L in CH∗(C [∞]/S).

(iii) Consider the grading of CH∗(C [•]/S) for which CH∗(C [n]/S) is placed in degree n.
The operators ∂

[m]
t = P0,1(C)[m] and ∂u = P0,1([p0] + ψ) are both homogeneous for this

grading, of degrees −m and −1, respectively. Hence K =
⊕

K[n]. It is easy to check that
for x ∈ K[n] one has Du((1 + ψu)−n · x) = 0. Hence,∑

n�0

(1 + ψu)−n · K[n] ⊂
⋂

m�1

Ker(∂[m]
t ) ∩ Ker(Du) =

⋂
m�1

Ker(D[m]
t ) ∩ Ker(Du) = L.

Since this inclusion becomes an equality modulo ψ, it is an equality. �

Caution 3.7. While the section s is compatible with the operators [N ]∗ (see Lemma
1.10), this is definitely not true for the section r, and therefore also not for s̃ and s̃′. In
fact, K and L ⊂ CH∗(C [•]/S), are not stable under the operators [N ]∗. In § 7 we shall
prove that there is still a very interesting relation between s̃ (or s̃′) and the operators [N ]∗.

Corollary 3.8.

(i) We have s̃′(CHi(J/S)) ∈
⊕

n�i+1 K[n].

(ii) We have s̃′([J ]) ∈ K[2g]. This class freely generates K ∩ CHg(C [•]/S) ∼= Z.

(iii) We have
s̃([J ]) = (1 + ψu)−2g · s̃′([J ]).
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Proof. (i) Recall that the grading K =
⊕

n K[n] is compatible with the grading by
dimension. It remains to observe that K[n] cannot have non-zero classes of relative dimen-
sion i � n. (For i < n this is obvious; for i = n use that CHi(C [i]/S) = Z · u[i].)

(ii) Since K projects isomorphically to CH∗(J/S) we have that K ∩ CHg(C [•]/S) ∼=
CHg(J/S) ∼= Z. Hence, K ∩ CHg(C [•]/S) coincides with K[n] ∩ CHg(C [•]/S) for some
n and is freely generated by s̃′([J ]). Next, observe that modulo ψ we have s̃′([J ]) ≡
s̃([J ]) = r(Γ ). Hence, by Remark 1.9 (i), we obtain that n � 2g. On the other hand,
since g!s̃′([J ]) = s̃′([ι(C)])∗g, it follows from (i) that n � 2g. Therefore, n = 2g.

(iii) By part (iii) of Theorem 3.6 the right-hand side belongs to L. Since its pushforward
to CH∗(J/S) equals [J ], this implies our identity. �

Remark 3.9. We have defined the section r : CH∗(C [∞]/S) → K〈u〉 ⊂ CH∗(C [•]/S) by
taking the inverse of the isomorphism (q∗)|K〈u〉 : K〈u〉 ∼−→ CH∗(C [∞]/S). Under the iden-
tification K[t]〈u〉 = CH∗(C [•]/S) the endomorphism r ◦ q∗ is the map F (t, u) �→ F (1, u),
which is the operator

∑
n�0(1 − t)n∂

[n]
t . Recall that t acts by the multiplication with [p0],

while ∂
[n]
t acts by P0,1(C)[n], so only finitely many terms in this sum will be non-zero

when acting on CH∗(C [N ]/S) for some fixed N .
Thus, if for x ∈ CH∗(C [∞]/S) we choose an arbitrary y ∈ CH∗(C [•]/S) with q∗(y) = x

then we have
r(x) =

∑
n�0

(1 − [p0])∗n ∗ P0,1(C)[n](y). (3.9.1)

Note that r(x) is the unique element

x̃ = (x̃0, x̃1, x̃2, . . . ) ∈ CH∗(C [•]/S)

with the properties that q∗(x̃) = x and P0,1(C)[m](x̃n) = 0 for all m, n � 1.
We also find a more explicit description of the map s̃ := r ◦ s : CH∗(J/S) →

CH∗(C [•]/S). Namely, if we lift the class Γ ∈ CHg(C [∞]/S) to some class Γ (N) ∈
CHg(C [N ]/S) then we get, for z ∈ CH∗(J/S), the identity

s̃(z) =
∑
n�0

(1 − [p0])∗n ∗ P0,1(C)[n](σ∗
N (z) ∩ Γ (N)). (3.9.2)

As an application, we obtain some results on how CH∗(J/S) embeds into CH∗(C [•]/S)
via either s̃ or s̃′. First we prove a lemma. Recall that in−s,n : C [n−s] → C [n] is the
inclusion given by D �→ D + s · p0.

Lemma 3.10. For every k with 0 � k � n one has a relation

ξk
n =

k∑
s=0

c(n, k, s) · ψk−s(in−s,n)∗[C [n−s]],

in CHk(C [n]), for some integers c(n, k, s).
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Proof. The case k = 1 follows from the definition of ξn:

ξn = (in−1,n)∗[C [n−1]] + nψ[C [n]].

To deduce the general case use induction on k together with the fact that i∗n−1,nξn =
ξn−1. �

Proposition 3.11. As before, consider K = Im(s̃′) and L := Im(s̃).

(i) The class Γ ∈ CHg(C [∞]/S) can be lifted to a class in CHg(C [N ]/S) for some N if
and only if L ⊂ CH∗(C [�N ]/S).

(ii) If for some i and N we have L ∩ CHi(C [•]/S) ⊂ CH∗(C [�N ]/S) then also K ∩
CHi(C [•]/S) ⊂ CH∗(C [�N ]/S).

(iii) Both K and L are contained in CH∗(C [�2g+d]/S). Further, if i � g − d then under
both sections s̃ and s̃′, the image of CHi(J/S) is contained in CH∗(C [�g+2d+i]/S).

Proof. (i) This follows immediately from (3.9.2).

(ii) Given a non-zero element y ∈ K[j]∩CHi(C [•]/S), part (iii) of Theorem 3.6 shows that
(1+ψu)−j ·y is in L∩CHi(C [•]/S) ⊂ CHi(C [�N ]/S). On the other hand, (1+ψu)−j ·y =
y + z with z ∈ CH∗(C [>j]/S). Hence, we should have j � N .

(iii) By part (ii) it is enough to prove the assertion for L and s̃. Let n = 2g + d. As we
have seen in the proof of Theorem 1.6, we can lift the class Γ ∈ CHg(C [∞]/S) to a class
Γ (n) in CHg(C [n]/S). It then follows from part (i) that L ⊂ CH∗(C [�n]/S).

Next consider an irreducible subvariety Z ⊂ J of dimension m � g. Note that [Z] ∈
CHm−d(J/S). By (1.9.1) we have

σ∗
n([Z]) ∩ Γ (n) =

∑
k�0

ξk
n ∩ σ∗

n(cn−g−k(En) ∩ [Z])

=
∑

k�g+d−m

ξk
n ∩ σ∗

n(cn−g−k(En) ∩ [Z]),

where the second equality holds because cn−g−k(En) ∩ [Z] can be non-zero only if n −
g − k � m, i.e. k � n − g − m = g + d − m. Let yk := σ∗

n(cn−g−k(En) ∩ [Z]). Lemma 3.10
then gives

σ∗
n([Z]) ∩ Γ (n) =

∑
k�g+d−m

k∑
s=0

c(n, k, s) · (in−s,n)∗(in−s,n)∗(ψk−syk).

But ψk−s = 0 for k − s > d, so in the second sum we can restrict to indices s �
k−d � g−m. This shows that s([Z]) can be lifted to an element in CH∗(C [n−g+m]/S) =
CH∗(C [g+d+m]/S), and by our description of the section r it follows that s̃([Z]) lies in
CH∗(C [�g+d+m]/S), which is what we wanted to prove. �
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In the proof of the proposition we have used the fact that the class Γ can be lifted
to a class in CHg(C [2g+d]/S). The following corollary gives the smallest n such that Γ

admits a lifting in CHg(C [2g+n]/S).

Corollary 3.12.

(i) The class Γ ∈ CHg(C [∞]/S)Q cannot be lifted to CHg(C [2g−1]/S)Q.

(ii) The integral class Γ ∈ CHg(C [∞]/S) can be realized in CHg(C [2g+n]/S) if and only
if

∏n
i=0(2g + i) · ψn+1 = 0.

Proof. (i) If we could lift Γ to CHg(C [2g−1]/S)Q, then by Proposition 3.11 this would
imply that K ⊂ CH∗(C [�2g−1]/S)Q. But we know that K

[2g]
Q �= 0 by Corollary 3.8 (ii).

(ii) Using Proposition 3.11 (i) we find that Γ can be realized in CH∗(C [2g+n]/S) if an
only if s̃([J ]) = r(Γ ) lies in CH∗(C [�2g+n]/S). By Corollary 3.8 (iii), the component of
s̃([J ]) in CH∗(C [2g+m]/S) equals

(−1)m
m−1∏
i=0

(2g + i) · ψmu[m] · s̃′([J ]),

where s̃′([J ]) ∈ K[2g]. By (3.2.1), this expression vanishes if and only if

m−1∏
i=0

(2g + i) · ψm · s̃′([J ]) = 0.

Pushing forward to J we see that this is equivalent to the vanishing of

m−1∏
i=0

(2g + i) · ψm.

�

Corollary 3.13. If we work with Q-coefficients, then the class Γ can be lifted to
CHg(C [3g−1]/S)Q. Hence, LQ is contained in CH∗(C [�3g−1]/S)Q.

Proof. This follows from the well-known vanishing ψg = 0; see Theorem 1.1 of [10]. �

4. Motivic interpretation

In this section we reformulate the main results on the Chow homology of C [•] and C [∞]

in motivic language. See Theorems 4.2 and 4.3. We obtain this motivic interpretation by
a slight generalization of the ‘Manin Principle’.

As before, S is a smooth quasi-projective variety over k. We write M(S) for the cat-
egory of Chow motives over S with respect to graded correspondences, and M+(S) ⊂
M(S) for the subcategory of effective motives. See [3] and [9], but note that we here con-
sider the theory with Z-coefficients. Writing V(S) for the category of smooth projective
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S-schemes, we have a functor R(−/S) : V(S)opp → M+(S). If f : X → Y is a morphism
in V(S) then we shall usually write f∗ : R(Y/S) → R(X/S) for R(f/S).

For n ∈ Z, define 1(n) := (S, id, n), which is the unit motive Tate-twisted by n.
On M(S) we have a duality M �→ M∨, where the dual of M = (X, p, m) is M∨ =

(X, tp, d−m) if X is of relative dimension d over S. We write R∗(X/S) := R(X/S)∨, and
we call this the homological motive of X. If f : X → Y is a morphism in V(S), then we
write f∗ : R∗(X/S) → R∗(Y/S) for R(f/S)∨. (Of course, if X has relative dimension d

then R∗(X/S) = R(X/S)(d), so the main difference between the functors R and R∗ is
their effect on morphisms.)

Recall that a multiplicative structure on a motive M is a morphism α : M ⊗S M → M .
For instance, the group law on the Jacobian J gives rise to a ‘Pontryagin multiplicative
structure’ on R∗(J/S) (cf. [9, § 2.5]). Given motives M and N with multiplicative struc-
tures α and β, respectively, we say that a morphism F : M → N is compatible with the
multiplicative structures if β ◦ (F ⊗ F ) = F ◦ α.

The Chow groups of a motive M are defined by CHn(M/S) := HomM(S)(1(−n), M).
If M carries a multiplicative structure then this induces the structure of a graded ring
on CH∗(M/S) :=

⊕
m CHm(M/S).

As we want to work with ind-schemes and schemes that are not of finite type over S,
we need to consider the ind-category Ind -M(S). The ⊗-structure on M(S) naturally
extends to one on Ind -M(S).

We now return to the situation as in § 0.4. We consider the objects in Ind -M(S)
defined by

R∗(C [•]/S) :=
⊕
n�0

R∗(C [n]/S)

and

R∗(C [∞]/S) := ‘lim’ (R∗(S/S)
p0,∗−−→ R∗(C/S)

i2,∗−−→ R∗(C [2]/S)
i3,∗−−→ R∗(C [3]/S) → · · · ).

(We use the notation ‘lim’ to avoid confusion with inductive limits taken in M(S); recall
that inductive limits in an ind-category do not, in general, agree with inductive limits in
the original category, if they exist.) The addition maps αm,n give rise to multiplicative
structures

α : R∗(C [•]/S) ⊗ R∗(C [•]/S) → R∗(C [•]/S)

and

α : R∗(C [∞]/S) ⊗ R∗(C [∞]/S) → R∗(C [∞]/S),

referred to as the Pontryagin multiplicative structures. We have morphisms

q∗ : R∗(C [•]/S) → R∗(C [•]/S) and σ∗ : R∗(C [∞]/S) → R∗(J/S)

that are compatible with the multiplicative structures. As before we define σ̃∗ := σ∗ ◦ q∗,
which is a morphism R∗(C [•]/S) → R∗(J/S).
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Note that the Chow ring of the motive R∗(J/S) is just the Chow homology of J over S

with upper indexing: CHi(J/S) = CH−i(R∗(J/S)); likewise for C [•]/S and C [∞]/S. The
structure of a graded ring that is induced by the Pontryagin multiplicative structures on
the motives is of course the one considered before.

Let GrAb denote the category of Z-graded Z-modules. To a motive M over S we
associate the functor ωM : V(S)opp → GrAb given by ωM (X) = CH∗(R(X/S) ⊗S M). A
Yoneda-type argument gives that the functor M �→ ωM is fully faithful (cf. [18, § 2.2]).
We need an extension of this Manin Principle to (countable) direct sums of motives.
First we extend the definition of ωM to ind-motives: If M = ‘ lim ’Mi then we define
ωM (X) := lim−→ ωMi

(X).

Lemma 4.1 (Manin Principle). Let M =
⊕

i∈I Mi and N =
⊕

j∈J Nj be direct sums
of motives over S, viewed as objects in Ind -M(S). Then the natural map

HomInd-M(S)(M, N) → Hom(ωM , ωN ) (4.1.1)

is bijective. In particular, given an isomorphism of functors f : ωM
∼−→ ωN there is a

unique isomorphism of ind-motives fmot : M
∼−→ N with ω(fmot) = f .

Proof. It suffices to prove that (4.1.1) is bijective if M is an ordinary motive (so #I = 1),
as Hom(⊕Mi, N) =

∏
Hom(Mi, N) and Hom(⊕ωMi

, ωN ) =
∏

Hom(ωMi
, ωN ). Further,

as we can invert Tate twists, we may assume that M = (X, p, 0) for some X ∈ V(S) and
some projector p ∈ Corr0(X, X). Then HomInd-M(S)(M, N) is the image of the endomor-
phism F �→ F ◦ p of HomInd-M(S)(R(X/S), N), and similarly Hom(ωM , ωN ) is the image
of the endomorphism f �→ f ◦ ω(p) of Hom(ωR(X/S), ωN ). So we are reduced to the case
M = R(X/S), where we may further assume that X/S is of relative dimension d for
some d. In this case the usual Yoneda argument applies. Namely, for any N ∈ Ind -M(S)
we have HomInd-M(S)(M, N) = CHd(R(X/S) ⊗S N) = ωd

N (M), and given a morphism
of motives F : M → N with associated natural transformation f = ω(F ) : ωM → ωN , we
have that F = f(idM ), viewing idM as an element of ωd

M (M) and F as an element of
ωd

N (M). �

Define R∗(J/S)[1]〈1(1)〉 ∈ Ind -M(S) to be the direct sum
⊕

i,j�0 R∗(J/S)(−j)·tiu[j],
where ti and u[j] are formal symbols, inserted for bookkeeping purposes only. We have
a multiplicative structure on R∗(J/S)[1]〈1(1)〉 induced by the Pontryagin structure on
R∗(J/S), and with

(tiu[j]) ⊗ (tku[l]) �→
(

j + l

j

)
ti+ku[j+l].

We think of R∗(J/S)[1]〈1(1)〉 as the polynomial algebra over R∗(J/S) in two independent
‘variables’ 1 (the unit motive) and 1(1) (the Tate motive), where 1 is an ordinary variable
and 1(1) is a PD-variable. If X is smooth and projective over S then ωR∗(J/S)[1]〈1(1)〉(X)
is just the polynomial ring CH∗(JX/X)[t]〈u〉 on which the grading is given, taking into
account the rule ωi := ω−i, by the natural grading on CH∗(JX/X) and placing t and u

in (lower) degrees 0 and −1, respectively.
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Theorem 4.2. We have isomorphisms

β̃mot, γ̃mot : R∗(J/S)[1]〈1(1)〉 ∼−→ R∗(C [•]/S)

in Ind -M(S), compatible with the multiplicative structures, such that the induced
isomorphisms CH∗(JX/X)[t]〈u〉 ∼−→ CH∗(C

[•]
X /X) are the isomorphisms β̃X and γ̃X of

Theorems 3.4 and 3.3, applied to CX over X.

Proof. All we need to remark is that the isomorphisms β̃ and γ̃ of Theorems 3.4 and 3.3
are functorial, i.e. they define natural transformations ωR∗(J/S)[1]〈1(1)〉 → ωR∗(C[•]/S).
Now apply the Manin Principle. �

With obvious notation and similar proof we have an analogous conclusion for C [∞]/S.

Theorem 4.3. We have isomorphisms

βmot, γmot : R∗(J/S)〈1(1)〉 ∼−→ R∗(C [∞]/S)

in Ind -M(S), compatible with the multiplicative structures, such that the induced iso-
morphisms CH∗(JX/X)〈u〉 ∼−→ CH∗(C

[∞]
X /X) are the isomorphisms βX and γX of Corol-

lary 1.14 and (3.5.1), applied to CX over X.

Remark 4.4. As in the case of the Chow groups, from the isomorphism γ̃mot we get a
new grading on the motive R∗(J/S) which is different from the grading corresponding
to Beauville’s decomposition. In the case when S = Spec(k), where k is an algebraically
closed field, the corresponding decomposition of the motive of J with rational coefficients
coincides with the one constructed by Shermenev in [19].

5. Compatibility with PD-structures

In this section we assume that S = Spec(k) where k is a field. In § 1 of [13] we have
defined natural PD-structures on ideals of classes of positive dimension in CH∗(C [•]) and
CH∗(J). We are going to prove that our isomorphisms CH∗(C [•]) ∼−→ CH∗(J)[t]〈u〉 and
CH∗(C [∞]) ∼−→ CH∗(J)〈u〉 ∼−→ CH∗(J)〈x〉 are compatible with the PD-structures.

First we recall the main construction of [13, § 1]. We consider a commutative graded
monoid scheme M =

⊕
n�0 Mn over k such that each Mn is a quasi-projective k-

scheme and such that the addition maps µ : Mm × Mn → Mm+n are proper. The
two examples that are relevant for us here are M = M0 = J and M = C [•]. On
CH∗(M) :=

⊕
n�0 CH∗(Mn) we have a Pontryagin product making CH(M) into a com-

mutative ring, and CH>0(M) is an ideal of CH∗(M) for this ring structure. In [13, § 1]
we have shown that there is a natural PD-structure {γd} on the ideal CH>0(M). The
idea of the construction is as follows.

If Z ⊂ Mn is an irreducible closed subvariety then we define γd([Z]), the dth
divided power of the class [Z], to be the image of the class of the closed subscheme
Symd(Z) ⊂ Symd(Mn) under the iterated addition map Symd(Mn) → Mdn. Next con-
sider a cycle ζ =

∑r
j=1 nj [Zj ], where the nj are integers and the Zj are mutually distinct
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closed subvarieties of M of positive dimensions (possibly unequal). For d � 0 define
γd(ζ) ∈ CH∗(Symd(X)) by

γd(ζ) :=
∑

d1+···+dr=d

nd1
1 · · ·ndr

r · γd1(Z1) ∗ · · · ∗ γdr (Zr).

This gives us maps γd : Z>0(M) → CH∗(M). We prove that these maps descend to
maps γd : CH>0(M) → CH∗(M) that define a PD-structure on the ideal CH>0(M).
This PD-structure is functorial with respect to pushforward via homomorphisms. We
refer to [13, § 1] for further details.

We now apply this to C [•] and J . By functoriality, see [13, Theorem 1.6], the homomor-
phism σ̃∗ : CH∗(C [•]) → CH∗(J) is a PD-morphism. Recall that σ̃∗ factors as a compo-
sition of two surjective ring homomorphisms, namely q∗ : CH∗(C [•]) → CH∗(C [∞]) and
σ∗ : CH∗(C [∞]) → CH∗(J).

Lemma 5.1. The ideal Ker(q∗) ∩ CH>0(C [•]) is a sub-PD ideal of CH>0(C [•]). Hence,
the PD-structure on CH>0(C [•]) induces a PD-structure γ̄ on CH>0(C [∞]) ⊂ CH∗(C [∞])
such that the homomorphism σ∗ is compatible with PD-structures.

Proof. This follows from the observation that Ker(q∗) ∩ CH>0(C [•]) is the principal
ideal ([p0] − 1) ∗ CH>0(C [•]). �

Lemma 5.2. The sections

s : CH∗(J) → CH∗(C [∞]), r : CH∗(C [∞]) → CH∗(C [•])

and
s̃ = s̃′ : CH∗(J) → CH∗(C [•])

are PD-morphisms.

Here the PD-ideals we consider are the ideals CH>0. Note that s̃ = s̃′ because we work
over a field.

Proof. Let (A, I, γ) be a PD-algebra and let J ⊂ A be an ideal such that I ∩ J is a
sub PD-ideal of I. Let π : A → Ā := A/J be the quotient homomorphism, and let γ̄

be the induced PD-structure on Ī = π(I). Suppose we have a section s : Ā → A such
that s(Ī) ⊆ I. Then s is a PD-morphism if and only if its image is a PD-subalgebra
of A. Now we apply this to the quotient morphisms q∗ : CH∗(C [•]) → CH∗(C [∞]) and
σ∗ : CH∗(C [∞]) → CH∗(J) and their sections r and s, respectively. Hence to prove
that r and s (and hence also s̃ = r ◦ s) are PD-morphisms, it remains to prove that
Im(r) =

⋂
m�1 Ker(P0,1(C)[m]) and Im(s) = Ker(ξ ∩ −) are PD-subalgebras.

Let ζ ∈ CH>0(C [•]). We are going to prove that for all m � 0 and d � 1 we have

Pm,1(γd(ζ)) = γd−1(ζ) ∗ Pm,1(ζ) (5.2.1)
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and

P0,1(C)[m](γd(ζ)) =
∑

d0+d1+d2+···=d
d1+2d2+···=m

γd0(ζ) ∗ γd1(P0,1(C)(ζ)) ∗ γd2(P0,1(C)[2](ζ)) ∗ · · · ,

(5.2.2)
where Pm,1 is the operator defined in (2.1.1), and where we interpret P0,1(C)[m] on
the level of cycles; see just before Lemma 2.2. By (2.3.1) it follows from (5.2.1) that
Pm,1(a)(γd(x)) = γd−1(x) ∗ Pm,1(a)(x) for all x ∈ CH>0(C [•]), which implies that Im(s)
is a PD-subalgebra of CH∗(C [∞]). (Recall that ξ∩− is the operator P̄1,1([p0]).) Similarly,
(5.2.2) implies that Im(r) is a PD-subalgebra of CH∗(C [•]).

To prove (5.2.1) and (5.2.2), note that Z∗(C [•]) has no torsion; so it suffices to
prove these identities after multiplication by some non-zero integer. We know that
d! · γd(ζ) = ζ∗d, so it follows from (i) of Lemma 2.2 that (5.2.1) is correct after mul-
tiplication by d!. Similarly, since P0,1(C) is a derivation, (5.2.2) holds after multiplying
both sides with m!d!. �

Now we can prove the main result of this section.

Theorem 5.3. Assume that S = Spec(k), where k is a field. Then the isomorphisms

h : CH∗(J)〈x〉 ∼−→ CH∗(C [∞]) of Theorem 1.11,

β = γ : CH∗(J)〈u〉 ∼−→ CH∗(C [∞]) of Corollary 1.14 and (3.5.1),

and

β̃ = γ̃ : CH∗(J)[t]〈u〉 ∼−→ CH∗(C [•]) of Theorems 3.3 and 3.4

are all PD-homomorphisms. Here on the terms on the left we consider the natural PD-
structures on the ideals generated by CH>0(J) and by all x[m] (respectively, u[m]) for
m � 1.

Proof. The lemma gives that s, r, and s̃ = r ◦ s = s̃′ are PD-morphisms, so it remains
to check that [C [m]] = γm([C]) and h(x[m]) = γ̄m(L) for m � 1. The first is immediate
from the definitions. The second equality is equivalent to γ̄m(L) = L[m] for m � 1. This
follows from the definitions using Remark 1.8. �

Remark 5.4. Our results imply (still working over a field) that the identities (1.13.1)
and (1.13.2) are valid in CH∗(C [∞]). In the proof of Corollary 1.13 we can simply replace
(1.13.4) by the relation s([ι(C)])[g] = s([ι(C)][g]) = s([J ]) = Γ , which gives (1.13.2).

6. Beauville decomposition and Fourier duality for C[∞]

In this section we consider Chow groups with Q-coefficients CH(?)Q := CH(?)⊗Z Q. The
main goal of this section is to give a Beauville decomposition for the Chow homology
and Chow cohomology of C [∞] and to discuss how they are interchanged under Fourier
duality.
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By [3, Theorem 2.19] we have a Beauville decomposition

CH∗(J/S)Q =
⊕
i,j

CHi
(j)(J/S)Q,

where an element α ∈ CHi(J/S)Q lies in CHi
(j)(J/S)Q if and only if [n]∗(α) = n2i−j · α

for all n ∈ Z. Further,

CHi
(j)(J/S)Q can be non-zero only if max{i − g, 2(i − g)} � j � min{2i, i + d}. (6.0.1)

It is a conjecture of Beauville that CHi
(j)(J)Q = 0 if j < 0, at least over a field.

In homological notation, let us define

CHi,(j)(J/S)Q := CHg−i
(j) (J/S)Q.

Then CH∗(J/S)Q =
⊕

i,j CHi,(j)(J/S)Q, where an element α ∈ CHi(J/S)Q lies in
the subspace CHi,(j)(J/S)Q if and only if [n]∗(α) = n2i+j · α for all n ∈ Z. The
Fourier transform restricts to a bijection between CHk,(j)(J/S)Q = CHg−k

(j) (J/S)Q and
CHg−k−j,(j)(J/S)Q = CHk+j

(j) (J/S)Q.
The following result gives a Beauville decomposition for the Chow homology and Chow

cohomology of C [∞].

Theorem 6.1. Let

CHi
(j)(C

[∞]/S)Q := {α ∈ CHi(C [∞]/S)Q | [N ]∗α = N2i−j · α for all N � 0}

and

CHi,(j)(C [∞]/S)Q := {α ∈ CHi(C [∞]/S)Q | [N ]∗α = N2i+j · α for all N � 0}.

Then we have bigradings

CH∗(C [∞]/S)Q =
⊕
i,j

CHi
(j)(C

[∞]/S)Q and CH∗(C [∞]/S)Q =
⊕
i,j

CHi,(j)(C [∞]/S)Q.

Identifying CH∗(J/S) with a subring of CH∗(C [∞]/S) via σ∗, we have

CHi
(j)(C

[∞]/S)Q =
⊕
n�0

CHi−n
(j−n)(J/S)Q · ξn

and CHi
(j)(C

[∞]/S)Q can be non-zero only if i − g � j � i + d. Similarly, identifying
CH∗(J/S) with a subring of CH∗(C [∞]/S) via the homomorphism s we have

CHi,(j)(C [∞]/S)Q =
⊕
n�0

CHi−n,(j+n)(J/S)Q ∗ L∗n (6.1.1)

and CHi,(j)(C [∞]/S)Q can be non-zero only if −i � j � g + d − i.
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Proof. By (ii) of Lemma 1.3 we have ξ ∈ CH1
(1)(C

[∞]/S)Q. Using the projection for-
mula, it then easily follows from the definition of L = L[1] that [N ]∗L = N · L,
i.e. L ∈ CH1,(−1)(C [∞])Q. The first assertions of the theorem then readily follow from
Theorems 1.4 and 1.11. The restrictions on the pairs (i, j) for which CHi

(j) and CHi,(j)

can be non-zero follow from (6.0.1). �

Next we want to discuss Fourier duality for C [∞]. Given the isomorphisms in Theo-
rems 1.4 and 1.11, it is clear that there is a unique isomorphism

CH∗(C [∞]/S)Q
∼−→ CH∗(C [∞]/S)Q

that sends L to ξ and that restricts to the Fourier operator on CH(J/S)Q. This isomor-
phism is in fact induced by an upper correspondence, as in [8, § 3].

Theorem 6.2. Define elements � ∈ CH1(C [∞]×SC [∞]/S) and η ∈ CH2(C [∞]×SC [∞]/S)
by

� := (σ × σ)∗c1(PJ) and η := pr∗
1(ξ) · pr∗

2(ξ),

with PJ the Poincaré bundle on J ×S J . Then F := exp(�+η) is an upper correspondence
in the sense of [8, Definition 3.2] that induces an isomorphism of CH(S)Q-algebras

F : CH∗(C [∞]/S)Q
∼−→ CH∗(C [∞]/S)Q.

We have F(L) = ξ, and if FJ is the Fourier transform on J the diagram

CH∗(J/S)Q FJ

∼ ��

s

��

CH∗(J/S)Q

σ∗

��
CH∗(C [∞]/S)Q F

∼ �� CH∗(C [∞]/S)Q

is commutative. For x, y ∈ CH∗(C [∞]/S)Q we have F(x ∗ y) = F(x) · F(y). Further,
F◦[N ]∗ = [N ]∗◦F , and F induces a bijection between the spaces CHi−n,(j+n)(J/S)Q∗L∗n

and CHi+j
(j+n)(J/S)Q · ξn.

Note that, unlike the situation for the Jacobian, the Fourier transform does not, in
general, give a bijection between direct summands CHi,(j)(C [∞]/S)Q and summands
CHi′

(j′)(C
[∞]/S)Q for some i′ and j′ depending on i and j.

Proof. The proof of the theorem is essentially the same as in [8]. We omit the details. �

Using the bigrading on CH∗(C [∞]/S)Q we get a simple interpretation of the class L.
Theorem 6.1 gives that CH1,(j)(C [∞]/S)Q can be non-zero only if −1 � j � g + d − 1.
If j is in this range then, noting that ψ ∈ CH−1,(2) and L ∈ CH1,(−1), we obtain from
(1.12.1) the relation

[C](j) =
ψ1+j ∗ L∗(2+j)

(2 + j)!
+

∑
n�0

s([ι(C)](j−n)) ∗ ψn ∗ L∗n

n!
, (6.2.1)
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where [C](j) denotes the component of [C] in CH1,(j)(C [∞]/S)Q and similarly for
[ι(C)]. We have [ι(C)] ∈ CH1(J/S)Q = CHg−1(J/S)Q and by (6.0.1) only the summands
CH1,(l)(J/S)Q with −1 � l � min{2g − 2, g + d − 1} can be non-zero. But in fact,
the situation is slightly better, as CH1,(−1)(J/S)Q = CHg−1

(−1)(J/S)Q is Fourier-dual to
CH0

(−1)(J/S)Q, which is zero. In particular, taking j = −1 in (6.2.1) we obtain the
following result.

Proposition 6.3. Let [C] =
∑

j [C](j) be the decomposition of the class [C] ∈
CH1(C [∞]/S)Q, with [C](j) ∈ CH1,(j)(C [∞]/S)Q. Then [C](j) can be non-zero only if
−1 � j � g + d − 1. Further, [C](−1) = L.

7. A new grading on CH∗(J/S), and its relation with Beauville’s
decomposition

In this section we study the new grading CH∗(J/S) =
⊕

n�0 CH[n]
∗ (J/S) induced by the

grading of CH∗(C [•]/S), where CH∗(C [n]/S) is placed in degree n, via the isomorphism
CH∗(J/S) ∼−→ K ⊂ CH∗(C [•]/S). We prove that the associated descending filtration Fil•

of CH∗(J/S) is stable under the operators [N ]∗, and that [N ]∗ acts on grm
Fil as multiplica-

tion by Nm. It follows that Fil• ⊗Q coincides with the descending filtration obtained from
Beauville’s decomposition of CH∗(J/S)Q. However, even with Q-coefficients the bigrad-
ing CH∗(J/S) =

⊕
i,n CH[n]

i (J/S) that we obtain is different, in general, from Beauville’s
decomposition. Similar results are obtained for the Chow homology of C [∞] over S.

We retain the notation of § 3. As before, write L = Im(s̃). Given a subspace V ⊆
CH∗(C [•]/S), write V [m] := V ∩ CH∗(C [m]/S) and V [�m] := V ∩ CH∗(C [�m]/S), where
CH∗(C [�m]/S) :=

⊕
n�m CH∗(C [n]/S). Note that in general V [�m] is much bigger than⊕

n�m V [n], but the two are equal if V is a graded subspace of CH∗(C [•]/S).
By Theorem 3.6, we have

K =
⊕
m�0

K[m] and K〈u〉 =
⊕
m�0

K〈u〉[m].

Also, we have isomorphisms σ̃∗ : K
∼−→ CH∗(J/S) and q∗ : K〈u〉 ∼−→ CH∗(C [∞]/S). There-

fore, we can transport the above gradings of K and K〈u〉 to get new gradings on CH∗(J/S)
and CH∗(C [∞]/S). Both gradings are compatible with the usual grading by dimension.
Note also by Proposition 3.11 (iii), we get CH∗(J/S) =

⊕2g+d
n=0 CH[n]

∗ (J/S).
Consider the decreasing filtrations Fil• on CH∗(J/S) and on CH∗(C [∞]/S) that are

induced by this grading. More precisely, we define

Film CH∗(J/S) := σ̃∗K[�m] and Film CH∗(C [∞]/S) := q∗K〈u〉[�m].

These are filtrations of CH(S)-algebras, in the sense that Film ∗ Filn ⊆ Film+n. Because
Fil0 CH∗ = CH∗, each Film is an ideal. Furthermore, if we work over a field then by
Theorem 5.3 these filtrations are compatible with the PD-structures on these algebras.

Recall that r : CH∗(C [∞]/S) → CH∗(C [•]/S) is the inverse map to the isomorphism
q∗ : K〈u〉 → CH∗(C [∞]/S). Hence for x ∈ CH∗(C [∞]/S) we have that x ∈ Film if and
only if r(x) ∈ K〈u〉[�m].
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Lemma 7.1. For all m � 0 we have Film CH∗(J/S) = σ̃∗K〈u〉[�m] = σ̃∗L[�m].

Proof. We have K ⊂ K〈u〉, so for the first equality it suffices to verify that
σ̃∗(K〈u〉[�m]) ⊂ σ̃∗K[�m]. As K〈u〉[m] =

⊕
i�0 K[m−i]u[i] it suffices to check that σ̃∗(u[i]) is

in Fili CH∗(J/S). We claim that in fact there is an inclusion CHi(J/S) ⊂ Fili CH∗(J/S).
Indeed, we have

CHi(J/S) =
⊕

n

σ̃∗(K ∩ CHi(C [n])),

and only terms with n � i give a non-trivial contribution.
We have L〈u〉 = K〈u〉, so for the second equality it now suffices to show that

Film ⊆ σ̃∗L[�m]. We prove this by descending induction on m. For m � 0 the claim
is immediate from Proposition 3.11. Assume then that Film+1 ⊆ σ̃∗L[�m+1]. If x ∈ K[m]

then by Theorem 3.6 (iii) the element y := (1 + ψu)−m ∗ x lies in L[�m]. Note that
x − y ∈ K〈u〉[�m+1]. Hence, using the first equality in the lemma, σ̃∗(x) = σ̃∗(x − y) +
σ̃∗(y) ∈ Film+1 +σ̃∗L[�m] = σ̃∗L[�m]. As Film is spanned by Film+1 together with the
classes σ̃∗(x) for x ∈ K[m] the assertion follows. �

Summing up, for an element y ∈ CH∗(J/S) we have

y ∈ Film CH∗(J/S) ⇔ s̃(y) ∈ CH∗(C [�m]/S) ⇔ s̃′(y) ∈ CH∗(C [�m]/S).

It follows from the lemma that Film CH∗(J/S) = q∗ Film CH∗(C [∞]/S) for all m.

Proposition 7.2. The filtration Fil• on CH∗(J/S) does not depend on the choice of the
base point p0 ∈ C(S).

Proof. Let p′
0 ∈ C(S) be another base point, and let σ′

n : C [n] → J be the associated
morphism, given on points by D �→ [D −np′

0]. By the Lemma we have Film CH∗(J/S) =
σ̃∗K〈u〉[�m]. Note that K〈u〉 does not depend on the choice of the base point. Hence it
suffices to show that for all x ∈ K〈u〉[m] we have σ′

m(x) ∈ Film CH∗(J/S). But σ′
m(x) =

δm ∗ σ̃m(x), where δm ∈ CH0(J/S) is the class of the section m · (p0 − p′
0) ∈ J(S). As

Film is an ideal, this gives the desired conclusion. �

We say that an element y in CH∗(C [∞]/S) or CH∗(J/S) has coweight z if [N ]∗(y) =
Nz · y for all N . Thus, with notation as in § 6, CHi,(j)(C [∞]/S) and CHi,(j)(J/S) have
coweight 2i + j. Our goal is to prove the following compatibility between the filtrations
Fil• just defined and the filtrations given by coweight.

Theorem 7.3.

(i) For all m � 0 we have Film CH∗(J/S)Q =
⊕

2i+j�m CHi,(j)(J/S)Q.

(ii) For all m � 0 we have Film CH∗(C [∞]/S)Q =
⊕

2i+j�m CHi,(j)(C [∞]/S)Q.

This theorem is an immediate consequence of the following more precise result that
takes torsion into account.

Theorem 7.4. The filtrations Fil• on CH∗(J/S) and on CH∗(C [∞]/S) are stable under
all operators [N ]∗, and in both cases [N ]∗ acts on grm

Fil as multiplication by Nm.
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The key geometric statement that we use in the proof is the following.

Lemma 7.5. Let x ∈ K〈u〉[n]. Then we have P0,1(C)[j]([N ]∗x) = 0 for j > (N − 1)n,
and P0,1(C)[(N−1)n]([N ]∗x) = Nn · x.

Proof. We divide the proof into some steps. Without loss of generality we may assume
the base scheme S to be irreducible. Recall that d = dim(S).

Step 1. Given an integer i with 0 � i � Nn, define Yn,i(N) by the Cartesian diagram

Yn,i(N) ��

��

C [Nn−i] ×S C [i]

αNn−i,i

��
C [n]

∆N �� C [Nn]

In other words, Yn,i(N) parametrizes triples of effective divisors (D, D1, D2) on C/S, of
degrees (n, Nn−i, i), such that ND = D1+D2. We need some information on irreducible
components of Yn,i(N).

The morphism αNn−i,i is finite flat of degree
(
Nn
i

)
(see Remark 1.2 in [13]). Hence the

map Yn,i(N) → C [n] is finite and flat, too. In particular, all irreducible components of
Yn,i(N) have dimension d + n.

Given an integer j with max(n − i, 0) � j � n, consider the natural map

pn,i,j(N) : C [j] ×S Yn−j,i+j−n(N − 1) → Yn,i(N)

given on points by (E; D, D1, D2) �→ (D + E, D1 + NE, D + D2). We are going to
prove that if W ⊂ Yn−j,i+j−n(N − 1) is an irreducible component then pn,i,j(N) maps
C [j] ×S W birationally onto some irreducible component of Yn,i(N), and that all irre-
ducible components of Yn,i(N) are obtained in this way.

Given a k̄-valued point (D, D1, D2) of Yn,i(N), set D′ := gcd(D, D2). Then we can
write D = D′ + E and D2 = D′ + D′

2, where E and D′
2 are disjoint. The relation

ND = D1 +D2 becomes (N −1)D′ +NE = D1 +D′
2, which implies that D1 = D′

1 +NE

for some effective divisor D′
1. So

(D, D1, D2) = pn,i,j(N)(E; D′, D′
1, D

′
2),

where j := n − deg(D′). Thus, the images of the maps pn,i,j(N) cover Yn,i(N). It
remains to be shown that pn,i,j(N) is birational on every irreducible component. Let
U ⊂ C [j] ×S Yn−j,i+j−n(N − 1) be the open subset consisting of (E; D, D1, D2) such
that E and D2 are disjoint. Then the restriction of pn,i,j(N) to U is an embedding,
since on U we have D = gcd(D + E, D + D2). Since for every irreducible component
W ⊂ Yn−j,i+j−n(N − 1) the intersection U ∩ (C [j] ×S W ) is non-empty, the assertion
follows.

Step 2. Fix s � 0. The map pr1,3 : (D, D1, D2) �→ (D, D2) realizes Yn,n−s(N) as a
closed subscheme of C [n] ×S C [n−s]. It readily follows from the definition of the operators
P0,1(C)[m] that the operator

P0,1(C)[(N−1)n+s] ◦ [N ]∗ : CH∗(C [n]/S) → CH∗(C [n−s]/S)

https://doi.org/10.1017/S147474801000006X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801000006X


834 B. Moonen and A. Polishchuk

is induced by the fundamental cycle [Yn,n−s(N)] of the subscheme Yn,n−s(N) ⊂ C [n] ×S

C [n−s], where we view this cycle as a correspondence from C [n] to C [n−s].
Let Z be an irreducible component of Yn,n−s(N). We view Z as a reduced subscheme

of C [n] ×S C [n−s]. As shown in the first step, there is some j with s � j � n and an
irreducible component W of Yn−j,j−s(N − 1) such that pn,n−s,j(N) gives a birational
map from C [j] ×S W to Z. Note that pr1 ◦ pn,n−s,j(N) : C [j] ×S W → C [n] equals the
restriction of

αj,n−j ◦ pr1,2 : C [j] ×S C [n−j] × C [n−s] → C [n]

to
C [j] ×S W ⊂ C [j] ×S C [n−j] × C [n−s]

and that pr3◦pn,n−s,j(N) : C [j]×S W → C [n−s] equals the composition of the projections
C [j] ×S W → W → C [n−s]. As we have a commutative diagram

C [n] C [j] ×S C [n−j]
αj,n−j��

pr2

��

C [j] ×S C [n−j] ×S C [n−s]
pr1,2��

pr2,3

��

C [j] ×S W� ���

pr

��

� �
C [n−j] C [n−j] ×S C [n−s]

pr1
�� W� ���

pr

��
C [n−s]

we find that the operator [Z]∗ : CH∗(C [n]/S) → CH∗(C [n−s]/S) given by the correspon-
dence Z equals the composition

CH∗(C [n]/S)
P0,1(C)[j]−−−−−−→ CH∗(C [n−j]/S)

[W ]∗−−−→ CH∗(C [n−s]/S).

But K〈u〉 =
⋂

m>0 Ker(P0,1(C)[m]), so if j > 0 we find that [Z]∗ is zero on K〈u〉[n]. If
s > 0 then, recalling that j � s, this applies to all components Z of Yn,n−s(N), so we
obtain the required vanishing P0,1(C)[(N−1)n+s]([N ]∗K〈u〉[n]) = 0 for s > 0.

Step 3. In the case s = 0 there is a unique irreducible component of Yn,n(N) that
gives a non-zero contribution to our operator, namely pn,n,0(Yn,0(N − 1)) ∼= C [n], which
gives the identity correspondence from C [n] to C [n]. So we only have to check that the
multiplicity of Yn,n(N) at the diagonal component is equal to Nn. It follows from the
definition of Yn,n(N) that this multiplicity is the number of branches of the finite covering
α(N−1)n,n : C [(N−1)n] ×S C [n] → C [Nn] that over the closed subscheme ∆N (C [n]) ⊂ C [Nn]

lie inside the diagonal component. Write C [n],gen ⊂ C [n] for the open subscheme of divi-
sors consisting of n distinct points. Take any point Q ∈ C [Nn],gen and specialize to a
point P ∈ ∆N (C [n],gen). The points in the fibre of α(N−1)n,n over Q are indexed by the
subsets I ⊂ {1, . . . , Nn} with #I = n. If Q̃I is the point corresponding to I then it is
clear that its specialization to the fibre over P lies in the diagonal component if and only
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if #(I ∩ {kN + 1, kN + 2, . . . , (k + 1)N}) = 1 for all k ∈ {0, . . . , n − 1}. There are Nn

such sets I. �

Proof of Theorem 7.4. We have q ◦ [N ] = [N ] ◦ q, and the filtration Fil• on
CH∗(J/S) is the one induced by Fil• on CH∗(C [∞]/S) under the quotient map
q∗ : CH∗(C [∞]/S) → CH∗(J/S). So it suffices to prove the result for C [∞]/S.

By definition, Film CH∗(C [∞]/S) is spanned by elements of the form x = σ̃∗x̃ where
x̃ ∈ K〈u〉[n] with n � m. Then [N ]∗x̃ ∈ CH∗(C [Nn]/S) lifts [N ]∗x, so by (3.9.1) we have

r([N ]∗x) =
∑
i�0

(1 − [p0])∗i ∗ P0,1(C)[i]([N ]∗x̃).

By Lemma 7.5, all the non-zero terms in the right-hand side lie in CH[�n] and the
component in CH[n] equals Nn · x̃. This immediately implies the result. �

Corollary 7.6. Let Ki := K ∩ CHi(C [•]/S). Then (Ki ⊗ Q) ⊂ CHi(C [�ν]/S) with ν :=
min{2g, g+d+i}. In particular, (K⊗Q) ⊂ CH∗(C [�2g]/S)Q. Further, K[0] = CH∗(C [0]/S)
is a free CH(S)-module of rank 1 with generator s̃′([0]), and K

[2g]
Q is a free CH(S)Q-module

of rank 1 with generator s̃′([J ]).

Proof. The first two assertions follow immediately from the fact that the possible eigen-
values of [N ]∗ on CHi(J/S)Q are Nz, where 0 � z � min{2g, g + d + i} (cf. (6.0.1)).

It follows directly from the definition of K that CH∗(C [0]/S) ⊂ K[0]. The opposite
inclusion is obvious, so K[0] = CH∗(C [0]/S). We have s̃′([0]) = [S] = [C [0]] because [0] ∈
CH∗(J/S) is the identity element for the ∗-product. So indeed K[0] is free of rank 1 over
CH(S) with generator s̃′([0]).

For the last assertion, first remark that Theorem 7.3, together with the mentioned
bounds on the coweights, implies that s̃′ restricts to an isomorphism⊕

2i+j=2g

CHi,(j)(J/S)Q
∼−→ K

[2g]
Q

from the coweight 2g subspace of CH∗(J/S)Q to K
[2g]
Q . If y ∈ CH∗(J/S)Q has coweight

2g then it has weight 0, which means that [N ]∗(y) = y for all N . Taking N = 0 this gives
y = ρ∗(0∗(y)) = 0∗(y) ∗ [J ]. (For the last identity, see Remark 1.2.) This proves that⊕

2i+j=2g

CHi,(j)(J/S)Q ⊆ CH(S) ∗ [J ].

As the opposite inclusion is clear we obtain the stated result. �

Let us now summarize the main conclusions of this section for CH∗(J/S).

(1) Transporting the grading on K via the isomorphism σ̃∗ : K
∼−→ CH∗(J/S) we have

a decomposition

CH∗(J/S) =
2g+d⊕
m=0

CH[m]
∗ (J/S). (7.6.1)
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Together with the grading by relative dimension, we obtain a bigrading

CH∗(J/S) =
⊕

−d�i�g
0�m�min{g+2d+i,2g+d}

CH[m]
i (J/S).

(For the bounds on m see (iii) of Proposition 3.11.) The decreasing filtration
Fil• CH∗(J/S) associated to (7.6.1) is stable under all the operators [N ]∗, and
[N ]∗ acts on grn

Fil as multiplication by Nn. Hence, after tensoring with Q we just
get the filtration by coweight.

(2) The subspaces CH[m]
i (J/S) with m > min{2g, g +d+ i} are torsion. In fact, we can

prove that there is a bound on the torsion depending only on g and d but we shall
not give the details here.

(3) Tensoring (7.6.1) with Q we obtain a new grading on CH∗(J/S)Q. This grading is
different, in general, from the Beauville’s decomposition. Indeed, for 0-cycles our
new grading coincides with the one obtained in [16, Theorem 0.3], and as shown
in [16, § 1], for a general curve of genus greater than or equal to 3 it is not the same
as Beauville’s.

8. Tautological classes

In this section we study the tautological subalgebras T CH∗(?)Q ⊂ CH∗(?)Q of the Chow
homology of C [•], C [∞] and J over S with rational coefficients. By definition, these are
obtained as the smallest CH(S)Q-subalgebras that contain the image of CH(C) and are
stable under all operators [N ]∗. The main result is that the isomorphisms β̃ and γ̃ of § 3
give rise to isomorphisms T CH∗(J/S)Q[t, u] ∼−→ T CH∗(C [•]/S)Q. In our calculations,
certain ‘modified diagonal classes’ Γn(a) play a key role.

Definition 8.1. The tautological subrings

T CH∗(C [•]/S)Q ⊂ CH∗(C [•]/S)Q,

T CH∗(C [∞]/S)Q ⊂ CH∗(C [∞]/S)Q,

T CH∗(J/S)Q ⊂ CH∗(J/S)Q

are defined to be the smallest CH(S)Q-subalgebras (with respect to the Pontrya-
gin product) that are stable under all operators [N ]∗ and that contain the image of
CH∗(C)Q under the inclusion CH∗(C)Q ⊂ CH∗(C [•]/S)Q, the natural map CH∗(C)Q →
CH∗(C [∞]/S)Q, and ι∗ : CH∗(C)Q → CH∗(J/S)Q, respectively.

Remarks 8.2.

(i) To avoid any confusion, note that we consider Chow homology, so the ring multi-
plication is the Pontryagin product. The tautological rings T CH∗(C [•]/S)Q and
T CH∗(C [∞]/S)Q are generated, as CH(S)Q-algebras, by the classes [n]∗(a) for
n � 1 and a ∈ CH∗(C). To see this, note that [N ]∗ commutes with Pontryagin
product, and that [N ]∗([n]∗(a)) = [Nn]∗(a).
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(ii) Over a field, the ring T CH∗(J/S)Q defined here is not a priori the same as the
one defined in [15] or [12]. However, it follows from [16, Theorem 4.2] that they
are the same.

(iii) It follows from the definitions that we have surjective homomorphisms of CH(S)Q-
algebras

T CH∗(C [•]/S)Q � T CH∗(C [∞]/S)Q � T CH∗(J/S)Q

(cf. [16, Theorem 4.2(iv)]).

Our main goal here is to prove analogues (with rational coefficients) of Theorems 1.11
and 3.4 for tautological rings. Recall that we have CH∗(C [•]/S) = K[t]〈u〉 with t = [p0]
and u[m] = [C [m]]. Consider the operators Πt and Πu on CH∗(C [•]/S)Q given by

Πt :=
∑
n�0

(−1)ntn∂
[n]
t = 1 − t∂t + t2∂

[2]
t − t3∂

[3]
t + · · · ,

Πu :=
∑
n�0

(−1)nu[n]∂n
u = 1 − u∂u + u[2]∂2

u − u[3]∂3
u + · · · .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8.2.1)

Then Πt is the projector onto
⋂

n�1 Ker(∂[n]
t ) along the ideal (t); in other words, it is the

operator F (t, u) �→ F (0, u). Similarly, Πu is the operator F (t, u) �→ F (t, 0). Since these
two operators commute, Πu ◦ Πt is again a projector. Its image is precisely the subring
K ⊂ CH∗(C [•]/S).

Definition 8.3. For n � 0 and a ∈ CH∗(C/S), define classes Γn(a) and Γ �
n(a) in

CH∗(C [n]/S) by

Γn(a) :=
n∑

k=0

(−1)k

(
n

k

)
(t + ψu)k∆n−k,∗(a)

and

Γ �
n(a) := Γn(a) + (−u)nψn−1p∗

0(a),

with the convention that Γ �
0(a) = Γ0(a) = π∗(a). We use the same notation Γn(a) for

the image of this class in CH∗(C [•]/S)Q. It is clear from the definitions that this class is
tautological, i.e. Γn(a) ∈ T CH∗(C [•]/S)Q.

For example,

Γ0(a) = π∗(a),

Γ1(a) = a − ([p0] + ψ[C]) ∗ π∗(a),

Γ2(a) = ∆2,∗(a) − 2([p0] + ψ[C]) ∗ a + ([p0] + ψ[C])2 ∗ π∗(a).

In the case when the base is a point the classes Γn(C) are the modified diagonal classes
(see [5] and [16]). For example, Γ1(C) = [C], and modulo ψ we have

Γ2(C) ≡ ∆2∗([C]) − 2[p0] ∗ [C],

Γ3(C) ≡ ∆3,∗([C]) − 3[p0] ∗ ∆2,∗([C]) + 3[p0]∗2 ∗ [C].
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Lemma 8.4. Let n � 0. For a ∈ CH∗(C/S) we have the identity

(Πu ◦ Πt)(∆n,∗(a)) = Γ �
n(a)

in CH∗(C [•]/S). In particular, Γ �
n(a) ∈ K for all n � 0 and all a ∈ CH∗(C/S).

Proof. By Theorem 3.2 of [16], we have the following relation between operators on
CH∗(C [•]/S):

P0,1(C)[m]Pn,0(a) =
∑
i�0

(
n

i

)
Pn−i,0(a)P0,1(C)[m−i].

Hence,

∂
[m]
t (∆n,∗(a)) = P

[m]
0,1 (C)Pn,0(a)(1) =

(
n

m

)
Pn−m,0(a)(1) =

(
n

m

)
∆n−m,∗(a).

Thus, if we set

Γ̃n(a) :=
∑
i�0

(−1)i

(
n

i

)
ti∆n−i,∗(a),

then we find that Πt(∆n,∗(a)) = Γ̃n(a). Next we observe that on K〈u〉 =
⋂

m�1 Ker(∂[m]
t )

we have ∂u|K〈u〉 = P0,1([p0])|K〈u〉. Recall that P0,1([p0]) is a derivation such that

P0,1([p0])(∆n,∗(a)) = p∗
0(a) · ntn−1

(see Example 2.1 (c)) and

P0,1([p0])(t) = (∂u − ψ∂t)(t) = −ψ.

Hence, for n > 1 we have

∂uΓ̃n(a) = P0,1([p0])(Γ̃n(a))

= p∗
0(a) ·

∑
i�0

(−1)i

(
n

i

)
(n − i)tn−1 − ψ ·

∑
i�1

(−1)i

(
n

i

)
iti−1∆n−i,∗(a)

= ψn · Γ̃n−1(a).

On the other hand, ∂uΓ̃ 0(a) = 0 and ∂uΓ̃ 1(a) = p∗
0(a) + ψ · Γ̃ e,0(a). It follows that for

n � 0 we have

(Πu ◦ Πt)(∆n,∗(a)) = (−u)nψn−1p∗
0(a) +

∑
i�0

(−1)i

(
n

i

)
(ψu)iΓ̃n−i(a).

The last sum equals Γn(a), as one easily checks. �

We have ∆m,∗(a) =
∑m

n=0

(
m
n

)
(t + ψu)m−nΓn(a), as one verifies by direct calculation.

So,

∆m,∗(a) =
(

−
m∑

n=1

(
m

n

)
(t + ψu)m−n(−u)nψn−1

)
· p∗

0(a) +
m∑

n=0

(
m

n

)
(t + ψu)m−n · Γ �

n(a)

gives the expression of ∆m,∗(a) as a polynomial in t and u with coefficients in K.
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Theorem 8.5.

(i) Write T KQ := KQ ∩ T CH∗(C [•]/S)Q, where the intersection is taken inside
KQ[t, u] = CH∗(C [•]/S)Q. Then T KQ is the CH(S)Q-subalgebra of CH∗(C [•]/S)Q

that is generated by the classes Γ �
n(a) for n � 1 and a ∈ CH(C). The isomorphism

σ̃∗ : KQ
∼−→ CH∗(J/S)Q restricts to an isomorphism T KQ

∼−→ T CH∗(J/S)Q.

(ii) We have
T KQ[t, u] = T CH∗(C [•]/S)Q.

Hence, the isomorphism γ̃ : CH∗(J/S)Q[t, u] ∼−→ CH∗(C [•]/S)Q of Theorem 3.4
restricts to an isomorphism

T γ̃ : T CH∗(J/S)Q[t, u] ∼−→ T CH∗(C [•]/S)Q.

(iii) As before, let L := Im(s̃) ⊂ CH∗(C [•]/S). Define

T LQ := LQ ∩ T CH∗(C [•]/S)Q,

where the intersection is taken inside LQ[t, u] = CH∗(C [•]/S)Q. Then

s̃ : CH∗(J/S)Q
∼−→ LQ

restricts to an isomorphism T CH∗(J/S)Q
∼−→ T LQ, and

T LQ[t, u] = T CH∗(C [•]/S)Q.

Hence, the isomorphism

β̃ : CH∗(J/S)Q[t, u] ∼−→ CH∗(C [•]/S)Q

of Theorem 3.3 restricts to an isomorphism

T β̃ : T CH∗(J/S)Q[t, u] ∼−→ T CH∗(C [•]/S)Q.

Proof. Write T CH∗(J/S)Q := T CH∗(J/S)Q/ψ · T CH∗(J/S)Q. Write δn(a) for the
class in T CH∗(J/S)Q represented by the image of Γ �

n(a) under σ̃∗. Let U ⊆ T CH∗(J/S)Q

be the CH(S)-subalgebra (with identity) generated by the classes δn(a), for n � 1 and
a ∈ CH(C). We are going to show that U = T CH∗(J/S)Q. This implies the assertions
in (i), because we know that σ̃∗ : T KQ → T CH∗(J/S)Q is injective.

Given a class a ∈ CH∗(C)Q and an integer k, define cwk(a) to be the component of
ι∗(a) in coweight k. So by definition we have ι∗(a) =

∑
k cwk(a) in CH∗(J/S)Q, with

[N ]∗(cwk(a)) = Nk · cwk(a) for all N . With this notation, σ̃∗([N ]∗(a)) = [N ]∗(ι∗(a)) =∑2g
m=0 Nm · cwm(a). Calculating modulo ψ we then find

δn(a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−p∗
0(a)[ι(C)] +

2g∑
m=0

S(m, 1) · cwm(a) if n = 1,

n! ·
2g∑

m=0

S(m, n) · cwm(a) if n > 1,
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where S(m, n) denotes the Stirling number of the second kind. Note that S(m, n) = 0 if
n > m, and S(m, m) = 1. Letting n run from 2g down to 2 we obtain that all classes
cwk(a) with 2 � k � 2g are in U .

As we have seen just before Proposition 6.3 (or by Corollary 3.8 (i)), the class
[ι(C)] has no components in coweight less than 2. So taking a = [C] we find that
[ι(C)] =

∑2g
k=2 cwk(C) ∈ U . Hence, taking n = 1, we find that also all classes cw1(a)

are in U . Finally, if x ∈ CH∗(J/S)Q is any class in coweight 0 then this means that
[N ]∗(x) = x for all N , so in particular x = [0]∗(x) = 0∗(ρ∗(x)) is in the image of CH(S).
Hence also all classes cw0(a) are in U .

This proves that all classes cwk(a) are in U . But then U contains the image of ι∗ and is
stable under all operators [N ]∗. So U = T CH∗(J/S)Q, and it follows that T KQ is gener-
ated by the classes Γ �

n(a) and that σ̃∗ restricts to an isomorphism T KQ
∼−→ T CH∗(J/S)Q.

For part (ii) note that the classes t = [p0] and u = [C] are clearly tautological. The
claim that T KQ[t, u] = T CH∗(C [•]/S)Q is then an immediate consequence of [16, Theo-
rem 4.2(i)], which gives that T CH∗(C [•]/S)Q is stable under the operators ∂t = P0,1(C)
and ∂u = P0,1([p0] + ψ). The rest of (ii) is straightforward.

For (iii) it suffices to show that T LQ[t, u] = T KQ[t, u]. The inclusion ‘⊆’ is clear.
For the opposite inclusion, write T K

[n]
Q := T KQ ∩ K[n]. By (iii) of Theorem 3.6 we have

(1 + ψu)−n · T K
[n]
Q ⊆ T LQ. Hence T K

[n]
Q ⊆ T LQ[t, u] for all n, and we are done. �

Corollary 8.6. The isomorphisms β, γ : CH∗(J/S)[u] ∼−→ CH∗(C [∞]/S) restrict to iso-
morphisms T β, T γ : T CH∗(J/S)Q[u] ∼−→ T CH∗(C [∞]/S)Q.

The following result gives an important connection between the modified diagonal
classes Γn(C) and the homomorphism s̃ : CH∗(J/S) → CH∗(C [•]/S).

Proposition 8.7. One has the following relation in CH∗(C [•]/S)Q:

s̃

(
log(1 + ψ[ι(C)])

ψ

)
=

∑
n�2

(−1)n(1 + ψu)−n Γ �
n(C)
n

.

As Γ �
n(C) ∈ K[n] for all n � 2, the sum is finite. Modulo ψ (e.g. working over a field)

we find that in CH∗(C [•]/S)Q/(ψ) we have

s̃[ι(C)] ≡
∑
n�2

(−1)n Γn(C)
n

mod (ψ).

Proof. By Theorem 3.6 (iii), the right-hand side belongs to LQ, so it is enough to check
that

∑
n�2

(−1)n(1 + ψ[ι(C)])−n σ̃∗(Γn(C)) + (−[ι(C)])nψn−1

n
=

log(1 + ψ[ι(C)])
ψ
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in CH∗(J/S)Q. Let us write c := [ι(C)] and dn := σ̃∗(Γn(C)). Since

∑
n�2

(−1)n(1 + ψc)−n (−c)nψn−1

n
= − log(1 − (ψc/(1 + ψc)))

ψ
− c

1 + ψc

=
log(1 + ψc)

ψ
− c

1 + ψc
,

the identity that we want to establish is equivalent to

∑
n�2

(−1)n(1 + ψc)−n dn

n
=

c

1 + ψc
,

which we can rewrite as ∑
n�1

(−1)n(1 + ψc)−n dn

n
= 0. (8.7.1)

Recalling the definition of Γn(C), we can write the generating series for the classes dn in
the following form (where x is a formal variable):

∑
n�1

dn
xn

n!
=

∑
k�0,m�1

(−1)k(1 + ψc)k · [m]∗(c)
xk+m

k!m!

= exp(−x(1 + ψc)) ·
( ∑

m�1

[m]∗(c)
xm

m!

)
.

Hence, we have ( ∑
n�1

dn
xn

n!

)
· exp(x(1 + ψc)) =

∑
m�1

[m]∗(c)
xm

m!
.

Comparing the coefficients of xm we get

[m]∗(c) =
∑
n�1

(
m

n

)
(1 + ψc)m−n · dn.

Note that both sides are polynomials in m. Since the class c = [ι(C)] has no components
in coweight less than 2 (by Corollary 3.8 (i)), the coefficient of m in [m]∗(c) is zero.
Calculating the coefficient of m in the right-hand side of the above equality we get
(8.7.1). �

9. Some relations between tautological classes

In this section we show how our techniques can be applied to derive explicit relations
between tautological classes on the Jacobian. In particular, under the assumption that
the curve has a gr

d we obtain some vanishing relations, both for classes on C [•] and
on the Jacobian. On the Jacobian we recover, working modulo algebraic equivalence,
results of Herbaut [6] and van der Geer and Kouvidakis [20] that extend an earlier result
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of Colombo and van Geemen [2]. Working modulo rational equivalence this result was
obtained by one of us in [12]. The nice feature of our approach is that the assumption
about the existence of a gr

d can be translated directly into a statement about classes
on C [•] (Lemma 9.2), from which the vanishing result follows by a short calculation.

We first introduce some notation. Throughout, we assume that S = Spec(k), where k

is a field. Given an effective divisor D of degree d on C, let [D] ∈ CH0(C [d]) be the class
of the point in C [d] corresponding to D. We define

ei(D) := P0,1(C)[d−i]([D]) ∈ CH0(C [i]).

Note that if D = p1 + · · ·+pd for some points pi ∈ C(k), the element ei(D) is simply the
ith elementary symmetric function of the classes ([pi]) with respect to the Pontryagin
product on CH∗(C [•]). Indeed, this follows immediately from Lemma 2.2 (ii). In general,
we have e0(D) = 1 and ed(D) = [D]. We also set

ēi(D) := Πt(ei(D)) =
i∑

j=0

(−1)j

(
d − i + j

j

)
ei−j(D)tj ∈ CH0(C [i]), (9.0.1)

where Πt is the projector defined in (8.2.1). In the case D = p1 + · · ·+pd, the class ēi(D)
is the ith elementary symmetric function of the classes ([pi] − [p0])i=1,...,d.

If D1 and D2 are rationally equivalent, then viewed as points of C [d] they lie in the same
fibre of the map σd : C [d] → J . But the fibres of σd are projective spaces, so [D1] = [D2].
Hence the classes ei(D) and ēi(D) only depend on the rational equivalence class of D.

Note that the isomorphism CH∗(C [•]) ∼= K[t]〈u〉 restricts to an isomorphism

CH0(C [•]) ∼= K0[t] with K0 := K ∩ CH0(C [•]).

In particular, ēi(D) ∈ K. Further it is easy to see that in CH0(C [d]) we have

[D] =
d∑

i=0

ēi(D)td−i;

so this gives another way to think of the classes ēi(D).
Finally, we denote by εi(D) the ith component of σ̃∗ēi(D) ∈ CH0(J) with respect to

Beauville’s decomposition CH0(J)Q =
⊕

j CH0,(j)(J). If D = p1 + · · · + pd for points
pi ∈ C(k) then εi(D) is the ith elementary symmetric function of the classes (α(pi)),
where α(p) ∈ CH0,(1)(J) is the component of [ι(p)] − [0] ∈ CH0(J).

Theorem 9.1. Let C be a curve over a field k with a k-rational point p0. Assume that
D ∈ C [d](k) is an effective divisor of degree d with h0(D) > 1. Write r(D) := h0(D) − 1.

(i) For integers ν and s, define U(ν, s) ∈ CHs(C [ν])Q by

U(ν, s) :=
∑

n1,n2,...,ns�2
n1+n2+···+ns=ν

Γn1(C) ∗ · · · ∗ Γns
(C)

n1 · · ·ns
,
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with the convention that U(0, 0) = [Spec(k)]. Then for all s � r(D) and N >

d − r(D) + s,

N−2s∑
i=0

(−1)iēi(D) ∗ U(N − i, s) = 0 in CH∗(C [•])Q. (9.1.1)

(ii) For integers ν and s, define an element Υ (ν, s) ∈ CH∗(J)Q by

Υ (ν, s) :=
∑

n1,n2,...,ns�2
n1+n2+···+ns=ν

(n1 − 1)! · · · (ns − 1)!cwn1(C) ∗ · · · ∗ cwns
(C),

with the convention that Υ (0, 0) = [S], and where we recall that cwn(C) is the
component of [ι(C)] in CH1,(n−2)(C). (So cwn(C) has coweight n.) Then for all
s � r(D) and N > d − r(D) + s, we have

N−2s∑
i=0

(−1)iεi(D) ∗ Υ (N − i, s) = 0 in CH∗(J)Q. (9.1.2)

Note that for d � 2g − 2 (the only case of interest) we have N − 2s > d − 2r(D) � 0
by Clifford’s theorem. The idea for the proof is to use the representation of the divided
powers of the class L ∈ CH1(C [∞]) by projective spaces in the symmetric powers of C.

Lemma 9.2. Let C and D be as in Theorem 9.1. Then the class [D] ∗ L[r(D)] ∈
CH∗(C [∞]) can be realized in CH∗(C [d]).

Proof. For N � 0 we know that L[m] is represented by the class of an m-dimensional
linear subspace in the fibre of the map σN : C [N ] → J over 0 ∈ J (see Remark 1.8).
Hence, [D] ∗ L[r(D)] is the class of an r(D)-dimensional linear subspace in the fibre of
σN over σd(D) ∈ J . But |D| ⊂ C [d], viewed as a subvariety of C [N ] via the embedding
id,N : C [d] ↪→ C [N ], is such a subspace. �

Proof of Theorem 9.1. Recall from (1.12.1) that (over a field) we have the relation L =
[C]−s[ι(C)] in CH∗(C [∞]). To avoid notational confusion, let us set m = r(D). Lemma 9.2
gives that the class [D] ∗ ([C] − s[ι(C)])∗m ∈ CH∗(C [∞]) can be realized in CH∗(C [d]). By
Remark 3.9, it follows that the image of this class under r : CH∗(C [∞]) → CH∗(C [•]) is
an element of CH∗(C [�d]).

Viewing [D] as an element of CH∗(C [∞]) we have

r([D]) =
∑
n�0

(1 − t)n · ∂
[n]
t [D] =

d∑
n=0

ed−n(D) · (1 − t)n =
d∑

i=0

ēi(D),

where for the first equality we use (3.9.1). Hence,

d∑
i=0

ēi(D) ∗ (u − s̃[ι(C)])∗m (9.2.1)

is an element of CH∗(C [�d]).
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It follows from Proposition 8.7 that the component of s̃[ι(C)]∗a in CH∗(C [b]) equals
(−1)b · U(b, a). With s and N as in the statement of the theorem, we know that the
component of the expression (9.2.1) in CH∗(C [N+m−s]) is zero. Direct calculation gives
that this component equals

m∑
j=0

d∑
i=0

(−1)N−i

(
m

j

)
ēi(D) ∗ um−j ∗ U(N + j − s − i, j).

But all elements ēi(D) and U(N + j − s− i, j) lie in K[t] and the powers of u are linearly
independent over K[t]. Hence,

d∑
i=0

(−1)N−i

(
m

j

)
ēi(D) ∗ U(N + j − s − i, j) = 0 for all j � m.

Taking j = s and noting that U(N − i, s) = 0 if N − i < 2s, gives (i) of the theorem.
By Theorem 7.3, σ̃∗ēi(D) only has components in coweight greater than or equal to i.

By definition, the component in coweight i is εi(D). Further, as we have seen in the proof
of Theorem 8.5, σ̃∗Γn(C) = n! ·

∑2g
l=0 S(l, n)cwn(C). Now we again use that S(l, n) = 0

if n > l and S(n, n) = 1. It follows that σ̃∗U(ν, s) has components only in coweight
greater than or equal to ν, and that the component in coweight ν is exactly Υ (ν, s).
With these remarks, (ii) follows from (i) by pushing forward to the Jacobian and taking
the component in coweight N . �

Remark 9.3. Part (ii) of the theorem is Theorem 4.6 of [12]. (The result is stated there
in Fourier-dual form.)

Let A∗(J)Q denote the quotient of CH∗(J)Q modulo algebraic equivalence. Considering
the identity (9.1.2) for s = r(D) and using the fact that εi(D) ∼alg 0 for i > 0 we
recover the following relations obtained in [20]. (Equivalent identities were first derived
by Herbaut in [6].)

Corollary 9.4 (Herbaut; van der Geer and Kouvidakis). Let C be a curve over
a field k with a k-rational point p0. Assume that C admits a gr

d defined over k. Then for
every N > d one has∑

n1+···+nr=N

(n1 − 1)! · · · (nr − 1)!cwn1(C) ∗ · · · ∗ cwnr (C) = 0 in A∗(J)Q.

On the other hand, for s = 0 (9.1.1) and (9.1.2) give the following vanishing result.

Corollary 9.5. Let C be a curve of genus greater than or equal to 1. With the same
assumptions as in Theorem 9.1, for d−r(D) < N � d one has ēN (D) = 0 in CH0(C [N ])Q

and εN (D) = 0 in CH0(J)Q.

The case N = d gives the following result that generalizes the well-known property of
Weierstrass points on a hyperelliptic curve (see [1, Proposition 3.2]).
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Corollary 9.6. Let C be a curve over k that has a k-rational point p0 ∈ C(k). Assume
that h0(p1 + · · · + pd) > 1 for some k-rational points p1, . . . , pd. Then

([p1] − [p0]) ∗ · · · ∗ ([pd] − [p0]) = 0 in CH0(C [d])Q.

Remark 9.7. If k is algebraically closed then the vanishing statements in the previous
two corollaries hold integrally by Rojtman’s theorem (see [11,17]).

It is also instructive to rewrite some of the identities (9.1.1) in terms of the classes
∆n,∗(C) (cf. Proposition 3.4 in [2] for a similar result modulo algebraic equivalence).

Corollary 9.8. Let C be a curve over k. Assume that h0(D) > 1 for some k-rational
divisor D of degree d on C. Then one has

d+1∑
j=1

(−1)jed+1−j(D) ∗ ∆j,∗(C)
j

= 0 in CH1(C [d+1])Q.

Proof. Since we use rational coefficients, we can pass to a finite extension of k and
assume that C has a k-rational point p0. Now take s = 1 and N = d + 1 in (9.1.1). We
get

d−1∑
i=0

(−1)iēi(D) ∗ Γd+1−i(C)
d + 1 − i

= 0.

As ēd(D) = 0 by Corollary 9.5, we can extend the range of the index i to {0, . . . , d}. Sub-
stituting the definition of the classes Γn(C) in terms of classes ∆j,∗(C), see Definition 8.3,
we get

0 =
d∑

i=0

d+1−i∑
k=0

(−1)i+kēi(D)
(

d + 1 − i

k

)
1

d + 1 − i
tk∆d+1−i−k,∗(C)

=
d∑

i=0

d−i∑
k=0

(−1)i+kēi(D)
(

d − i

k

)
tk

∆d+1−i−k,∗(C)
d + 1 − i − k

.

Now we use the identity

M∑
i=0

(
d − i

M − i

)
ēi(D)tM−i = eM (D)

that can be easily checked using (9.0.1). We then get

0 =
d∑

M=0

(−1)MeM (D) ∗ ∆d+1−M,∗(C)
d + 1 − M

,

which, setting j = d + 1 − M , gives what we wanted to prove. �
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9. K. Künnemann, On the Chow motive of an abelian scheme, in Motives (Seattle, WA,
1991), Proceedings of Symposia in Pure Mathematics, Volume 55, Part 1, pp. 189–205
(American Mathematical Society, Providence, RI, 1994).

10. E. Looijenga, On the tautological ring of Mg, Invent. Math. 121(2) (1995), 411–419.
11. J. S. Milne, Zero cycles on algebraic varieties in nonzero characteristic: Rojtman’s the-

orem, Compositio Math. 47(3) (1982), 271–287.
12. B. Moonen, Relations between tautological cycles on Jacobians, Comment. Math. Helv.

84(3) (2009), 471–502.
13. B. Moonen and A. Polishchuk, Divided powers in Chow rings and integral Fourier

transforms, Adv. Math., in press (doi:10.1016/j.aim.2009.12.025).
14. J. Murre, On a conjectural filtration on the Chow groups of an algebraic variety, I, The

general conjectures and some examples, Indagationes Math. 4 (1993), 177–188.
15. A. Polishchuk, Lie symmetries of the Chow group of a Jacobian and the tautological

subring, J. Alg. Geom. 16(3) (2007), 459–476.
16. A. Polishchuk, Algebraic cycles on the relative symmetric powers and on the relative

Jacobian of a family of curves, I, Selecta Math. 13 (2007), 531–569.
17. A. A. Rojtman, The torsion of the group of 0-cycles modulo rational equivalence, Annals

Math. (2) 111(3) (1980), 553–569.
18. A. J. Scholl, Classical motives, in Motives (Seattle, WA, 1991), Proceedings of Symposia

in Pure Mathematics, Volume 55, Part 1, pp. 163–187 (American Mathematical Society,
Providence, RI, 1994).

19. A. M. Shermenev, Motif of an Abelian variety, Funct. Analysis Applic. 8 (1974), 47–53.
20. G. van der Geer and A. Kouvidakis, Cycle relations on Jacobian varieties (with an

appendix by Don Zagier), Compositio Math. 143 (2007), 900–908.

https://doi.org/10.1017/S147474801000006X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801000006X

